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FAST GOSSIPING BY SHORT MESSAGES*

JEAN-CLAUDE BERMONDf, LUISA GARGANO?, ADELE A. RESCIGNO*, AND
UGO VACCARO?

Abstract. Gossiping is the process of ififformation diffusion in which each node of a network
holds a packet that must be communicated to all other nodes in the network. We consider the
problem of gossiping in communication networks under the restriction that communicating nodes
can exchange up to a fixed number p of packets at each round. In the first part of the paper we study
the extremal case p = 1 and we exactly determine the optimal number of communication rounds
to perform gossiping for several classes of graphs, including Hamiltonian graphs and complete k-ary
trees. For arbitrary graphs we give asymptotically matching upper and lower bounds. We also study
the case of arbitrary p and we exactly determine the optimal number of communication rounds to
perform gossiping under this hypothesis for complete graphs, hypercubes, rings, and paths. Finally,
we investigate the problem of determining sparse networks in which gossiping can be performed iri
the minimum possible number of rounds. :

1. Introduction. Gossiping (also called total exchange or all-to-all communi-
cation) in distribution systems is the process of distributing information known to
each processor to every other processor of the system. This process of information
dissemination is carried out by means of a sequence of message transmissions between
adjacent nodes in the network. '

The gossiping problem was originally introduced by the community of discrete
mathematicians, to which it owes most of its terminology, as a combinatorial problem
in graphs. Nonetheless, it was soon realized that, once cast in more realistic models
of communication, gossiping is a fundamental primitive in distributed memory multi-
processor systems. There are a number of situations in multiprocessor computation,
such as global processor synchronization, where gossiping occurs. Moreover, the gos-
siping problem is implicit in a large class of parallel computation problems, such as
linear system solving, the discrete Fourier transform, and sorting, where both input
and output data are required to be distributed across the network [6, 9, 18]. Due to
the interesting theoretical questions it poses and its numerous practical applications,
gossiping has been widely studied under various communication models. Hedetniemi,
Hedetniemi, and Liestman [15] provide a survey of the area. Two more recent survey
papers collecting the latest results are [10, 17]. Readers could also profit from seeing
the book [24].
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The great majority of the previous work on gossiping has considered the case in
which the packets known to a processor at any given time during the execution of
the gossiping protocol can be freely concatenated and the resulting (longer) message
can be transmitted in a constant amount of time; that is, it has been assumed that
the time required to transmit a message is independent of its length. While this as-
sumption is reasonable for short messages, it is clearly unrealistic when the size of the
messages becomes large. Notice that most of the gossiping protocols proposed in the
literature require the transmission, in the last rounds of the execution of the protocol,
of messages of size ©(n), where n is the number of nodes in the network. Therefore, it
would be interesting to have gossiping protocols that require only the transmission of
bounded length messages between processors. In this paper we consider the problem
of gossiping in communication networks under the restriction that communicating
nodes can exchange up to a fixed number p of packets in each round.

1.1. The model. Consider a communication network modeled by a graph G =
(V, E) where the node set V represents the set of processors of the network and E
represents the set of communication lines between processors.

Initially each node holds a packet that must be transmitted to any other node
in the network by a sequence of calls between adjacent processors. During each call,
communicating nodes can exchange up to p packets, where p is an a priori fixed
integer. We assume that each processor can participate in at most one call at a
time. Therefore, we can see the gossiping process as a sequence of rounds: during
each round a disjoint set of edges (matching) is selected and the nodes that are end
vertices of these edges make a call. This communication model is usually referred
to as telephone model [15] or full-duplex 1-port (Fy) [20]. We denote by gr, (p,G)
the minimum possible number of rounds to complete the gossiping process in the
network G subject to the above conditions. Another popular communication model
is the mail model [15] or half-duplex 1-port (H1) [20], in which in each round any
node can either send a message to one of its neighbors or receive a message from it,
but not simultaneously. The problem of estimating gm, (p, G) has been considered in
[4]. Analogous problems in bus networks have been considered in [11, 16]. Optimal
bounds on gg, (1, G) when the edges of G are subject to random failures are given in
[7]. Packet routing in interconnection networks in the F; model has been considered
in [1].

1.2. Results. We first study the extremal case in which gossiping is to be per-
formed under the restriction that communicating nodes can exchange ezactly one
packet in each round. We provide several lower bounds on the gossiping time gg, (1, G)
and we provide matching upper bounds for Hamiltonian graphs, complete trees, and
complete bipartite graphs. For general graphs we provide asymptotically tight upper
and lower bounds.

Subsequently, we study the case of arbitrary p and we compute gg, (p, G) exactly
for complete graphs, hypercubes, rings, and paths. Our result for hypercubes allows
us to improve the corresponding result in the H; model given in [4].

Finally, we investigate the problem of finding the sparsest networks in which
gossiping can be performed in the minimum possible number of rounds.

All logarithms in this paper are to the base 2.

2. Gossiping by exchanging one packet at a time. In this section we study
gr,(1,G), that is, the minimum possible number of rounds to complete gossip in a
graph G under the condition that at each round communicating nodes can exchange



ezactly one packet.
In order to avoid overburdening the notation, we will simply write g(G) to denote

g (1, Q).

2.1. Lower bounds on ¢g(G). In this section we give some lower bounds on the
time needed to complete the gossiping process.

LEMMA 2.1. For any graph G = (V, E), with |V| = n, let u(Q) be the size of a
mazimum matching in G; then

n(n—1)

(1 9(G) > [——————-l :
Proof. For any node v € V the packet initially resident in v must reach each of the
remaining n—1 nodes. Therefore, during the gossiping process, at least n(n—1) packet
transmissions must be executed over the edges of G. Since in each communication
round at most p(G) calls are performed and each call allows the transmission of two

packets (one in each direction), the bound follows. O
LEMMA 2.2. Let X C V be a vertex cutset of the graph G = (V, E) whose removal
disconnects G into the connected components Vi,...,Vy; then
d
max{|Vi|,n — |Vi[}
2 G) > ;
(2) 9(@) > { ; ]

where |Mx| is the size of a mazimum matching Mx in G such that any edge in it has
one endpoint in X and the other in V — X.

Proof. Consider a component V;, for some 1 < ¢ < d. Nodes in V; can receive
the packets of nodes in V — V; only by means of calls between a node in X and one
in V;; moreover, at least n — |V;| calls are needed between nodes in X and nodes in
V; to bring all packets in V' — V; to nodes in V;. Analogously, packets of nodes in V;
can reach nodes in V — V; only by means of calls between a node in X and one in
Vi, and at least |V;| such calls are needed. Therefore, for each ¢ = 1,...,d, at least
max{|V;|,n — |V;|} calls must take place between nodes in X and nodes in V;. We
then get that at least Y% max{|Vi|,n — |V;|} calls are needed between nodes in X
and nodes in V — X = UZ_, V;. Since at most |Mx| such calls can take place during
each round, we get the desired lower bound of

[ >4 max{|Vi,n— mn]

|Mx|

on the time necessary to gossip in G. 0

Remark 2.1. The bound in Lemma 2.2 can sometimes be improved by observing
that after the last call has been done between a node in some V; and a node in X,
the last exchanged message has still to reach all the other nodes of V; (or of V — V;).
Therefore, we can add to the lower bound (2) the minimum of the eccentricities of
the subgraphs induced by the V;’s and the V — V}’s.

COROLLARY 2.1. Let a(G) be the independence number of G; then

© a6 [£2L1).



