
An Optical Simulation of Shared Memory �

Leslie Ann Goldberg y

Department of Computer Science

University of Warwick

Coventry CV� �AL United Kingdom

leslie�dcs�warwick�ac�uk

Yossi Matias

AT�T Bell Laboratories

��� Mountain Avenue

Murray Hill� NJ �����

matias�research�att�com

Satish Rao

NEC Research Institute

� Independence Way

Princeton� NJ �����

satish�research�nec�com

Abstract

We present a work�optimal randomized algorithm for simulating a shared memory machine

�pram� on an optical communication parallel computer �ocpc�� The ocpc model is motivated

by the potential of optical communication for parallel computation� The memory of an ocpc is

divided into modules� one module per processor� Each memory module only services a request

on a timestep if it receives exactly one memory request�

Our algorithm simulates each step of an n lg lgn�processor erew pram on an n�processor

ocpc in O�lg lgn� expected delay� �The probability that the delay is longer than this is at

most n�� for any constant ��� The best previous simulation� due to Valiant� required ��lgn�

expected delay�

� Introduction

The huge bandwidth of the optical medium makes it possible to use optics to build communication

networks of very high degree� Eshaghian ��� �� �rst studied the computational aspects of parallel

architectures with complete optical interconnection networks� The OCPC model is an abstract

�A preliminary version of this paper appeared in Proc� �th ACM Symp� on Parallel Algorithms and Architectures�

June �����
yPart of this work was performed at Sandia National Laboratories and was supported by the U�S� Department of

Energy under contract DE�AC�����AL	
���� Part of this work was supported by ESPRIT LTR Project no� �����

� ALCOM�IT and ESPRIT Project no� ����� � RAND�II�

�



model of computation which formalizes important properties of such architectures� It was �rst

introduced by Anderson and Miller ��� and Eshaghian and Kumar ��	�� In an n
processor completely

connected Optical Communication Parallel Computer �n
ocpc� n processors with local memory

are connected by a complete network� A computation on this computer consists of a sequence

of communication steps� During each communication step each processor can perform some local

computation and then send one message to any other processor� If a processor is sent a single

message during a communication step then it receives this message successfully� but if it is sent

more than one message then the transmissions are garbled and it receives none of them�

While the ocpc seems a reasonable model for optical computers� it has not been used as a

programming model to date� The pram model� on the other hand� has been extensively used for

parallel algorithmic design �e�g�� ���� ��� 
���� The convenience of programming on the pram is

largely due to the fact that the programmer does not have to specify interprocessor communication

or to allocate storage in a distributed memory� For the very same reason� the pram is considered

as highly theoretical� and the task of emulating the pram on more realistic models has attracted

considerable attention� emulations may enable automatic mapping of pram algorithms to weaker

models� as well as a better understanding of the relative power of di�erent models� Indeed� many

emulations of the pram on bounded degree networks were introduced �see� e�g�� ��� ��� �
� 
�� 
��


�� 
�� or ���� for a survey��

In this paper� we present a simulation of an erew pram on the ocpc� In particular� we present

a randomized simulation of an n lg lg n processor erew pram on an n processor ocpc in which�

with high probability� each step of the pram requires O�lg lg n� steps on the ocpc�� Our simulation

is work optimal� to within a constant factor�

Our results are closely related to previous work on the well studied distributed memory machine

�dmm� which consists of n processors and n memory modules connected via a complete network

of communication� Each processor can access any module in constant time� and each module can

service at most one memory request �read or write� at any time� The dmm is thus a weaker model

than the shared memory pram� in that the memory address space is partitioned into modules with

a restricted access imposed on them� We remark that there are several variants of dmm models

di�ering in their contention rules�

Several papers have studied the emulation of a pram on various dmm models �
�� ��� 
�� 
�� ��

