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Abstract

It is known that for any clas€ closed undeunion and intersectiarthe Boolean closure
of C, the Boolean hierarchy ovér, and the symmetric difference hierarchy oveall
are equal. We prove that these equalities hold for any cotitplelass closed under
intersection in particular, they thus hold for unambiguous polynomiaid (UP). In
contrast to the NP case, we prove that the Hausdorff hieyaaatl the nested difference
hierarchy over UP both fail to capture the Boolean closur&Bfin some relativized
worlds.

Karp and Lipton proved that ifiondeterministipolynomial time has sparse Turing-
complete sets, then the polynomial hierarchy collapses.e$uablish the first conse-
quences from the assumption thatambiguougolynomial time has sparse Turing-
complete sets: (a) UE Lows, where Low is the second level of the low hierarchy,
and (b) each level of the unambiguous polynomial hierarshgantained one level
lower in the promise unambiguous polynomial hierarchy tisatherwise known to be
the case.
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1 Introduction

NP and NP-based hierarchies—such as the polynomial higrgtS72,[Sto7]7] and the Boolean

hierarchy over NP[[CGFi88, [CGHT 89, [KSW8Y]—have played such a central role in complexity
theory, and have been so thoroughly investigated, thatuldvoe natural to take them as predictors
of the behavior of other classes or hierarchies. However, and over during the past decade it has
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been shown that NP is a singularly poor predictor of the biehaf other classes (and, to a lesser
extent, that hierarchies built on NP are poor predictorheftiehavior of other hierarchies).

As examples regarding hierarchies: though the polynonméathichy possesses downward sep-
aration (that is, if its low levels collapse, then all its é& collapse) [[MS742, StoJ7], downward
separation does not hold “robustly” (i.e., in every relaéd world) for the exponential time hi-
erarchy [HIS8b[1Tg9] or for limited-nondeterminism hiechies ([HJ9B], see als§ [BG94]). As
examples regarding UP: NP h&$ -complete sets, but UP does not robustly possésscomplete
sets [HH8B] or ever/.-complete set[HIVP3]; NP positively relativizes, in tlemse that it col-
lapses to P if and only if it does so with respect to every tatbcle ([CS8p], see als [BBI86]), but
UP does not robustly positively relativie [HR92]; NP hasristructive programming systems,” but
UP does not robustly have such systefns [Reg89]; NP (actualhdeterministic computation) ad-
mits time hierarchy theoremf JH365], but it is an open qoesiithether unambiguous computation
has nontrivial time hierarchy theorems; NP displays upvaaplaration (that is, NP P contains
sparse sets if and only if NE E) [HIS85], but it is not known whether UP does (see [HiJ93]iclvh
shows that R and BPP do not robustly display upward separatiod [RRW94], which shows that
FewP does possess upward separation).

In light of the above list of the many ways in which NP parts gamy with UP, it is clear that
we should not merely assume that results for NP hold for UR,rather, we must carefully check
to see to what extent, if any, results for NP suggest resoifts)P. In this paper, we study, for UP,
two topics that have been intensely studied for the NP cdmestructure of Boolean hierarchies,
and the effects of the existence of sparse Turing-complatieg-hard sets.

For the Boolean hierarchy over NP, which has generated guiteof interest and the collapse
of which is known to imply the collapse of the polynomial leshy [Kad8B,[CK90a, BCOP3],
a large number of definitions are known to be equivalent. B@mple, for NP, all the fol-
lowing coincide [CGH 88]: the Boolean closure of NP, the Boolean (alternating suhier-
archy, the nested difference hierarchy, and the Hausd@falthy. The symmetric difference
hierarchy also characterizes the Boolean closure of [NP J[EHW In fact, these equalities are
known to hold for all classes that conta¥i and () and are closed under union and intersec-
tion [Haul#[CGH 8§,[KSW8Y,[BBJ 89,[GNWID,[CKI0b| Chad1l]. In Sectigh 3, we prove that
both the symmetric difference hierarchy (SDH) and the Bawleierarchy (CH) remain equal to the
Boolean closure (BCgven in the absence of the assumption of closure under ufibat is, for
any classC containingX* and() and closed under intersection (e.g., UP, US, and DP, firsteffi
respectively in[[Val76],[BGd2], and [PYB4] and each of wiis not currently known to be closed
under union): SDKIK) = CH(K) = BC(K). However, for the remaining two hierarchies, we show
that not all classes containirig® and() and closed under intersection robustly display equality. |




particular, the Hausdorff hierarchy over UP and the nestterence hierarchy over UP both fall
to robustly capture the Boolean closure of UP. In fact, thieirfa is relatively severe; we show
that even low levels of other Boolean hierarchies over URe-thiird level of the symmetric differ-
ence hierarchy and the fourth level of the Boolean (altémgaums) hierarchy—fail to be robustly
captured by either the Hausdorff hierarchy or the nestddrdifice hierarchy.

It is well-known, thanks to the work of Karp and Liptor{ ([KOBGsee also the related refer-
ences given in Sectiof] 4), that if NP has sparse Turing-heis| then the polynomial hierarchy
collapses. Unfortunately, the promise-like definition d?P-d-its unambiguity, the very core of its
nature—seems to block any similarly strong claim for UP drelunambiguous polynomial hier-
archy (which was introduced recently by Niedermeier andsRasith [NROB]). Sectiop] 4 studies
this issue, and shows that if UP has sparse Turing-compi&tethen the levels of the unambiguous
polynomial hierarchy “slip down” slightly in terms of thdibcation within the promise unambigu-
ous polynomial hierarchy (a version of the unambiguous mpatyial hierarchy that requires only
that computationgctually executedbe unambiguous), i.e., thgh level of the unambiguous poly-
nomial hierarchy is contained in th{¢ — 1)st level of the promise unambiguous polynomial hier-
archy. Various related results are also established. Fomple, if UP has Turing-hard sparse sets,
then (a) UPC Lows, where Low is the second level of the low hierarcHy [Sch83], and (b)/ttie
level of the unambiguous polynomial hierarchy can be aetkpia a deterministic polynomial-time
Turing transducer given access to both!aset and thék — 1)st level of the promise unambiguous
polynomial hierarchy.

2 Notations

In general, we adopt the standard notations of Hopcroft divddw [HU79]. Fix the alphabet =
{0,1}. ¥* is the set of all strings ovex. For each string. € ¥*, |u| denotes the length af. The
empty string is denoted hy For each sel C X*, || L|| denotes the cardinality df andL = ¥* — L
denotes the complement 6f L=" (L=") is the set of all strings i, having length. (less than or
equal ton). Let =" andX=" be shorthands fof¥*)=" and(X*)=", respectively. A sef is said to
be sparseif there is a polynomial; such that for everyn > 0, ||S<™|| < ¢(m). To encode a pair
of strings, we use a polynomial-time computable pairingcfiom, (-, -) : ¥* x ¥* — ¥*, that has
polynomial-time computable inverses; this notion is egttghto encode every-tuple of strings, in
the standard way. Letex denote the standard quasi-lexicographical ordering-onthat is, for
stringsz andy, x <iex y if eitherz = y, or |z| < |y|, or (Jz| = |y| and there exists somee X*
such thate = 20u andy = z1v). = <jex y indicates that: <ex y butz # y.

For setsA and B, their join, A ® B, is {0z |z € A} U {lz|x € B}, and their symmet-



ric difference, AAB, is (A — B) U (B — A). For any clas<, define c@ a {L|L € ¢},
and let BGC) denote the Boolean algebra generated(hy.e., the smallest class containirgy
and closed under all Boolean operations. For any clagsesd B, let A & B denote the class
{A@B|Ae€ AN B e B}. Similarly, for classe€ and D of sets, define

cAaD ¥ (AnBl|AecaBeD), cAD & {AAB|AeCABeDY,

CvD = {AUB|AeCABeD}, C—-D {A-—B|AeCABeDj}.

