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Abstract

The best randomized on-line algorithms known so far for the list update problem achieve
a competitiveness of /3 ~ 1.73. In this paper we present a new family of randomized on-line
algorithms that beat this competitive ratio. Our improved algorithms are called TIMESTAMP
algorithms and achieve a competitiveness of max{2 — p,1 + p(2 — p)}, for any real number
p € [0, 1]. Setting p = (3—1/5)/2, we obtain a ¢-competitive algorithm, where ¢ = (1++/5)/2 ~
1.62 is the Golden Ratio. TIMESTAMP algorithms coordinate the movements of items using
some information on past requests. We can reduce the required information at the expense
of increasing the competitive ratio. We present a very simple version of the TIMESTAMP
algorithms that is 1.68-competitive. The family of TIMESTAMP algorithms also includes a
new deterministic 2-competitive on-line algorithm that is different from the MOVE-TO-FRONT
rule.
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1 Introduction

The list update problem is among the first on-line problems that have been studied with respect
to competitiveness. The problem consists in maintaining a set of items as an unsorted linear list.
A list of n items is given. A list update algorithm is presented with a sequence of requests that
must be served in their order of occurrence. Each request specifies an item in the list. In order to
serve a request, a list update algorithm must access the requested item, i.e., it has to start at the
front of the list and search linearly through the items until the desired item is found. Accessing
the ¢-th item in the list incurs a cost of 7. Immediately after an access, the requested item may be
moved at no extra cost to any position closer to the front of the list. These exchanges are called
free exchanges. All other exchanges of two consecutive items in the list cost 1 and are called paid
exchanges. The goal is to serve the request sequence so that the total cost is as small as possible. A
list update algorithm is on-line if it serves every request without knowledge of any future requests.

We analyze the performance of on-line algorithms for the list update problem using competitive
analysis [6]. In a competitive analysis, an on-line algorithm A is compared to an optimal off-line
algorithm. An optimal off-line algorithm knows the entire request sequence in advance and can
serve it with minimum cost. Given a request sequence o, let C'4(o) denote the cost incurred by
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on-line algorithm A4 in serving o and let Copr(o) denote the cost incurred by the optimal off-line
algorithm OPT in processing o. Then the algorithm A is called c-competitive if there is a constant
a such that C4(o) < ¢-Copr(o) + a for all request sequences o. The competitive factor of A is the
infimum of all ¢ such that A is c-competitive.

Sleator and Tarjan [6] have shown that the well-known MOVE-TO-FRONT algorithm is
2-competitive. This deterministic on-line algorithm moves an item to the front of the list each
time it is requested. Karp and Raghavan [4] have observed that no deterministic on-line algorithm
for the list update problem can be better than 2-competitive. Thus the MOVE-TO-FRONT algo-
rithm achieves the best possible competitive factor. A natural question is if the competitive factor
of 2 can be improved using randomization. It was shown that against adaptive adversaries, no
randomized on-line algorithm for the list update problem can be better than 2-competitive [1, 5].
Adaptive adversaries may see the on-line algorithm’s random choices on past requests when gen-
erating a new request in a request sequence o. On the other hand, against oblivious adversaries,
the optimal competitive factor of randomized on-line algorithms has not been determined yet. An
oblivious adversary specifies a request sequence in advance and is not allowed to see the random
choices made by the on-line algorithm. A randomized on-line algorithm A is called ¢-competitive
against any oblivious adversary if there exists a constant a such that for all request sequences o
generated by oblivious adversaries, E[C4(c)] < ¢- Copr(o) + a, where the expectation is taken
over the random choices made by A. In this paper we always evaluate on-line algorithms with
respect to oblivious adversaries. Irani [3] has exhibited the first randomized on-line algorithm for
the list update problem; the SPLIT algorithm she proposed is %-competitive. Reingold et al. [5]
have given a family of COUNTER and RANDOM RESET algorithms that achieve a competitive
ratio of /3 ~ 1.73. This has been the best upper bound known so far for randomized list update
algorithms. The best lower bound known is due to Teia [7]. He shows that no randomized on-line
algorithm for the list update problem can be better than 1.5-competitive.

