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Abstract

It is known that for any classC closed underunion and intersection, the Boolean closure
of C, the Boolean hierarchy overC, and the symmetric difference hierarchy overC all
are equal. We prove that these equalities hold for any complexity class closed under
intersection; in particular, they thus hold for unambiguous polynomial time (UP). In
contrast to the NP case, we prove that the Hausdorff hierarchy and the nested difference
hierarchy over UP both fail to capture the Boolean closure ofUP in some relativized
worlds.

Karp and Lipton proved that ifnondeterministicpolynomial time has sparse Turing-
complete sets, then the polynomial hierarchy collapses. Weestablish the first conse-
quences from the assumption thatunambiguouspolynomial time has sparse Turing-
complete sets: (a) UP⊆ Low2, where Low2 is the second level of the low hierarchy,
and (b) each level of the unambiguous polynomial hierarchy is contained one level
lower in the promise unambiguous polynomial hierarchy thanis otherwise known to be
the case.

1 Introduction

NP and NP-based hierarchies—such as the polynomial hierarchy [MS72, Sto77] and the Boolean

hierarchy over NP [CGH+88, CGH+89, KSW87]—have played such a central role in complexity

theory, and have been so thoroughly investigated, that it would be natural to take them as predictors

of the behavior of other classes or hierarchies. However, over and over during the past decade it has
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been shown that NP is a singularly poor predictor of the behavior of other classes (and, to a lesser

extent, that hierarchies built on NP are poor predictors of the behavior of other hierarchies).

As examples regarding hierarchies: though the polynomial hierarchy possesses downward sep-

aration (that is, if its low levels collapse, then all its levels collapse) [MS72, Sto77], downward

separation does not hold “robustly” (i.e., in every relativized world) for the exponential time hi-

erarchy [HIS85, IT89] or for limited-nondeterminism hierarchies ([HJ93], see also [BG94]). As

examples regarding UP: NP has≤p
m-complete sets, but UP does not robustly possess≤p

m-complete

sets [HH88] or even≤p
T -complete sets [HJV93]; NP positively relativizes, in the sense that it col-

lapses to P if and only if it does so with respect to every tallyoracle ([LS86], see also [BBS86]), but

UP does not robustly positively relativize [HR92]; NP has “constructive programming systems,” but

UP does not robustly have such systems [Reg89]; NP (actually, nondeterministic computation) ad-

mits time hierarchy theorems [HS65], but it is an open question whether unambiguous computation

has nontrivial time hierarchy theorems; NP displays upwardseparation (that is, NP− P contains

sparse sets if and only if NE6= E) [HIS85], but it is not known whether UP does (see [HJ93], which

shows that R and BPP do not robustly display upward separation, and [RRW94], which shows that

FewP does possess upward separation).

In light of the above list of the many ways in which NP parts company with UP, it is clear that

we should not merely assume that results for NP hold for UP, but, rather, we must carefully check

to see to what extent, if any, results for NP suggest results for UP. In this paper, we study, for UP,

two topics that have been intensely studied for the NP case: the structure of Boolean hierarchies,

and the effects of the existence of sparse Turing-complete/Turing-hard sets.

For the Boolean hierarchy over NP, which has generated quitea bit of interest and the collapse

of which is known to imply the collapse of the polynomial hierarchy [Kad88, CK90a, BCO93],

a large number of definitions are known to be equivalent. For example, for NP, all the fol-

lowing coincide [CGH+88]: the Boolean closure of NP, the Boolean (alternating sums) hier-

archy, the nested difference hierarchy, and the Hausdorff hierarchy. The symmetric difference

hierarchy also characterizes the Boolean closure of NP [KSW87]. In fact, these equalities are

known to hold for all classes that containΣ∗ and ∅ and are closed under union and intersec-

tion [Hau14, CGH+88, KSW87, BBJ+89, GNW90, CK90b, Cha91]. In Section 3, we prove that

both the symmetric difference hierarchy (SDH) and the Boolean hierarchy (CH) remain equal to the

Boolean closure (BC)even in the absence of the assumption of closure under union. That is, for

any classK containingΣ∗ and∅ and closed under intersection (e.g., UP, US, and DP, first defined

respectively in [Val76], [BG82], and [PY84] and each of which is not currently known to be closed

under union): SDH(K) = CH(K) = BC(K). However, for the remaining two hierarchies, we show

that not all classes containingΣ∗ and∅ and closed under intersection robustly display equality. In
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particular, the Hausdorff hierarchy over UP and the nested difference hierarchy over UP both fail

to robustly capture the Boolean closure of UP. In fact, the failure is relatively severe; we show

that even low levels of other Boolean hierarchies over UP—the third level of the symmetric differ-

ence hierarchy and the fourth level of the Boolean (alternating sums) hierarchy—fail to be robustly

captured by either the Hausdorff hierarchy or the nested difference hierarchy.

It is well-known, thanks to the work of Karp and Lipton ([KL80], see also the related refer-

ences given in Section 4), that if NP has sparse Turing-hard sets, then the polynomial hierarchy

collapses. Unfortunately, the promise-like definition of UP—its unambiguity, the very core of its

nature—seems to block any similarly strong claim for UP and the unambiguous polynomial hier-

archy (which was introduced recently by Niedermeier and Rossmanith [NR93]). Section 4 studies

this issue, and shows that if UP has sparse Turing-complete sets, then the levels of the unambiguous

polynomial hierarchy “slip down” slightly in terms of theirlocation within the promise unambigu-

ous polynomial hierarchy (a version of the unambiguous polynomial hierarchy that requires only

that computationsactually executedbe unambiguous), i.e., thekth level of the unambiguous poly-

nomial hierarchy is contained in the(k − 1)st level of the promise unambiguous polynomial hier-

archy. Various related results are also established. For example, if UP has Turing-hard sparse sets,

then (a) UP⊆ Low2, where Low2 is the second level of the low hierarchy [Sch83], and (b) thekth

level of the unambiguous polynomial hierarchy can be accepted via a deterministic polynomial-time

Turing transducer given access to both aΣp
2 set and the(k − 1)st level of the promise unambiguous

polynomial hierarchy.

2 Notations

In general, we adopt the standard notations of Hopcroft and Ullman [HU79]. Fix the alphabetΣ =

{0, 1}. Σ∗ is the set of all strings overΣ. For each stringu ∈ Σ∗, |u| denotes the length ofu. The

empty string is denoted byǫ. For each setL ⊆ Σ∗, ‖L‖ denotes the cardinality ofL andL = Σ∗−L

denotes the complement ofL. L=n (L≤n) is the set of all strings inL having lengthn (less than or

equal ton). Let Σn andΣ≤n be shorthands for(Σ∗)=n and(Σ∗)≤n, respectively. A setS is said to

besparseif there is a polynomialq such that for everym ≥ 0, ‖S≤m‖ ≤ q(m). To encode a pair

of strings, we use a polynomial-time computable pairing function, 〈·, ·〉 : Σ∗ × Σ∗ → Σ∗, that has

polynomial-time computable inverses; this notion is extended to encode everyk-tuple of strings, in

the standard way. Let≤lex denote the standard quasi-lexicographical ordering onΣ∗, that is, for

stringsx andy, x ≤lex y if either x = y, or |x| < |y|, or (|x| = |y| and there exists somez ∈ Σ∗

such thatx = z0u andy = z1v). x <lex y indicates thatx ≤lex y butx 6= y.