We will abbreviate “polynomial-time deterministic (norideministic) Turing machine” by
DPM (NPM). An unambiguougsometimes called categorical) polynomial-time Turingciniae
(UPM) is an NPM that on no input has more than one acceptingpotation path [Val76]. UP
is the class of all languages that are accepted by some JPM@VaFor the respective oracle
machines we use the shorthands DPOM, NPOM, and UPOM.

Note, crucially, that whether a machine is categorical drdepends on its oracle. In fact,
it is well-known that machines that are categorical withpees to all oracles accept only easy
languages[[HHY0] and thus create a polynomial hierarchjogrthat is completely contained in a
low level of the polynomial hierarchy (Allender and Hemaotia as cited in[[HR92]). So, when
we speak of a UPOM, we will simply mean an NPOM that, with thacte the machine has in the
context being discussed, happens to be categorical.

For any Turing machiné/, L(M) denotes the set of strings acceptedMy and the notation
M (x) means M on inputz.” For any oracle Turing maching/ and any oracle setl, L(M*)
denotes the set of strings acceptedMyrelative to A, and the notatiom/(x) means M4 on
inputx.” Without loss of generality, we assume each NPM and NPOMJjinstandard enumeration
of such machines)/ has the property that for every there is an integet, such that, for every of
lengthn, every path of\/ () is of length?,,, and furthermore, in the case of oracle machines,fhat
is independent of the oracle. Ldtand B be sets. We say is Turing reducibleto B (denoted by
A <. Bor A € PP)if there is a DPOMM such thatd = L(M?P). A setB is Turing-hardfor a
complexity clasg if forall A € C, A <%, B. A setB is Turing-completdor C if B is Turing-hard
for CandB € C.

df

3 Boolean Hierarchies over Classes Closed Under Interseoh

The Boolean hierarchy is a natural extension of the class& [8oo7], [Lev7B] and
DP 2 NP A coNP [PY8H]. Both NP and DP contain natural problems, as do lévels of

the Boolean hierarchy. For example, graph minimal uncbibtta is known to be complete
for DP [CM8T]. Note that DP clearly is closed under interg®ct but is not closed under union

unless the polynomial hierarchy collapses (dud to [Khd883, also[[CK904, ChaP1]).
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Definition 3.1 [CGHT88,[KSW8Y [Haul4] Lefk be any class of sets.

1. TheBoolean (“alternating sums”) hierarchy ovec:

Ca() VI ifkodd CHIO) & ) Gk,

cK) Tk, cur) ¥
! PR Cr_1(K) Acok if k even 1

2. Thenested difference hierarchy ovgr

D1 (K) L K, Dr(K) L K —Dy1(K), k>2, DH(K) L | J Dx(K).
k>1

3. TheHausdorff (“union of differences”) hierarchy oveg:f]

Ei(K) LK, B2(K0) LK — K, Ex(K) LE(K) VExa(K), k> 2, EH(K) £ | Ex(K).
k>1

4. Thesymmetric difference hierarchy ovir.

sbi(K) Lk, SDy(K) £ SD,_1(K) AK, k >2, SDH(K) < | J SDy(K).
k>1
It is easily seen that for any X chosen frdi@, D, E, SO}, if K contains)) andX*, then for any
k>1,
Xk(]C) U COXk(]C) - Xk+1(IC) N COX]H_l(]C).

The following fact is shown by an easy induction on

Fact3.2 For every classC of sets and every., > 1, (&) Dy,—1(K) = coGy,—1(coK), and
(b) Dy, (K) = Cyp(cOK).

Proof. The base case holds by definition. Suppose (a) and (b) to®éaru > 1. Then,

Dont+1(K) = KA (coKV Dgy,—1(K)) W kA (cok Vv €0G,,—1(coK))
= KACOKACy,—1(cok)) = K AcoGy,(cok)
= co(cok V Cy,(coK)) = €0Gy+1(cOK)

shows (a) fom + 1, and
Donsa(K) = K—(K—Dan(K)) ™ KA (COKV Con(CoK)) = Conpa(cok)

shows (b) form + 1. |

'Hausdorff hierarchies|([HaulL4], sde [CGBg, [BBJ" 89, [GNW9P], respectively, for applications to NP, R, asB)C
are interesting both in the case where, as in the definitios, ltke sets are arbitrary sets frd) and, as is sometimes
used in definitions, the sets froid are required to satisfy additional containment conditioRar classes closed under
union and intersection, such as NP, the two definitions ametical, level by level 4], see aI]). In this
paper, as, e.g., UP, is not known to be closed under uniomlistiaction is nontrivial.
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Corollary 3.3 CH(UP) = coCHUP) = DH(coUP) and CHcoUP) = coCH(coUP) = DH(UP).

We are interested in the Boolean hierarchies over classesaunder intersection (but perhaps
not under union or complementation), such as UP, US, and DéPstilfe our theorems in terms of
the class of primary interest to us in this paper, UP. Howawany apply to any nontrivial class
(i.e., any class containing* and () closed under intersection (see Theorem]3.10). Although it
has been proven i [CGF8§] and [KSW8J] that all the standard normal forms of DefomifB.]
coincide for NFf| the situation for UP seems to be different, as UP is probabtyctosed under
union. (The closure of UP under intersection is straightéod.) Thus, all the relations among
those normal forms have to be reconsidered for UP.

We first prove that the symmetric difference hierarchy ovBr(or any class closed under inter-
section) equals the Boolean closure. Though Kobler, Sioigi and Wagne [KSW§7] proved this
for NP, their proof gateways through a class whose proof oivedence to the Boolean closure uses
closure under union, and thus the following result is notliaitgn their paper.

Theorem 3.4 SDH(UP) = BC(UP).

Proof. The inclusion from left to right is clear. For the converseluision, it is sufficient to show
that SDHUP) is closed under all Boolean operations, agBE), by definition, is the smallest class
of sets that contains UP and is closed under all Boolean tipesa LetZ and L’ be arbitrary sets
in SDH(UP). Then, for somé:, ¢ > 1, there are setd,, ..., Ay, By, ..., By in UP representind.
andL’:

L=A4A---AA, and L' = BiA---ABy.

So
LnL = (A§:1Ai) N (A§:1Bj) = DNjequ,. k), jef1,....er (Ai N Bj),

and since UP is closed under intersection and 8/ is (trivially) closed under symmetric dif-
ference, we clearly have thdtnN L e SDH(UP). Furthermore, sincé = X*AL implies that
L € SDH(UP), SDH(UP) is closed under complementation. Since all Boolean omeraittan be
represented in terms of complementation and interseatianproof is complete. O

Next, we show that for any class closed under intersectimtantiated below to the case of UP,
the Boolean (alternating sums) hierarchy over the clasalsdiue Boolean closure of the class. Our
proof is inspired by the techniques used to prove equalitthéncase where closure under union
may be assumed.

2Due essentially to its closure under union and intersectonl this reflects a more general behavior of classes
closed under union and intersection, as studied by Bertaii §BBJ"89], see alsd [Haul.§t, CGH8$,[KSW8Y]CK90b,

Ehaghy).




Theorem 3.5 CH(UP) = BC(UP).

Proof.  We will prove that SDHUP) C CH(UP). By Theorend 3]4, this will suffice.