�	� ��� Karp et al� ��	� present O�lg lg n� expected delay simulations of various types of pram on a

crcw dmm in which each memory module allows concurrent read or write access to at most one

of its memory locations during any step� Dietzfelbinger and Meyer auf der Heide ��� improve upon

this paper by presenting an O�lg lg n� expected delay simulation of an erew pram on the �weaker�

c
collision dmm in which any memory module that receives c or fewer read or write requests serves

all of them� Although Dietzfelbinger and Meyer auf der Heide require c � 
 for their analysis

�We will refer to the time required to simulate one pram step as the delay of the simulation�

�



to work� they report that experiments show that c � � works as well� The �
collision dmm is

equivalent to the ocpc�

Our result improves on the result of ��� in two ways� First� it is work
optimal� Second� it works

for the ocpc �or �
collision dmm�� The previous best known work
optimal simulation of a pram

on the ocpc is an O�lg n� delay simulation of Valiant �
��� In addition� unlike �
�� �� we explicitly

consider the construction and evaluation of the hash functions used in our simulation algorithm�

��� Related work

The OCPC model The ocpc model was �rst introduced by Anderson and Miller ��� and Es


haghian and Kumar ��	�� and has been studied by Valiant �
��� Ger�eb
Graus and Tsantilas �����

Gerbessiotis and Valiant ����� Rao �

�� Goldberg� Jerrum� Leighton and Rao ����� and Goldberg�

Jerrum and MacKenzie ����� The feasibility of the ocpc from an engineering point of view is

discussed in ��� ���� See also the survey paper of McColl �
	� and the references therein�

Computing h�relation on the OCPC A fundamental problem that deals with contention

resolution on the ocpc is that of realizing an h�relation� In this problem� each processor has at

most h messages to send and at most h messages to receive� Following Anderson and Miller ����

Valiant �
��� and Ger�eb
Graus and Tsantilas ����� Goldberg et al� ���� solved the problem in time

O�h � lg lg n� for an n
processor ocpc� A lower bound of ��
p

lg lg n� expected time was recently

obtained by Goldberg� Jerrum� and MacKenzie �����

Simulating PRAMs on OCPCs Valiant described a simulation of an erew pram on an ocpc

in �
��� More speci�cally� Valiant gave a constant delay simulation of a Bulk Synchronous Parallel

�bsp� computer on the ocpc �there called the s
�
pram�� and also gave an O�lg n� randomized

simulation of an n lg n
processor erew pram on an n
processor bsp computer� A simpler simulation

with delay O�lg n lg lg n� was given by Ger�eb
Graus and Tsantilas ����� Valiant�s result is the best

previously known simulation of a pram on the ocpc�

Independently of our work� MacKenzie� Plaxton and Rajaraman ����� and Meyer auf der Heide�

Scheideler and Stemann ���� have shown how to simulate a n processor erew pram on an n


processor ocpc� Both simulations have ��lg lgn� expected delay� However� neither simulation is

work
optimal� and both simulations require n���� storage at each processor�

Simulating PRAMs on DMMs Mehlhorn and Vishkin �
�� used a �lgn� lg lgn�
universal class

of hash functions to achieve a simple simulation of a crcw pram on a crcw dmm with expected

delay O�lgn� lg lg n�� An n
processor crcw pram can be simulated on an n
processor erew dmm

in O�lg n� expected delay using techniques from �
��� The work of this simulation is thus a ��lg n�






factor away from optimality� The best work
optimal simulation of a pram on an erew dmm has

delay O�n�� ��
��

Recently� Karp� Luby and Meyer auf der Heide ��	� presented a simulation of an n
processor

crcw pram on an n
processor crcw dmm with O�lg lgn� delay� They also presented a work


optimal simulation of an �n lg lg n lg� n�
processor erew pram on an n
processor crcw dmm in

