
Improved Randomized On-Line Algorithms for theList Update ProblemSusanne Albers�AbstractThe best randomized on-line algorithms known so far for the list update problem achievea competitiveness of p3 � 1:73. In this paper we present a new family of randomized on-linealgorithms that beat this competitive ratio. Our improved algorithms are called TIMESTAMPalgorithms and achieve a competitiveness of maxf2 � p; 1 + p(2 � p)g, for any real numberp 2 [0; 1]. Setting p = (3�p5)=2, we obtain a �-competitive algorithm, where � = (1+p5)=2 �1:62 is the Golden Ratio. TIMESTAMP algorithms coordinate the movements of items usingsome information on past requests. We can reduce the required information at the expenseof increasing the competitive ratio. We present a very simple version of the TIMESTAMPalgorithms that is 1:68-competitive. The family of TIMESTAMP algorithms also includes anew deterministic 2-competitive on-line algorithm that is di�erent from the MOVE-TO-FRONTrule.Keywords: Linear Lists, On-Line Algorithms, Competitive Analysis.1 IntroductionThe list update problem is among the �rst on-line problems that have been studied with respectto competitiveness. The problem consists in maintaining a set of items as an unsorted linear list.A list of n items is given. A list update algorithm is presented with a sequence of requests thatmust be served in their order of occurrence. Each request speci�es an item in the list. In order toserve a request, a list update algorithm must access the requested item, i.e., it has to start at thefront of the list and search linearly through the items until the desired item is found. Accessingthe i-th item in the list incurs a cost of i. Immediately after an access, the requested item may bemoved at no extra cost to any position closer to the front of the list. These exchanges are calledfree exchanges. All other exchanges of two consecutive items in the list cost 1 and are called paidexchanges. The goal is to serve the request sequence so that the total cost is as small as possible. Alist update algorithm is on-line if it serves every request without knowledge of any future requests.We analyze the performance of on-line algorithms for the list update problem using competitiveanalysis [6]. In a competitive analysis, an on-line algorithm A is compared to an optimal o�-linealgorithm. An optimal o�-line algorithm knows the entire request sequence in advance and canserve it with minimum cost. Given a request sequence �, let CA(�) denote the cost incurred by�Max-Planck-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany. E-mail: albers@mpi-sb.mpg.de.Work was supported in part by the ESPRIT Basic Research Actions Program of the EU under contract No. 7141(project ALCOM II). 1



on-line algorithm A in serving � and let COPT (�) denote the cost incurred by the optimal o�-linealgorithm OPT in processing �. Then the algorithm A is called c-competitive if there is a constanta such that CA(�) � c �COPT (�)+a for all request sequences �. The competitive factor of A is thein�mum of all c such that A is c-competitive.Sleator and Tarjan [6] have shown that the well-known MOVE-TO-FRONT algorithm is2-competitive. This deterministic on-line algorithm moves an item to the front of the list eachtime it is requested. Karp and Raghavan [4] have observed that no deterministic on-line algorithmfor the list update problem can be better than 2-competitive. Thus the MOVE-TO-FRONT algo-rithm achieves the best possible competitive factor. A natural question is if the competitive factorof 2 can be improved using randomization. It was shown that against adaptive adversaries, norandomized on-line algorithm for the list update problem can be better than 2-competitive [1, 5].Adaptive adversaries may see the on-line algorithm's random choices on past requests when gen-erating a new request in a request sequence �. On the other hand, against oblivious adversaries,the optimal competitive factor of randomized on-line algorithms has not been determined yet. Anoblivious adversary speci�es a request sequence in advance and is not allowed to see the randomchoices made by the on-line algorithm. A randomized on-line algorithm A is called c-competitiveagainst any oblivious adversary if there exists a constant a such that for all request sequences �generated by oblivious adversaries, E[CA(�)] � c � COPT (�) + a; where the expectation