Let L be any set in SDHJP). Then there is & > 1 (the casek = 1 is trivial) such that
L € SD;(UP). LetUy, ..., Ui be the witnessing UP sets; that Is= U1 AU, A - - - AUj. By the
inclusion-exclusion rulel satisfies the equalities below. For okld

L = (---(((U1UU2U---UU,€)0(U (Ujlmsz))) U
J1<j2

( U (UjlﬂszﬁUj3)>) n---u ( U Wun--ny; )))>
J1<j2<j3 J1<<Jg

where each subscriptgdterm must belong t41, . .., k}. For evenk, we similarly have:

L = (---(((U1UU2U---UU,€)0(U (UjlmUjQ))) U
J1<j2

( U (UjlmUjQerjS)>) NN ( U wun---nu; ))) .
J1<j2<73 J1<<Jk

For notational convenience, let us ude, ..., A; to represent the respective terms in the above
expressions (ignoring the complementations). By the csfl UP under intersection, each,

1 < i < k, is the union of(%) UP setsB; 1, ..., Bi7(§). Using the fact tha@ is clearly in UP, we
can easily turn the union of arbitrary UP sets (or the intersectionrofrbitrary coUP sets) into an
alternating sum o2n — 1 UP sets. So for instancel; = U; U Uy U - - - U Uy, can be written

(---(((Um@)UUQ)O@)U---uUk),

call thisCy. Clearly,Cy € Co,—1(UP). To transform the above representationi.dhto an alternat-
ing sum of UP sets, we need two (trivial) transformationsdimg for anym > 1 and for arbitrary
setsS andTy, ..., Ty,:

Sm(T1UT2U---uTm) - (---((Smﬁ)m@)m---)mﬁ (1)
SUMUTaU---UTy,) = (- (SUT)UTp)U--)UTy,. (2)

Using (1) withS = Cy andTi = By1,..., T = B, *) and the fact thaf is in UP, 4; N Ay
2
can be transformed into an alternating sum of UP sets, daltth Now apply [2) withS = C;

andTy = B3 1,...,Tn = By (%) to obtain, again using thdtis in UP, an alternating suy =
\3

(A1 N A_g) U Az of UP sets, and so on. Eventually, this procedure of altetpaipplying [JL) and
(B) will yield an alternating sun®, of sets in UP that equals. Thus,L € CH(UP). O
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Corollary 3.6 SDH(UP) and CHUP) are both closed under all Boolean operations.

Note that the proofs of Theorenis]3.5 gnd 3.4 implicitly giveeeurrence yielding an upper
bound on the level-wise containments. We find the issue oléguo BC(UP), or lack thereof,
to be the central issue, and thus we focus on that. Nonetheles point out in the corollary
below that losing the assumption of closure under union setenhave exacted a price: though
the hierarchies SDHUP) and CHUP) are indeed equal, the above proof embeds (®&IP) in an
exponentially higher level of the C hierarchy. Similarlyetproof of Theorerf 3.4 embeds ©/P)
in an exponentially higher level of SOHP).

Corollary 3.7 (to the proofs of Theoremd 3.5 and 3]4)
1. Foreachk > 1, SD;(UP) C Cort1_j;,_o(UP).

2k _1 if kisodd

2. Foreachk > 1, CL(UP) C S UP), whereT'(k) = o
- #(UP) & SDry (UP) (k) {2’“—2 if k is even.

Proof. For an SQ(UP) setL to be placed into th&(k)th level of CHUP), L is represented (in
the proof of Theorer 3.5) as an alternating sunk ¢érms Ay, . .., A, eachA4; consisting of(’j)

UP setsB; ;. In the subsequent transformation faccording to the equationf (1) arfdl (2), each
A; requires as many a(§;) — 1 additional termg) or (3, respectively, to be inserted, and each such
insertion brings us one level higher in the C hierarchy. Thus

R(k):g<]§>+<<l;> —1) :—k:+2iz;<]z> — okt _k _ 2

A close inspection of the proof of CUP) C SDy(;,(UP) according to Theoreth 3.4 leads to the
recurrence:

2T'(k—1)+3 if k> 1isodd

T(1l)=1 and T(k)=
M) *) {ZT(k:—l) if £ > 1iseven,

since any seL € C(UP) can be represented by sets= C;,_;(UP) andB € UP as follows:

L = AUB = AnB = YA((S*AA)N(S*AB))  if kis odd,
L = AnB = AN(Z*AB) if k& is even.

The above recurrence is in (almost) closed form:

2k 1 if k> 1isodd
2k _ 9 if k > 1iseven,

T(k) = {



as can be proven by induction ér(we omit the trivial induction base): For odd(i.e.,k = 2n — 1
for n > 1), assumd’(2n — 1) = 22»~! — 1 to be true. Then,

T(2n+1) = 2T(2n) +3 = AT(2n — 1) + 3 24 (22"—1 _ 1) 43— ot _q

For evenk (i.e.,k = 2n for n > 1), assumd’(2n) = 22" — 2 to be true. Then,

T(2n +2) = 2T(2n + 1) = 2(2T(2n) + 3) 2 4 (22" —2) +6=2"+2 -2 O

Remark 3.8  The upper bound in the second part of the above proof can getlglimproved
using the fact that*AX*AA = (A A = A for any setA. This gives the recurrence:

2I'(k—1)+1 if k> 1isodd

T(1)=1 and T(k)=
W) *) {2T(l<:—1) if £ > 1iseven,

or, equivalently,7(1) = 1, T(2) = 2, andT(k) = 2¥=! + T'(k — 2) for k > 3. Though this
shows that the upper bound given in the above proof is notn@btithe new bound is not a strong
improvement, as it still embeds,@JP) in an exponentially higher level of SOHP). We propose
as an interesting task the establishmentigift level-wise containments, at least up to the limits of
relativizing techniques, between the hierarchies 80P and CHUP), both of which capture the
Boolean closure of UP.

We conjecture that there is some relativized world in whickegoonential increase (though less
dramatic than the particular exponential increase of CampB.7) indeed is necessary.

Theoren 3]9 below shows that each level of the nested differ@ierarchy is contained in the
same level of both the C and the E hierarchy. Surprisinglyrits out (see Theorefn 3]13 below)
that, relative to a recursive oracle, even the fourth le¥€ld(UP) and the third level of SDHUP)
are not subsumed by any level of the @HP) hierarchy. Consequently, neither the D nor the E
normal forms of Definitior] 3]1 capture the Boolean closur&/Bf

Theorem 3.9  For everyk > 1, D;(UP) C C,(UP) N Ex(UP).

Proof.  For the first inclusion, by|[CH85, Proposition 2.1.2], eaehls € D, (UP) can be repre-
sented as
L= A1 — (A2 = (- (g1 — Ap) ),

whereA; = ﬂlgjgi L;, 1 <i <k, and theL,’s are the original UP sets representihgNote that
since the proof of [CH85, Proposition 2.1.2] only uses isgetion, the setd; are in UP. A special



case of [CH8b, Proposition 2.1.3] says that setsiililP) via decreasing chains such as theare
in Cx(UP), and soL € Ci(UP).

The proof of the second inclusion is done by induction on ttié and even levels separately.
The induction base follows by definition in either case. Fdd devels, assume £)_;(UP) C
E2,—1(UP) to be valid, and let. be any set in B, (UP) = UP— (UP— Dy,_1(UP)). By our
inductive hypothesisl. can be represented as

L=A- (B— (ng(Cmﬁ)UE>>

whereA, B, C;, D;, andE are sets in UP. Thus,

L = An Bﬂ(jg(ciﬂE)UE)
(omm)UE»

= Am(?u(n
= (AmF)u(n AmCmE)u(AmE)

1

L
—_

1

i=1

whereF; = AnNC;,forl1 <¢<n-1,F, = A, D, = B,andG = AN E. Since UP is closed
under intersection, each of these sets is in UP. Thus Es,,+1(UP). The proof for the even levels
is analogous except that the geits dropped. |

Note that most of the above proofs used only the facts thatl#fss is closed under intersection
and contain&* and(:

Theorem 3.10 Theoremg 3]4, 3.5, ald B.9 and Corollafie$ 3.6[arjd 3.7 appyl tlasses that
containX* and( and are closed under intersection.