For setsA and B, their join, A ⊕ B, is {0x |x ∈ A} ∪ {1x |x ∈ B}, and their symmet-
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ric difference,A∆B, is (A − B) ∪ (B − A). For any classC, define coC df
= {L |L ∈ C},

and let BC(C) denote the Boolean algebra generated byC, i.e., the smallest class containingC

and closed under all Boolean operations. For any classesA and B, let A ⊕ B denote the class

{A ⊕ B |A ∈ A ∧ B ∈ B}. Similarly, for classesC andD of sets, define

C ∧D
df
= {A ∩ B |A ∈ C ∧ B ∈ D}, C ∆D

df
= {A∆ B |A ∈ C ∧ B ∈ D},

C ∨D
df
= {A ∪ B |A ∈ C ∧ B ∈ D}, C −D

df
= {A − B |A ∈ C ∧ B ∈ D}.

We will abbreviate “polynomial-time deterministic (nondeterministic) Turing machine” by

DPM (NPM). An unambiguous(sometimes called categorical) polynomial-time Turing machine

(UPM) is an NPM that on no input has more than one accepting computation path [Val76]. UP

is the class of all languages that are accepted by some UPM [Val76]. For the respective oracle

machines we use the shorthands DPOM, NPOM, and UPOM.

Note, crucially, that whether a machine is categorical or not depends on its oracle. In fact,

it is well-known that machines that are categorical with respect to all oracles accept only easy

languages [HH90] and thus create a polynomial hierarchy analog that is completely contained in a

low level of the polynomial hierarchy (Allender and Hemachandra as cited in [HR92]). So, when

we speak of a UPOM, we will simply mean an NPOM that, with the oracle the machine has in the

context being discussed, happens to be categorical.

For any Turing machineM , L(M) denotes the set of strings accepted byM , and the notation

M(x) means “M on inputx.” For any oracle Turing machineM and any oracle setA, L(MA)

denotes the set of strings accepted byM relative toA, and the notationMA(x) means “MA on

inputx.” Without loss of generality, we assume each NPM and NPOM (inour standard enumeration

of such machines)M has the property that for everyn, there is an integerℓn such that, for everyx of

lengthn, every path ofM(x) is of lengthℓn, and furthermore, in the case of oracle machines, thatℓn

is independent of the oracle. LetA andB be sets. We sayA is Turing reducibleto B (denoted by

A ≤p
T B or A ∈ PB) if there is a DPOMM such thatA = L(MB). A setB is Turing-hard for a

complexity classC if for all A ∈ C, A ≤p
T B. A setB is Turing-completefor C if B is Turing-hard

for C andB ∈ C.

3 Boolean Hierarchies over Classes Closed Under Intersection

The Boolean hierarchy is a natural extension of the classes NP [Coo71, Lev73] and

DP df
= NP∧ coNP [PY84]. Both NP and DP contain natural problems, as do the levels of

the Boolean hierarchy. For example, graph minimal uncolorability is known to be complete

for DP [CM87]. Note that DP clearly is closed under intersection, but is not closed under union

unless the polynomial hierarchy collapses (due to [Kad88],see also [CK90b, Cha91]).
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Definition 3.1 [CGH+88, KSW87, Hau14] LetK be any class of sets.

1. TheBoolean (“alternating sums”) hierarchy overK:

C1(K)
df
= K, Ck(K)

df
=

{

Ck−1(K) ∨K if k odd

Ck−1(K) ∧ coK if k even
, k ≥ 2, CH(K)

df
=
⋃

k≥1

Ck(K).

2. Thenested difference hierarchy overK:

D1(K)
df
= K, Dk(K)

df
= K− Dk−1(K), k ≥ 2, DH(K)

df
=
⋃

k≥1

Dk(K).

3. TheHausdorff (“union of differences”) hierarchy overK:1

E1(K)
df
= K, E2(K)

df
= K−K, Ek(K)

df
= E2(K) ∨ Ek−2(K), k > 2, EH(K)

df
=
⋃

k≥1

Ek(K).

4. Thesymmetric difference hierarchy overK:

SD1(K)
df
= K, SDk(K)

df
= SDk−1(K) ∆K, k ≥ 2, SDH(K)

df
=
⋃

k≥1

SDk(K).

It is easily seen that for any X chosen from{C, D, E, SD}, if K contains∅ andΣ∗, then for any

k ≥ 1,

Xk(K) ∪ coXk(K) ⊆ Xk+1(K) ∩ coXk+1(K).

The following fact is shown by an easy induction onn.

Fact 3.2 For every classK of sets and everyn ≥ 1, (a) D2n−1(K) = coC2n−1(coK), and

(b) D2n(K) = C2n(coK).

Proof. The base case holds by definition. Suppose (a) and (b) to be true forn ≥ 1. Then,

D2n+1(K) = K∧ (coK∨ D2n−1(K))
hyp.
= K∧ (coK∨ coC2n−1(coK))

= K∧ co(K ∧ C2n−1(coK)) = K∧ coC2n(coK)

= co(coK∨ C2n(coK)) = coC2n+1(coK)

shows (a) forn + 1, and

D2n+2(K) = K− (K − D2n(K))
hyp.
= K∧ (coK∨ C2n(coK)) = C2n+2(coK)

shows (b) forn + 1. ✷

1Hausdorff hierarchies ([Hau14], see [CGH+88, BBJ+89, GNW90], respectively, for applications to NP, R, and C=P)
are interesting both in the case where, as in the definition here, the sets are arbitrary sets fromK, and, as is sometimes
used in definitions, the sets fromK are required to satisfy additional containment conditions. For classes closed under
union and intersection, such as NP, the two definitions are identical, level by level ([Hau14], see also [CGH+88]). In this
paper, as, e.g., UP, is not known to be closed under union, thedistinction is nontrivial.
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Corollary 3.3 CH(UP) = coCH(UP) = DH(coUP) and CH(coUP) = coCH(coUP) = DH(UP).

We are interested in the Boolean hierarchies over classes closed under intersection (but perhaps

not under union or complementation), such as UP, US, and DP. We state our theorems in terms of

the class of primary interest to us in this paper, UP. However, many apply to any nontrivial class

(i.e., any class containingΣ∗ and∅) closed under intersection (see Theorem 3.10). Although it

has been proven in [CGH+88] and [KSW87] that all the standard normal forms of Definition 3.1

coincide for NP,2 the situation for UP seems to be different, as UP is probably not closed under

union. (The closure of UP under intersection is straightforward.) Thus, all the relations among

those normal forms have to be reconsidered for UP.

We first prove that the symmetric difference hierarchy over UP (or any class closed under inter-

section) equals the Boolean closure. Though Köbler, Schöning, and Wagner [KSW87] proved this

for NP, their proof gateways through a class whose proof of equivalence to the Boolean closure uses

closure under union, and thus the following result is not implicit in their paper.

Theorem 3.4 SDH(UP) = BC(UP).

Proof. The inclusion from left to right is clear. For the converse inclusion, it is sufficient to show

that SDH(UP) is closed under all Boolean operations, as BC(UP), by definition, is the smallest class

of sets that contains UP and is closed under all Boolean operations. LetL andL
′

be arbitrary sets

in SDH(UP). Then, for somek, ℓ ≥ 1, there are setsA1, . . . , Ak, B1, . . . , Bℓ in UP representingL

andL
′
:

L = A1∆ · · ·∆Ak and L
′

= B1∆ · · ·∆Bℓ.