is takenover the random choices made by A. In this paper we always evaluate on-line algorithms withrespect to oblivious adversaries. Irani [3] has exhibited the �rst randomized on-line algorithm forthe list update problem; the SPLIT algorithm she proposed is 3116-competitive. Reingold et al. [5]have given a family of COUNTER and RANDOM RESET algorithms that achieve a competitiveratio of p3 � 1:73. This has been the best upper bound known so far for randomized list updatealgorithms. The best lower bound known is due to Teia [7]. He shows that no randomized on-linealgorithm for the list update problem can be better than 1.5-competitive.In this paper we present improved randomized on-line algorithms for the list update problemthat beat the competitive ratio of p3. Our new algorithms are called TIMESTAMP algorithmsand achieve a competitiveness of maxf2� p; 1+ p(2� p)g, for any real number p 2 [0; 1]. Choosingp = (3� p5)=2, we obtain a �-competitive algorithm, where � = (1 +p5)=2 � 1:62 is the GoldenRatio. TIMESTAMP algorithms move the requested item x not always to the front of the list butsometimes to a position that is only a bit closer to the front. This position can be computed easilywhen the algorithm scans the items preceding x in the list. However, in the implementation ofthe algorithm, the computation of this position requires a second pass through the list after theitem x has been accessed. Moreover, some information on past requests is necessary in order todetermine the desired position. We can simplify the TIMESTAMP algorithms so that they need lessknowledge of previous requests; this increases the competitive ratio. We present a simpli�ed versionof the TIMESTAMP algorithms that is 1:68-competitive. The family of TIMESTAMP algorithmsalso includes two deterministic 2-competitive on-line algorithms, one of which is the MOVE-TO-FRONT rule. The second, new algorithm is the only other deterministic on-line algorithm found sofar that achieves a competitive factor of 2; Sleator and Tarjan [6] have proved that the well-knowndeterministic algorithms TRANSPOSE and FREQUENCY COUNT are not 2-competitive.The list update problem as de�ned above is the static version of the problem. Each request isan access to an item. In the dynamic variant of the problem, insertions and deletions of items are2



allowed. A new item is inserted by scanning the entire list and appending the item at the end ofthe list. A deletion of an item is processed by searching for the item in the list and deleting it. Inthe following sections, when we develop and analyze randomized list update algorithms, we alwaysconsider the static version of the problem. However, the on-line algorithms we will propose can beextended in the obvious way so that they can handle insertions and deletions, too. All theoremsthat we will present also hold for the dynamic list update problem.2 TIMESTAMP algorithmsWe present a new family of randomized on-line algorithms for the list update problem. The followingalgorithm works for any real number p 2 [0; 1].Algorithm TIMESTAMP(p): Given a request sequence � = �(1); �(2); : : : ; �(m), each request�(t), 1 � t � m, is processed as follows. Suppose that �(t) is a request to item x.With probability p, execute Step (a).(a) Move x to the front of the list.With probability 1� p, execute Step (b).(b) If x has not been requested so far during the time interval [1; t� 1], then do not change theposition of x in the list. Otherwise let t0 2 [1; t � 1] be the time at which x was requestedmost recently and serve the request �(t) as follows. Let vx(t) be the item closest to the frontof the list that precedes x in the list and(i) that was not requested during the interval [t0; t� 1]or (ii) that was requested exactly once during [t0; t � 1] and the corresponding request wasserved using Step (b) of the algorithm.If there is no such item, then let vx(t) = x.Insert x immediately before vx(t).Theorem 1 For any real number p 2 [0; 1], TIMESTAMP(p) is c-competitive, where c = maxf2�p; 1 + p(2� p)g.Corollary 1 TIMESTAMP(3�p52 ) is �-competitive, where � = 12(1 +p5) is the Golden Ratio.An interesting feature of the TIMESTAMP(p) algorithm is that at a request to item x, all itemsy satisfying condition (i) or (ii) in Step (b) are stored consecutively in front of x. In other words, allitems stored between x and vx(t) satisfy condition (i) or (ii); we will prove this later in Lemma 2.We assume that the algorithm TIMESTAMP(p) maintains a time stamp ST (y) for each itemy in the list. While a request sequence in served, ST (y) always stores the time of the most recentrequest to y. When there is a request to item x, TIMESTAMP(p) can easily determine the �rst itemin the list that satis�es condition (i) in Step (b). The algorithm just has to �nd the �rst item y withST (y) < ST (x). Finding the �rst item in the list that satis�es condition (ii) in Step (b) requiressome more information on previous requests. We can simplify the TIMESTAMP(p) algorithm atthe expense of increasing the competitive ratio. Suppose that we drop condition (ii) in Step (b).Then vx(t) is simply the item closest to the front of the list that precedes x and has not beenrequested during the interval [t0; t� 1]. We can show the following performance.3



Theorem 2 If condition (ii) is dropped in Step (b) of TIMESTAMP(p), then the resulting algo-rithm is c-competitive, where c = maxf2�p; 1+p(2�p); 2� 32p+2p2� 12p3g. Setting p = 12(5�p17),we obtain a competitive ratio of 32(p17� 3) � 1:68.We will prove this theorem after we have shown Theorem 1.Although the item vx(t) speci�ed in TIMESTAMP(p) can be computed easily, in a real im-plementation of the algorithm, we need a second pass through the list in order to actually locatevx(t). Note that a number of on-line algorithms that have been proposed in the literature, suchas the algorithm FREQUENCY COUNT, also require such a second pass after each access to anitem. There is an alternative formulation of TIMESTAMP(p) that does not need a second pass. Inthis alternative formulation, we maintain a pointer ptr(x) for each item x in the list; ptr(x) eitherpoints to x or to an item preceding x in the list. At a request to item x, x is inserted at the frontof the list or immediately before ptr(x). The element speci�ed by ptr(x) always corresponds tovx(t). The drawback of this alternative formulation is that we need time to update the pointers.Essentially, at a request to item x, the pointers of all elements y with ptr(y) = x must be set to thesuccessor of x in the list, and ptr(x) must be set to the front of the list. We prefer the formulationof the TIMESTAMP(p) algorithm given above because it explicitly describes the properties of theposition vx(t) in front of which an item x is to be inserted.TIMESTAMP(p) describes two deterministic algorithms. Setting p = 1 we obtain the MOVE-TO-FRONT algorithm. Theorems 1 and 2 con�rm the well-known fact that the MOVE-TO-FRONT rule is 2-competitive. On the other hand, assume p = 0 and consider the simpli�edversion of the TIMESTAMP algorithm in which condition (ii) of Step (b) is dropped. The resultingdeterministic algorithm always inserts the requested item x immediately before the �rst item inthe list that has not been requested since the last request to x. Theorem 2 implies that thisdeterministic strategy is 2-competitive.We now proceed with the proof of Theorem 1. Consider a �xed p 2 [0; 1]. Let� = �(1); �(2); : : : ; �(m) be an arbitrary request sequence consisting of m requests and let �(t)denote the request at time t, 1 � t � m. We �rst present two lemmata that describe the relativepositions of items in the list while TIMESTAMP(p) serves a request sequence.Lemma 1 Let x and y, x 6= y, be two items. Suppose that x is requested at time t0 and at timet, t0 < t, and that y is not requested during the interval [t0; t]. Then, immediately after the serviceof �(t), x precedes y in TIMESTAMP(p)'s list and this relation does not change before the nextrequest to y.Proof: If TIMESTAMP(p) executes Step (a) when serving �(t), then x is moved to the front ofthe list and must precede y in the list. If TIMESTAMP(p) executes Step (b) when serving �(t),then condition (i) in Step (b) of the algorithm ensures that x is inserted at some position in frontof item y because y is not requested during [t0; t]. In any case x precedes y in TIMESTAMP(p)'slist immediately after the service of �(t). Since y is only moved when it is requested, the relativeposition of x and y cannot change before the next request to y. 2Lemma 2 Let t be a time in [1; m]. If the item x = �(t) was requested at least once in [1; t� 1],then the following two statements hold. Let t0, t0 < t, denote the time at which x was requestedmost recently. 4