Remark 3.11  Although DP is closed under intersection but seems to lagkucke under union
(unless the polynomial hierarchy collapses to PP [Kafi889al[Chadl]) and thus Theorgm 3.10
in particular applies to DP, we note that the known resultsualBoolean hierarchies over
NP [CGHT88,[KSW8Y] in fact even for the DP case imply stronger resiig those given by
our Theoren{ 3.30, due to the very special structure of DReddgdsince, e.g., £EDP) = E;;(NP)
for any k£ > 1 (and the same holds for the other hierarchies), it followmediately that all the
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level-wise equivalences among the Boolean hierarchiesdkso their ability to capture the Boolean
closure) that are known to hold for NP also hold for DP everhimdbsence of the assumption of
closure under union. This appears to contrast with the UP (s&2 Remark 3.8).

The following combinatorial lemma will be useful in provifidneoren{ 3.73.

Lemma3.12 [CHV93] Let G = (S,T,E) be any directed bipartite graph with out-
degree bounded by for all vertices. LetS’ C S and7’ C T be subsets such that
S'D{seS|(3teT)[(s,t) € E]},andT’ D {t € T'| (3s € S) [(t,s) € E]}. Then either:

1. ||8"|| < 2d, or

2. |IT"|| < 2d, or
3. 3selS)BeT)|(s,t) € E N (t,s) & E.

For papers concerned with oracles separating interndkleé®oolean hierarchies over classes

other than those of this paper, we refer the readef to (E&[Cai8f[ GNWId, BIY9(, Crap4], see
also [GW8Y]). Theorerh 3.1.3 is optimal, as clearly(GP) C EH(UP) and SB(UP) C EH(UP),
and both these containments relativize.

Theorem 3.13 There are recursive oraclegsand D (though we may takel = D) such that
1. C,(UP4) ¢ EH(UP*), and
2. SD;(UPP) ¢ EH(UPP).

Corollary 3.14  There is a recursive orack such that
1. EH(UP4) # BC(UP#) and DHUP#) # BC(UP4) [l and

2. EH(UP4) and DHUP4) are not closed under all Boolean operations.

Proof of Theorem[3.18.  Although the theorem claims there is an oracle keepin@J€) from
being contained in any level of EHP), we will only prove that for any fixed: we can ensure
that C,(UP) is not contained in FUP), relative to some oraclel®). In the standard way, by
interleaving diagonalizations, the sequence of oracl€8, can be combined into a single oraclg,
that fulfills the claim of the theorem. An analogous commeuité for the second claim of the

3As Fac shows that DJP) = CH(coUP), this oracleA also separates the Boolean (alternating sums) hierarchy
over coUP from the fourth level of the same hierarchy over b, ¢hus, from BQUP).
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theorem, with a sequence of oracle$§") yielding a single oraclé. Similarly, both statements of
the theorem can be satisfied simultaneously via just ondepnéa interleaving with each other the
constructions off andD. Though below we construct judt*) andD®*), as a notational shorthand
we'll use A and D below to representl*) and D*).

Before the actual construction of the oracles, we state swalieninaries that apply to the proofs
of both statements in the theorem.

For anyn > 0 and any string € =", defineS” a {vw |vw € ¥"}. The setsS]! are used to
distinguish between different segmentstifin the definition of the test languages, and L p.

Fix any standard enumeration of all NPOMs. Fix dny> 0. We need only consider even
levels of EHUP), as each odd level is contained in some even level. Call aligction of 2k
NPOMs,H = (Ny1,...,Ng1,Ni2,..., Ni2), apotential (relativized) & (UP) machine, and for
any oracleX, define its language to be:

LX) 4 ij (LN = L(ND)) -
i=1

If for some fixed oracleY’, a potential (relativized) & (UP) machineH" has the property that
each of its underlying NPOMs with oracléis unambiguous, theh(HY) indeed is in E; (UPY).
Clearly, our enumeration of all NPOMs induces an enumeraifall potential &, (UP) oracle ma-
chines. Forj > 1, let H; be thejth machine in this enumeration. Let be a polynomial bounding
the length of the computation paths of eachfbfs underlying machines (and thus bounding the
number of and length of the strings they each query). As ainatd convenience, we hencefor-
ward will use H andp as shorthands fal/; andp;, and we will denote the underlying NPOMs by
Ny, Ng1,Nig, ..., Ny o.

The oracleX, whereX stands forA or D, is constructed in stageX, = szl X;. In stagey,
we diagonalize againgf by satisfying the following requirememt; for every; > 1:

R; : Either there isam > 2 and ani, 1 < i < k, such that one oNi’Xf or Ni,Xg' on input0” is
ambiguous (thusf is in fact not an &, (UP) machine relative toX), or L(HX) # Lx.

Let X, be the set of strings contained by the end of stagg, and letX ]' be the set of strings
forbidden membership iX during stagej. The restraint functiom(j) will satisfy the condition
that at no later stage will strings of length smaller th@j) be added toX. Also, our construction
will ensure that-(j) is so large thaf{;_; contains no strings of length greater thdn). Initially,
both X, and X, are empty, and(1) is set to be 2.

We now start the proof of P4t 1 of the theorem. Define the tesjuage:
df n n n n
La={0"|(3z)[z € Sy NA] A (Vy) [y & STo N A] A (V2) [z & STy N Al}

12



Clearly, L 4 is in NP* A coNP* A coNP*. However, if we ensure in the construction that the
invariant |.S;' N A|| < 1 is maintained forv € {0,10,11} and everyn > 2, thenL4 is even
in UPA A coUP! A coUP?, and thus in G(UP4). We now describe stagg > 0 of the oracle
construction.

Stagej: Choosen > r(j) so large tha"=2 > 3p(n).

)
Case 1: 0" € L(HAi-1). Since0™ ¢ L, we haveL(H*) # L 4.
Case 2: 0" ¢ L(H%i-1),
Case 2.1:0" ¢ L(HPi). Letting A; := B; implies0" € L4, SOL(H?) # Ly.
Case 2.2:0" € L( Bj). Then there is am, 1 < i < k, such thab" ¢ L(N 7) and
0" & L(N, ) “Freeze” an accepting path (N 7(0™) into Aj, that is, add those

strings quened negatively on that pathAg, thus forbidding them fromA for all
later stages. Clearly, at mgsin) strings are “frozen.”

Case 2.2.1:(3z € (S, U S) — 4;) 0" ¢ (N3],

Choose any such. Set4, := B; U {z}. We have)” ¢ L(H?) — La.

Case 2.2.2:(¥z € (ST U S) — A7) [om € LNV

To apply Lemme3.12, define a directed bipartite gréph= (S, 7, E) by

s & gn AT = agn A, and for eachs € S andt € T, (s,t) € E f
BU{s}

Choose some € Si and setB; := A;_; U {z}.

and only if NV, 5 gueriest along its lexicographically first accepting path,
and(t,s) € E is defined analogously. The out-degree of all vertice& a$
bounded byp(n). By our choice ofn, min{||S||,||T|} > 272 — p(n) >
2p(n), and thus alternativig 3 of Lemrha 3.12 applies. Hence, thésestrings
s € Sandt € T such thatNB U{S}(O”) accepts on some paghy on which
t is not queried, anoNB U{t}(O”) accepts on some pagh on whichs is not
queried. Since; (p¢) changes from reject to accept exactly by addin(g) to
the oracles (t) must have been queried pn (p;). We conclude thaps # p,

and thusNB Vis, t}(O") has at least two accepting paths. 8et= B;U{s,t}.

In each case, requiremeRY; is fulfilled. Letr(j + 1) bemax{n, w,}, wherew; is the length of the
largest string queried through stage
End of stagej.