So

L ∩ L
′

=
(

∆k
i=1Ai

)

∩
(

∆ℓ
j=1Bj

)

= ∆i∈{1,...,k}, j∈{1,...,ℓ}(Ai ∩ Bj),

and since UP is closed under intersection and SDH(UP) is (trivially) closed under symmetric dif-

ference, we clearly have thatL ∩ L
′
∈ SDH(UP). Furthermore, sinceL = Σ∗∆L implies that

L ∈ SDH(UP), SDH(UP) is closed under complementation. Since all Boolean operations can be

represented in terms of complementation and intersection,our proof is complete. ✷

Next, we show that for any class closed under intersection, instantiated below to the case of UP,

the Boolean (alternating sums) hierarchy over the class equals the Boolean closure of the class. Our

proof is inspired by the techniques used to prove equality inthe case where closure under union

may be assumed.
2Due essentially to its closure under union and intersection, and this reflects a more general behavior of classes

closed under union and intersection, as studied by Bertoni et al. ([BBJ+89], see also [Hau14, CGH+88, KSW87, CK90b,
Cha91]).
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Theorem 3.5 CH(UP) = BC(UP).

Proof. We will prove that SDH(UP) ⊆ CH(UP). By Theorem 3.4, this will suffice.

Let L be any set in SDH(UP). Then there is ak > 1 (the casek = 1 is trivial) such that

L ∈ SDk(UP). Let U1, . . . , Uk be the witnessing UP sets; that is,L = U1∆U2∆ · · ·∆Uk. By the

inclusion-exclusion rule,L satisfies the equalities below. For oddk,

L =



· · ·







(U1 ∪ U2 ∪ · · · ∪ Uk) ∩





⋃

j1<j2

(Uj1 ∩ Uj2)







 ∪





⋃

j1<j2<j3

(Uj1 ∩ Uj2 ∩ Uj3)







 ∩ · · · ∪





⋃

j1<···<jk

(Uj1 ∩ · · · ∩ Ujk
)







 ,

where each subscriptedj term must belong to{1, . . . , k}. For evenk, we similarly have:

L =



· · ·







(U1 ∪ U2 ∪ · · · ∪ Uk) ∩





⋃

j1<j2

(Uj1 ∩ Uj2)







 ∪





⋃

j1<j2<j3

(Uj1 ∩ Uj2 ∩ Uj3)







 ∩ · · · ∩





⋃

j1<···<jk

(Uj1 ∩ · · · ∩ Ujk
)







 .

For notational convenience, let us useA1, . . . , Ak to represent the respective terms in the above

expressions (ignoring the complementations). By the closure of UP under intersection, eachAi,

1 ≤ i ≤ k, is the union of
(k

i

)

UP setsBi,1, . . ., B
i,(k

i)
. Using the fact that∅ is clearly in UP, we

can easily turn the union ofn arbitrary UP sets (or the intersection ofn arbitrary coUP sets) into an

alternating sum of2n − 1 UP sets. So for instance,A1 = U1 ∪ U2 ∪ · · · ∪ Uk can be written
(

· · ·
(((

U1 ∩ ∅
)

∪ U2

)

∩ ∅
)

∪ · · · ∪ Uk

)

,

call thisC1. Clearly,C1 ∈ C2k−1(UP). To transform the above representation ofL into an alternat-

ing sum of UP sets, we need two (trivial) transformations holding for anym ≥ 1 and for arbitrary

setsS andT1, . . . , Tm:

S ∩
(

T1 ∪ T2 ∪ · · · ∪ Tm

)

=
(

· · ·
((

S ∩ T1

)

∩ T2

)

∩ · · ·
)

∩ Tm (1)

S ∪ (T1 ∪ T2 ∪ · · · ∪ Tm) = (· · · ((S ∪ T1) ∪ T2) ∪ · · ·) ∪ Tm. (2)

Using (1) withS = C1 andT1 = B2,1, . . . , Tm = B
2,(k

2)
and the fact that∅ is in UP,A1 ∩ A2

can be transformed into an alternating sum of UP sets, call this C2. Now apply (2) withS = C2

andT1 = B3,1, . . . , Tm = B
3,(k

3)
to obtain, again using that∅ is in UP, an alternating sumC3 =

(

A1 ∩ A2

)

∪ A3 of UP sets, and so on. Eventually, this procedure of alternately applying (1) and

(2) will yield an alternating sumCk of sets in UP that equalsL. Thus,L ∈ CH(UP). ✷
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Corollary 3.6 SDH(UP) and CH(UP) are both closed under all Boolean operations.

Note that the proofs of Theorems 3.5 and 3.4 implicitly give arecurrence yielding an upper

bound on the level-wise containments. We find the issue of equality to BC(UP), or lack thereof,

to be the central issue, and thus we focus on that. Nonetheless, we point out in the corollary

below that losing the assumption of closure under union seems to have exacted a price: though

the hierarchies SDH(UP) and CH(UP) are indeed equal, the above proof embeds SDk(UP) in an

exponentially higher level of the C hierarchy. Similarly, the proof of Theorem 3.4 embeds Ck(UP)

in an exponentially higher level of SDH(UP).

Corollary 3.7 (to the proofs of Theorems 3.5 and 3.4)

1. For eachk ≥ 1, SDk(UP) ⊆ C2k+1−k−2(UP).

2. For eachk ≥ 1, Ck(UP) ⊆ SDT (k)(UP), whereT (k) =

{

2k − 1 if k is odd

2k − 2 if k is even.

Proof. For an SDk(UP) setL to be placed into theR(k)th level of CH(UP), L is represented (in

the proof of Theorem 3.5) as an alternating sum ofk termsA1, . . . , Ak, eachAi consisting of
(k

i

)

UP setsBi,j. In the subsequent transformation ofL according to the equations (1) and (2), each

Ai requires as many as
(k

i

)

− 1 additional terms∅ or ∅, respectively, to be inserted, and each such

insertion brings us one level higher in the C hierarchy. Thus,

R(k) =
k
∑

i=1

(

k

i

)

+

((

k

i

)

− 1

)

= −k + 2
k
∑

i=1

(

k

i

)

= 2k+1 − k − 2.

A close inspection of the proof of Ck(UP) ⊆ SDT (k)(UP) according to Theorem 3.4 leads to the

recurrence:

T (1) = 1 and T (k) =

{

2T (k − 1) + 3 if k > 1 is odd

2T (k − 1) if k > 1 is even,

since any setL ∈ Ck(UP) can be represented by setsA ∈ Ck−1(UP) andB ∈ UP as follows:

L = A ∪ B = A ∩ B = Σ∗∆ ((Σ∗∆A) ∩ (Σ∗∆B)) if k is odd,

L = A ∩ B = A ∩ (Σ∗∆B) if k is even.

The above recurrence is in (almost) closed form:

T (k) =

{

2k − 1 if k ≥ 1 is odd

2k − 2 if k ≥ 1 is even,

8



as can be proven by induction onk (we omit the trivial induction base): For oddk (i.e.,k = 2n− 1

for n ≥ 1), assumeT (2n − 1) = 22n−1 − 1 to be true. Then,

T (2n + 1) = 2T (2n) + 3 = 4T (2n − 1) + 3
hyp.
= 4

(

22n−1 − 1
)

+ 3 = 22n+1 − 1.