In this paper we present improved randomized on-line algorithms for the list update problem
that beat the competitive ratio of 4/3. Our new algorithms are called TIMESTAMP algorithms
and achieve a competitiveness of max{2 — p,1+ p(2 — p)}, for any real number p € [0, 1]. Choosing
p = (3 —+/5)/2, we obtain a ¢-competitive algorithm, where ¢ = (1 4+ v/5)/2 ~ 1.62 is the Golden
Ratio. TIMESTAMP algorithms move the requested item # not always to the front of the list but
sometimes to a position that is only a bit closer to the front. This position can be computed easily
when the algorithm scans the items preceding z in the list. However, in the implementation of
the algorithm, the computation of this position requires a second pass through the list after the
item = has been accessed. Moreover, some information on past requests is necessary in order to
determine the desired position. We can simplify the TIMESTAMP algorithms so that they need less
knowledge of previous requests; this increases the competitive ratio. We present a simplified version
of the TIMESTAMP algorithms that is 1.68-competitive. The family of TIMESTAMP algorithms
also includes two deterministic 2-competitive on-line algorithms, one of which is the MOVE-TO-
FRONT rule. The second, new algorithm is the only other deterministic on-line algorithm found so
far that achieves a competitive factor of 2; Sleator and Tarjan [6] have proved that the well-known
deterministic algorithms TRANSPOSE and FREQUENCY COUNT are not 2-competitive.

The list update problem as defined above is the static version of the problem. Each request is
an access to an item. In the dynamic variant of the problem, insertions and deletions of items are



allowed. A new item is inserted by scanning the entire list and appending the item at the end of
the list. A deletion of an item is processed by searching for the item in the list and deleting it. In
the following sections, when we develop and analyze randomized list update algorithms, we always
consider the static version of the problem. However, the on-line algorithms we will propose can be
extended in the obvious way so that they can handle insertions and deletions, too. All theorems
that we will present also hold for the dynamic list update problem.

2 TIMESTAMP algorithms

We present a new family of randomized on-line algorithms for the list update problem. The following
algorithm works for any real number p € [0, 1].

Algorithm TIMESTAMP(p): Given a request sequence o = o(1),0(2),...,0(m), each request
o(t), 1 <t < m, is processed as follows. Suppose that o(¢) is a request to item z.

With probability p, execute Step (a).
(a) Move z to the front of the list.
With probability 1 — p, execute Step (b).

(b) If « has not been requested so far during the time interval [1,¢ — 1], then do not change the
position of z in the list. Otherwise let ¢’ € [1,¢ — 1] be the time at which z was requested
most recently and serve the request o(¢) as follows. Let v,(t) be the item closest to the front
of the list that precedes z in the list and

(i) that was not requested during the interval [¢/,t — 1]
or
(ii) that was requested exactly once during [t',¢ — 1] and the corresponding request was

served using Step (b) of the algorithm.
If there is no such item, then let v,(t) = 2.
Insert « immediately before v,(¢).

Theorem 1 For any real number p € [0,1], TIMESTAMP(p) is c-competitive, where ¢ = max{2 —
p, 1+p(2 - p)}.

Corollary 1 TIMESTAMP(%@) s ¢p-competitive, where ¢ = %(1 +1/B) is the Golden Ratio.

An interesting feature of the TIMESTAMP(p) algorithm is that at a request to item @, all items
y satisfying condition (i) or (ii) in Step (b) are stored consecutively in front of z. In other words, all
items stored between z and v,(t) satisfy condition (i) or (ii); we will prove this later in Lemma 2.

We assume that the algorithm TIMESTAMP(p) maintains a time stamp ST (y) for each item
y in the list. While a request sequence in served, ST (y) always stores the time of the most recent
request to y. When there is a request to item z, TIMESTAMP(p) can easily determine the first item
in the list that satisfies condition (i) in Step (b). The algorithm just has to find the first item y with
ST(y) < §T(z). Finding the first item in the list that satisfies condition (ii) in Step (b) requires
some more information on previous requests. We can simplify the TIMESTAMP (p) algorithm at
the expense of increasing the competitive ratio. Suppose that we drop condition (ii) in Step (b).
Then v,(t) is simply the item closest to the front of the list that precedes z and has not been
requested during the interval [t',¢ — 1]. We can show the following performance.



Theorem 2 If condition (i) is dropped in Step (b) of TIMESTAMP(p), then the resulting algo-
rithm is c-competitive, where ¢ = max{2—p,1+p(2—p),2— %p—|—2p2 - %p3}. Setting p = %(5 —V17),
we obtain a competitive ratio of 3(v/17 — 3) ~ 1.68.

We will prove this theorem after we have shown Theorem 1.