13



We now turn to the proof of Pajt 2 of the theorem. The test laggthereL p, is defined by:

(Bx)[zxeSgNDI A Fy)lyeSfyNnD] A (Fz)[z€ SN D]) v
Iy o (Vo) [z & Sg N D] A (Vy) [y € SToN D] A (32) [z € SN D))V

(Bz) [z eSgND] A (Vy)ly € SToN D] A (V2) [z & STy N D]) Vv

(Vo) [z & Sg N D] A (Fy)ly € SioN D] A (Vz) [z € STy N D))

Again, provided that the invariafits;’ N D|| < 1 is maintained fow € {0, 10,11} and everyn > 2
throughout the constructiod,, is clearly in SB(UPP), as for all setsA, B, andC,

AABAC = (ANBNC)U(ANBNC)U(ANBNC)U(ANBNCQO).
Stagej > 0 of the construction oD is as follows.
Stagej: Choosen > r(j) so large thap”=2 > 3p(n).

Case 1: 0" € L(HPi-1). Since0™ ¢ Lp, we haveL(HP) # Lp.
Case 2: 0" ¢ L(HPi-1). Choose some € S} and sett); := D;_; U {z}.
Case 2.1:0" ¢ L(H5). Letting D; := E; implies0" € Lp, SOL(HP) # Lp.
Case 2.2:0" € L(H%3). Then, there is an, 1 < i < k, such thad” ¢ L(N ’) and

o ¢ L(NZEZ') “Freeze” an accepting path o, 1(0”) into D Again, at most

p(n) strings are “frozen.”
Case 2.2.1: (3w € (S}, U STy) — D;) [0 ¢ L5 )].
Choose any suclr and setD; := E; U {w}. We have" e L(HP) - Lp.
Case 2.2.2: (Vw € (S, U S1y) — D) [0" € L(N3 U{”})]
As before, Lemmé 3.12 yields two stringse ST, — j andt € S} —
such thatNEJU{S 3 (07) is ambiguous. Seb; := E; U {s,t}.

Again, R; is always fulfilled. Define:(;j + 1) as before.
End of stagej. O

Finally, we note that a slight modification of the above prestiablishes the analogous result (of

Theoren( 3.13) for the case of UE [BG82] (which is denoted INBSW8T,[Cro9}]).

4 Sparse Turing-complete and Turing-hard Sets for UP

In this section, we show some consequences of the existéspamse Turing-complete and Turing-
hard sets for UP. This question has been carefully investigéor the class NP[JKL8d, HopB1,
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KS838, [BBS8p [ LS86| Schp§, Kadg®]Kadin showed that if there is a sparsé.-complete set
in NP, then the polynomial hierarchy collapses Pl [Kad89]. Due to the promise nature of UP

(in particular, UP probably lacks complete sdts [HH88]),dies proof does not seem to apply
here. But does the existence of a sparse Turing-completa B8 cause at least some collapse of
the unambiguous polynomial hierarchy (which was introdueently in [NROB])f]

Cai, Hemachandra, and VyskdZ JCHVY93] observe that orglifaring access to UP, as for-
malized by PP, may be too restrictive a notion to capture adequately oiné’stion of Turing
access to unambiguous computation, since in that modelrtideomachine has to be unambigu-
ous oneveryinput—even those the base DPOM never asks (on anis dfiputs). To relax that
unnaturally strong uniformity requirement they introdube class denoted ¥, in which NP
oracles are accessed ingaardedlyunambiguous manner, a natural notion of access to unam-
biguous computation—suggested in the rather analogouws afallP N coNP by Grollmann and
Selman [GS§8]—in whiclonly computations actually executed need be unambiguarge, Nie-
dermeier, and Rossmanith [LROA]INR93, p. 483] generaliis approach to build up an entire
hierarchy of unambiguous computations in which the oramlels are guardedly accessed (Defini-
tion @, Parf]3)—th@romise unambiguous polynomial hierarchy

Definition 4.1

1. Thepolynomial hierarchyfMS72,[Sto7]7] is defined as follows:
spdp Ardp wp ENpZios, 112 Leox?, AP LPYios k> 1, and PHE (J;o) X2,

2. Theunambiguous polynomial hierarcffR93] is defined as follows:
ust £ pouaz & p use & gpi¥ia, um? & coux?, UA? & PYYE k> 1, and

UPH L 0 USE.

3. Thepromise unambiguous polynomial hierarc{ilzR94][NR93, p. 483]) is defined as fol-
lows: ush £ P, us? £ UP, and fork > 2, L € USY if and only if I € S via NPOMs

Ny, ..., Ny satisfying for all inputse and everyi, 1 < i < k — 1, that if N; asks some query
LL(NE)

g during the computation aiV; (x), then N;;1(¢) with oracIeL(Nii(éV”?’ )) has at most
one accepting pathl/PH af Ur>o0 UXY. The classe$/A} andUIT}, k > 0, are defined
analogously. As a notational shorthand, we often U$€ B represent/A%; we stress that

“For reductions less flexible than Turing reductions (esg,,, <7,,, etc.), this issue has been studied even more
intensely (see, e.g., the surve 2, HOlN92]).

SNote that it is not known whether such a collapse implies &psk of PH. Note also that Toda91] result on
whether P-selective sets can be truth-table-hard for UB doeimply such a collapse, as truth-table reductions & le
flexible than Turing reductions.
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both notations are used here to represent the class of sefstad viaguardedly unambigu-

ousaccess to an NP oracle (that is, the class of sets accepteahi®y B machine with an

NP machine’s language as its oracle such that on no inputttiee® machine ask its oracle
machine any question on which the oracle machine has maneotiaccepting path).

4. For each of the above hierarchies, we %e“ (respectively, UJ%A and UE%A) to denote
that the X} (respectively, I} and &/X) computation is performed relative to oraclg
similar notation is used for thH and A classes of the hierarchies.

The following facts follow from the definition (see al§o [NEPor can easily be shown.

Fact4.2 Foreveryk > 1,
1. USh C Uxh € P and UAY C UAY C AL,
2. If USE = UIL, then UPH= UXY}.
3. IfUS) = UXL_,, then UPH=UX}_,.
4. UshYPeoUP — 5P and POV — ys? 0 UIL.

The classes “UPy,” the analogs of UP in which up tb accepting paths are allowed, have been
studied in various context$ [Wai88, Hem8&7, BeiB9, CHV93,94HHZ93]. One motivation for
U} is that, for eachk, UP<;, C UX} [NR93].

Although we are not able to settle affirmatively the quesposed at the end of the first para-
graph of this section, we do prove in the theorem below thhife is a sparse Turing-complete set
for UP, then the levels of the unambiguous polynomial hidrarare simpler than one would oth-
erwise expect: they “slip down” slightly in terms of theircktion within the promise unambiguous
polynomial hierarchy, i.e., for eadh> 3, the kth level of UPH is contained in thgt — 1)st level
of UPH.

Theorem 4.3 If there exists a sparse Turing-complete set for UP, then
1. UPP C PY? and

2. UXh C Ux}_, foreveryk > 3.

Proof.  For the first statement, ldt be any set in UP". By assumption] ¢ UP™ = UPS for
some sparse sét € UP. Letq be a polynomial bounding the density $f that is, || S<™|| < q(m)
for everym > 0, and letNg be a UPM forS. Let N, be a UPOM witnessing thdt € UPS, that is,
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L = L(N?Y). Letp(n) be a polynomial bounding the length of all query strings et be asked
during the computation aiV;, on inputs of lengttm. Define the polynomiat(n) a q(p(n)) that
bounds the number of strings fhthat can be queried in the run 8f;, on inputs of lengti.

To show thatL € P“”, we shall construct a DPOM/ that may access it&P oracle D
in a guarded manner (more formally, “may access its NP oracla a guardedly unambiguous
manner,” but we will henceforward ugéP and otherl/ - - - notations in this informal manner).
Before formally describing machin&f/ (Figure[l), we give some informal explanation®! will
proceed in three basic steps: Firsf,determines the exact census of that pa tiat is relevant for
the given input length|| S<P(")||. Knowing the exact census/ can construct (by prefix search) a
tableT of all strings inS=P(") without asking queries that make its oracle’s machine aothig, so
the P“”-like behavior is guaranteed. Finallyf asks its oraclé to simulate the computation f;,
on inputz (answeringNy's oracle queries by table-lookup using taldlg and accepts accordingly.