a) If item y, y 6= x, was requested at least twice during [t0; t � 1], then y precedes item vx(t) inTIMESTAMP(p)'s list at time t.b) If item y, y 6= x, was requested exactly once during [t0; t�1] and the corresponding request wasserved using Step (a) of TIMESTAMP(p), then y precedes item vx(t) in TIMESTAMP(p)'slist at time t.Proof: Suppose that there is a time in [1; m] at which Lemma 2 does not hold. Then let t0 2 [1; m]be the earliest point of time at which the lemma is violated. Furthermore, let t00, t00 < t0, be thetime at which item x = �(t0) was requested most recently, and let z = vx(t0).First we examine the case that statement a) of the lemma does not hold. Thus, there exists anitem y, y 6= x, that is requested at least twice in [t00; t0� 1] and that does not precede z at time t0.Let ty be the time of the last request to y in [t00; t0 � 1]. We show that after the service of �(ty),item y precedes z in TIMESTAMP(p)'s list. If �(ty) is served using Step (a) of the algorithm, thenthere is nothing to show. Suppose that �(ty) is served using Step (b) of TIMESTAMP(p). By thede�nition of vx(t0), item z is requested at most once in [t00; t0 � 1], and such a request is servedusing Step (b) of the algorithm. This implies that when TIMESTAMP(p) serves �(ty), z cannotprecede vy(ty) (due to conditions (i) and (ii) in Step (b) of the algorithm). Hence y is inserted atsome position in front of z. We conclude that y must precede z after the service of �(ty). Since,by assumption, z precedes y at time t0, item z must be requested at some time tz 2 [ty + 1; t0 � 1]and z must be inserted at some position in front of y when �(tz) is served. This implies that ycannot precede vz(tz) at time tz because �(tz) is served using Step (b) of the algorithm. Note thatat time tz , y was requested at least twice since the last request to z. Hence statement a) of thelemma does not hold at time tz , and we have a contradiction to the minimality of t0.Now assume that statement b) of the lemma is violated. Let y, y 6= x, be an item for whichstatement b) does not hold, and let ty 2 [t00; t0 � 1] be the time at which y is requested. Byassumption, y does not precede z = vx(t0) at time t0. Since �(ty) is served using Step (a) of thealgorithm, y precedes z after the service of �(ty). Using the same arguments as above, we canderive a contradiction to the choice of t0. 2In the following we will evaluate TIMESTAMP(p)'s and OPT's cost on request sequence �. LetCTS(�) be the cost incurred by TIMESTAMP(p) in serving �. We will show thatE[CTS(�)] � c �COPT (�); (1)where c = maxf2 � p; 1 + p(2 � p)g. This proves Theorem 1. Here we assume without loss ofgenerality that TIMESTAMP(p) and OPT start with the same initial list. In the following, whenanalyzing on-line and o�-line cost, we will always use the (i � 1)-cost measure, i.e., we assumethat an access to the i-th item in the list incurs a cost of i � 1 rather than i. Obviously, an on-line algorithm that is c-competitive in the (i� 1)-cost measure is also c-competitive in the i-costmeasure.We need some notation. Let L be the set of items in the list. For any t 2 [1; m] and anyitem x 2 L, let CTS(t; x) be the cost incurred by item x when TIMESTAMP(p) serves �(t). Moreprecisely, CTS(t; x) = 1 if at time t, item x precedes the item requested by �(t) in TIMESTAMP(p)'s5



list; otherwise CTS(t; x) = 0. We haveE[CTS(�)] = E[ Xt2[1;m]Xx2LCTS(t; x)]= E[Xx2L Xt2[1;m]CTS(t; x)]= E[Xx2LXy2L Xt2[1;m]�(t)=y CTS(t; x)]:Let fx; yg be an unordered pair of items x and y with x 6= y. Every pair fx; yg contributes twoterms in the last line of the above equation, namelyXt2[1;m]�(t)=x CTS(t; y) and Xt2[1;m]�(t)=y CTS(t; x):Thus, E[CTS(�)] = E[Xfx;ygx 6=y ( Xt2[1;m]�(t)=x CTS(t; y) + Xt2[1;m]�(t)=y CTS(t; x))]: (2)The cost incurred by OPT can be written in a similar way, i.e.,COPT (�) = Xfx;ygx 6=y ( Xt2[1;m]�(t)=x COPT (t; y) + Xt2[1;m]�(t)=y COPT (t; x) + p(x; y)): (3)Here COPT (t; y) and COPT (t; x) denote the costs incurred by items y and x when OPT serves �(t).For any unordered pair fx; yg of items x 6= y, p(x; y) denotes the total number of paid exchangesthat OPT incurs in moving x in front of y or y in front of x.Now, for any pair fx; yg of items with x 6= y, let �xy be the request sequence that is obtainedfrom � if we delete all requests in � that are neither to x nor to y. Let E[CTS(�xy)] be the expectedcost incurred by TIMESTAMP(p) if