O�lg lgn lg� n� expected delay� and a nearly work
optimal simulation of an n lg lg n processor crcw

pram on an n
processor crcw dmm with the same delay� Subsequently� Dietzfelbinger and Meyer

auf der Heide ��� presented a simpli�ed �non
optimal� simulation of an n
processor erew pram on

an n
processor dmm with O�lg lg n� expected delay� The simulation in ��	� introduces a powerful

technique that incorporates the use of two or three hash functions to map the memory address space

into the memory modules� combined with the use of a crcw pram algorithm for perfect hashing

�see ���� and references therein�� It heavily uses the concurrent read capability of the crcw dmm�

The simulation in ��� circumvents the need for using the crcw pram perfect hashing by an elegant

use of an idea from Upfal and Wigderson �
���

��� Overview of the algorithm

Our simulation algorithm incorporates techniques and ideas from the simulation algorithms of ��	�

��� as well as from the h
relation routing algorithm of ����� as follows�

The simulation in ��� uses three hash functions to map each memory cell of the erew pram to

three processors �and memory cells� in the dmm� A write on an erew memory cell is implemented

by writing a value and a time stamp to at least two out of the three associated dmm memory cells�

A read of an erew memory cell is implemented by reading two out of three of the memory cells

and choosing the value with the most recent time stamp� Dietzfelbinger and Meyer auf der Heide�s

proof that their simulation requires only O�lg lgn� delay on a 

collision dmm relies on the fact

that� given a randomly generated tripartite hypergraph on 
n nodes with �n edges� one can� with

high probability� remove all the nodes in the hypergraph using the following process�

Repeat O�lg lgn� times�

�� Remove all of the nodes with degree at most 
�

�� Remove all resulting trivial hyperedges �hyperedges in which only one incident node remains��

Each hyperedge corresponds to a read or write of a pram memory location� The three vertices

correspond to the three processors in the dmm associated with that memory location� Thus� one

step of an �n node erew pram is implemented by using the process above to deliver at least two

out of three of the messages associated with each memory request�

Since we are simulating an n lg lgn processor pram on an n
node ocpc� we must simultaneously

implement the process above for O�lg lgn� 
n
node hypergraphs using only n processors� To do

�



this� we start by sparsifying all of the hypergraphs using ideas from the �lg lg n�
relation routing

algorithm in ����� That is� we route all but O�n� lgc n� messages and we ensure that at most one

undelivered message remains at any processor� Even so� implementing the process above in parallel

could still require ��lg lgn� time steps per iteration since each destination may participate in as

many as �lg lg n��� di�erent hypergraphs� Thus� we must also �copy� each destination in such a

manner that each message can locate the appropriate copy of its destination� We then perform

the process in each hypergraph� ensuring that the process delivers at most a constant number of

messages to each copy of a destination� After that� the messages can be sequentially forwarded to

their true destinations in O�lg lg n� time�

We remark that� in fact� we cannot directly perform the process above on any of the O�lg lg n�

hypergraphs since our processors can only receive one message in a time step whereas the processors

in ��� can receive three messages in a time step� The details of our solution to this problem can be

found in the technical sections�

��� Paper outline

We proceed in Section � with a high level description of our simulation� In Section 
� we present

our algorithm in detail and prove correctness� In Section � we deal with the evaluation of the hash

function that maps the virtual shared memory to the memory modules�

� The Simulation

Our objective is to show how to simulate one step of an n lg lg n processor erew pram in O�lg lg n�

time
steps on an n processor ocpc� Our simulation follows ��� in using the following idea from �
���

The memory of the pram is hashed using three hash functions� h�� h�� and h�� Thus� each memory

cell of the pram is stored in three memory cells of the ocpc� To write memory cell x� a processor

of the ocpc sends a message to at least two of the processors in fh��x�� h��x�� h��x�g� The message

contains the new value for cell x and also a time stamp� To read memory cell x� a processor p of

the ocpc sends a message to at least two of the processors in fh��x�� h��x�� h��x�g� Each of these

two processors sends p the value that it has for cell x and also its time stamp for cell x� Processor p

uses the value with the later time step� The hash functions h�� h�� and h� are chosen from the