In the formal description of machink/ (given in Figure[]L), three oracle sefs B, andC are
used. Sincél/ has only onel/P oracle, the actual set to be usedls= A ® B & C (with suitably
modified queries td). A, B, andC are defined as follows (we assume the’Béielow is coded in
some standard reasonable way):

A4 {(1”,k>

n Z 0 A O S k S T(n) A (EICl <|ex Co <|ex <|ex Ck)

(V£:1<L<k)[lee] <p(n) A Ns(ce) accepts ’
n>0AN1<j<kAN0O<E<r(n)A

B = (1",4,5,k,b) (Fe1 <lex €2 <lex -+ <lex ) (V0 : 1 <l < k) )

[lee] < p(n) A Ng(cp) acceptsa thed™ bit of ¢; isb]

1}=3

C {{z, D) ||ITIl < r(lz]) A Nf(x) accepts}.

It is easy to see thal/ runs deterministically in polynomial time. This provestttiac P“7.

In order to prove the second statement/léte a set in (L%, for any fixedk > 3. By assumption,
there exists a sparse sgtin UP such thatl UEi’_pi = UxP® ; let Ny, Ny, ..., Ny be the

LG
UPOMs that witness this fact, that i5,= L(NIL(N2 )).
Now we describe the computation oftéZ}_; machineN recognizingL. As before,N on

input - computes in P'” its table of advice strings’ = $<7(1), and then simulates theX}'”|
RGN
computation oleL(N2 )(ac) except withNy, Ny, ..., Ni_1 modified as follows. If in the
simulation some maching/;, 1 < i < k — 2, consults its original oraclé(Ni(;r)l) about some
string, sayz, then the modified machin¥; queries the modified machine at the next levél, ;,
about the stringz, T') instead. Finally, the advice tablg, which has been “passed up” in this

manner, is used to correctly answer all queriesVef ;.
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Description of DPOM M.

input z;
begin
n = |x|;
k= r(n);
loop
if (1", k) € A then exit loop
elsek .=k —1
end loop (* k is now the exact census SEP() *)
T :=0; (* T collects the strings a=r(") *)
for j =1tokdo
Cj =€,
1:=1;
repeat
if (1",4,4,k,0) € Bthenc; :=¢;0;i:=i+1
else
if (1",4,7,k,1) € Bthenc;j :=¢;l;i:=i+1
elsei :=0 (* the lex. j™ string of S<P(") has noi™ bit *)
until ¢ = 0;
T =TU {Cj}
end for
if (x,T) € C then accept
else reject
end

End of Description of DPOM M.

Figure 1: DPOMM guardedly unambiguously accessing an NP oracle to accepiiagP-’".
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R/
(N, N , »
), is not in general a b, ,

Note that N's oracle in this simulation,L(NéL
set (andL is thus not in WEY_; in general), as the above-described computation depends on
the advice tablel’, and so, for some bad advide, the unambiguity of the modified machines
N{, Né, . ,N,;_l is no longer guaranteed. But since our base macNiigeable to provideorrect

adviceT', we have indeed shown thate UXf . O

In the above proof, the assumption that the sparse'setin UP is needed to determine the
exact census a$ using the UPM forS. Let us now consider the weaker assumption that UP has
only a Turinghard sparse set. Karp and Lipton have shown that if there is aspargng-hard
set for NP, then the polynomial hierarchy collapses to itosd level [KL8DIF Hopcroft [Hop8lL]
dramatically simplified their proof, and Balcazar, Bookdaschoning[[BBS8d, Schig6] generalized,
as Theorenf 46, the Karp-Lipton result; the general appro&tiopcroft and Balcazar, Book, and
Schoning will be central to our upcoming proof of Theoren. £choéning’s low hierarchy [Sch83]
gives a way of classifying the complexity of NP sets that sézive neither in P nor NP-complete.
Of particular interest to us is the class Lo {A | A € NP and NPP* ¢ NPNP}. Note that for the
special casé = 0, Theoren{ 4]6 below says that Lew> NP P /poly N {L | L is self-reducibl¢.

Definition 4.4 [MP79]

1. A partial order<py on X* is polynomially well-founded and length-relatédand only if
(a) every strictly decreasing chain is finite and there islgrmmmial p such that every finite
<pwi-decreasing chain is shorter thamf the length of its maximum element, and (& :
g polynomial) (Vz,y € 5*) [z <pw y = || < q(ly])]-

2. A setA is self-reducibleif and only if there exist a polynomially well-founded andgh-
related ordekpy 0N X* and a DPOMM such thatA = L(M#) and on any input € ¥,
M queries only stringg with iy <pw .

Lemma 4.5 [BBS86] LetA be<a self-reducible set and 1&f witnessA's self-reducibility. For
any setB and anyn, if (L(MB))_n = B<", thenA=" = B="]]

Theorem 4.6 [BBS86] If A is a self-reducible set and there i¢a> 0 and a sparse sét such

S A
thatA € 37, thenX9" C X7 .

SVery recently, Kbler and Watana94] have improveid ttollapse to ZP¥, and have also obtained new
consequences from the assumption that @PNP N coNP) /poly, whereas we obtain different consequences from the
assumption that UE P/poly (see ] for the notations not defined in this footjot

" A can be viewed as a “fixed point” .
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We now state and prove our results regarding sparse Tuardygets for UP.

Theorem 4.7  If there exists a sparse Turing-hard set for UP, then

1. UPC Lows,, and

p
P, M2k7j73

%, N PY=i-1®% for everyk > 3 and everyj, with 0 < j < k — 3.

2. Usp cus?
Proof. 1. LetlL € 2’2”‘4, where A € UP via UPM N4 and polynomial-time bound (we
assume that each step is nondeterministic—one can redpisrentithout loss of generality, while
maintaining categoricity). Our proof uses the well-knowotfthat the “left set’[[Sel$d, OWP1] of
any UP set is self-reducible and is in UP. More precisely,plyaTheoren] 4]6 we would need
to be self-reducible. Although that can't be assumed in g@raf an arbitrary UP set, the left set
of A, i.e., the set of prefixes of withesses for elementd ihefined by

B £ {{z,9)|(32) [ly2| = t(|]) A Na(x) accepts on pathz]},

does have this property and is also in UP. A self-reducinghined\/s¢ for B is given in Figurg]2.
Note that the queries asked in the self-reduction are Istliess than the input with respect to a
polynomially well-founded and length-related partial @rekp, defined by: For fixed: and all
stringsy1, y2 € X=PUD, (2 y1) <pwi (x,y2) if and only if yo is prefix ofy;.

By assumption, sincé3 is a UP set,B € PS for some sparse s&, so Theoren@.G with
k = 0 applies toB. FurthermoreA is in PP, via prefix search by DPOM/4 (Figure[). Thus,
L e x5P” ¢ 528 ¢ 52, which shows thatl € Low.

2. Fork = 3 (thusj = 0), both inclusions have already been shown in Part B)jas” AL.
Now fix anyk > 3, and letL € UX} = Uzﬁf‘l be witnessed by UPOMA, N», ..., N;_; and
A € UP. DefineB to be the left set ofd as in Part 1, sol € PP via DPOM M4 (see Figur¢]3)B
is self-reducible viallser (see Figurd]2), and is in UP. By hypothesisB € P° for some sparse
setS; let Mp be the reducing machine, thatis= L(M3), and letm be a polynomial bound on
the runtime ofMp. Letq be a polynomial such thatS=™|| < ¢(m) for everym > 0. Letp(n)
be a polynomial bounding the length of all query strings vehmembership in the oracle sBtcan
be asked in the run aW; (with oracle machinevy, N3, ..., Ni_1, Mf) on inputs of lengtm.
Define the polynomials(n) & m(p(n)) ands(n) & ¢(r(n)).