Proof. Let Y denote an independent set of G. Applying Lemma 2.2 with cutset

X =V -Y and connected components V1,..., Vy|, each consisting of just one element
of Y, we get
Y] Y| Y|
n— v A n—1 {m(n—w}
9(G) > > - = )
212 T |2 | X’ | | Zamm| = e
Choosing an independent set of maximum size |Y| = a(G) we get (3). 0

Let T be a tree and v one of its nodes; we indicate the connected components into
which the node set of T is split by the removal of v by Vi(v),..., Vieg(v) (v), ordered
so that [V1(v)] > -+ 2> [Vaeg() (v)|-

COROLLARY 2.2. LetT be a tree onn nodes of mazimum degree A = max,cy deg(v);
then

> L(v),
g(T)_m D (v)

where

i (deg(v) —1)n+1 if [Vi(v)| < n/2,
(deg(v) — 2)n + 1+ 2|Vi(v)| if [Vi(v)| > n/2.

Proof. Given a node v, Lemma 2.2 with X = {v} gives

deg(v)
oT)2 Y max(Viw)n ~ Vi)
deg(v) [Vi(v)| if [Vi(v)| > n/2,
=D n-|Vi()l +
i=2 n—|Vi(v)| if [Vi(v)| < n/2,
= L(v).

Direct computation shows that if deg(v) > deg(w) then L(v) > L(w), thus proving
that the maximum is always attained at a node of maximum degree. a

2.2. Upper bounds. In this section we will determine g(G) exactly for several
classes of graphs, including Hamiltonian graphs and complete k-ary trees. We will
also provide good upper bounds for general graphs.

2.2.1. Hamiltonian graphs. We first note that in any graph G = (V, E) the
size of a maximum matching u(G) is at most ||V|/2]. Therefore, from Lemma 2.1 we
get that the gossiping time g(G) of any graph with n nodes is always lower-bounded
by

(4) 9(G) > {

n—1 if nis even,
n if n is odd.

We will show that this lower bound is attained by Hamiltonian graphs.
Let C, = (V, E) denote the ring of length n; we assume that the vertex set is
V ={0,...,n — 1} and the edge set is E = {(v,w) : 1= |v—w|(mod n)}.}

1 Here and in the rest of the paper with 2 = a (mod b) we denote the unique integer 0 < = < b
such that 2 = ¢b + a.



Gossiping-even(Cy,)

Round ¢t = 1: Each node v sends its own packet to the node w such that
(v, w) € M.

Round ¢t = 2: Each node v sends its own packet to the node w such that
(v, w) € Ma.

Round #, 3 <t < n—1: For each node v let w be the node such that (v, w) € My;
node v sends a new packet to w; namely, v sends the packet it first received from
among those v has neither received from w nor sent to w in any previous round.

F1G. 1. Gossiping algorithm in Cp, n even.

— o —q

Gossiping-odd(C,,)

Round ¢, 1 <t < n: For each node v # ¢t — 1 let w be the neighbor of v in
My; node v sends to w the packet that v first received from among those that it
neither got from w nor sent to w in a previous round (v’s own packet is considered
to be received before any other packet).

FI1G. 2. Gossiping algorithm in Cn, n odd.

n—1 ifn is even,
LEMMA 2.3. g9(Cp) < {n -
Proof. We distinguish two cases according to the parity of the number n of nodes.
Case n even. We shall give a gossiping protocol on the ring C), that requires n—1
rounds. First, for each integer ¢, define the perfect matching in C,, given by

(5) W = {(v,w) : viseven and w = v+ 1} if t is even,
7 {(v,w) : visodd and w = v + 1(mod n)} if ¢ is odd;

notice that M; and M, are disjoint for each ¢. The gossiping algorithm is shown in
Figure 1.

It is immediate to see that each node receives a new packet at each round (this
can be formally proved by induction on t). Therefore, at the end of round n — 1 of
algorithm Gossiping-even(C,,) each node has received all the packets of the other
n — 1 nodes.

Case n odd. Define the following maximum matchings M; in C), for each ¢ =
) P

(6)
M, = {(v,w) : v—t+1(modn) is odd, w = v+ 1(mod n), and v #t — 1 # w}.

We give in Figure 2 a gossiping protocol on C,, that requires n rounds. It is easy

to see that at each round ¢ = 1,...,n each node different from ¢t — 1 receives a new
packet. Therefore, at the end of round n of algorithm Gossiping-odd(C,), each
node has received all the packets of the other n — 1 nodes. 0

Ezample 2.1. For n = 6 we have M; = M3 = M5 = {(1,2),(3,4),(50)} and
M, = My = {(0,1),(2,3),(4,5)}. Each column of Table 1 shows the set of nodes
whose packets are known by v at the end of round ¢, foreach0 <v <5and 1 <¢ < 5.



TABLE 1

t\v 0 i 2

1 {5,0} {1,2} {1,2}

2 {5,0,1} {0,1,2} {1,2,3}

3 {4,5,0,1} {0,1,2,3} {0,1,2,3}

4 {4,5,0,1,2} {5,0,1,2,3} {0,1,2,3,4}

5 {3,4,5,0,1,2} | {5,0,1,2,3,4} | {5,0,1,2,3,4}

t\v 3 4 5

1 (3,4} (3,4} 5,0

2 {2,3,4} {3,4,5} {4,5,0}

3 {2,3,4,5} {2,3,4,5} {4,5,0,1}

4 {1,2,3,4,5} {2,3,4,5,0} {3,4,5,0,1}

5 {1,2,3,4,5,0} | {1,2,3,4,5,0} | {3,4,5,0,1,2}

TABLE 2

t\v 0 1 2 3 4
1 {0} {12} {12} (3.4} (3.4}
2 {4,0} {1,2} {1,2,3} {2,3,4} {3,4,0}
3 {47 01 1} {01 1)2} {1727 3} {21 31410} {2v31410}
4 {3,4,0,1} {0,1,2,3} {0,1,2,3} {2,3,4,0} {2,3,4,0,1}
5 {3,4,0,1,2} | {0,1,2,3,4} | {0,1,2,3,4} | {1,2,3,4,0} | {2,3,4,0,1}

For n = 5 we have M; = {(1,2),(3,4)}, M2 = {(2,3),(4,0)}, M3 = {(3,4),(0,1)}
M4 ={(4,0),(1,2)}, and M5 = {(0,1),(2,3)}. Each column of Table 2 shows the set
of nodes whose packets are known by v at the end of round ¢, for each 0 < v < 4 and
1<t<s.

THEOREM 2.1. For any Hamiltonian graph G on n vertices,

96 ={

n—1 ifn iseven,
n if n is odd.

Proof. If G is Hamiltonian, from Lemma 2.3 we get that gossiping along the
edges of the Hamiltonian cycle requires time matching the lower bound (4), and the
theorem holds. |

2.3. Trees. In this section we investigate the gossiping time in trees. We first
give an upper bound on the gossiping time in any tree and afterwards compute the
exact gossiping time of rooted k-ary trees. ‘

Consider a tree T' = (V, E)). We recall that for each node v the set V;(v) denotes
the largest of the connected components into which T splits after the removal of v.
Let

¥ = max [V1(v)],

where the maximum is taken over all the internal nodes v having exactly deg(v) — 1
leaves as neighbors; notice that any internal node v with less than d(u) — 1 leaves as
neighbors has |V (u)| <9 — 1.

Let pre-leaf denote a node v such that |V;(v)| = 9 and denote by = the maximum
degree of a node in the subgraph consisting only of the edges (u, f) where f is either
a leaf or a pre-leaf of T'. Finally, let A be the maximum number of leaves connected
to a common node and A = maxycy deg(v).



Gossiping-tree(T)

Phase 1
[Color each edge (u,v) of T with color c¢(u,v) = c¢(v,u) € {0,...,A —1}.]
Round ¢, for t = 1,...,A(¥ — 1): For each node u, if there is an edge (u,v)
such that ¢(u,v) =t — 1(mod A), then u sends a new packet to v; namely, u
sends to v a packet from among those that u has neither sent to v nor received
from v in a previous round, if such a packet exists; otherwise u sends nothing.