�highly� universal family R
d�j
m�n from ��	�� which guarantees random
like behavior�

Each ocpc processor will simulate lg lg n pram processors� Thus� at the start of a pram step�

each of the ocpc processors will wish to access up to lg lg n cells of the pram memory� Each

processor uses h�� h� and h� to obtain the three destinations where each memory cell is stored�

Thus� each ocpc processor wants to send messages to up to 
 lg lgn destinations� Our objective is

to deliver at least two of the messages associated with every request�

�



As in ����� we will divide the processors of the ocpc into target groups of size k � lgc n� We will

also divide the n lg lgn memory requests into lg lg n�� groups of �n requests each for a su�ciently

small constant �� We will refer to the set of messages associated with a particular group of memory

requests as a �group of messages�� The messages will be delivered using the following procedures�

� Thinning and deliver to target groups� Initially� the number of messages destined for

any given target group may be as high as �k lg lg n� �We will show that� with high probability�

it is no larger than this�� We will use techniques from ���� to route the messages to their

target groups� With high probability when this procedure is �nished every message will be

in the target group of its destination� Furthermore� each processor will have at most one

message left to send� For a su�ciently large constant c�� we will allocate a contiguous block

of c� processors from the target group to each un�nished message for that destination� All

senders will know which processors are allocated for their destination� For a su�ciently large

constant c�� we will ensure that for any of the lg lg n�� groups of �n messages� with high

probability� all but O�n��lgn�c�� of the messages in the group will be delivered to their �nal

destinations�

� Divide into sub�problems and duplicate� We now divide the ocpc into lg lgn�� sub


ocpcs� each with n� � n�� lg lgn processors� Each sub
ocpc will work on the sub
problem

of delivering the messages corresponding to a particular group of messages� For each sub


ocpc we now make lg� n� copies of the relevant sub
problem� all of which will reside in its

processors �� � � � � n���� We will also allocate its processors n������ � � � � n�� as follows� For each

outstanding memory request �i�e�� for each memory request which has the property that at

most one of its three messages was delivered during the previous procedure�� we will allocate

lg� n� processors� These lg� n� processors will do the book
keeping concerning the request in

the lg� n� copies of the sub
problem� Each message will know the identity of the processors

responsible for the book
keeping concerning its memory request�

� Route messages for each sub�problem� In each copy of each sub
problem we route

messages according to the c�
collision access schedule from Section 
 of ���� Dietzfelbinger

and Meyer auf der Heide prove that with high probability each sub
problem is �good� �this

term will be de�ned later on�� We will prove that if a sub
problem is good then for any

particular memory request in any particular copy of the sub
problem� the probability that

the memory request is satis�ed in the c�
collision access schedule routing is at least ���� Also�

no destination in any copy of any sub
problem receives more than a constant number �
c��

of messages during the c�
collision access schedule routing�

� Combining problem copies and combining sub�problems� In this procedure we

identify a subset S of the set of messages that were delivered by the various copies of the

�



c�
collision access schedule routing procedure� The messages in S are chosen in such a way

that every processor is the destination of O�lg lgn� messages in S� We show that with high

probability every memory request in every sub
problem that was created in the �divide into

sub
problems and duplicate� procedure will be satis�ed if the messages in S are delivered�

We deliver the messages in S using the routing algorithm in �����

� Simulation details and analysis

Before giving the details and analysis we de�ne the class of hash functions R
d�j
m�n being used and

describe its properties that are used in the analysis� In the subsequent subsections we will give the

details of each of the procedures described in the previous section�

��� The hash functions

The class R
d�j
m�n is taken from ��	� and is de�ned as follows�

De�nition of R
d�j
m�n� A function from R

d�j
m�n is a combination of functions taken from several

classes� Carter and Wegman ��� introduced Hd
m�n � fg � ��� � � � � m� � ��� � � � � n�g� the class of