it serves �xy on a list consisting of x and y only. Lemma 2implies that if TIMESTAMP(p) serves a request �(t) in � using Step (b), then the requested itemx = �(t) never passes an item that was requested at least twice since the last request to x or that wasrequested exactly once and the corresponding request was served using Step (a) of the algorithm.Thus, for any pair fx; yg of items, the following statement holds. If TIMESTAMP(p) serves � onthe entire list, then the relative position of x and y changes in the same way as if TIMESTAMP(p)is run of the two item list consisting of x and y with request sequence �xy. Therefore, we haveE[CTS(�xy)] = E[ Xt2[1;m]�(t)=x CTS(t; y) + Xt2[1;m]�(t)=y CTS(t; x)]and, by equation (2), E[CTS(�)] = Xfx;ygx 6=y E[CTS(�xy)]:Let COPT (�xy) be the cost incurred by OPT if it serves �xy on the list consisting of x and y only.In this two item list, OPT can always arrange x and y optimally, which might not be possible when6



OPT serves � on the entire list. HenceCOPT (�xy) � Xt2[1;m]�(t)=x COPT (t; y) + Xt2[1;m]�(t)=y COPT (t; x) + p(x; y)and equation (3) implies COPT (�) � Xfx;ygx 6=y COPT (�xy):This method of analyzing cost by considering pairs of items was also used in [2, 3]. In the followingwe show that for any pair of items fx; yg with x 6= y,E[CTS(�xy)] � c �COPT (�xy); (4)where c = maxf2� p; 1 + p(2� p)g. This proves inequality (1).Consider an arbitrary but �xed pair fx; yg with x 6= y. Let �xy = �(t1); �(t2); : : : ; �(tk) forsome non-negative integer k. For i = 1; 2; : : : ; k, let ui be the item requested by �(ti). Lemma 1suggests to partition �xy into phases P (1); P (2); : : : ; P (l) for some l so that the following conditionholds. If phase P (j), 1 � j � l, starts at time tbj , then it ends at time tej , whereej = minfi > bj jui�1 = ui and ui 6= ui+1g:In words, a phase ends when, for the �rst time, there have been two consecutive requests to thesame item and the next request is di�erent. The phases we obtain can be classi�ed as follows.Type 1: (a) P (j) = xh or (b) P (j) = yh for some h � 2Type 2: (a) P (j) = xyh or (b) P (j) = yxh for some h � 2Type 3: (a) P (j) = (xy)h1xh2 or (b) P (j) = (yx)h1yh2 for some h1 � 1; h2 � 2Type 4: (a) P (j) = (xy)h1yh2 or (b) P (j) = (yx)h1xh2 for some h1 � 2; h2 � 1We may assume without loss of generality that the item �rst requested in a phase P (j), 1 � j �l, is behind the other item of the pair fx; yg in the two item lists maintained by TIMESTAMP(p)and OPT. This is easy to see for phase P (1). If the �rst item in P (1), say x, precedes y in theinitial list, then we can simply omit the �rst requests to x in �xy until we obtain the �rst requestto y. This does not change the cost incurred by TIMESTAMP(p) and OPT in P (1) because weassume that TIMESTAMP(p) and OPT start with the same initial list. Now consider a phase P (j),2 � j � l. The item �rst requested in P (j) di�ers from the item requested by the two previousrequests. Lemma 1 immediately implies that the �rst item in P (j) is behind the other item ofthe pair fx; yg in the list maintained by TIMESTAMP(p). Consider OPT's movements when itserves the request sequence �xy on the two item list. We may assume without loss of generalitythat whenever there are two consecutive requests to the same item, OPT moves that item to thefront of the list, provided that it has not been there yet. This implies without loss of generalitythat immediately before the �rst request in a phase P (j), the item requested �rst in the phase isalso behind the other item of the pair fx; yg in OPT's two item list.In the following we evaluate the expected cost incurred by TIMESTAMP(p) and the cost in-curred by OPT in each phase of �xy. For each j = 1; 2; : : : ; l, the expected cost incurred by7