Phase 2
[Give to each edge (u, f), where f is a leaf or a pre-leaf, a color c'(u, f) €
{0,...,m—1}]
Round A(¥ —1) +t, for t = 1,...,m: For each leaf or pre-leaf f, if there is
an edge (u, f) with ¢’(u, f) = t — 1, then u sends to f a packet from among
those that u has neither sent to f nor received from f in a previous round, if
any.

Phase 3
[Give to each edge (u, f), where f is a leaf of T, a color ¢"(u, f) € {0,...,A—
1}]
Round A(W—1) +7+t, for t =1,...,(n —9 — 1)A: For each leaf f, if the
edge (u, f) on f has ¢”(u, f) =t — 1(mod )), then u sends to f any packet f
does not know.

Fi1G. 3. Gossiping algorithm in a tree T.

THEOREM 2.2. For any tree T = (V, E) on n nodes, g(T) < (d—1)A+7+(n—
9 — 1)\

Proof. Consider the gossiping algorithm Gossiping-tree(T") given in Figure 3.
For any e € F, the edge coloring c(e) and the partial edge colorings ¢/(e) and ¢’ (e)
used in Gossiping-tree(T') are each intended so that no two edges sharing a vertex
are assigned the same color.

We now prove the correctness of algorithm Gossiping-tree(T’). Let us say that
the edge (u,v) of T is saturated from u to v at time ¢ of Gossiping-tree(T) if no
packet is sent from u to v at any time t’ > t, that is, if by time ¢ — 1 node v has
received the packet of each node w connected to v through u. We need the following
property of Gossiping-tree(T).

PROPERTY 2.1. In any round t of Phase 1 of the algorithm Gossiping-tree(T),
if the edge (u,v) has color c(u,v) =t — 1(mod A) and it is not saturated from u to v
at time t, then u sends a new packet to v at round t.

Proof. The proof is by induction on the time unit ¢. Let ¢ < A: at time unit ¢,
for each edge (u,v) of color c(u,v) =t —1€ {0,...,A — 1}, nodes u and v exchange
a call for the first time and have at least their own packet to send each other.

Now let t > A and suppose that the hypothesis holds for each ¢’ < t.

Consider an edge (u,v) such that ¢(u,v) =t — 1(mod A). Suppose by contradic-
tion that at time ¢ the edge (u,v) is not saturated from u to v, but » has no packets
to send to v among those u has not received through v. That is, all packets known
to u and not received through v have already been sent from u to v.

In particular, node u has already sent to v all the packets it has received from
its other neighbors, call them wy,...,w;. Notice that the last call from u to v has
taken place at time ¢ — A. For each w;, let 7; be the only integer such that both



t—A <7 < tand c(u, w;) = 7; —1(mod A) hold. If the edge (u, w;) is not saturated
at time 7;, we know by the inductive hypothesis that u has received a packet from
w; at time 7;. We can have two cases: the first case is that all the edges (u,w;) are
saturated at time 7; < ¢t. This immediately implies that (u,v) is saturated at time
t, contradicting our assumption that (u,v) was not saturated from u to v at time ¢.
The second case is that at least one edge (u,w;) is not saturated at time 7;; in such a
situation we know by the inductive hypothesis that u has received a new packet from
w; at time 7; that can now be forwarded to v, again getting a contradiction. 0

We can now complete the proof of the theorem by showing that at the end of
Gossiping-tree(T") each node knows all the other n — 1 packets. Property 2.1 shows
that a new packet is sent from u to v at each round ¢ of Phase 1 such that c(u,v) =
t—1 (mod A), until the edge (u,v) is saturated and no more packets need to be sent
from u to v. Therefore, for any internal node u and for any A consecutive rounds, u
receives a new packet from each neighbor v such that (v, u) is not saturated from v to
u. We recall that ¥ is the maximum number of packets that any internal node needs
to get from one neighbor and that this maximum is attained with equality only if u is
a pre-leaf. Therefore, by round A(¥ — 1), any node u which is not a pre-leaf gets all
the necessary n — 1 packets, while a pre-leaf gets n — 2 packets during the A(J — 1)
rounds of Phase 1, and the remaining packet during some round of Phase 2.

Analogously, during Phase 1 any leaf f gets ¥ — 1 packets. It is obvious that f
receives a new packet during Phase 2; moreover, during Phase 3 the leaf f receives a
new packet for any A consecutive rounds, thus getting the remaining n —9 — 1 packets
that it needs to complete the gossip. O

Let 6 denote the minimum degree of an internal node in 7'. It is easy to see that
we can upper-bound 9 by n — é. Therefore, from Theorem 2.2 we have the following
upper bound on g(7') that is expressed only in terms of degree properties of the nodes
inT.

COROLLARY 2.3. For anytreeT = (V,E) onn nodes, ¢(T) < (n—86)A+(6—1)A.

Given a connected graph G = (V, E), denote by 7 the set of all spanning trees
of G, and for any vertex v € V, denote by degp(v) the degree of v in T' € 7. Define
d(G) = minper max,cy degp(v). The following corollary is immediate.

COROLLARY 2.4. For any connected graph G = (V, E) with n vertices,

(7) 9(G) < (n—1)d(G).

We point out that, although the problem of computing d(G) is NP-hard, there
exists an efficient algorithm to compute a spanning tree of maximum degree at most
d(G) + 1 (see [12]). From Corollaries 2.2 and 2.4 we have that for any tree with n
nodes and maximum degree A it holds that nA—n+1 < g(T') < nA—A. Let us now
consider the tree S, A of Figure 4. If A =n — 1, then S, ,—; is the star on n nodes,
and from Corollary 2.2 and Theorem 2.2 we have g(Spn—1) = (n —1)% If A > 2 is
constant with respect to n > 2A then from Corollary 2.2 and Theorem 2.2 we get
An—1)— (A —-1) < g(Sp,a) < A(n —1) — 2. It is not difficult to obtain a specific
gossiping algorithm attaining the lower bound, hence the bound (7) is asymptotically
tight.

In [7] it was conjectured that for any G, gm, (1,G) = Q(n d(G)) holds; Ravi [22]
has proved the following theorem. '

THEOREM 2.3 (see [22]). For any graph G, g(G) = ©(n d(G)).



Fi1G. 4. Tree Sy A-

Proof. Given a vertex cutset X of G = (V, E), from Lemma 2.2 we know that

c(X)
max{|Vi|,n — |Vi[}
g G Z )
(@) [; e
where Vi,..., V¢(x) are the connected components induced in G by V — X and Mx

is a maximum matching between X and V — X in G. Noticing that |Mx| < |X| and
max{|V;|,n — |V;|} > n/2 for each 1,
o(X)

X1

n
® 9(6) >

It was proved by Fiirer and Raghavachari (see [12, Section 5]) that there exists a
vertex cutset Y C V such that

a¥) 4

d(G) < it

Using the above inequality and the lower bound (8), we have
n
9(G) > 3 (@(G) ~1).

The above inequality, together with Corollary 2.4, implies that ¢(G) = O(n d(G)).
]
We remark that the same reasoning as in Theorem 2.3 allows us to prove that for

any p

We shall now compute the exact gossiping time of k-ary trees, that is, rooted
trees in which each internal node has exactly k sons. Let T} , denote any k-ary tree
with n nodes.

Let us first notice that for n = k + 1 the tree Tk, is the star Siy1x. Consider
then a tree Ty, with n > 2k + 1 nodes. Let u be a node of T}, whose sons are all
leaves. By Corollary 2.2 we get

kn + 1 ifn=2k+1,
©)  9Tkn) 2 mex L(v) 2 L(w) = {(k+ )(n—1)—k ifn>3k+1



FiG. 5.