To show thatL € PY*k-1%> we will describe a DPOMV that on inputz, [z| = n, using
theX? partD (defined below) of its oracle, performs a prefix search tceextihe lexicographically
smallest of all “good” advice sets (this informal term wik llormally defined in the next para-
graph), sayl’, and then calls thé/>} _, part of its oracle to simulate theEZf‘l computation of
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Description of Self-reducer Mgg; for B.
input (z,y);
begin
if |y| > t(|x|) then reject;
if N4(x) accepts on path then accept
else
if (x,y0) € Bor{(x,yl) € Bthen accept
else reject
end

End of Description of Self-reducer Mgej; for B.

Figure 2: A self-reducing machine for the left set of a UP set.

Description of DPOM M 4.
input z;
begin
Y =€
while |y| < ¢(|z|) do
if (x,y0) € B then accept
elsey := yl
end while
if (x,y) € B then accept
else reject
end

End of Description of DPOM M 4.

Figure 3: A Turing reduction from a UP sdtto its left setB via prefix search.
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PG
NlL(Né )(x) except withNy, No, .. ., Ny_1 modified in the same way as was described in the
proof of Theore3. In more detall, if in the simulation somachineV;, 1 <7 < k — 2, con-
sults its original oracIeE(NZ.(J'r)l) about some string, say then the modified machirﬂ&fg gueries the
modified machine at the next IevéV,L-'H, about the stringz, ') instead. Finally, ifV;_; consults
its original oracleA about some query, then the modified machinb’,;_1 runs the P computation
Mj(Mg) on input(y, T') instead to correctly answer this query without consultingeacle.

An advice sefl’ is said to begoodif the setL(Mg) is a fixed point ofB’s self-reduceMggjs UP
<p(n) <p(n <p(n
to lengthp(n), that is,(L(MSZ(”]VIg))) = (L(Mg))*p( ) and thusa=r(m) — (L(Mg))*p( )
by Lemma[4J5. This property is checked for each guegsatthe 4 part of the oracle. Formally,

n>0A 3T CE0) (Vw: |w| < p(n)) [T ={ci,...,cx}
<1n7i,j7 b> AQ é k S S(n) VAN c1 <lex *** <lex Ck VAN the'Lth bit of Cj |Sb A

L(ME
(w € L(ME) <= we LML)

The prefix search a#/ is similar to the one performed in the proof of Theorgn) 4.2 Bgure[lL);
M queriesD to construct each string @f bit by bit.
To prove the other inclusion, fix any 0 < j < k — 3. We describe a UPOM witnessing

p, UsP

k—j—3
22

p4

that L € UZ?’ . On inputz, N simulates the @? computation of the firsj UPOMs

Ny, ..., Nj. In the subsequerk} computation, two tasks have to be solved in parallel: the-com
putation of N; 1 and .V, is to be simulated, and good advice séthave to be determined. For
the latter task, the base machine of Bfecomputation guesses all possible advice sets and the top
machine checks if the guessed advice is good (that &(}) is a fixed point ofMser). Again,
each good advice sétis “passed up” to the machines at higher levgls s, ..., N;_; (in the same
fashion as was employed earlier in this proof and also in thefmf Theoren] 4]3), and is used to
correctly answer all queries &, _; without consulting an oracle. This proves the theorem. O

Since Theorem[ 4.7 relativizes and there are relativizedldsoin which UP' is not
Lows' [EBL93], we have the following corollary.
Corollary 4.8 There is a relativized world in which (relativized) UP hassparse Turing-hard sets.

Acknowledgments

We are very grateful to Gerd Wechsung for his help in bringibgut this collaboration, and for his
kind and insightful advice over many years. We thank Mariusahd for proofreading, and Nikolali
Vereshchagin for helpful discussions during his visit tocRester. We thank Osamu Watanabe
for discussing with us his results joint with Johannes K6band we thank Osamu Watanabe and
Johannes Kobler for providing us with copies of their pdBa94].

22



References

[BBJ*+89]

[BBS86]

[BCO93]

[Bei89)

[BG82]

[BGY4]

[BJY90]

[Cai87]

[CGH*88]

[CGH*89]

[CH85]

[Cha91]

A. Bertoni, D. Bruschi, D. Joseph, M. Sitharam, and P.nuGeneralized Boolean
hierarchies and Boolean hierarchies over RPPioceedings of the 7th Conference on
Fundamentals of Computation Theppages 35-46. Springer-Verlagcture Notes in
Computer Science #388ugust 1989.

J. Balcazar, R. Book, and U. Schoning. The polyiabtime hierarchy and sparse
oracles.Journal of the ACM33(3):603—-617, 1986.

R. Beigel, R. Chang, and M. Ogiwara. A relationshagivieen difference hierarchies
and relativized polynomial hierarchiedvilathematical Systems Theorg6:293-310,
1993.

R. Beigel. On the relativized power of additionatapting paths. IfProceedings of
the 4th Structure in Complexity Theory Conferengages 216—-224. IEEE Computer
Society Press, June 1989.

A. Blass and Y. Gurevich. On the unique satisfiabiptpblem. Information and Con-
trol, 55:80-88, 1982.

R. Beigel and J. Goldsmith. Downward separationsfattastrophically for limited
nondeterminism classes. Proceedings of the 9th Structure in Complexity Theory
Conferencepages 134-138. IEEE Computer Society Press, June/Juy 199

D. Bruschi, D. Joseph, and P. Young. Strong separatior the Boolean hierarchy over
RP. International Journal of Foundations of Computer Scierid®):201-218, 1990.

J. Cai. Probability one separation of the Booleagrdnichy. InProceedings of the
4th Annual Symposium on Theoretical Aspects of Computen&gipages 148-158.
Springer-Verlag-ecture Notes in Computer Science #24987.

J. Cai, T. Gundermann, J. Hartmanis, L. HemachandragWe&on, K. Wagner, and
G. Wechsung. The Boolean hierarchy I: Structural proper&AM Journal on Com-
puting 17(6):1232-1252, 1988.

J. Cai, T. Gundermann, J. Hartmanis, L. HemachandragWe&on, K. Wagner, and
G. Wechsung. The Boolean hierarchy IlI: Applicatiof®AM Journal on Computing
18(1):95-111, 1989.

J. Cai and L. Hemachandra. The Boolean hierarchy:diare over NP. Technical
Report 85-724, Cornell University, Department of Comp@etence, Ithaca, NY, De-
cember 1985.

R. ChangOn the Structure of NP Computations under Boolean Operafh® thesis,
Cornell University, Ithaca, NY, 1991.

23



[CHV93]

[CK90a]

[CK90b]

[CM87]

[Coo71]

[Cro94]

[GNW9O0]

[GS88]

[GW87]

[Haul4]

[Hem87]

[HH88]

[HHOO]

[HHO4]

[HIS85]

J. Cai, L. Hemachandra, and J. Vysko€. Promisesfauli-tolerant database access.
In K. Ambos-Spies, S. Homer, and U. Schoning, edit@emplexity Theorypages
101-146. Cambridge University Press, 1993.

R. Chang and J. Kadin. The Boolean hierarchy and ehgnpmial hierarchy: A closer
connection. InProceedings of the 5th Structure in Complexity Theory Genfse
pages 169-178. IEEE Computer Society Press, July 1990.

R. Chang and J. Kadin. On computing Boolean conuwestdf characteristic functions.
Technical Report TR 90-1118, Department of Computer Seie@ornell University,
Ithaca, NY, May 1990. To appear Mathematical Systems Theory

J. Cai and G. Meyer. Graph minimal uncolorability i®omplete. SIAM Journal on
Computing 16(2):259-277, 1987.

S. Cook. The complexity of theorem-proving proaegu InProceedings of the 3rd
ACM Symposium on Theory of Computipgges 151-158, 1971.