Although the item wv,(t) specified in TIMESTAMP(p) can be computed easily, in a real im-
plementation of the algorithm, we need a second pass through the list in order to actually locate
vg(t). Note that a number of on-line algorithms that have been proposed in the literature, such
as the algorithm FREQUENCY COUNT, also require such a second pass after each access to an
item. There is an alternative formulation of TIMESTAMP(p) that does not need a second pass. In
this alternative formulation, we maintain a pointer ptr(z) for each item z in the list; ptr(z) either
points to z or to an item preceding z in the list. At a request to item 2,  is inserted at the front
of the list or immediately before ptr(z). The element specified by ptr(z) always corresponds to
vg(t). The drawback of this alternative formulation is that we need time to update the pointers.
Essentially, at a request to item z, the pointers of all elements y with ptr(y) = # must be set to the
successor of z in the list, and ptr(z) must be set to the front of the list. We prefer the formulation
of the TIMESTAMP(p) algorithm given above because it explicitly describes the properties of the
position v,(t) in front of which an item  is to be inserted.

TIMESTAMP(p) describes two deterministic algorithms. Setting p = 1 we obtain the MOVE-
TO-FRONT algorithm. Theorems 1 and 2 confirm the well-known fact that the MOVE-TO-
FRONT rule is 2-competitive. On the other hand, assume p = 0 and consider the simplified
version of the TIMESTAMP algorithm in which condition (ii) of Step (b) is dropped. The resulting
deterministic algorithm always inserts the requested item @ immediately before the first item in
the list that has not been requested since the last request to . Theorem 2 implies that this
deterministic strategy is 2-competitive.

We now proceed with the proof of Theorem 1. Consider a fixed p € [0,1]. Let
o = o(1),0(2),...,0(m) be an arbitrary request sequence consisting of m requests and let o(t)
denote the request at time ¢, 1 < t < m. We first present two lemmata that describe the relative
positions of items in the list while TIMESTAMP(p) serves a request sequence.

Lemma 1 Let z and y, ¢ # y, be two items. Suppose that = is requested at time t' and at time
t, t' < t, and that y is not requested during the interval [t',t]. Then, immediately after the service
of o(t), © precedes y in TIMESTAMP(p)’s list and this relation does not change before the next
request to y.

Proof: If TIMESTAMP(p) executes Step (a) when serving o(t), then z is moved to the front of
the list and must precede y in the list. If TIMESTAMP(p) executes Step (b) when serving o(t),
then condition (i) in Step (b) of the algorithm ensures that z is inserted at some position in front
of item y because y is not requested during [¢t,¢]. In any case z precedes y in TIMESTAMP(p)’s
list immediately after the service of o(¢). Since y is only moved when it is requested, the relative
position of z and y cannot change before the next request to y. O

Lemma 2 Let t be a time in [1,m]. If the item @ = o(t) was requested at least once in [1,t — 1],
then the following two statements hold. Let t', t' < t, denote the time at which ¢ was requested
most recently.



a) If item y, y # @, was requested at least twice during [t',t — 1], then y precedes item v,(t) in
TIMESTAMP(p)’s list at time t.

b) If itemy, y # @, was requested ezactly once during [t',t— 1| and the corresponding request was
served using Step (a) of TIMESTAMP(p), then y precedes item v, (t) in TIMESTAMP(p)’s
list at time t.

Proof: Suppose that there is a time in [1, m] at which Lemma 2 does not hold. Then let to € [1, m]
be the earliest point of time at which the lemma is violated. Furthermore, let ¢j, £, < to, be the
time at which item # = (o) was requested most recently, and let z = v, (o).

First we examine the case that statement a) of the lemma does not hold. Thus, there exists an
item y, y # #, that is requested at least twice in [t}, to — 1] and that does not precede z at time tg.
Let t, be the time of the last request to y in [ty,to — 1]. We show that after the service of o(t,),
item y precedes z in TIMESTAMP (p)’s list. If o(¢,) is served using Step (a) of the algorithm, then
there is nothing to show. Suppose that o(t,) is served using Step (b) of TIMESTAMP(p). By the
definition of v,(to), item z is requested at most once in [ty,fo — 1], and such a request is served
using Step (b) of the algorithm. This implies that when TIMESTAMP(p) serves o(t,), z cannot
precede vy(t,) (due to conditions (i) and (ii) in Step (b) of the algorithm). Hence y is inserted at
some position in front of z. We conclude that y must precede z after the service of o(t,). Since,
by assumption, z precedes y at time ¢g, item z must be requested at some time ¢, € [t, + 1,%o — 1]
and z must be inserted at some position in front of y when o(t,) is served. This implies that y
cannot precede v,(t,) at time ¢, because o(t,) is served using Step (b) of the algorithm. Note that
at time t,, y was requested at least twice since the last request to z. Hence statement a) of the
lemma does not hold at time ¢,, and we have a contradiction to the minimality of ¢,.