We show now that (9) holds with equality. Applying Theorem 2.2 to T}, , we get that
(10) g(Tkn) <@ -1DA+7+ -9 -DA=0-1)(k+1)+7+(n—9—1)k.

Unless exactly k& — 1 sons of the root are leaves (cf. the tree in Figure 5), Tk, has
Y=n—k—1and # <A = k+1; that, by (10) and (9), gives

9(Tkn)=n—k—-2)(k+1)+k+1+k*=(k+1)(n—1) —k.

Consider the remaining case when T}, is the tree of Figure 5. The only pre-leaf is
the root, and ¥ = n — k. If n > 3k + 1 we have m = k, and from (10) we get

9Tkn) <(n—k-1)(k+1)+k+(k—-1k=(n-1)(k+1) - k;

ifn=2k+1wehaver = A =k+1 and g(Tk,2k+1) < kn + 1.
Therefore, we have proved the following result.
THEOREM 2.4. For any k-ary tree on n nodes T n,

B ifn=k+1,
9(Ten) = 22 +k+1 ifn=2k+1,
(k+1)(n—1)—k ifn>3k+1.

The particular case k£ = 1 of the above result deserves to be explicitly stated.
COROLLARY 2.5. Let P, be the path on n nodes. We have

1 ifn=2,
g(Pa)= {4 ifn=3,
m—3 ifn>A.

2.4. Complete bipartite graphs. Let K, , = (V(K,,), E(Ks)) be the com-
plete bipartite graph on the node set V(K ) = {ao,...,ar-1} U {bo,...,bs—1}, with
r > 8, {a1,...,ar—1} N {bo,...,bs—1} = 0, and edge set E(K,s) = {ao,...,ar-1} X
{bo,...,bs—1}. In the next theorem we determine the gossiping time of K ,.



THEOREM 2.5. For each v and s with r > s > 1, it holds that g(K, ;) =
[(r+s—1)r/s].

Proof. The lower bound g(K,s) > [(r + s — 1)r/s] is an immediate consequence
of Corollary 2.1 since the complete bipartite graph has a(K, ) = r.

In order to give a gossiping algorithm in K, ¢ requiring [(r + s — 1)r/s] commu-
nication rounds, we define the matchings

M; = {(bi, @itj (mod r)) : 0<i<s—1}

for j =0,...,r — 1. The algorithm is shown in Figure 6.

According to the protocol, at the end of Phase 1 of Gossiping-bipartite(X, ;)
each node a; (resp., b;) knows the message of each b; (resp., a;). Consider now Phase
2. It is immediate to see that during the first s — 1 rounds of Phase 2 each of the
b;’s receives the packet of each b; for j # i, thus completing its knowledge. Moreover,
after the [r(r+s—1)/s] —r = [r(r —1)/s] rounds of Phase 2 each node a; has been
involved in a call at least r — 1 times and has then received the packet of each of the
a;, for j # i, thus completing its knowledge. a

Gossiping-bipartite( K, ;)

Phase 1
round t, for t = 1,...,r: For each edge (bi,@itt—1 (mod r)) € Mi—1
nodes b; and a@;¢_1 (mod r) €xchange their own packets.

Phase 2

round ¢, fort=r+1,...,[r(r+s—1)/s]:

For each edge (b;,a;) € M(;—1_r)s (mod r) NOde b; sends to a; any packet
that a; has not received in a previous round;

if £ <7+ s —1 then b; receives from a; the packet of b1 _r(mod s)-

FI1G. 6. Gossiping algorithm i Ky s.

2.5. Generalized Petersen graphs. In section 2.2.1 we have seen that Hamil-
tonian graphs have the minimum possible gossiping time among all graphs with n
nodes. It is natural to wonder whether there are non-Hamiltonian graphs on n ver-
tices with gossiping time equal to n if n is odd and n — 1 if n is even. A quick check
shows that this is not the case for rectangular grids G s with both ¢ and s 0dd.? In
fact, we know that a(Gy,,) = [%%], and from Corollary 2.1, we get g(Gy,s) > s-t+ 1.
Moreover, it is also easy to check that the gossiping time of the Petersen graph on 10
vertices is at least 10. Therefore, one could be tempted to conjecture that the gossip-
ing time g(G) of a graph G is equal to the minimum possible only if G is Hamiltonian.
This conjecture, although nice sounding, would be wrong, as the following classes of
graphs, including the generalized Petersen graphs (GPGs), show.

Let Py . be the graph consisting of two cycles of size k£ connected by a perfect
matching in the following way: given a permutation 7 of {0,...,k — 1} the graph
Pex = (V(Pr,n), E(Pr,x)) has vertex set V(Pgx) = {ao,...,ax-1} U {bo,...,bk—1}
and edge set

2 It is well known that all rectangular grids G¢,s are Hamiltonian except when ¢ and s are both
odd.



FI1G. 7. A 3-coloration of the GPG with n = 11 and s = 2.

E(Pi,r) = {(@i) Git1(mod k) : 0<% <k}
U {(bi, bit1(mod &) : 0<i<k}U{(aibr(iy) : 0< i<k}

The Petersen graph has k = 5 and #(¢) = 3i (mod 5), for s = 0,1,2,3,4; GPGs
have k odd and 7(s-¢(mod k)) =4, :=0,...,k — 1, for a fixed integer s.

From Lemma 2.1 we know that g(Pk ) > |V(Pr,x)| — 1 = 2k — 1. We will show
that for any k and 7 such that Py . is 3-edge-colorable, we have the equality

g(Pk,w) =2k —1.

Each cubic GPG, other than the Petersen graph itself, is 3-edge-colorable [2]. More-
over, the class of 3-edge-colorable Py s includes the family of non-Hamiltonian GPGs
with £ = 5 (mod 6) and s = 2 (see [2] and references therein quoted). For an example
of a 3-coloration of a GPG, see Figure 7.

The gossiping algorithm is described in Figure 8; it assumes that the edges of the
graph are colored with the three colors 1, 2, and 3. It is easy to prove by induction
on q that all the calls of Phase g, for ¢ < (k —1)/2, can actually be done. Therefore,
after the first (k — 1)/2 phases, each node a; has the packet of a4 j(mod ¥) for j =
0,...,(k —1)/2; that is, it knows the packet of each other node in its own cycle;
moreover, it knows the packet of (k — 1)/2 nodes in the cyele on {bo,...,bk—1}.
Analogously, each b; knows the packet of each other node in its own cycle and of
(k —1)/2 nodes in {ag,...,ax—1}.



Gossiping-3-color(Px )
Phase q (1 < ¢ < (k—1)/2) [each phase consists of three communication rounds]:
round ¢ (¢t = 1,2,3): make a call between the endpoints of each edge of color
t.
Calls are made so that:
when an edge (@i,@it1(mod k)) is used, then a; receives the packet of
Gitq(mod k)> N Giy1(mod k) Teceives the packet of a;y1—g(mod )3
when an edge (bs, bit+1(mod &)) is used, then b; receives the packet of b;4q(mod &)»
and b;41(mod k) receives the packet of biy1_g(mod k);
when the edge (a:,br(;)) is used, then a; receives the packet of some b;, 0 <
j < k—1, and bg(; receives the packet of some a;, 0 < j < k— 1.
Phase 3(k —1)/2+q (1 < g < (k+ 1)/2) [the phase consists of one communication
round]:
node a; (resp., bx(s)), for 2 =0,...,k — 1, sends to br(;) (resp., a;) the packet
of some a; (resp., b;) it has not already sent to it.

F1G. 8. Gossiping algorithm in Py .