For evenk (i.e.,k = 2n for n ≥ 1), assumeT (2n) = 22n − 2 to be true. Then,

T (2n + 2) = 2T (2n + 1) = 2(2T (2n) + 3)
hyp.
= 4

(

22n − 2
)

+ 6 = 22n+2 − 2. ✷

Remark 3.8 The upper bound in the second part of the above proof can be slightly improved

using the fact thatΣ∗∆Σ∗∆A = ∅∆A = A for any setA. This gives the recurrence:

T (1) = 1 and T (k) =

{

2T (k − 1) + 1 if k > 1 is odd

2T (k − 1) if k > 1 is even,

or, equivalently,T (1) = 1, T (2) = 2, andT (k) = 2k−1 + T (k − 2) for k ≥ 3. Though this

shows that the upper bound given in the above proof is not optimal, the new bound is not a strong

improvement, as it still embeds Ck(UP) in an exponentially higher level of SDH(UP). We propose

as an interesting task the establishment oftight level-wise containments, at least up to the limits of

relativizing techniques, between the hierarchies SDH(UP) and CH(UP), both of which capture the

Boolean closure of UP.

We conjecture that there is some relativized world in which an exponential increase (though less

dramatic than the particular exponential increase of Corollary 3.7) indeed is necessary.

Theorem 3.9 below shows that each level of the nested difference hierarchy is contained in the

same level of both the C and the E hierarchy. Surprisingly, itturns out (see Theorem 3.13 below)

that, relative to a recursive oracle, even the fourth level of CH(UP) and the third level of SDH(UP)

are not subsumed by any level of the EH(UP) hierarchy. Consequently, neither the D nor the E

normal forms of Definition 3.1 capture the Boolean closure ofUP.

Theorem 3.9 For everyk ≥ 1, Dk(UP) ⊆ Ck(UP) ∩ Ek(UP).

Proof. For the first inclusion, by [CH85, Proposition 2.1.2], each set L ∈ Dk(UP) can be repre-

sented as

L = A1 − (A2 − (· · · (Ak−1 − Ak) · · ·)),

whereAi =
⋂

1≤j≤i Lj, 1 ≤ i ≤ k, and theLj ’s are the original UP sets representingL. Note that

since the proof of [CH85, Proposition 2.1.2] only uses intersection, the setsAi are in UP. A special
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case of [CH85, Proposition 2.1.3] says that sets in Dk(UP) via decreasing chains such as theAi are

in Ck(UP), and soL ∈ Ck(UP).

The proof of the second inclusion is done by induction on the odd and even levels separately.

The induction base follows by definition in either case. For odd levels, assume D2n−1(UP) ⊆

E2n−1(UP) to be valid, and letL be any set in D2n+1(UP) = UP− (UP− D2n−1(UP)). By our

inductive hypothesis,L can be represented as

L = A −

(

B −

(

n−1
⋃

i=1

(

Ci ∩ Di

)

∪ E

))

,

whereA,B,Ci,Di, andE are sets in UP. Thus,

L = A ∩






B ∩





n−1
⋃

i=1

(

Ci ∩ Di

)

∪ E











= A ∩

(

B ∪

(

n−1
⋃

i=1

(

Ci ∩ Di

)

∪ E

))

= (A ∩ B) ∪

(

n−1
⋃

i=1

A ∩ Ci ∩ Di

)

∪ (A ∩ E)

=

(

n
⋃

i=1

Fi ∩ Di

)

∪ G,

whereFi = A ∩ Ci, for 1 ≤ i ≤ n − 1, Fn = A, Dn = B, andG = A ∩ E. Since UP is closed

under intersection, each of these sets is in UP. Thus,L ∈ E2n+1(UP). The proof for the even levels

is analogous except that the setE is dropped. ✷

Note that most of the above proofs used only the facts that theclass is closed under intersection

and containsΣ∗ and∅:

Theorem 3.10 Theorems 3.4, 3.5, and 3.9 and Corollaries 3.6 and 3.7 apply to all classes that

containΣ∗ and∅ and are closed under intersection.

Remark 3.11 Although DP is closed under intersection but seems to lack closure under union

(unless the polynomial hierarchy collapses to DP [Kad88, CK90b, Cha91]) and thus Theorem 3.10

in particular applies to DP, we note that the known results about Boolean hierarchies over

NP [CGH+88, KSW87] in fact even for the DP case imply stronger resultsthan those given by

our Theorem 3.10, due to the very special structure of DP. Indeed, since, e.g., Ek(DP) = E2k(NP)

for any k ≥ 1 (and the same holds for the other hierarchies), it follows immediately that all the
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level-wise equivalences among the Boolean hierarchies (and also their ability to capture the Boolean

closure) that are known to hold for NP also hold for DP even in the absence of the assumption of

closure under union. This appears to contrast with the UP case (see Remark 3.8).

The following combinatorial lemma will be useful in provingTheorem 3.13.

Lemma 3.12 [CHV93] Let G = (S, T,E) be any directed bipartite graph with out-

degree bounded byd for all vertices. LetS′ ⊆ S and T ′ ⊆ T be subsets such that

S′ ⊇ {s ∈ S | (∃t ∈ T ) [〈s, t〉 ∈ E]}, andT ′ ⊇ {t ∈ T | (∃s ∈ S) [〈t, s〉 ∈ E]}. Then either:

1. ‖S′‖ ≤ 2d, or

2. ‖T ′‖ ≤ 2d, or

3. (∃s ∈ S′) (∃t ∈ T ′) [〈s, t〉 6∈ E ∧ 〈t, s〉 6∈ E].

For papers concerned with oracles separating internal levels of Boolean hierarchies over classes

other than those of this paper, we refer the reader to ([CGH+88, Cai87, GNW90, BJY90, Cro94], see

also [GW87]). Theorem 3.13 is optimal, as clearly C3(UP) ⊆ EH(UP) and SD2(UP) ⊆ EH(UP),

and both these containments relativize.

Theorem 3.13 There are recursive oraclesA andD (though we may takeA = D) such that

1. C4(UPA) 6⊆ EH(UPA), and

2. SD3(UPD) 6⊆ EH(UPD).

Corollary 3.14 There is a recursive oracleA such that

1. EH(UPA) 6= BC(UPA) and DH(UPA) 6= BC(UPA),3 and

2. EH(UPA) and DH(UPA) are not closed under all Boolean operations.

Proof of Theorem 3.13. Although the theorem claims there is an oracle keeping C4(UP) from

being contained in any level of EH(UP), we will only prove that for any fixedk we can ensure

that C4(UP) is not contained in Ek(UP), relative to some oracleA(k). In the standard way, by

interleaving diagonalizations, the sequence of oracles,A(k), can be combined into a single oracle,A,

that fulfills the claim of the theorem. An analogous comment holds for the second claim of the
3As Fact 3.2 shows that DH(UP) = CH(coUP), this oracleA also separates the Boolean (alternating sums) hierarchy

over coUP from the fourth level of the same hierarchy over UP and, thus, from BC(UP).

11



theorem, with a sequence of oraclesD(k) yielding a single oracleD. Similarly, both statements of

the theorem can be satisfied simultaneously via just one oracle, via interleaving with each other the

constructions ofA andD. Though below we construct justA(k) andD(k), as a notational shorthand

we’ll useA andD below to representA(k) andD(k).

Before the actual construction of the oracles, we state somepreliminaries that apply to the proofs

of both statements in the theorem.