Now assume that statement b) of the lemma is violated. Let y, y # #, be an item for which
statement b) does not hold, and let ¢, € [ty,fo — 1] be the time at which y is requested. By
assumption, y does not precede z = v,(to) at time ¢y. Since o(t,) is served using Step (a) of the
algorithm, y precedes z after the service of o(t,). Using the same arguments as above, we can
derive a contradiction to the choice of t5. O

In the following we will evaluate TIMESTAMP(p)’s and OPT’s cost on request sequence o. Let
Crs(o) be the cost incurred by TIMESTAMP(p) in serving o. We will show that

E[Crs(o)] < ¢ Copr(a), (1)

where ¢ = max{2 — p,1 4+ p(2 — p)}. This proves Theorem 1. Here we assume without loss of
generality that TIMESTAMP(p) and OPT start with the same initial list. In the following, when
analyzing on-line and off-line cost, we will always use the (¢ — 1)-cost measure, i.e., we assume
that an access to the ¢-th item in the list incurs a cost of ¢ — 1 rather than i. Obviously, an on-
line algorithm that is c-competitive in the (¢ — 1)-cost measure is also c-competitive in the i-cost
measure.

We need some notation. Let L be the set of items in the list. For any t € [1,m] and any
item z € L, let Crs(t,z) be the cost incurred by item z when TIMESTAMP(p) serves o(t). More
precisely, Crs(t,2) = 1if at time ¢, item @ precedes the item requested by o(¢) in TIMESTAMP(p)’s



list; otherwise Crgs(t,z) = 0. We have

E[Crs(o)] = E[ Y, Y Crs(t,z)]

te[l,m]z€L

= E[Z Z CTs(t,a})]

z€L te[1,m]

= E[ZZ Z CTs(t,a})].

z€LyelL te[l,m]
o(t)=y
Let {z,y} be an unordered pair of items z and y with z # y. Every pair {2, y} contributes two
terms in the last line of the above equation, namely

Z CTs(t,y) and Z CTs(t,a}).

te[l,m] te[l,m]
o(t)== o(t)=y

Thus,
E[Crs(o)] = E[Y_( Y. Crs(t,y)+ Y Crs(t,z)) (2)
{ﬂ;y} iG([l)vm] te([l),m]
£y o(t)== a(t)=vy

The cost incurred by OPT can be written in a similar way, i.e.,

Copr(o)= >, ( Y. Copr(t,y)+ Y, Copr(t,z) + p(z,y)). (3)

{z,9} t€[l,m] te[1l,m]

oty a(t)=e o(t)=y
Here Copr(t,y) and Copr(t, ) denote the costs incurred by items y and # when OPT serves o(t).
For any unordered pair {z,y} of items & # y, p(¢,y) denotes the total number of paid exchanges
that OPT incurs in moving z in front of y or y in front of .

Now, for any pair {z,y} of items with = # y, let o, be the request sequence that is obtained
from o if we delete all requests in o that are neither to z nor to y. Let E[Crg(04y)] be the expected
cost incurred by TIMESTAMP(p) if it serves o, on a list consisting of z and y only. Lemma 2
implies that if TIMESTAMP(p) serves a request o(t) in ¢ using Step (b), then the requested item
& = o(t) never passes an item that was requested at least twice since the last request to  or that was
requested exactly once and the corresponding request was served using Step (a) of the algorithm.
Thus, for any pair {z,y} of items, the following statement holds. If TIMESTAMP(p) serves o on
the entire list, then the relative position of #z and y changes in the same way as if TIMESTAMP(p)
is run of the two item list consisting of z and y with request sequence o,,. Therefore, we have

E[Crs(oay)] = E[ Y Crs(t,y)+ Y Crs(t,z)]

te[l,m] te[l,m]
o(t)== o(t)=y
and, by equation (2),

E[Crs(0)] = Y E[Crs(0ay)].

{z,y}
z#y

Let Copr(0sy) be the cost incurred by OPT if it serves o, on the list consisting of # and y only.
In this two item list, OPT can always arrange z and y optimally, which might not be possible when



OPT serves o on the entire list. Hence

Copr(oey) < Y, Copr(t,y)+ Y, Copr(t,z) + p(,y)
te[l,m] te[l,m]
o(t)== o(t)=y
and equation (3) implies

Copr(c) > Y Copr(0ay).

{=,y}
z#y

This method of analyzing cost by considering pairs of items was also used in [2, 3]. In the following
we show that for any pair of items {z,y} with z # y,

E[Crs(02y)] < ¢ Copr(oay), (4)

where ¢ = max{2 — p,1 + p(2 — p)}. This proves inequality (1).