Therefore, the calls between nodes in {aog,...,ax—1} and in {bg,...,bx_1} of the
last (k + 1)/2 communication rounds allow completion of the knowledge of each node
in the graph.

3. Gossiping by exchanging more than one packet at a time. In this sec-
tion we shall study the minimum number of time units gr, (p, G) necessary to perform
gossiping in a graph G, under the restriction that at each time instant communicat-
ing nodes can exchange up to p packets, p fixed but arbitrary otherwise. We assume
that p is smaller than the number of nodes of the graph G; otherwise, the problem is
equivalent to the classical one. Again, for ease of notation, we shall write g(p, G) to
denote gr, (p, G).

3.1. Lower bounds. First, we shall present a simple lower bound on g(p,G)
based on elementary counting arguments. Nonetheless, we shall prove in the sequel
that the obtained lower bound is tight for complete graphs with an even number of
nodes and for hypercubes. In order to derive the lower bound, let us define I(p,t) as
the maximum number of packets a vertex can have possibly received after ¢ commu-
nication rounds in any graph. Since at each round ¢, with 1 < ¢ < ¢, any vertex can
receive at most min{p, 2'~!} packets, it follows that

(11) I(p,t) =1+ Y min{p, 2"},

=1
or equivalently,

[log p]
12)  Ipt)=1+ > 2714 p(t— [logp]) = 2M"BP +p(t — [logp])

=1 .

for any ¢ > [logp]. Therefore, for any graph G = (V, E), the gossiping time g(p, G)
is always lower bounded by the smallest integer ¢* for which I(p,t*) > |V|. Since t*



is obviously greater than or equal to [log|V|] > [logp], we can use (12) and obtain

1
9(»,G) > [logp] + L;(IVI ~ 2“°‘”")] -
Moreover, notice that if the number of nodes in the graph is odd, then at each round
there is a node that does not receive any message. This implies that after any round
t there exists a node that can have possibly received at most I(p,t — 1) packets.
Therefore,

1
9(p,G) > [logp] + {E(IVI = 2“°g”])] +1.
The above arguments give the following lemma.
LEMMA 3.1. For any graph G = (V, E), |V| = n, and integer p such that 2187l <
n, we have

[log p] + [% (n— 2“°g”])] if n is even,
9(p,G) >
[logp] + [% (n— 2“°5P1)] +1 ifn is odd.

Using similar arguments, we can also generalize the lower bound (1) that we estab-
lished in section 2.1 for p = 1 to general values of p.

LEMMA 3.2. Let G = (V, E) be a graph with n vertices and let u(G) be the size
of a mazimum matching in G. For any integer p such that 2/1°871 <

g(p,G) > [logp] + E (% — ollogp] 1)1 .

Remark 3.1. Given a gossiping algorithm A for a graph G that uses messages
of size not larger than p, we can easily derive from it an algorithm B to gossip in G
with messages of size ¢ < p. Indeed, if a message of size > q is sent during a call of
A, then we can split this call into more calls, each transmitting up to q packets. For
example, we can use this observation to derive the following bound:

(13) g(p,G) < (logp] +1+2(g9(2p,G) — |logp| — 1) = 29(2p, G) — |logp] — 1.

Bound (13) can be proved by noticing that during the first |logp| + 1 calls of the
algorithm attaining g(2p, G), the exchanged messages necessarily have size less than
or equal to p. From this observation and Theorem 2.5, it follows, for example, that for
the complete bipartite graph ¢(2, K, 5) > (9(1, Krs) +1)/2 = [(r+s—1)r/(2s)] + 1;
it is not difficult to derive an algorithm similar to the one in Figure 6 attaining the
equality.

3.2. Rings and paths. Let g(co,G) denote the gossiping time of the graph G
in the absence of any restriction on the size of the messages. It is obvious that for
each p, g(p, G) > g(o0, G) holds; it is possible to see that equality holds for any p > 2
when @ is either the ring C,, or the path P, on n nodes.

It is well known that [17]

o[ _n/f2 if n is even,
9(°°’P“)_2[§]‘1 oy g(m’C")_{(n+3)/2 if n is odd.



We just point out that it is easy to see that the algorithms attaining g(oo, Cy) and
g(00, P,) do not need to send more than two packets at a time. Therefore, the
following results hold.

THEOREM 3.1. For eachn > 3 and p > 2,

n/2 if n is even,

9(p,Cn) = 9(2,Cn) = { (n+3)/2 ifn is odd.

THEOREM 3.2. For eachmn > 2 and p > 2,

90 P =42, Pa) =2 [g] 1

3.3. Complete graphs. In this section we study the gossiping time of the com-
plete graph K, on n nodes. We shall denote by {0, 1,...,n— 1} the vertex set of K.
We recall that g(oco, Ky,) is equal to [logn] if n is even, and [logn] + 1 if n is odd.

THEOREM 3.3. For each even integer n and integer p such that 2/'°8?1 < p,

_ 9[logp]
9(p, K»n) = [logp] + [L] ;

Proof. The lower bound follows from Lemma 3.1. We now give a gossiping
algorithm for K,, that uses the optimal number of rounds. For each node v, with v
even and 0 < v < n — 1, define the sequence of nodes v; as

v+ 2t — 1 (mod n) if 1 <t < [logp],
vy =14 v+2M1°8P1 _1 4 7p41 (modn) ift=[logp]|+ 7, with7>1and p-7 odd,

v + 298Pl _ 1 4 7p (mod n) if t = [log p| + 7, with either p or 7 > 1 even.
(14)
Note that for each ¢ the set M; = {(v,v:) : v even, 0 < v < n} is a perfect matching
between even and odd nodes. Finally, for each integer 7 > 1, for each even node v,
with 0 < v <n — 1, define

{v+i(modn):1<i<p} if p and 7 are odd,
(15) Pioven{n,7) =
{v+i(modn):0<i<p—1} otherwise,

and for each odd node v, with 0 <v <n -1,

{v —i(modn) :1 <i < p} if p and 7 are odd,
(16) Poda(v,7) =
{v—1i(modn):0<i<p-—1} otherwise.

Consider the gossiping algorithm given in Figure 9 and let I,(v,t) denote the set
of nodes whose packets are known by v by the end of round ¢. For each node v the
size of I,(v,t) doubles at each round of Phase 1 and increases by p in every round
of Phase 2. Indeed, it is immediate to see that for each t = 1,..., [log p]

{v+i(modn):0<i<2' -1} ifv is even,

(17) I,(v,t) =
{v—i(modn):0<i<2'—1} ifvisodd,



Gossiping-even(p, K,)

Phase 1
Round ¢, 1<t < [logp]|: For each even node v
nodes v and v, exchange all the packets they know.

Phase 2
Round ¢t = [logp] + 7,1 <7<
node v sends to v; the packets of nodes in Peven(v,7) and
node v sends to v the packets of nodes in Pogq(ve, 7).

_gllog p]
-"—2’% : For each even node v

FI1G. 9. Gossiping algorithm in Kn, n even.

n—2Mog pl ]

andforea.chr:l,...,l- 5

(18)
{v +i(modn) : 0 < i < 2M°8P1 4 7p —1} if v is even,

In(v, [logp] + 1) =
{v —i(modn) : 0 < i < 2M°8P1 4 7p — 1} if v is odd.

Hence, I, (’u, [logp] + l-"‘—"’r:g—p]-l) ={0,...,n—1} =V for each nodev. 0O

Remark 3.2. A close look at the algorithm Gossiping-even(p, K,,) reveals that
the calls are always made between even and odd nodes. Therefore, the same protocol
works in the complete bipartite graphs K, from which we get that for any p and r

9(p, Krr) = g(p, Kar) = [logp] + E (2r = zflogﬂ)] .