For anyn ≥ 0 and any stringv ∈ Σ≤n, defineSn
v

df
= {vw | vw ∈ Σn}. The setsSn

v are used to

distinguish between different segments ofΣn in the definition of the test languages,LA andLD.

Fix any standard enumeration of all NPOMs. Fix anyk > 0. We need only consider even

levels of EH(UP), as each odd level is contained in some even level. Call any collection of 2k

NPOMs,H = 〈N1,1, . . . , Nk,1, N1,2, . . . , Nk,2〉, a potential (relativized) E2k(UP) machine, and for

any oracleX, define its language to be:

L(HX)
df
=

k
⋃

i=1

(

L(NX
i,1) − L(NX

i,2)
)

.

If for some fixed oracleY , a potential (relativized) E2k(UP) machineHY has the property that

each of its underlying NPOMs with oracleY is unambiguous, thenL(HY ) indeed is in E2k(UPY ).

Clearly, our enumeration of all NPOMs induces an enumeration of all potential E2k(UP) oracle ma-

chines. Forj ≥ 1, let Hj be thejth machine in this enumeration. Letpj be a polynomial bounding

the length of the computation paths of each ofHj ’s underlying machines (and thus bounding the

number of and length of the strings they each query). As a notational convenience, we hencefor-

ward will useH andp as shorthands forHj andpj, and we will denote the underlying NPOMs by

N1,1, . . . , Nk,1, N1,2, . . . , Nk,2.

The oracleX, whereX stands forA or D, is constructed in stages,X =
⋃

j≥1 Xj. In stagej,

we diagonalize againstH by satisfying the following requirementRj for everyj ≥ 1:

Rj : Either there is ann > 2 and ani, 1 ≤ i ≤ k, such that one ofN
Xj

i,1 or N
Xj

i,2 on input0n is

ambiguous (thus,H is in fact not an E2k(UP) machine relative toX), or L(HX) 6= LX .

Let Xj be the set of strings contained inX by the end of stagej, and letX
′

j be the set of strings

forbidden membership inX during stagej. The restraint functionr(j) will satisfy the condition

that at no later stage will strings of length smaller thanr(j) be added toX. Also, our construction

will ensure thatr(j) is so large thatXj−1 contains no strings of length greater thanr(j). Initially,

bothX0 andX
′

0 are empty, andr(1) is set to be 2.

We now start the proof of Part 1 of the theorem. Define the test language:

LA
df
= {0n | (∃x) [x ∈ Sn

0 ∩ A] ∧ (∀y) [y 6∈ Sn
10 ∩ A] ∧ (∀z) [z 6∈ Sn

11 ∩ A]}.

12



Clearly,LA is in NPA
∧ coNPA

∧ coNPA. However, if we ensure in the construction that the

invariant ‖Sn
v ∩ A‖ ≤ 1 is maintained forv ∈ {0, 10, 11} and everyn ≥ 2, thenLA is even

in UPA
∧ coUPA

∧ coUPA, and thus in C4(UPA). We now describe stagej > 0 of the oracle

construction.

Stagej: Choosen > r(j) so large that2n−2 > 3p(n).

Case 1: 0n ∈ L(HAj−1). Since0n 6∈ LA, we haveL(HA) 6= LA.

Case 2: 0n 6∈ L(HAj−1). Choose somex ∈ Sn
0 and setBj := Aj−1 ∪ {x}.

Case 2.1:0n 6∈ L(HBj ). LettingAj := Bj implies0n ∈ LA, soL(HA) 6= LA.

Case 2.2:0n ∈ L(HBj ). Then there is ani, 1 ≤ i ≤ k, such that0n ∈ L(N
Bj

i,1 ) and

0n 6∈ L(N
Bj

i,2 ). “Freeze” an accepting path ofN
Bj

i,1 (0n) into A
′

j; that is, add those

strings queried negatively on that path toA
′

j , thus forbidding them fromA for all

later stages. Clearly, at mostp(n) strings are “frozen.”

Case 2.2.1:
(

∃z ∈ (Sn
10 ∪ Sn

11) − A
′

j

) [

0n 6∈ L(N
Bj∪{z}
i,2 )

]

.

Choose any suchz. SetAj := Bj ∪ {z}. We have0n ∈ L(HA) − LA.

Case 2.2.2:
(

∀z ∈ (Sn
10 ∪ Sn

11) − A
′

j

) [

0n ∈ L(N
Bj∪{z}
i,2 )

]

.

To apply Lemma 3.12, define a directed bipartite graphG = (S, T,E) by

S
df
= Sn

10 − A
′

j , T
df
= Sn

11 − A
′

j , and for eachs ∈ S andt ∈ T , 〈s, t〉 ∈ E if

and only ifN
Bj∪{s}
i,2 queriest along its lexicographically first accepting path,

and〈t, s〉 ∈ E is defined analogously. The out-degree of all vertices ofG is

bounded byp(n). By our choice ofn, min{‖S‖, ‖T‖} ≥ 2n−2 − p(n) >

2p(n), and thus alternative 3 of Lemma 3.12 applies. Hence, there exist strings

s ∈ S and t ∈ T such thatN
Bj∪{s}
i,2 (0n) accepts on some pathps on which

t is not queried, andN
Bj∪{t}
i,2 (0n) accepts on some pathpt on whichs is not

queried. Sinceps (pt) changes from reject to accept exactly by addings (t) to

the oracle,s (t) must have been queried onps (pt). We conclude thatps 6= pt,

and thusN
Bj∪{s,t}
i,2 (0n) has at least two accepting paths. SetAj := Bj∪{s, t}.

In each case, requirementRj is fulfilled. Let r(j +1) bemax{n,wj}, wherewj is the length of the

largest string queried through stagej.

End of stagej.

13



We now turn to the proof of Part 2 of the theorem. The test language here,LD, is defined by:

LD
df
=



























0n

((∃x) [x ∈ Sn
0 ∩ D] ∧ (∃y) [y ∈ Sn

10 ∩ D] ∧ (∃z) [z ∈ Sn
11 ∩ D])∨

((∀x) [x 6∈ Sn
0 ∩ D] ∧ (∀y) [y 6∈ Sn

10 ∩ D] ∧ (∃z) [z ∈ Sn
11 ∩ D])∨

((∃x) [x ∈ Sn
0 ∩ D] ∧ (∀y) [y 6∈ Sn

10 ∩ D] ∧ (∀z) [z 6∈ Sn
11 ∩ D])∨

((∀x) [x 6∈ Sn
0 ∩ D] ∧ (∃y) [y ∈ Sn

10 ∩ D] ∧ (∀z) [z 6∈ Sn
11 ∩ D])



























.

Again, provided that the invariant‖Sn
v ∩D‖ ≤ 1 is maintained forv ∈ {0, 10, 11} and everyn ≥ 2

throughout the construction,LD is clearly in SD3(UPD), as for all setsA, B, andC,

A∆B∆C = (A ∩ B ∩ C) ∪ (A ∩ B ∩ C) ∪ (A ∩ B ∩ C) ∪ (A ∩ B ∩ C).

Stagej > 0 of the construction ofD is as follows.

Stagej: Choosen > r(j) so large that2n−2 > 3p(n).

Case 1: 0n ∈ L(HDj−1). Since0n 6∈ LD, we haveL(HD) 6= LD.

Case 2: 0n 6∈ L(HDj−1). Choose somex ∈ Sn
0 and setEj := Dj−1 ∪ {x}.