Consider an arbitrary but fixed pair {z,y} with  # y. Let o,y = o(t1),0(t2),...,0(tx) for
some non-negative integer k. For 2 = 1,2,...,k, let u; be the item requested by o(¢;). Lemma 1
suggests to partition o, into phases P(1), P(2),..., P(l) for some [ so that the following condition
holds. If phase P(j), 1 < j <1, starts at time t;, then it ends at time ., where

e; = min{i > bj|u;—1 = u; and u; # uijpq}.

In words, a phase ends when, for the first time, there have been two consecutive requests to the
same item and the next request is different. The phases we obtain can be classified as follows.

Type 1: (a) P(j) = =" or (b) P(j)=1y" for some h > 2
Type 2: (a) P(j) = zy" or (b) P(j) = yz" for some h > 2
Type 3: (a) P(j) = (zy)mah or  (b) P(j) = (yz)Myt? for some hy > 1,hy > 2
Type 4: (a) P(j) = (zy)Myh2 or (b) P(j) = (yz)zh? for some hy > 2,hy > 1

We may assume without loss of generality that the item first requested in a phase P(j),1 < j <
[, is behind the other item of the pair {z,y} in the two item lists maintained by TIMESTAMP(p)
and OPT. This is easy to see for phase P(1). If the first item in P(1), say «, precedes y in the
initial list, then we can simply omit the first requests to z in 0., until we obtain the first request
to y. This does not change the cost incurred by TIMESTAMP(p) and OPT in P(1) because we
assume that TIMESTAMP(p) and OPT start with the same initial list. Now consider a phase P(j),
2 < j < I. The item first requested in P(j) differs from the item requested by the two previous
requests. Lemma 1 immediately implies that the first item in P(j) is behind the other item of
the pair {z,y} in the list maintained by TIMESTAMP(p). Consider OPT’s movements when it
serves the request sequence 0., on the two item list. We may assume without loss of generality
that whenever there are two consecutive requests to the same item, OPT moves that item to the
front of the list, provided that it has not been there yet. This implies without loss of generality
that immediately before the first request in a phase P(j), the item requested first in the phase is
also behind the other item of the pair {z,y} in OPT’s two item list.

In the following we evaluate the expected cost incurred by TIMESTAMP(p) and the cost in-
curred by OPT in each phase of o,,. For each j = 1,2,...,[, the expected cost incurred by



TIMESTAMP(p) in phase P(j) of 04, is

€5

E[Crs(P(j))] = E[)_(Crs(ti,y) + Crs(ti, z))].
1=b;

[y

Similarly, for j = 1,2,...,1, let Copr(P(j)) be the cost incurred by OPT when it serves phase
P(j) of o,y. We will prove the following lemmata.

Lemma 3 If P(j) has type 1, then E[Crs(P(7))] < (2 — p)Copr(P(j)).
Lemma 4 If P(j) has type 2, then E[CTs(P(5))] < (1 +p(2—p))Copr(P(j))-
Lemma 5 If P(j) has type 3 or type 4, then E[Crs(P(j))] < max{2—p,1+p(2—-p)}Copr(P(7)).

Before we prove the lemmata we finish the proof of inequality (4). Lemmata 3 — 5 imply that

l
E[Crs(oay)] = E[Z: Crs(P(7))]

l
< max{2-p,1+p(2-p)} Z Copr(P(5))

7=1
= max{2 —p,1+ p(2 —p)}Copr(0sy)

and inequality (4) is proved.

We have classified phases P(1), P(2),...,P(l) into four types. For each type, subtypes (a)
and (b) are symmetric to each other. In the following, we will always assume without loss of
generality that the considered phase has subtype (a). Let P(j) be an arbitrary phase. By the
above discussion we know that immediately before the first request in P(j), « is behind y in the
two item lists maintained by TIMESTAMP(p) and OPT. Thus E[CTs(ts;,y)] = Copr(ts;,y) = 1,
for j =1,2,...,1

Claim 1 below will be useful when proving Lemmata 3 — 5. We will present a proof of this claim
later.

Claim 1 After the service of the first request a(ty;) in a phase P(j), 1 < j < I, item z = o(ty;)
precedes item y if and only if TIMESTAMP (p) serves a(ty;) using Step (a).