We now consider the case of complete graphs with odd number of nodes.
THEOREM 3.4. For each odd integer N and integer p such that 2[°6P1 < N 41,

N — 2[logp]
[logp] + ﬁ——- s 4 +1< g(p,Kn) < [logp] +

_ 9[logp]
{N-l—l 2 "_'_2

Proof. The lower bound follows from Lemma 3.1. To prove the upper bound,
we show that the algorithm Gossiping-odd(p, Kn) given in Figure 10 completes

gossiping in Ky in [logp] + [ijﬂ] + 2 rounds. The algorithm Gossiping-

odd(p, Kn) is described in terms of the algorithm Gossiping-even(p, K,), where
n=N+1.

Let Vi, Peven(v,7), and Pogd(v,T) be defined as in (14), (15), and (16), respec-
tively. In order to show the correctness of Gossiping-odd(p, Kn), let us first consider
Phase 1. At round ¢, for 1 < ¢ < [logp], node N + 1 — 2¢ does not receive the infor-
mation of the nodes in I,(N,t) — {N}. It is easy to see that the nodes that do not
have the packets of all the nodes in I, (v,t) are the nodes in the set X, defined by
X1 =0, and

Xi=Xi1U{v+2"—1(mod n) : v€ X;_; even }
U{v—2t+1(mod n) : v€ Xt 0dd }U{N +1 -2t}



Gossiping-odd(p, Kn)

Phase 1
Round ¢, 1 <t < [logp]: For each even node v, with v # N + 1 — 2, nodes
v and v; exchange all the packets they know;
Round ¢ = [logp] + 1: each node v with
vE{3+4i : 0<i<2M8PI-2 _9  y{N -3—-4i : 0<i<2llsrl-2_1}
receives from v 4 2 a message containing the packets of all the nodes in {N —
P L =T

Phase 2
Round t = [logp] +1+ 7,1 <7< [(N+ 1- 2“°g”])/p]: For each even v
with v:—1 # N node v sends to v;—1 the packets of nodes in Peyen(v,7) and
v¢—1 sends to v the packets of nodes in Poqd(ve—1,7).
Round ¢ = [logp] + [(N +1- 2r1°5"1)/p-| +2: Each node v such that v;—; =
n — 1 for some ¢t = [logp] + 1+ 7 with 1 < 7 < [(N+1 —2r]°gp])/P] +1
receives from v+ 1 a message containing the packets of the nodes in Poqq(N, 7).

Fi1G. 10. Gossiping algorithm in K, N odd.

for 2 <t < [logp|. This gives
(19) X;={3+4i : 0<i<22-2}U{N—-3-4i:0<i<2"2-1}

fort=2,...,[logp].

Moreover, each node in X; has at least those packets of all nodes in I(v,t) —
I(N,t—1). Therefore, at the end of round [log p], each node in X[jog,) lacks at most
the packets of the nodes in I(N, [logp] — 1) = {N — 2/logrl-1 1 1 N _ 2[legr]-1 4
2,...,N — 1}, and the calls of round [logp] + 1 between each node v € X[i55, and
v+ 2 ¢ Xfiogp) assure that each node knows the packets of all nodes in I(v, [logp]).

Now consider Phase 2. It is immediate that at round ¢ each node receives p new
packets, except for the even node v such that v;_; = N. Hence, after the calls of
round [log p] + ["‘2;—-—30—”]} +2, each node knows the packet of each of the other N —1
nodes. ]

For N odd, we believe that the true value of g(p, Kx) is [logp] + [&;Dn}-] +1;
we can verify this equality for small values of N and p. In case p = 2, Theorem 3.1
and Lemma 3.1 tell us that g(2, Kn) = (N + 3)/2 = ¢(2,Cy), for each odd N > 2.
Moreover, we can prove the following theorem.

N—2llegr]

THEOREM 3.5. If p is a multiple of 4 then g(p, Kn) = [logp] + l_ 5 +1.
Proof. Execute the first [logp] rounds of Gossiping-odd(p, Ky): from (19) we

know that the nodes that have not received the packets of all nodes in I, (v, [logp])
are those in the set

(20)
Xiiogp] = {8+4i : 0<i<2oeP1=2 _ 2} y{N -3 44 : 0<i<2llosrl=2_1}

Continue the gossiping process as follows.
Round ¢ = [logp|+7,1< 7 < [(N — 2rl°gp])/p] —1: For each even
v with v, # N, v sends to v; the packets of nodes in Payen(v,7) and
v sends to v the packets of nodes in Pogq(ve, 7).



The set X[iogp)+r Of the nodes that at round [logp| + 7 do not have the packets of
all nodes in I (v, [logp]| + 7) satisfies

Xl'logp]—l-r = X[logp]+r—1 ) {'U € Xflogp] U {N} }
We can then deduce that for each 7 < [(NV — 2llogrly /p| —1,

Xiogpl+r = {3+4i : 0<i<2Moerl=2 4 7/ 1}
U{N—-3—4i: 0<i<2M©8P=2 L p/4_ 9}

Now consider the matchings M = {(v,v+ 1) : viseven} and M’ = {(v,v + 3)
v is even}; it is easy to see that gossiping can be completed in two more rounds by

exchanging calls during rounds [log p]+ [N_—{,logi] and [logp]+ [N—_g;oz—p]-l +1 along

the edges of M and M’ if N = 1(mod 4) or the edges of M’ and M if N = 3(mod4),
respectively. 0

3.4. Hypercube. In the next theorem we shall determine g(p, G) for any p when
the graph G is the d-dimensional hypercube Hy with 2¢ nodes.

THEOREM 3.6. For each integer p < 2¢, g(p, Hq) = [logp]+ I-% (22— 2rl°gp])] ’
Proof. The lower bound follows from Lemma 3.1. We now prove the matching

upper bound. Let p be fixed. Denote by ¢4 the minimum integer such that I(p,t4) >
24, where I(p, tq) is given in (11). We shall show that there exists a gossiping protocol
that requires ¢4 rounds. Notice that t4 = [logp]| + [% (2d - 2“°g"1)] 5

The proof is by induction on d. The assertion is trivially true for d = 1; suppose
that there exists a gossiping protocol in Hy that takes t4 rounds to be completed and
that satisfies the additional property that after any round ¢ < ¢4 —1 each vertex knows
exactly I(p,t) packets. We shall exhibit a gossiping protocol in Hyyq that takes tq441
rounds to be completed and that also satisfies the aforesaid additional property.

Case 1: I(p,ty) = 2. This implies that in the last round of the gossiping proto-
col in Hyg—the tqth—each vertex must receive exactly min{p, 241} packets.
Consider the following protocol in the (d + 1)-dimensional hypercube Hgy1:
split Hgy into two hypercubes of dimension d according to the value of its
(d + 1)th dimension; during the first ¢4 rounds gossip separately in each d-
dimensional subcube according to the protocol whose existence is guaranteed
by the induction hypothesis. After ¢4 rounds each vertex has received all the
information of the subcube it belongs to; i.e., according to the hypothesis of
this case, each vertex has received exactly I(p,tq) = 2¢ packets. Now, in suc-
cessive rounds, exchange packets along dimension d + 1 in Hgy; by sending
either all 2¢ packets in one round, if p > 29, or p packets per round except
in the last one, where one sends 2¢ — p|2%/p| (if nonzero) packets. It is clear
that this protocol requires ¢44; rounds to be completed. Moreover, for each
t, with 0 < t < |2%/p|, after round ¢4 +t < tg41 — 1 each node in Hyyy
knows exactly I(p,tq) + pt = I(p,tq + t) packets. Hence the protocol for
H,,, satisfies the inductive hypothesis.