TIMESTAMP(p) in phase P (j) of �xy isE[CTS(P (j))] = E[ ejXi=bj(CTS(ti; y) + CTS(ti; x))]:Similarly, for j = 1; 2; : : : ; l, let COPT (P (j)) be the cost incurred by OPT when it serves phaseP (j) of �xy. We will prove the following lemmata.Lemma 3 If P (j) has type 1, then E[CTS(P (j))] � (2� p)COPT (P (j)).Lemma 4 If P (j) has type 2, then E[CTS(P (j))] � (1 + p(2� p))COPT(P (j)).Lemma 5 If P (j) has type 3 or type 4, then E[CTS(P (j))] � maxf2�p; 1+p(2�p)gCOPT(P (j)).Before we prove the lemmata we �nish the proof of inequality (4). Lemmata 3 { 5 imply thatE[CTS(�xy)] = E[ lXj=1CTS(P (j))]� maxf2� p; 1 + p(2� p)g lXj=1COPT (P (j))= maxf2� p; 1 + p(2� p)gCOPT (�xy)and inequality (4) is proved.We have classi�ed phases P (1); P (2); : : : ; P (l) into four types. For each type, subtypes (a)and (b) are symmetric to each other. In the following, we will always assume without loss ofgenerality that the considered phase has subtype (a). Let P (j) be an arbitrary phase. By theabove discussion we know that immediately before the �rst request in P (j), x is behind y in thetwo item lists maintained by TIMESTAMP(p) and OPT. Thus E[CTS(tbj ; y)] = COPT (tbj ; y) = 1,for j = 1; 2; : : : ; l.Claim 1 below will be useful when proving Lemmata 3 { 5. We will present a proof of this claimlater.Claim 1 After the service of the �rst request �(tbj) in a phase P (j), 1 � j � l, item x = �(tbj)precedes item y if and only if TIMESTAMP(p) serves �(tbj) using Step (a).Proof of Lemma 3: We have CTS(P (j)) = Peji=bj CTS(ti; y). By Lemma 1, x precedes y inTIMESTAMP(p)'s list after the service of �(tbj+1). Hence, y cannot cause a cost at the third andall remaining requests to x in P (j). We obtainE[CTS(P (j))] = E[CTS(tbj ; y)] + E[CTS(tbj+1; y)]= 1 +E[CTS(tbj+1; y)]:E[CTS(tbj+1; y)] is the probability that item x = ubj+1 is behind y in TIMESTAMP(p)'s list when�(tbj+1) is served. Applying Claim 1 we infer that x is behind y if and only if TIMESTAMP(p) serves8



�(tbj) using Step (b), which happens with probability 1� p. We conclude E[CTS(tbj+1; y)] = 1� pand E[CTS(P (j))] = 2� p. Since COPT (P (j)) = 1, the lemma follows. 2Proof of Lemma 4: TIMESTAMP(p)'s cost in phase P (j) is CTS(P (j)) = CTS(tbj ; y)+Peji=bj+1 CTS(ti; x). Lemma 1 implies that x cannot cause a cost at the third and all remainingrequests to y in P (j). HenceE[CTS(P (j))] = E[CTS(tbj ; y)] +E[CTS(tbj+1; x)] +E[CTS(tbj+2; x)]= 1 +E[CTS(tbj+1; x)] + E[CTS(tbj+2; x)]:We have CTS(tbj+1; x) = 1 if the TIMESTAMP(p) algorithm moves x in front of y when serving�(tbj). By Claim 1, this happens if TIMESTAMP(p) processes �(tbj) using Step (a). Therefore,E[CTS(tbj+1; x)] = p. We analyze E[CTS(tbj+2; x)]. We have CTS(tbj+2; x) = 1 if TIMESTAMP(p)moves x in front of y when serving �(tbj) and does not move y in front of x when serving �(tbj+1).Claim 1 implies that with probability p, TIMESTAMP(p) moves x in front of y when serving �(tbj).Item y can only stay behind x in TIMESTAMP(p)'s list if �(tbj+1) is served using Step (b), whichhappens with probability 1� p. Thus, the expected cost on �(tbj+2) is at most p(1� p). We obtainE[CTS(P (j))] � 1 + p+ p(1� p) = 1 + p(2� p), and the lemma follows because COPT (P (j)) = 1.2Proof of Lemma 5: We know CTS(tbj ; y) = 1 and, using Claim 1, E[CTS(tbj+1; x)] = p. First weassume that P (j) has type 3. Then P (j) consists of a head of 2h1 alternating requests to x and yand of a tail of h2 requests to x. Lemma 1 ensures that in the tail of requests to x, item x mustprecede y in TIMESTAMP(p)'s list after the service of the second request to x. Hence y cannotcause a cost at any of the remaining requests in P (j), i.e., CTS(ti; y) = 0 for i = bj+2(h1+1); : : : ; ej .Thus CTS(P (j)) = 1 + p+ bj+2h1Xi=bj+2CTS(ti; ui�1) + CTS(tbj+2h1+1; y):For the analysis of the cost incurred at the alternating requests to x and y we need the followingclaim that we will prove later.Claim 2 Let �(ti�3)�(ti�2)�(ti�1) = xyx or �(ti�3)�(ti�2)�(ti�1) = yxy be three consecutiverequests in �xy with 4 � i � k. Then, after the service of �(ti�1), with probability 1� p+ p2, ui�1precedes ui�2 in the list maintained by TIMESTAMP(p).If we have a phase P (j) with j � 2, then Claim 2 implies that, for i = bj + 2; : : : ; bj + 2h1,immediately before the request to �(ti), item ui�1 precedes ui = ui�2 with probability 1� p+ p2.Therefore, E[CTS(ti; ui�1)] = 1� p+ p2 for i = bj + 2; : : : ; bj +2h1. We remark that we may applyClaim 2 for i = bj + 2 because ubj�1 6= ubj . For phase P (1), Claim 2 gives E[CTS(ti; ui�1)] =1 � p + p2 for i = b1 + 3; : : : ; b1 + 2h1. However, it is easy to show that for request �(tb1+2),E[CTS(tb1+2; ub1+1)] = 1� p+ p2. We now evaluate the cost CTS(tbj+2h1+1; y). Claim 2 gives thatimmediately before the request �(tbj+2h1+1), item x precedes item y with probability 1� p+ p2 inTIMESTAMP(p)'s list. Hence E[CTS(tbj+2h1+1; y)] = 1� (1� p+ p2) = p� p2. We concludeE[CTS(P (j))] = 1 + p+ (2h1 � 1)(1� p+ p2) + p� p2= 2(h1 + 1)(1� p+ p2)� 2 + 5p� 4p2� 2(h1 + 1)(1� p+ p2)9