Proof of Lemma 3: We have Crg(P(j)) = E:ibj Crs(ti,y). By Lemma 1, & precedes y in
TIMESTAMP(p)’s list after the service of o(t;11). Hence, y cannot cause a cost at the third and
all remaining requests to z in P(j). We obtain

E[Crs(P(7))] = E[Crs(ts;,y)]+ E[Crs(ts;11,9)]
= 1+ E[Crs(ts;+1,9)]-

E[Crs(ty;11,y)] is the probability that item & = up, ;1 is behind y in TIMESTAMP (p)’s list when
o(tp;+1) is served. Applying Claim 1 we infer that @ is behind y if and only if TIMESTAMP(p) serves

8



o(ty;) using Step (b), which happens with probability 1 — p. We conclude E[CTs(t;1,¥)] =1—p
and E[Cts(P(j))] = 2 — p. Since Copr(P(j)) = 1, the lemma follows. O

Proof of Lemma 4: TIMESTAMP(p)’s cost in phase P(j) is Crs(P(j)) = Crs(ty;,y)+
E:ibj—l—l Crs(ti,z). Lemma 1 implies that ¢ cannot cause a cost at the third and all remaining
requests to y in P(j). Hence

E[Crs(P(7))] = E[Crs(ts;,y)] + E[Crs(ty;41,2)] + E[Crs(ts;12, )]
= 1+ E[Crs(ts;+1,2)] + E[CTs(ts; 42, z)]-

We have Crs(ty;+1,2) = 1 if the TIMESTAMP(p) algorithm moves z in front of y when serving
o(tp;). By Claim 1, this happens if TIMESTAMP(p) processes o(ty,) using Step (a). Therefore,
E[Crs(ty;+1,2)] = p. We analyze E[Crs(ty;12,2)]. We have Crs(tp;12,2) = 1 if TIMESTAMP(p)
moves z in front of y when serving o(f;) and does not move y in front of z when serving o(ty, 1)
Claim 1 implies that with probability p, TIMESTAMP(p) moves z in front of y when serving o (15, ).
Item y can only stay behind = in TIMESTAMP (p)’s list if o(t;11) is served using Step (b), which
happens with probability 1 — p. Thus, the expected cost on o(t;,12) is at most p(1 —p). We obtain
E[Crs(P(7))]<1+p+p(l—p)=1+p(2—p), and the lemma follows because Copr(P(j)) = 1.
|

Proof of Lemma 5: We know Crs(ty;,y) = 1 and, using Claim 1, E[Crs(tp;11,2)] = p. First we
assume that P(j) has type 3. Then P(j) consists of a head of 2k, alternating requests to z and y
and of a tail of hs requests to #. Lemma 1 ensures that in the tail of requests to @, item z must
precede y in TIMESTAMP(p)’s list after the service of the second request to . Hence y cannot
cause a cost at any of the remaining requests in P(j), i.e., Crs(t;,y) = 0for ¢ = b;4+2(h1+1),...,¢;.
Thus

bj+2hy

Crs(P(7)) = 14+p+ 3. Crs(tiwii1) + Crs(ts;som +1, ).

i=bj+2
For the analysis of the cost incurred at the alternating requests to # and y we need the following
claim that we will prove later.

Claim 2 Let o(t;—3)o(t;—2)o(ti_1) = zyz or o(ti_s)o(ti—2)o(t;i—1) = yay be three consecutive
requests in oy with 4 < ¢ < k. Then, after the service of o(t;—_1), with probability 1 — p + p?, u;_1
precedes u;_s in the list maintained by TIMESTAMP(p).

If we have a phase P(j) with j > 2, then Claim 2 implies that, for ¢ = b; + 2,...,b; + 2hq,
immediately before the request to o(t;), item u;_; precedes u; = u;_, with probability 1 — p + p?.
Therefore, E[Crs(ti,ui—1)] =1 —p+p?fori=b;+2,...,b; + 2h;. We remark that we may apply
Claim 2 for i = b; 4 2 because uy;, 1 # up,. For phase P(1), Claim 2 gives E[Crs(t;,u;1)] =
1—p+p?fori =5 +3,...,by + 2h;. However, it is easy to show that for request o(t,12),
E[Crs(tp,+2,up,+1)] = 1 — p + p2. We now evaluate the cost Crs(ty; +2h,+1,y). Claim 2 gives that
immediately before the request o(t;12x, 1), item  precedes item y with probability 1 — p + p? in
TIMESTAMP(p)’s list. Hence E[Crs(ts;42h,+1,%)] =1 — (1 — p+p?) = p — p*. We conclude

E[Crs(P(j))] = 1+p+(2h-1)(1-p+p’)+p-p°
= 2(hy +1)(1 - p+ p?) — 2 + 5p — 4p*
< 2(h +1)(1-p+p?)



for all p € [0,1]. Thus

E[Crs(P(4))] < 2(hi+1)(1-p+p?)
(h1 +1)(2 = p) + (1 + 1)(=p + 2p")
< (+1)(2-p)
for all p < % Moreover
E[Crs(P(4))] < 2(hai+1)(1-p+p)