Case 2.1:0n 6∈ L(HEj). LettingDj := Ej implies0n ∈ LD, soL(HD) 6= LD.

Case 2.2:0n ∈ L(HEj ). Then, there is ani, 1 ≤ i ≤ k, such that0n ∈ L(N
Ej

i,1 ) and

0n 6∈ L(N
Ej

i,2 ). “Freeze” an accepting path ofN
Ej

i,1 (0n) into D
′

j . Again, at most

p(n) strings are “frozen.”

Case 2.2.1:
(

∃w ∈ (Sn
10 ∪ Sn

11) − D
′

j

) [

0n 6∈ L(N
Ej∪{w}
i,2 )

]

.

Choose any suchw and setDj := Ej ∪ {w}. We have0n ∈ L(HD) − LD.

Case 2.2.2:
(

∀w ∈ (Sn
10 ∪ Sn

11) − D
′

j

) [

0n ∈ L(N
Ej∪{w}
i,2 )

]

.

As before, Lemma 3.12 yields two stringss ∈ Sn
10 − D

′

j andt ∈ Sn
11 − D

′

j

such thatN
Ej∪{s,t}
i,2 (0n) is ambiguous. SetDj := Ej ∪ {s, t}.

Again,Rj is always fulfilled. Definer(j + 1) as before.

End of stagej. ✷

Finally, we note that a slight modification of the above proofestablishes the analogous result (of

Theorem 3.13) for the case of US [BG82] (which is denoted 1NP in [GW87, Cro94]).

4 Sparse Turing-complete and Turing-hard Sets for UP

In this section, we show some consequences of the existence of sparse Turing-complete and Turing-

hard sets for UP. This question has been carefully investigated for the class NP [KL80, Hop81,
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KS85, BBS86, LS86, Sch86, Kad89].4 Kadin showed that if there is a sparse≤p
T -complete set

in NP, then the polynomial hierarchy collapses to PNP[log] [Kad89]. Due to the promise nature of UP

(in particular, UP probably lacks complete sets [HH88]), Kadin’s proof does not seem to apply

here. But does the existence of a sparse Turing-complete setin UP cause at least some collapse of

the unambiguous polynomial hierarchy (which was introduced recently in [NR93])?5

Cai, Hemachandra, and Vyskoč [CHV93] observe that ordinary Turing access to UP, as for-

malized by PUP, may be too restrictive a notion to capture adequately one’sintuition of Turing

access to unambiguous computation, since in that model the oracle machine has to be unambigu-

ous onevery input—even those the base DPOM never asks (on any ofits inputs). To relax that

unnaturally strong uniformity requirement they introducethe class denoted PUP , in which NP

oracles are accessed in aguardedlyunambiguous manner, a natural notion of access to unam-

biguous computation—suggested in the rather analogous case of NP∩ coNP by Grollmann and

Selman [GS88]—in whichonly computations actually executed need be unambiguous. Lange, Nie-

dermeier, and Rossmanith [LR94][NR93, p. 483] generalize this approach to build up an entire

hierarchy of unambiguous computations in which the oracle levels are guardedly accessed (Defini-

tion 4.1, Part 3)—thepromise unambiguous polynomial hierarchy.

Definition 4.1

1. Thepolynomial hierarchy[MS72, Sto77] is defined as follows:

Σp
0

df
= P, ∆p

0
df
= P, Σp

k

df
= NPΣp

k−1, Πp
k

df
= coΣp

k, ∆p
k

df
= PΣp

k−1 , k ≥ 1, and PHdf
=
⋃

k≥0 Σp
k.

2. Theunambiguous polynomial hierarchy[NR93] is defined as follows:

UΣp
0

df
= P, U∆p

0
df
= P, UΣp

k

df
= UPUΣp

k−1 , UΠp
k

df
= coUΣp

k, U∆p
k

df
= PUΣp

k−1 , k ≥ 1, and

UPH df
=
⋃

k≥0 UΣp
k.

3. Thepromise unambiguous polynomial hierarchy([LR94][NR93, p. 483]) is defined as fol-

lows: UΣp
0

df
= P, UΣp

1
df
= UP, and fork ≥ 2, L ∈ UΣp

k if and only if L ∈ Σp
k via NPOMs

N1, . . . , Nk satisfying for all inputsx and everyi, 1 ≤ i ≤ k − 1, that if Ni asks some query

q during the computation ofN1(x), thenNi+1(q) with oracleL(N
L(N ··

L(Nk)

i+3 )

i+2 ) has at most

one accepting path.UPH
df
=
⋃

k≥0 UΣp
k. The classesU∆p

k and UΠp
k, k ≥ 0, are defined

analogously. As a notational shorthand, we often use PUP to representU∆p
2; we stress that

4For reductions less flexible than Turing reductions (e.g.,≤p
m, ≤p

btt, etc.), this issue has been studied even more
intensely (see, e.g., the surveys [You92, HOW92]).

5Note that it is not known whether such a collapse implies a collapse of PH. Note also that Toda’s [Tod91] result on
whether P-selective sets can be truth-table-hard for UP does not imply such a collapse, as truth-table reductions are less
flexible than Turing reductions.
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both notations are used here to represent the class of sets accepted viaguardedly unambigu-

ousaccess to an NP oracle (that is, the class of sets accepted by some P machine with an

NP machine’s language as its oracle such that on no input doesthe P machine ask its oracle

machine any question on which the oracle machine has more than one accepting path).

4. For each of the above hierarchies, we useΣp,A
k (respectively, UΣp,A

k and UΣp,A
k ) to denote

that theΣp
k (respectively, UΣp

k and UΣp
k) computation is performed relative to oracleA;

similar notation is used for theΠ and∆ classes of the hierarchies.

The following facts follow from the definition (see also [NR93]) or can easily be shown.

Fact 4.2 For everyk ≥ 1,

1. UΣp
k ⊆ UΣp

k ⊆ Σp
k and U∆p

k ⊆ U∆p
k ⊆ ∆p

k.

2. If UΣp
k = UΠp

k, then UPH= UΣp
k.

3. If UΣp
k = UΣp

k−1, then UPH= UΣp
k−1.

4. UΣp,UP∩coUP
k = UΣp

k and PUΣp
k
∩UΠp

k = UΣp
k ∩ UΠp

k.

The classes “UP≤k,” the analogs of UP in which up tok accepting paths are allowed, have been

studied in various contexts [Wat88, Hem87, Bei89, CHV93, HH94, HZ93]. One motivation for

UΣp
k is that, for eachk, UP≤k ⊆ UΣp

k [NR93].

Although we are not able to settle affirmatively the questionposed at the end of the first para-

graph of this section, we do prove in the theorem below that ifthere is a sparse Turing-complete set

for UP, then the levels of the unambiguous polynomial hierarchy are simpler than one would oth-

erwise expect: they “slip down” slightly in terms of their location within the promise unambiguous

polynomial hierarchy, i.e., for eachk ≥ 3, thekth level of UPH is contained in the(k − 1)st level

of UPH.

Theorem 4.3 If there exists a sparse Turing-complete set for UP, then

1. UPUP ⊆ PUP , and

2. UΣp
k ⊆ UΣp

k−1 for everyk ≥ 3.