Case 2: I(p,tq) > 2¢. This implies that p < 2¢71; otherwise it is easy to check
that one would have t; = d and I(p,tq) = 1+ Y, 2"} = 2¢. Consider the
protocol in Hy whose existence is implied by the induction hypothesis. By
inductive hypothesis at round t; — 1 each vertex has received I(p,ty — 1)
packets, and in the last round, receives a packets, with a < p; otherwise, we



would be again in Case 1.
Let M = U?i]l(aci,y,-) be the perfect matching used in the last round, i.e.,
the round t4, of the protocol on Hy, and let A; (resp., B;) be the set of new
packets that z; (resp., y;) receives in this last round. Note that A; N B; = 0
and |4;| = |B;| = a. For what follows, let C; and D; be two sets of packets
such that |C;| = |D;| =p—aand C;NA; =0, D;,NA; =0,CiNnB; =0,
D;NB; =0, and C;N D; = (. Such sets exist since |4;| + |B;| + |Cs| + | Di| =
2p < 2%. Consider now the following gossiping protocol in Hgyq. Split Hgyq
according to the value of the (d+ 1)th dimension in two subcubes Hy and H
of dimension d; during the first tg — 1 rounds, gossip in Hy and H); separately.
At the end of this phase each vertex knows 2¢ — a packets. Now, for each
node z in Hy, denote by ' its neighbor in H). In the next round, exchange
p packets along dimension d+ 1 in such a way that z; (resp., ¥;, =}, y;) sends
to x} (resp., ¥i, s, ¥i) p packets including C; (resp., D;, C;i, D;) and not D;
(resp., Cy, D, C}).
In the next round, exchange p packets along the matching M in such a way
that z; (resp., ¥;) sends to y; (resp., ;) packets in B; U C] (resp., A; U Dy),
and z (resp., ¥;) sends to ¥} (resp., z}) all packets in B]UC; (resp., A;UD;).
After the above t4 + 1 rounds we are sure that each vertex z; (resp., z})
knows all the packets of the subcube it belongs to, and so we can finish the
protocol by sending packets along dimension d + 1 in such a way that p new
packets are received during each round (except possibly the last final round).
Therefore, for each ¢, with 1 < ¢ < 1+ [2%/p|, each node in Hy4; after round
ta+t—1 <t441—1 knows exactly I(p,tq4—1)+pt = I(p,tq+t—1) packets.
Hence this protocol in Hg4q satisfies all the induction hypothesis. a
Remark 3.3. It is worth pointing out that the obvious inequality

(21) g1, (9, G) < 29r, (p, G)

and the above theorem allow us to improve the upper bound on gy, (p, Hg) given by
Theorem 4 of [4] for all values of p which are not powers of two. Indeed, the authors
of [4] have gy, (p, Hy) < 2d +24+1/p — 2/p, while from Theorem 3.6 and (21), we get
Theorem 3.7.

THEOREM 3.7. For each integer p < 2%,

giz, (o, Ha) < 2[logp] +2 [ (2t - 2“°“’1)} .

4. p-optimal graphs. In this section we consider the problem of estimating the
minimum possible number of edges in any graph in which gossiping can be performed
in the minimum possible number of rounds. We consider only networks with an even
number of nodes. More formally, for any even integer n and integer p such that
2MMogrl < . let us denote by g(p,n) the minimum gossiping time of any graph with
n nodes, that is (cf. Theorem 3.3),

g(p,n) :=

&) = [logp] l’n o 2[1031»1}
min ,G) = [logp] + | ——|,
G: |V(G)|=ng(p 5 p

and by M(p,n), the quantity



M(p,n) := min{m : there exists G = (V, E) with [V| =n, |E|=m, g(p,G) = g(p,n)}.

Our objective is to find significant bounds on the function M(p, n). From a practical

point of view, an interconnection network G having gossiping time g(p, G) = g(p,n)
and M(p, n) edges represents the most economical network, if our main concern is the
number of communication lines, that still preserves the communication capabilities
of the complete graph, as far as gossiping is concerned. The analogous problem of
estimating the minimum possible number of edges in a network in which broadcasting
can be performed in minimum time has been extensively studied (see [5, 13] and
references therein quoted). Estimating M(p,n) seems a much harder task. Even
when p is unbounded, only few results are known [21].

DEFINITION 4.1. Given a graph G(V, E) on n nodes and an integer p such that
2Pl < n we say that G is p-optimal if g(p,G) = g(p,n) and |E| = M(p,n), that
is, if G is a sparsest graph among all the graphs with n nodes and minimum gossiping
time g(p,n).

We first consider the special cases p = 1 and p = 2 that admit a very simple
solution, and afterwards we consider the general case, that is, p > 3.

4.1. Sending p < 2 items per round. We have shown in sections 2.2 and 3.2
that for the ring C,, on n nodes

= e [ 2] _ _ fn/2 if n is even,
9(1,Cr) = g(1,n) =2 M 1 and g(2,Cp) = g(2,n) = { Gevgii tEndad

Consider any connected graph (tree) G with n nodes and m < n—1 edges. The lower
bound given in Corollary 2.2 tells us that g(1,G) > 2n — 3. Moreover, it is easy to
verify that the inequality ¢(1,G) < 2¢(2,G) — 1 holds. The above two inequalities
imply that g(1,G) > g(1,n) = n —1 for each n > 3 and ¢(2,G) > (9(1,G) +1)/2 >
(2n —2)/2 =n—1> g(2,n) for each n > 2 with n # 3. It is easy to see that P; is
also optimal for p = 2. We have then proved the following theorem.

THEOREM 4.1. M(1,2) = M(2,2) =1, M(1,3) =3, M(2,3) =2, and for each
n>4

M(1,n) = M(2,n) =n.

4.2. Sending p > 3 items per round. In this section we study p-optimal
graphs for p > 3. We recall that such graphs are to be sought among those graphs
having gossiping time equal to g(p,n). Let us first recall that for each p > 3 the ring
C, is not p-optimal; indeed, from the results of section 3.2 we have ming g(gq,Cp) =
9(2,Cr) > g(p, n).

We have proved in section 3.4 that the hypercube H; has minimum gossiping
time for each value of p; moreover, it was shown in [21] that Hy is p-optimal for each
p > 2471 (equivalently, for p unbounded); that is, Hy has the minimum number of
edges among all the networks with gossiping time g(c0,2%) = d. A natural question
is whether the hypercube is p-optimal for other values of p < 2¢~1. The results of
section 4.3 will imply a negative answer to the above question. ‘

Let d(p,n) be the minimum possible degree a node can have in any p-optimal
graph on n nodes.



THEOREM 4.2. d(p,n) > |logp| +1 — llog ([#] p—n + 2Merl l)J .
Proof. Denote by r(p,t) the maximum number of items a node can receive with a

call made at round ¢, and by I(p,t) =1+ Z:=1 r(p, 1), the maximum possible number
of items a node can have received by round ¢t. We recall that I(p,0) = r(p,1) = 1 and

T(pa t) = ma‘x{2t_l»p}
and

T, ) = if ¢ < |logp] +1,
k= 2“°‘“’J+1 + (t— |logp| —1)p ift > |logp] +1.

Fix any gossiping protocol P that completes in g(p, n) rounds. We denote by 7(p, t,v)
the number of items node v receives at round ¢ of P and let

t
I(p,t,0) =14 Y r(p,i,v);

=1

obviously r(p, t,v) < r(p,t) and I(p,t,v) < I(p,t) for each t = 1,...,g(p,n).
In order to prove the desired lower bound on d(p, n) we show that any node has to

make calls with at least |logp| 41— [log (l— ﬂ%onrl p—n+ 2Msr] 4 l)J different

neighbors during the first |logp| + 1 rounds of the protocol P.