= (b +1)(1+p(2—p))+ (b +1)(1—4p +3p%)

< (1 +1)(1+p(2-p)
for all p > % Since Copr(P(j)) = h1 + 1, we obtain

E[Crs(P(7))] < max{2-p,1+p(2-p)}Corr(P(j))
The analysis for a phase P(j) having type 4 is very similar. By Lemma 1, Crg(t;,2) = 0 for
1="b;+2hy +1,...,e;. Hence

bj+2h1 -1

Crs(P(j)) = 1+4p+ Y, Crs(ti,uim1) + Crs(ts,2n )
1=bj 42

Applying Claim 2 we obtain E[Crs(ti,ui—1)] =1 —p+ p% for s = b; +2,...,b; + 2h; — 1, and
E[Crs(ty; +2n,52) = p — p?. Thus
ElCrs(P(4))] = l+p+2(hi—1)(1-p+p")+p—p
= hi(2-p)+hi(-p+2p") — 1 +4p - 3p°

< hi(2-p)
for all p < % Furthermore we can show
E[Crs(P()] = hi(1+p(2-p))+ (b1 —1)(1-4p+ 3p?)
< h(1+p(2-p))
for all p > 5. We have Copr(P(j)) = h1 and therefore

E[Crs(P(j))] < max{2-p,1+p(2-p)}Copr(P(j)). O

Proof of Claim 1: We know that item & is behind y in TIMESTAMP (p)’s list before the service
of o(ty;). If TIMESTAMP(p) executes Step (a) when serving (%, ), then z is moved to the front
of the list and must precede y. On the other hand, suppose that o(t;;) is served using Step (b).
If ¢ was not requested during [1,t,; — 1], then the position of z remains unchanged and z stays
behind y in the list. If z was requested at least once in [1,%,, — 1], then Lemma 2a) implies that y
precedes v.(ty,) at time t;,,. Again,  cannot be moved in front of y during the service of o(t;;). O

Proof of Claim 2: We analyze the sequence o(t;_3)o(ti_2)o(t;—1) = =zyz. The case
o(ti—3)o(ti—2)o(t;—1) = yey is symmetric. We have to compute the probability that # precedes
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y in TIMESTAMP(p)’s list after the service of o(t;_1). If TIMESTAMP(p) serves o(t;_1) using
Step (a) of the algorithm, then « is moved to the front of the list and precedes y. Now assume that
o(t;_1) is served using Step (b) of TIMESTAMP(p). If o(t;_3) was processed using Step (b) of the
algorithm, then condition (ii) in Step (b) ensures that z is inserted at some position in front of y
when TIMESTAMP (p) serves o(t;_1). On the other hand, if o(¢;,_5) was processed using Step (a)
of the algorithm, then Lemma 2b) implies that y precedes v,(¢;—1) and z is inserted behind y when
TIMESTAMP(p) serves o(t;_1).

We conclude that item @ precedes item y in TIMESTAMP(p)’s list after the service of o(¢;_1) if
and only if one of the following events occurs. (A) TIMESTAMP(p) serves o(t;_1) using Step (a);
(B) TIMESTAMP(p) serves o(t;_2) and o(t;_1) using Step (b). Event A occurs with probability p
whereas event B occurs with probability (1 — p)?. Thus, with probability p + (1 —p)? = 1 —p + p?,
z precedes y in TIMESTAMP(p)’s list after the service of o(t;_1). O

In the above analysis we assume that the last phase P(I) is a full phase of one of the phase
types 1 — 4. It is easy to see that Lemmata 3 — 5 also hold for a phase P(l) that is a prefix of one
of the phase types. The proof of Theorem 1 is complete.

Next we analyze the performance of the simplified TIMESTAMP(p) algorithm.

Proof of Theorem 2: The proof has the same structure as the proof of Theorem 1. The statements
of Lemma 1 and Lemma 2 can be shown in the same way as before. The proofs of the lemmata
become simpler, though, because we do not have to consider items that satisfy condition (ii) in
Step (b) of the TIMESTAMP(p) algorithm. We compare the on-line and off-line cost for each pair
{z,y} of items with z # y and prove

E[ Y Crs(t,y)+ D, Crs(t,z)] < c-Copr(oay), (5)

te[1,m] te[1,m]

o(t)=e o(t)=y
where ¢ = max{2 — p,1+ p(2 — p),2 — %p +p? — %p3}. We partition the request sequence o,y in
the same way as before. Lemmata 3 and 4 as well as their proofs (including Claim 1) remain the
same. In the proof of Claim 2, only a weaker statement can be shown. We know that item u;
precedes item u;_, after the service of o(t;_1) if the simplified TIMESTAMP(p) algorithm serves
o(t;—1) using Step (a). Also, u;_; cannot precede wu;_» if the simplified algorithm serves o(t;_2)
using Step (a) and o(t;_1) using Step (b). Unfortunately, we do not have information about the
relative position of u;_» and u;_; if the simplified algorithm processes o(t;_3) and o(t;_1) using
Step (b). Therefore, Claim 2 changes to the following statement.