K. Cronauer. A criterion to separate complexitysskas by oracles. Technical Report 76,
Universitat Wirzburg, Institut fur Informatik, Wirabg, Germany, January 1994.

T. Gundermann, N. Nasser, and G. Wechsung. A surmegoointing classes. IRro-
ceedings of the 5th Structure in Complexity Theory Contexgrages 140-153. IEEE
Computer Society Press, July 1990.

J. Grollmann and A. Selman. Complexity measures fdilip-key cryptosystems.
SIAM Journal on Computingdl7(2):309-335, 1988.

T. Gundermann and G. Wechsung. Counting classedfinith acceptance type§€om-
puters and Artificial Intelligences(5):395-409, 1987.

F. HausdorffGrundzige der Mengenlehred_eipzig, 1914.

L. HemachandraCounting in Structural Complexity Theori?hD thesis, Cornell Uni-
versity, Ithaca, NY, May 1987. Available as Cornell Depathof Computer Science
Technical Report TR87-840.

J. Hartmanis and L. Hemachandra. Complexity claggt®ut machines: On complete
languages for UPTheoretical Computer Science8:129-142, 1988.

J. Hartmanis and L. Hemachandra. Robust machinespaaasy sets.Theoretical
Computer Scienc&4(2):217-226, 1990.

E. Hemaspaandra and L. Hemaspaandra. Quasi-vgecttuctionsTheoretical Com-
puter Sciencel23:407-413, 1994.

J. Hartmanis, N. Immerman, and V. Sewelson. Spaeteis NP-P: EXPTIME versus
NEXPTIME. Information and Contrql65(2/3):159-181, 1985.

24



[HJ93]

[HIVO3]

[Hop81]

[HOW92]

[HR92]

[HS65]

[HU79]

[HZ93]

[IT89]

[Kadss]

[Kadsg]

[KL8O]

[KS85]

L. Hemachandra and S. Jha. Defying upward and dowshesgparation. IfProceedings
of the 10th Annual Symposium on Theoretical Aspects of CimmBciencepages 185-
195. Springer-Verlagecture Notes in Computer Science #6b8bruary 1993.

L. Hemaspaandra, S. Jain, and N. Vereshchagin.sBarg robust Turing completeness.
International Journal of Foundations of Computer Scient@):245—-265, 1993.

J. Hopcroft. Recent directions in algorithmic raxsh. InProceedings 5th Gl Confer-
ence on Theoretical Computer Scienpages 123—-134. Springer-Verlagcture Notes
in Computer Science #104981.

L. Hemachandra, M. Ogiwara, and O. Watanabe. Howl laae sparse sets? Rro-
ceedings of the 7th Structure in Complexity Theory Conteggrages 222-238. IEEE
Computer Society Press, June 1992.

L. Hemachandra and R. Rubinstein. Separating coxitplelasses with tally oracles.
Theoretical Computer Scienc@2(2):309-318, 1992.

J. Hartmanis and R. Stearns. On the computationaptaxity of algorithms.Transac-
tions of the American Mathematical Societyt 7:285-306, 1965.

J. Hopcroft and J. Ulimanlntroduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, 1979.

L. Hemaspaandra and M. Zimand. Strong forms of badnienmunity. Technical
Report TR 480, Department of Computer Science, UniverdiRazhester, Rochester,
NY, December 1993.

R. Impagliazzo and G. Tardos. Decision versus searohlems in super-polynomial
time. InProceedings of the 30th IEEE Symposium on Foundations opG@mnScience
pages 222-227. IEEE Computer Society Press, October/Nmeh®89.

J. Kadin. The polynomial time hierarchy collapsiethé Boolean hierarchy collapses.
SIAM Journal on Computingl7(6):1263-1282, 1988. Erratum appears in the same
journal, 20(2):404.

J. Kadin.PNPllegn] gnd sparse Turing-complete sets for NBurnal of Computer and
System Science39(3):282—298, 1989.

R. Karp and R. Lipton. Some connections between niform and uniform complexity

classes. IrProceedings of the 12th ACM Symposium on Theory of Compytages

302-309, April 1980. An extended version has also appearetieing machines that
take advicel'Enseignement Ma#imatique 2nd series 28, 1982, pages 191-209.

K. Ko and U. Schoning. On circuit-size complexitydatine low hierarchy in NPSIAM
Journal on Computingl4(1):41-51, 1985.

25



[KSW87]

[KW94]

[Lev73]

[LR94]

[LS86]

[MP79]

[MS72]

[NR93]

[OW91]

[PY84]

[Reg89]

[RRW94]

[Sch83]

[Sch86]

J. Kobler, U. Schoning, and K. Wagner. The diffeze and truth-table hierarchies for
NP. R.A.ILR.O. Informatique #orique et Applications21:419-435, 1987.

J. Kobler and O. Watanabe. New collapse consequemteNP having small cir-

cuits. Technical Report 94-11, Universitat Ulm, Institilt Informatik, Ulm, Germany,
November 1994.

L. Levin. Universal sorting problemd2roblems of Information Transmissio®:265—
266, 1973.

K.-J. Lange and P. Rossmanith. Unambiguous polyabhierarchies and exponential
size. InProceedings of the 9th Structure in Complexity Theory Qenfe pages 106—
115. IEEE Computer Society Press, June/July 1994.

T. Long and A. Selman. Relativizing complexity classvith sparse oracledournal
of the ACM 33(3):618-627, 1986.

A. Meyer and M. Paterson. With what frequency are appidy intractable problems
difficult? Technical Report MIT/LCS/TM-126, MIT Laboratpfor Computer Science,
Cambridge, MA, 1979.

A. Meyer and L. Stockmeyer. The equivalence problemrégular expressions with
squaring requires exponential space.Phoceedings of the 13th IEEE Symposium on
Switching and Automata Thegmyages 125-129, 1972.

R. Niedermeier and P. Rossmanith. Extended locadfindble acceptance types. In
Proceedings of the 10th Annual Symposium on Theoreticaddspf Computer Sci-
ence pages 473-483. Springer-Verlagcture Notes in Computer Science #6B8bru-
ary 1993.

M. Ogiwara and O. Watanabe. On polynomial-time badhtiuth-table reducibility of
NP sets to sparse sefSIAM Journal on Computing0(3):471-483, 1991.

C. Papadimitriou and M. Yannakakis. The complexifyfacets (and some facets of
complexity). Journal of Computer and System Scien@2):244—259, 1984.

K. Regan. Provable complexity properties and canoBve reasoning. Manuscript,
April 1989.

R. Rao, J. Rothe, and O. Watanabe. Upward separfatidrewP and related classes.
Information Processing Letters52(4):175-180, 1994.

U. Schoning. A low and a high hierarchy within NPurnal of Computer and System
Sciences27:14-28, 1983.

U. Schoning.Complexity and StructureSpringer Verlag_ecture Notes in Computer
Science #2111986.

26



[Sel8g]

[SL92]

[Sto77]

[Tod91]

[Val76]

[Wat88]

[You92]

A. Selman. Natural self-reducible se&AM Journal on Computindl7(5):989-996,
1988.

M. Sheu and T. Long. UP and the low and high hierarchéeselativized separation.
To appear irMathematical Systems Theory

L. Stockmeyer. The polynomial-time hierarchifieoretical Computer Sciencg1-22,
1977.

S. Toda. On polynomial-time truth-table redudthdbk of intractable sets to P-selective
sets.Mathematical Systems ThepB4:69-82, 1991.

L. Valiant. The relative complexity of checking ardaluating.Information Processing
Letters 5:20-23, 1976.

O. Watanabe. On hardness of one-way functiofrtformation Processing Letters
27:151-157, 1988.

P. Young. How reductions to sparse sets collapseptiignomial-time hierarchy: A
primer. SIGACT Newsl1992. Part | (#3, pages 107-117), Part Il (#4, pages 83-94),
and Corrigendum to Part | (#4, page 94).

27