Fix a node v and suppose that v communicates with [logp| + 1 — ¢ different
neighbors during the first |logp| + 1 rounds of P. This means that there exist £
rounds, say 7i,...,7¢, such that for each i = 1,...,¢ at round 7;, v is either idle or
makes a call with a node that will communicate again with v at some round §; with
7; < 6; < |logp| + 1; we can bound r(p, 74, v) as follows.

i) If v does not participate in any call at round 7;, then r(p, 7;,v) =0

ii) If v makes calls with a particular node, say w, at both rounds 7; and §&;,
then at time §; node v will not receive again what it received at time 7; from
w, nor will it receive what it sent to w at time 7;. Therefore, r(p, 6;,v) <
I(p, 611 . 1,’1U) = T(pa T,;,’U) = T(p, Tivw); that iS,

r(py 7, v) +7(p,6i,0) < I(p, 6 — L, w) < 2% = r(p, &).

By i) and ii) we get that for each round ¢ > |logp| + 1,

4

¢
I(p,t,v) =1 +Zr(p,i,v) < I(p,t) — 227‘_1
i-1 i=1
¢

= 2U°8PJ+1 g (t . I_lngJ - l)p— Zz‘r&—l.
i=1
Recalling that n is even and the graph has minimum gossiping time g(p,n) = [log p| +
[#1 = |logp| +1+ [w‘l, the following inequality must be satisfied:

i

[logp|+1
< Tgtpm) ~ 37t = leseit S g [ 2],
=1 =1



Noticing that 3¢, 27~1 < ¢ 2¢-1 — 2 _ 1, we get

_ 9llogp|+1
< ([ )

and the desired bound on d(n,p) follows. 0O

4.3. A family of graphs with O(} logp) edges. In section 3.3 we have proved
that g(p, K,) = g(p,n) for any even n and any p. Moreover, it is easy to see that in

order to implement the gossiping protocol of Figure 9, only O (n (% + log p)) edges

of K, are needed. This implies that M(p,n) = O (n (% + log p)) Actually, we can
prove a much better bound. We will construct for any p and even n a graph Gp
with n nodes, n([logp| + 1)/2 edges, and optimal gossiping time g(p, Gp,n) = g(p, n).

Let p be an even integer and define the sequence of integers s, as follows: sy =
(—1,1) and for each p = 2™ + q with ¢ < 2™, if sgm = (81,...,8m+1), then

P+ Sm+1 if m is even,

Sp = (81, Smt1,8mz) - With Sz = { —(p — Sm+41) if m is odd.

If p is odd define s, = sp;1.

Ezample 4.1. s; = (-1,1), s3 = 84 = (-1,1,-3), s5 = sg = (—1,1,-3,3),
S7 = 8g = (—1, 1, —3,5), Sg9 = S10 = (—1, 1, —3, 5, —5), S11 = S12 = (—1, 1, —3, 5, —7).
Let the node set be V,, = {0,1,...,n —1}. All operations on nodes will be performed
modulo n. Define the matching

Mpn(t) ={(v,v+s8;) | vE Vpisodd} fort=1...,[logp|+1,

and the graph Gpn = (Vp, Epn) with Epp = ulles?I+1pr (t); Figure 11 shows
Gé, 14

One can check that at the end of the algorithm Gossiping(Gy, ), given in Figure
12, any node knows the packets of all the other nodes in G, . Therefore, using
Theorem 4.2, we get Theorem 4.3.

THEOREM 4.3. For each integer p and even integer n > 2[10871

2 (Llogp] +1 - [l0g ([¢;”‘] p—n+2Mesrl 4+1)|)
< M(p,n) < §([logp] +1).

COROLLARY 4.1. For each p > 2 and even integer n such that n — 2M'°8P1 js g
multiple of p,

|3

(Llogp] +1) < M(p,m) < 5 ([logp] +1).

COROLLARY 4.2. For each integer ¢ > 1 and integer v > 2,
M(29,729) = 1297 (g + 1).

It is possible to improve the lower bound given in Theorem 4.2 proving that
d(2?9 —1,n) > g+ 1— |log([(n —1)/(27 — 1)](27 — 1) — n + 2)], which together with
Theorem 4.3 implies the following corollary.

COROLLARY 4.3. For each integer ¢ > 1 and odd integer T,

M(27-1,7(29-1) 4+ 1) = (r(29 - 1) + 1)(g + 1) /2.



S —— edge in the matching M (€))]

_____ edge in the matching M 2)

........... edge in the matching M 3)
6,14

edge in the matching M )
6,14

Fic. 11.

Gossiping(Gp,n)

Let 8, = (51,... 75[logp]+l);

At round ¢, ¢t = 1,..., [logp] + 1, each node sends max{2!~!,p} new
items to its neighbor in My, ,(t);

Atround ¢t = [logp] +1+7,7=1,...,9(p,n) — [logp] — 1, consider
the matching

My n(t) = My n([logp]) if 7 is odd,
PR Mpn([logp] + 1) if 7 is even;

then each node sends p new items (or fewer than p in the last round) to
its neighbor in M, ,(t).

F1G. 12. Gossiping algorithm in Gp n.




5. Concluding remarks and open problems. We have considered the prob-
lem of gossiping in communication networks under the restriction that communicating
nodes can exchange up to a fixed number p of packets at each round. In the extremal
case p = 1 we have given optimal algorithms to perform gossiping in several classes
of graphs, including Hamiltonian graphs, paths, complete k-ary trees, and complete
bipartite graphs. For arbitrary graphs we gave asymptotically matching upper and
lower bounds.

In the case of arbitrary p we have determined the optimal number of communi-
cation rounds to perform gossiping under this hypothesis for complete graphs, hyper-
cubes, rings, paths, and complete bipartite graphs K ,.

Several open problems remain in the area. We list the most important of them
here.

e It would be interesting to determine the computational complexity of computing
gr, (1,G) (9, (p, G)) for general graphs; it is very likely that it is NP-hard. (We know
that computing gr, (00, G) is NP-hard; see [20].)

e We have left open the problem of determining the gossiping time gp, (1, G ), and
more generally gr, (p, Gy,s), of rectangular grids Gy s with both ¢ and s odd. We know
from Corollary 2.1 that gg, (1, Gy,s) > st + 1. Does equality hold? We can prove that
gr, (1,G3,3) = 10. A general upper bound on gr, (1, G¢,s) can be obtained by observing
that G,s = P, X Ps, where P; and P, are the paths on ¢t and s nodes, respectively, and
x denotes the cartesian graph product. Now, given two graphs G = (V, E) and H =
(W, F), it is easy to see that gr, (1, GX H) < min{gr, (1, G)+|V|g9r, (1, H), gr, (1, H)+
|W|gr, (1,G)}, which, together with Corollary 2.5, immediately gives g, (1,Gt,s) <
2ts — 3 — max{t, s}.

e We know from (4) that for any graph G with n vertices one has gr, (1,G) > nif n
is odd, gr, (1,G) > n—1 if n is even, and from Theorem 2.1, we get that the equality
holds for Hamiltonian graphs. It would be interesting to characterize the class of
graphs for which this lower bound is tight. We know from the results of section 2.5
that this class is larger than the class of the Hamiltonian graphs.

e In view of the possible NP-hardness of computing g(p,G) for arbitrary graphs, it
would be interesting to design efficient algorithms to compute gossiping protocols that
complete in time “close” to g(p, G). Such algorithms have recently been provided for
g(00, G) (see [14, 23]). However, the techniques used there do not seem to apply to
the case of bounded p.

e We have given fairly tight bounds on the function M(p,n). It would be interesting
to study the analogous quantity M.(p,n) equal to the minimum number of edges
in any graph in which gossiping can be performed in quasi-optimal time g(p,n) + ¢,
where c is a small constant. In particular, we ask whether M;(p,n) = O(n).
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