for all p 2 [0; 1]. ThusE[CTS(P (j))] � 2(h1 + 1)(1� p+ p2)= (h1 + 1)(2� p) + (h1 + 1)(�p+ 2p2)� (h1 + 1)(2� p)for all p � 12 . MoreoverE[CTS(P (j))] � 2(h1 + 1)(1� p+ p2)= (h1 + 1)(1 + p(2� p)) + (h1 + 1)(1� 4p+ 3p2)� (h1 + 1)(1 + p(2� p))for all p � 13 . Since COPT (P (j)) = h1 + 1, we obtainE[CTS(P (j))] � maxf2� p; 1 + p(2� p)gCOPT(P (j)):The analysis for a phase P (j) having type 4 is very similar. By Lemma 1, CTS(ti; x) = 0 fori = bj + 2h1 + 1; : : : ; ej . HenceCTS(P (j)) = 1 + p+ bj+2h1�1Xi=bj+2 CTS(ti; ui�1) + CTS(tbj+2h1 ; x):Applying Claim 2 we obtain E[CTS(ti; ui�1)] = 1 � p + p2, for i = bj + 2; : : : ; bj + 2h1 � 1, andE[CTS(tbj+2h1 ; x)] = p� p2: ThusE[CTS(P (j))] = 1 + p+ 2(h1 � 1)(1� p+ p2) + p� p2= h1(2� p) + h1(�p+ 2p2)� 1 + 4p� 3p2� h1(2� p)for all p � 13 . Furthermore we can showE[CTS(P (j))] = h1(1 + p(2� p)) + (h1 � 1)(1� 4p+ 3p2)� h1(1 + p(2� p))for all p � 13 . We have COPT (P (j)) = h1 and thereforeE[CTS(P (j))] � maxf2� p; 1 + p(2� p)gCOPT(P (j)): 2Proof of Claim 1: We know that item x is behind y in TIMESTAMP(p)'s list before the serviceof �(tbj). If TIMESTAMP(p) executes Step (a) when serving �(tbj), then x is moved to the frontof the list and must precede y. On the other hand, suppose that �(tbj) is served using Step (b).If x was not requested during [1; tbj � 1], then the position of x remains unchanged and x staysbehind y in the list. If x was requested at least once in [1; tbj � 1], then Lemma 2a) implies that yprecedes vx(tbj ) at time tbj . Again, x cannot be moved in front of y during the service of �(tbj). 2Proof of Claim 2: We analyze the sequence �(ti�3)�(ti�2)�(ti�1) = xyx. The case�(ti�3)�(ti�2)�(ti�1) = yxy is symmetric. We have to compute the probability that x precedes10



y in TIMESTAMP(p)'s list after the service of �(ti�1). If TIMESTAMP(p) serves �(ti�1) usingStep (a) of the algorithm, then x is moved to the front of the list and precedes y. Now assume that�(ti�1) is served using Step (b) of TIMESTAMP(p). If �(ti�2) was processed using Step (b) of thealgorithm, then condition (ii) in Step (b) ensures that x is inserted at some position in front of ywhen TIMESTAMP(p) serves �(ti�1). On the other hand, if �(ti�2) was processed using Step (a)of the algorithm, then Lemma 2b) implies that y precedes vx(ti�1) and x is inserted behind y whenTIMESTAMP(p) serves �(ti�1).We conclude that item x precedes item y in TIMESTAMP(p)'s list after the service of �(ti�1) ifand only if one of the following events occurs. (A) TIMESTAMP(p) serves �(ti�1) using Step (a);(B) TIMESTAMP(p) serves �(ti�2) and �(ti�1) using Step (b). Event A occurs with probability pwhereas event B occurs with probability (1� p)2. Thus, with probability p+ (1� p)2 = 1� p+ p2,x precedes y in TIMESTAMP(p)'s list after the service of �(ti�1). 2In the above analysis we assume that the last phase P (l) is a full phase of one of the phasetypes 1 { 4. It is easy to see that Lemmata 3 { 5 also hold for a phase P (l) that is a pre�x of oneof the phase types. The proof of Theorem 1 is complete.Next we analyze the performance of the simpli�ed TIMESTAMP(p) algorithm.Proof of Theorem2: The proof has the same structure as the proof of Theorem 1. The statementsof Lemma 1 and Lemma 2 can be shown in the same way as before. The proofs of the lemmatabecome simpler, though, because we do not have to consider items that satisfy condition (ii) inStep (b) of the TIMESTAMP(p) algorithm. We compare the on-line and o�-line cost for each pairfx; yg of items with x 6= y and proveE[ Xt2[1;m]�(t)=x CTS(t; y) + Xt2[1;m]�(t)=y CTS(t; x)] � c �COPT (�xy); (5)where c = maxf2 � p; 1 + p(2 � p); 2� 32p+ p2 � 12p3g. We partition the request sequence �xy inthe same way as before. Lemmata 3 and 4 as well as their proofs (including Claim 1) remain thesame. In the proof of Claim 2, only a weaker statement can be shown. We know that item ui�1precedes item ui�2 after the service of �(ti�1) if the simpli�ed TIMESTAMP(p) algorithm serves�(ti�1) using Step (a). Also, ui�1 cannot precede ui�2 if the simpli�ed algorithm serves �(ti�2)using Step (a) and �(ti�1) using Step (b). Unfortunately, we do not have information about therelative position of ui�2 and ui�1 if the simpli�ed algorithm processes �(ti�2) and �(ti�1) usingStep (b). Therefore, Claim 2 changes to the following statement.Claim 3 Let �(ti�3)�(ti�2)�(ti�1) = xyx or �(ti�3)�(ti�2)�(ti�1) = yxy be three consecutiverequests in �xy with 4 � i � k. Then, after the service of �(ti�1), with probability at most 1�p+p2,ui�1 precedes ui�2 in the list maintained by the simpli�ed TIMESTAMP(p) algorithm.For a proof of a statement corresponding to Lemma 5, we �rst consider a phase P (j) havingtype 3. Again CTS(P (j)) = 1 + p+ bj+2h1Xi=bj+2CTS(ti; ui�1) + CTS(tbj+2h1+1; y):11