Claim 3 Let o(t;—3)o(t;—2)o(ti—1) = zyz or o(ti_s)o(ti_2)o(t;i—1) = yay be three consecutive
requests in o,y with 4 < i < k. Then, after the service of o(t;—1), with probability at most 1 —p+p?,
u;_1 precedes u;_o in the list maintained by the simplified TIMESTAMP(p) algorithm.

For a proof of a statement corresponding to Lemma 5, we first consider a phase P(j) having
type 3. Again

bj+2hy

Crs(P(j)) = 1+4p+ Y. Crs(ti,uim1) + Crs(ty+2m+159)-
1=bj 42
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We examine the cost Crs(ty, +2n,+1,y). We have Crs(ty, yon,+1,y) = 1 if Crs(ty;12n,,¥) = 1 and
item ¢ = up; 42, is not moved in front of y at time th;+2n, - ltem z can only stay behind y if
o (ty;+2n, ) is served using Step (b) of the algorithm. The event that the simplified TIMESTAMP
algorithm serves o(tp;2x,) using Step (b) is independent of the event that Crs(ts;12n,,y) = 1.
Hence E[Crs(ty; +2n,41,9)] < (1 — p + p*)(1 — p). This implies

E[Crs(P()] < 1+p+(2h—1)(1-p+p")+(1-p)(1-p+p’).
Using the same techniques as in the proof of Lemma 5 we can show
E[Crs(P(7))] < max{2-p,14p(2-p)}-Copr(P(j)).
Now consider a phase P(j) having type 4. We have

E[Crs(P(j))] < 1+p+2(h—1)1—-p+p*)+(1-p)(1-p+p’).

Hence
E[Crs(P(j))] < 2m(1-p+p°)— (1+p)(-p+p?)
= hi(2-2p+2p%) + p(1 - pP).
Since hy > 2,
E[Crs(P())] < h(2—2p+20" + L(1—p"))
= hi(2- %p +2p® — %p3)-

The statement corresponding to Lemma 5 is

Lemma 6 If P(j) has type 3 or type 4, then E[Cts(P(j))] < ¢c-Copr(P(j)), where ¢ = max{2—p,
1+p(2-p),2-5p+2p* — 3p°}.

Lemma 6 and the statements of Lemmata 3 and 4 imply inequality (5). The proof of Theorem 2
is complete. O

We conclude with some remarks. TIMESTAMP algorithms use ®(m) random bits on a request
sequence of length m. We can modify the original version of TIMESTAMP(p) so that it uses only
O(n) random bits during an initialization phase and runs completely deterministically thereafter.
The competitive ratio is still ¢ = max{2 — p,1+ p(2 — p)}. The idea is to have two different types
of items, item type (a) and item type (b). Initially, we decide for each item in the list which type
it should have. With probability p an item has type (a), and with probability 1 — p it has type (b);
the initializations are done independently. When a request sequence is served, each request to a
type (a) item is served using Step (a) of the algorithm and every request to a type (b) item is served
using Step (b). This technique cannot be applied in the simplified TIMESTAMP algorithm in which
condition (ii) in Step (b) is dropped. Our analysis of the simplified TIMESTAMP algorithm makes
use of the fact that the decision whether a given request is processed using Step (a) or (b) does
not depend on previous requests (see the analysis after Claim 3). In the simplified TIMESTAMP
algorithm we can reduce the number of random bits using a technique presented by Reingold et
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al. [5]. For each item in the list we maintain a mod ¢ counter, where ¢ is a positive integer. These
counters are initialized independently and uniformly at random to a value in {0,1,...,7 — 1}.
Furthermore, we choose a non-empty subset I of {0,1,...,7 — 1}. At a request to item z, the
TIMESTAMP algorithm first decrements #’s counter by 1. If the counter is I, the algorithm serves
the request using Step (a), otherwise it executes Step (b). Choosing 7 and I appropriately, we can
achieve a competitive ratio of ¢+ € for any ¢ > 0; here ¢ = max{2—p,1+p(2—p),2— %p—|—2p2 - %p3}.
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