Proof. For the first statement, letL be any set in UPUP. By assumption,L ∈ UPPS

= UPS for

some sparse setS ∈ UP. Letq be a polynomial bounding the density ofS, that is,‖S≤m‖ ≤ q(m)

for everym ≥ 0, and letNS be a UPM forS. LetNL be a UPOM witnessing thatL ∈ UPS, that is,
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L = L(NS
L ). Let p(n) be a polynomial bounding the length of all query strings thatcan be asked

during the computation ofNL on inputs of lengthn. Define the polynomialr(n)
df
= q(p(n)) that

bounds the number of strings inS that can be queried in the run ofNL on inputs of lengthn.

To show thatL ∈ PUP , we shall construct a DPOMM that may access itsUP oracleD

in a guarded manner (more formally, “may access its NP oracleD in a guardedly unambiguous

manner,” but we will henceforward useUP and otherU · · · notations in this informal manner).

Before formally describing machineM (Figure 1), we give some informal explanations.M will

proceed in three basic steps: First,M determines the exact census of that part ofS that is relevant for

the given input length,‖S≤p(n)‖. Knowing the exact census,M can construct (by prefix search) a

tableT of all strings inS≤p(n) without asking queries that make its oracle’s machine ambiguous, so

the PUP-like behavior is guaranteed. Finally,M asks its oracleD to simulate the computation ofNL

on inputx (answeringNL’s oracle queries by table-lookup using tableT ), and accepts accordingly.

In the formal description of machineM (given in Figure 1), three oracle setsA, B, andC are

used. SinceM has only oneUP oracle, the actual set to be used isD = A⊕B ⊕C (with suitably

modified queries toD). A, B, andC are defined as follows (we assume the setT below is coded in

some standard reasonable way):

A
df
=

{

〈1n, k〉
n ≥ 0 ∧ 0 ≤ k ≤ r(n) ∧ (∃c1 <lex c2 <lex · · · <lex ck)

(∀ℓ : 1 ≤ ℓ ≤ k) [|cℓ| ≤ p(n) ∧ NS(cℓ) accepts]

}

,

B
df
=















〈1n, i, j, k, b〉

n ≥ 0 ∧ 1 ≤ j ≤ k ∧ 0 ≤ k ≤ r(n)∧

(∃c1 <lex c2 <lex · · · <lex ck) (∀ℓ : 1 ≤ ℓ ≤ k)

[|cℓ| ≤ p(n) ∧ NS(cℓ) accepts∧ theith bit of cj is b ]















,

C
df
= {〈x, T 〉 | ‖T‖ ≤ r(|x|) ∧ NT

L (x) accepts}.

It is easy to see thatM runs deterministically in polynomial time. This proves that L ∈ PUP .

In order to prove the second statement, letL be a set in UΣp
k for any fixedk ≥ 3. By assumption,

there exists a sparse setS in UP such thatL ∈ UΣp,PS

k−1 = UΣp,S
k−1; let N1, N2, . . . , Nk−1 be the

UPOMs that witness this fact, that is,L = L(N
L(N ··

L(NS
k−1

)

2 )
1 ).

Now we describe the computation of aUΣp
k−1 machineN recognizingL. As before,N on

input x computes in PUP its table of advice strings,T = S≤p(|x|), and then simulates the UΣp,S
k−1

computation ofN
L(N ··

L(NS
k−1

)

2 )
1 (x) except withN1, N2, . . ., Nk−1 modified as follows. If in the

simulation some machineNi, 1 ≤ i ≤ k − 2, consults its original oracleL(N
(·)
i+1) about some

string, sayz, then the modified machineN
′

i queries the modified machine at the next level,N
′

i+1,

about the string〈z, T 〉 instead. Finally, the advice tableT , which has been “passed up” in this

manner, is used to correctly answer all queries ofNk−1.
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Description of DPOM M.

input x;

begin
n := |x|;
k := r(n);
loop

if 〈1n, k〉 ∈ A then exit loop
elsek := k − 1

end loop (* k is now the exact census ofS≤p(n) *)
T := ∅; (* T collects the strings ofS≤p(n) *)
for j = 1 to k do

cj := ǫ;
i := 1;
repeat

if 〈1n, i, j, k, 0〉 ∈ B then cj := cj0; i := i + 1
else

if 〈1n, i, j, k, 1〉 ∈ B then cj := cj1; i := i + 1
elsei := 0 (* the lex. jth string ofS≤p(n) has noith bit *)

until i = 0;
T := T ∪ {cj}

end for
if 〈x, T 〉 ∈ C then accept
else reject

end

End of Description of DPOM M.

Figure 1: DPOMM guardedly unambiguously accessing an NP oracle to accept a set in UPUP.
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Note that N ’s oracle in this simulation,L(N
′

2
L(N

′

3

··
L(N

′

k−1
)

)
), is not in general a UΣp

k−2

set (andL is thus not in UΣp
k−1 in general), as the above-described computation depends on

the advice tableT , and so, for some bad adviceT , the unambiguity of the modified machines

N
′

1, N
′

2, . . . , N
′

k−1 is no longer guaranteed. But since our base machineN is able to providecorrect

adviceT , we have indeed shown thatL ∈ UΣp
k−1. ✷

In the above proof, the assumption that the sparse setS is in UP is needed to determine the

exact census ofS using the UPM forS. Let us now consider the weaker assumption that UP has

only a Turing-hard sparse set. Karp and Lipton have shown that if there is a sparse Turing-hard

set for NP, then the polynomial hierarchy collapses to its second level [KL80].6 Hopcroft [Hop81]

dramatically simplified their proof, and Balcázar, Book, and Schöning [BBS86, Sch86] generalized,

as Theorem 4.6, the Karp-Lipton result; the general approach of Hopcroft and Balcázar, Book, and

Schöning will be central to our upcoming proof of Theorem 4.7. Schöning’s low hierarchy [Sch83]

gives a way of classifying the complexity of NP sets that seemto be neither in P nor NP-complete.

Of particular interest to us is the class Low2
df
= {A |A ∈ NP and NPNPA

⊆ NPNP}. Note that for the

special casek = 0, Theorem 4.6 below says that Low2 ⊇ NP∩ P/poly ∩ {L |L is self-reducible}.

Definition 4.4 [MP79]

1. A partial order<pwl on Σ∗ is polynomially well-founded and length-relatedif and only if

(a) every strictly decreasing chain is finite and there is a polynomial p such that every finite

<pwl-decreasing chain is shorter thanp of the length of its maximum element, and (b)(∃q :

q polynomial) (∀x, y ∈ Σ∗) [x <pwl y =⇒ |x| ≤ q(|y|)].

2. A setA is self-reducibleif and only if there exist a polynomially well-founded and length-

related order<pwl on Σ∗ and a DPOMM such thatA = L(MA) and on any inputx ∈ Σ∗,

M queries only stringsy with y <pwl x.

Lemma 4.5 [BBS86] LetA be a self-reducible set and letM witnessA’s self-reducibility. For

any setB and anyn, if
(

L(MB)
)≤n

= B≤n, thenA≤n = B≤n.7

Theorem 4.6 [BBS86] If A is a self-reducible set and there is ak ≥ 0 and a sparse setS such

thatA ∈ Σp,S
k , thenΣp,A

2 ⊆ Σp
k+2.

6Very recently, Köbler and Watanabe [KW94] have improved this collapse to ZPPNP, and have also obtained new
consequences from the assumption that UP⊆ (NP∩ coNP)/poly, whereas we obtain different consequences from the
assumption that UP⊆ P/poly (see [KW94] for the notations not defined in this footnote).