We examine the cost CTS(tbj+2h1+1; y). We have CTS(tbj+2h1+1; y) = 1 if CTS(tbj+2h1 ; y) = 1 anditem x = ubj+2h1 is not moved in front of y at time tbj+2h1 . Item x can only stay behind y if�(tbj+2h1) is served using Step (b) of the algorithm. The event that the simpli�ed TIMESTAMPalgorithm serves �(tbj+2h1) using Step (b) is independent of the event that CTS(tbj+2h1 ; y) = 1.Hence E[CTS(tbj+2h1+1; y)] � (1� p+ p2)(1� p). This impliesE[CTS(P (j))] � 1 + p+ (2h1 � 1)(1� p+ p2) + (1� p)(1� p+ p2):Using the same techniques as in the proof of Lemma 5 we can showE[CTS(P (j))] � maxf2� p; 1+ p(2� p)g � COPT (P (j)):Now consider a phase P (j) having type 4. We haveE[CTS(P (j))] � 1 + p+ 2(h1 � 1)(1� p+ p2) + (1� p)(1� p+ p2):Hence E[CTS(P (j))] � 2h1(1� p+ p2)� (1 + p)(�p+ p2)= h1(2� 2p+ 2p2) + p(1� p2):Since h1 � 2, E[CTS(P (j))] � h1(2� 2p+ 2p2 + p2(1� p2))= h1(2� 32p+ 2p2 � 12p3):The statement corresponding to Lemma 5 isLemma 6 If P (j) has type 3 or type 4, then E[CTS(P (j))] � c �COPT(P (j)), where c = maxf2�p;1 + p(2� p); 2� 32p+ 2p2 � 12p3g.Lemma 6 and the statements of Lemmata 3 and 4 imply inequality (5). The proof of Theorem 2is complete. 2We conclude with some remarks. TIMESTAMP algorithms use �(m) random bits on a requestsequence of length m. We can modify the original version of TIMESTAMP(p) so that it uses onlyO(n) random bits during an initialization phase and runs completely deterministically thereafter.The competitive ratio is still c = maxf2� p; 1+ p(2� p)g. The idea is to have two di�erent typesof items, item type (a) and item type (b). Initially, we decide for each item in the list which typeit should have. With probability p an item has type (a), and with probability 1� p it has type (b);the initializations are done independently. When a request sequence is served, each request to atype (a) item is served using Step (a) of the algorithm and every request to a type (b) item is servedusing Step (b). This technique cannot be applied in the simpli�ed TIMESTAMP algorithm in whichcondition (ii) in Step (b) is dropped. Our analysis of the simpli�ed TIMESTAMP algorithmmakesuse of the fact that the decision whether a given request is processed using Step (a) or (b) doesnot depend on previous requests (see the analysis after Claim 3). In the simpli�ed TIMESTAMPalgorithm we can reduce the number of random bits using a technique presented by Reingold et12



al. [5]. For each item in the list we maintain a mod i counter, where i is a positive integer. Thesecounters are initialized independently and uniformly at random to a value in f0; 1; : : : ; i � 1g.Furthermore, we choose a non-empty subset I of f0; 1; : : : ; i � 1g. At a request to item x, theTIMESTAMP algorithm �rst decrements x's counter by 1. If the counter is I , the algorithm servesthe request using Step (a), otherwise it executes Step (b). Choosing i and I appropriately, we canachieve a competitive ratio of c+� for any � > 0; here c = maxf2�p; 1+p(2�p); 2� 32p+2p2� 12p3g.AcknowledgementThe author thanks Rudolf Fleischer and Stefan Schirra for reading an earlier version of thismanuscript.References[1] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos and A. Wigderson. On the power of ran-domization in on-line algorithms. Algorithmica, 11:2{14, 1994.[2] J.L. Bentley and C.C. McGeoch. Amortized analyses of self-organizing sequential search heuris-tics. Communication of the ACM, 28:404{411, 1985.[3] S. Irani. Two results on the list update problem. Information Processing Letters, 38:301{306,1991.[4] R. Karp and P. Raghavan. From a personal communication cited in [5].[5] N. Reingold, J. Westbrook and D.D. Sleator. Randomized competitive algorithms for the listupdate problem. Algorithmica, 11:15{32, 1994.[6] D.D. Sleator and R.E. Tarjan. Amortized e�ciency of list update and paging rules. Commu-nication of the ACM, 28:202{208, 1985.[7] B. Teia. A lower bound for randomized list update algorithms. Information Processing Letters,47:5{9, 1993.
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