7A can be viewed as a “fixed point” ofM .
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We now state and prove our results regarding sparse Turing-hard sets for UP.

Theorem 4.7 If there exists a sparse Turing-hard set for UP, then

1. UP⊆ Low2, and

2. UΣp
k ⊆ UΣ

p,Σ
p, UΣ

p

k−j−3
2

j ∩ PUΣp
k−1

⊕Σp
2 for everyk ≥ 3 and everyj, with 0 ≤ j ≤ k − 3.

Proof. 1. Let L ∈ Σp,A
2 , whereA ∈ UP via UPM NA and polynomial-time boundt (we

assume that each step is nondeterministic—one can require this, without loss of generality, while

maintaining categoricity). Our proof uses the well-known fact that the “left set” [Sel88, OW91] of

any UP set is self-reducible and is in UP. More precisely, to apply Theorem 4.6 we would needA

to be self-reducible. Although that can’t be assumed in general of an arbitrary UP set, the left set

of A, i.e., the set of prefixes of witnesses for elements inA defined by

B
df
= {〈x, y〉 | (∃z) [|yz| = t(|x|) ∧ NA(x) accepts on pathyz]},

does have this property and is also in UP. A self-reducing machineMself for B is given in Figure 2.

Note that the queries asked in the self-reduction are strictly less than the input with respect to a

polynomially well-founded and length-related partial order <pwl defined by: For fixedx and all

stringsy1, y2 ∈ Σ≤p(|x|), 〈x, y1〉 <pwl 〈x, y2〉 if and only if y2 is prefix ofy1.

By assumption, sinceB is a UP set,B ∈ PS for some sparse setS, so Theorem 4.6 with

k = 0 applies toB. Furthermore,A is in PB, via prefix search by DPOMMA (Figure 3). Thus,

L ∈ Σp,PB

2 ⊆ Σp,B
2 ⊆ Σp

2, which shows thatA ∈ Low2.

2. Fork = 3 (thusj = 0), both inclusions have already been shown in Part 1, asΣp
2 ⊆ ∆p

3.

Now fix anyk > 3, and letL ∈ UΣp
k = UΣp,A

k−1 be witnessed by UPOMsN1, N2, . . . , Nk−1 and

A ∈ UP. DefineB to be the left set ofA as in Part 1, soA ∈ PB via DPOMMA (see Figure 3),B

is self-reducible viaMself (see Figure 2), andB is in UP. By hypothesis,B ∈ PS for some sparse

setS; let MB be the reducing machine, that isB = L(MS
B), and letm be a polynomial bound on

the runtime ofMB . Let q be a polynomial such that‖S≤m‖ ≤ q(m) for everym ≥ 0. Let p(n)

be a polynomial bounding the length of all query strings whose membership in the oracle setB can

be asked in the run ofN1 (with oracle machinesN2, N3, . . ., Nk−1, MB
A ) on inputs of lengthn.

Define the polynomialsr(n)
df
= m(p(n)) ands(n)

df
= q(r(n)).

To show thatL ∈ PUΣp
k−1

⊕Σp
2 , we will describe a DPOMM that on inputx, |x| = n, using

theΣp
2 partD (defined below) of its oracle, performs a prefix search to extract the lexicographically

smallest of all “good” advice sets (this informal term will be formally defined in the next para-

graph), sayT , and then calls theUΣp
k−1 part of its oracle to simulate the UΣp,A

k−1 computation of
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Description of Self-reducerMself for B.

input 〈x, y〉;

begin
if |y| > t(|x|) then reject;
if NA(x) accepts on pathy then accept
else

if 〈x, y0〉 ∈ B or 〈x, y1〉 ∈ B then accept
else reject

end

End of Description of Self-reducerMself for B.

Figure 2: A self-reducing machine for the left set of a UP set.

Description of DPOM MA.

input x;

begin
y := ǫ;
while |y| < t(|x|) do

if 〈x, y0〉 ∈ B then accept
elsey := y1

end while
if 〈x, y〉 ∈ B then accept
else reject

end

End of Description of DPOM MA.

Figure 3: A Turing reduction from a UP setA to its left setB via prefix search.
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N
L(N ··

L(NA
k−1

)

2 )
1 (x) except withN1, N2, . . ., Nk−1 modified in the same way as was described in the

proof of Theorem 4.3. In more detail, if in the simulation some machineNi, 1 ≤ i ≤ k − 2, con-

sults its original oracleL(N
(·)
i+1) about some string, sayz, then the modified machineN

′

i queries the

modified machine at the next level,N
′

i+1, about the string〈z, T 〉 instead. Finally, ifNk−1 consults

its original oracleA about some queryy, then the modified machineN
′

k−1 runs the P computation

M
L(MT

B
)

A on input〈y, T 〉 instead to correctly answer this query without consulting an oracle.

An advice setT is said to begoodif the setL(MT
B ) is a fixed point ofB’s self-reducerMself up

to lengthp(n), that is,
(

L(M
L(MT

B
)

self )

)≤p(n)

=
(

L(MT
B )
)≤p(n)

, and thusB≤p(n) =
(

L(MT
B )
)≤p(n)

by Lemma 4.5. This property is checked for each guessedT in theΣp
2 part of the oracle. Formally,

D
df
=















〈1n, i, j, b〉

n ≥ 0 ∧ (∃T ⊆ Σ≤r(n)) (∀w : |w| ≤ p(n) ) [T = {c1, . . . , ck}

∧ 0 ≤ k ≤ s(n) ∧ c1 <lex · · · <lex ck ∧ theith bit of cj is b ∧

(w ∈ L(MT
B ) ⇐⇒ w ∈ L(M

L(MT
B

)
self ))]















.

The prefix search ofM is similar to the one performed in the proof of Theorem 4.3 (see Figure 1);

M queriesD to construct each string ofT bit by bit.

To prove the other inclusion, fix anyj, 0 ≤ j ≤ k − 3. We describe a UPOMN witnessing

that L ∈ UΣ
p,Σ

p, UΣ
p
k−j−3

2
j . On inputx, N simulates the UΣp

j computation of the firstj UPOMs

N1, . . . , Nj . In the subsequentΣp
2 computation, two tasks have to be solved in parallel: the com-

putation ofNj+1 andNj+2 is to be simulated, and good advice setsT have to be determined. For

the latter task, the base machine of theΣp
2 computation guesses all possible advice sets and the top

machine checks if the guessed advice is good (that is, ifL(MT
B ) is a fixed point ofMself). Again,

each good advice setT is “passed up” to the machines at higher levelsNj+3, . . . , Nk−1 (in the same

fashion as was employed earlier in this proof and also in the proof of Theorem 4.3), and is used to

correctly answer all queries ofNk−1 without consulting an oracle. This proves the theorem. ✷

Since Theorem 4.7 relativizes and there are relativized worlds in which UPA is not

LowA
2 [SL92], we have the following corollary.

Corollary 4.8 There is a relativized world in which (relativized) UP has nosparse Turing-hard sets.

Acknowledgments

We are very grateful to Gerd Wechsung for his help in bringingabout this collaboration, and for his

kind and insightful advice over many years. We thank Marius Zimand for proofreading, and Nikolai

Vereshchagin for helpful discussions during his visit to Rochester. We thank Osamu Watanabe

for discussing with us his results joint with Johannes Köbler, and we thank Osamu Watanabe and
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