universal functions P �x� mod n where P is a polynomial of degree d� � over ��� � � � � m�� Siegel �
��

introduced a class of functions Hnj�n � fh � ��� � � � � nj� � ��� � � � � n�g� �More details on this class

are given in Section ����� To choose a random hash function h � ��� � � � � m� � ��� � � � � n� from R
d�j
m�n�

one �rst chooses

� A function f � chosen uniformly at random from Hd
m�

p
n

� A function r� chosen uniformly at random from Hnj �n

� A function s� chosen uniformly at random from H�
m�nj

� p
n integers a�� � � � � apn� each chosen uniformly at random from the range ��� � � � � n��

The function h is de�ned by h�x� � �r�s�x�� � af�x�� mod n�

As in ��	�� we say that a family Hp�n of hash functions is ��� k�
universal� if for each x� �

� � � � xj � f�� � � � � pg� ��� � � � � �j � f�� � � � � ng� j � k� it holds that� if the hash function h is drawn

uniformly at random from Hp�n� then Pr�h�x�� � ��� � � � � h�xj� � �j � � ��nj �

Let � be an arbitrary constant and let j and d be large enough relative to �� Let �� be a

su�ciently small positive constant� We will use the following properties of the hash functions with

respect to a set S � ��� � � � � m�� n � jSj � n������ The �rst two properties are proven in ��	��

Property ��� Let R
d�j
m�n�s� be the restriction of R

d�j
m�n induced by �xing s � H�

m�nj � If s is chosen

uniformly at random from H�
m�nj then s is ���perfect� on S with probability at least � � n��� If

�



s is ���perfect� on S then R
d�j
m�n�s� is ��� n�

�

��universal� �Hence� R
d�j
m�n�s� is ��� n�

�

��universal with

probability at least � � n����

Remark� Karp et al� actually prove a stronger version of Property 
�� which states that R
d�j
m�n�s�

is ���
p
n�
universal with probability at least � � n�� � We use the weaker version because we will

later �in Section ���� use the space
e�cient implementation of the class Hnj �n from �
�� which is

��� n�
�

�
universal �in fact� it is ����o����� n�
�

�
universal� but is not necessarily ���
p
n�
universal �see

Section � of �
���� Thus� with the space
e�cient implementation� we only get the weaker version of

Property 
���

Property ��� Let f be drawn randomly from Hd
m�

p
n
� Then with probability at least ��n�� every

set f���i�� S has size at most �jSj�pn�

We can now derive�

Property ��� Let Z be a subset of ��� � � � � n� and let i be an integer in ��� � � � �
p
n�� Suppose that

� � n�
�

� Let h be chosen randomly from R
d�j
m�n� �That is� let f � r� s� and a�� � � � � apn be chosen as

described above�� The probability that � or more members of S � f���i� are mapped to Z by h is at

most �n�� �
��jSj�pn

�

�
�
� jZj

n

��
�

Proof� By Property 
��� with probability at least � � n�� every set f���i� � S has size at

most �jSj�pn� By Property 
��� with probability at least � � n��� the hash destinations are

��� n�
�

�
universal�

��� Thinning and deliver to target groups

We start out by running the �thinning� procedure from ����� which is based on the algorithm of

Anderson and Miller ���� The procedure runs for O�lg lgn� steps� During each step each sender

chooses a message uniformly at random from the set of messages that it has not yet sent successfully

and it sends the message to its destination with a certain probability� Let h � 
�e lg lg n� We prove

further below the following lemma�

Lemma ��� With probability at least � � �n�� �for any constant ��� after the thinning proce�

dure from 	�
� terminates� there are at most k�hdc� lg lgne undelivered messages destined for any

particular target group� �c� is a constant which must be su�ciently large
 it is the constant c�

from 	�
���

The proof of Lemma 
�� will use the following lemma�

Lemma ��� With probability at least � � n�� �for any constant ��� each target group of size k is

the destination of at most �k lg lg n messages�

�



Proof� Consider a target group T � By Property 
�� of the the hash functions� R
d�j
m�n�s� is ��� n�

�

�


universal with high probability� If R
d�j
m�n�s� is ��� n�

�

�
universal then the probability that at least

�k lg lg n messages have destinations in T is at most�

n lg lgn

�k lg lgn

�
�

�
k

n

��k lg lgn

which is at most ��e�
��k lg lgn by Stirling�s approximation�

In order to continue with the proof of Lemma 
�� we need some notation� For every target

group T let S�T � denote the set containing all senders that have messages destined for target

group T � We will say that a sender is bad if it has some message that has the same destination as

at least h other messages� We will use the following lemma�

Lemma ��� With probability at least ��n�� �for any constant �� every set S�T � contains at most

k���h�dc� lg lgne� bad senders�

Proof� This proof is similar to the proof of Claim � in ����� We include it here for completeness

and also to demonstrate how the limited independence is handled� Let h� � h��� For a given

target group T let M�S�T �� denote the set of messages that are sent by senders in S�T �� We will

say that a message is externally bad with respect to a target group T if the message has the same

destination as at least h� other messages that are not sent from senders in S�T �� We will say that

a message is internally bad with respect to a target group T if it has the same destination as at

least h� other messages that are sent from senders in S�T �� We wish to prove that with probability

at least � � n�� at most k���h�dc� lg lg ne� of the messages in M�S�T �� are either externally or

internally bad�

First we consider externally bad messages� We will say that a processor P is externally crowded

with respect to a target group T if there are at least h� messages which are not in M�S�T �� and

have destination P � A set of b members of a target group are all externally crowded only if at least

bh� messages have destinations in the set� Property 
�� of the hash functions tells us that with high

probability� the destinations are chosen from a ��� n�
�

�
universal family of hash functions� In this

case� as long as b � n�
�

�h� the probability that there is a set of b members of a target group that

are all externally crowded is at most n�� �for any constant ���� plus

�
n

k

��
k

b

��
�k lg lgn

bh�

�
�

�
b

k

�bh�
�

We can use Stirling�s approximation to show that for b � k�h�� this quantity is at most ��n�k��
���k�h
��

�

Therefore� with probability at least ��n�����n�k��
���k�h
��

every target group has at most k�h��

�By Lemma 
��� n�� is an upper bound on the probability that more than �k lg lg n messages are destined for any

target group�

�



processors which are externally crowded with respect the T � Suppose that this is the case� Since

the family of hash functions is ��� n�
�

�
universal� the probability that 
 jM�S�T ��j�h�� messages in

M�S�T �� choose a destination which is externally crowded with respect to T is at most

�

�
jM�S�T ��j


 jM�S�T ��j�h��
��

�

h��

�� jM�S�T ��j�h��
�

which is at most ��e�
�� jM�S�T ��j�h�� by Stirling�s approximation� Note that as long as n is su�


ciently large then 
 jM�S�T ��j�h�� � k���h�dc� lg lg ne�� Also� as long as jM�S�T ��j � k���h�dc� lg lg ne�
and the constant c �in the de�nition of k� is su�ciently large� the sum of ��n�k��
���k�h

��

and

��n�k��e�
�� jM�S�T ��j�h�� is at most n���

We now consider internally bad messages� We start by calculating an upper bound on the

probability that a message is internally bad� Lemma 
�� tells us that with high probability at most

�k lg lg n messages are destined for any target group� Thus� with high probability� at most �k lg lg n

messages in M�S�T �� are destined for the same target group as the given message� Property 
�� of

the hash functions tells us that with high probability� the destinations are chosen from a ��� n�
�

�


universal family of hash functions� Therefore� the probability that the given message is internally

bad is at most

�

�
�k lg lg n

h�

��
�

k

�h�
� ���
�h �

So the expected number of messages in M�S�T �� which are internally bad is at most jM�S�T ��j���
�h�

In order to prove that with high probability the number of internally bad messages is not far

from the expectation we will use the following theorem of McDiarmid ����� �The inequality is

a development of the �Azuma martingale inequality�� a similar formulation was also derived by

Bollob�as in �
���

Theorem ��� �McDiarmid� Let x�� � � � � xn be independent random variables� with xi taking

values in a set Ai for each i� Suppose that the �measurable� function f �
Q
Ai � R satis�es

jf�x� � f�x��j � ci whenever the vectors x and x� di�er only in the ith coordinate� Let Y be the

random variable f�x�� � � � � xn�� Then for any t 	 	�

Pr �jY � E�Y �j � t� � � exp � � �t��
Pn

i	� c
�
i ��

If the hash functions h�� h�� and h� were chosen uniformly at random from the set of func


tions from ��� � � � � m� to ��� � � � � n�� the application of the bounded di�erences inequality would be

straightforward� We would take as the random variable xi the destination of the ith message

in M�S�T ��� We would let Y be the random variable denoting the number of internally bad mes


sages in M�S�T ��� If we change the value of one of the xis the value of Y would change by at

most h� � �� Plugging these values into the inequality� we would get a su�ciently small failure

probability�

�	



However� since h�� h�� and h� are in fact drawn from the family R
d�j
m�n� the xis are not independent

so we cannot apply Theorem 
�� to them� Instead� we follow the approach used in the proof of

Lemma ��� in ��	�� Consider the independent random variables a�� � � � � apn� As before� let Y be a

random variable denoting the number of internally bad messages in M�S�T ��� Let Z be the set of

all destinations of messages in M�S�T ��� �The size of Z is at most jM�S�T ��j� which is at most

��k�lg lgn�� �with high probability�� by Lemma 
���� Suppose that we change one of the ais� By

Property 
�
 of the hash functions� the probability that � or more members of M�S�T �� change

destination is at most �n�� � �
��n lg lgn�pn

�

���
k�lg lgn��
n

��
� This probability is su�ciently small as

long as the constant � is su�ciently large� So suppose that at most � members of M�S�T �� change

destination� Each of those may make at most h� � � members of M�S�T �� become internally bad�

Therefore� if we change one ai we change Y by at most ��h� � ��� Therefore� by Theorem 
�� the

probability that Y � k���h�dc� lg lgne� is at most

� exp

�
B	��

�
k

�h�dc� lg lgne � E�Y �
��

�jM�S�T ��j ���h� � ����



CA �

�The jM�S�T ��j appears in the denominator because there are jM�S�T ��j random variables in

fa�� � � � � apng that a�ect the destinations of messages in M�S�T ��� Changing any of these random

variables could change Y by at most ��h� � ��� Changing any of the other random variables in

fa�� � � � � apng does not change Y �� Since E�Y � � k
�h�dc� lg lgne �for big enough n� and� with high

probability �by Lemma 
���� jM�S�T ��j � ��k�lg lgn��� the probability is at most

� exp��k��
�h�dc� lg lgne����lg lg n�����h� � ��
�
���

This quantity is at most �
�n

�� �k�n� as long as c is su�ciently large� This concludes the proof

of Lemma 
�
�

The following lemma is proved in ���� �just after Lemma 
��� �The proof of the lemma uses the

fact that jS�T �j � �k lg lgn� which is true with high probability� according to Lemma 
����

Lemma ��	 With probability at least � � n�� the number of messages destined for any target group

that start at good senders but are not delivered during the thinning procedure from 	�
� is at most

k���hdc� lg lg ne��

Proof of Lemma ���� We conclude that with probability at least ���n�� the number of undelivered

messages destined for any given target group after the thinning procedure terminates is at most

k��hdc� lg lg ne��
After the �thinning� procedure from ���� terminates we will use the �spreading� procedure

from ���� to spread out the un�nished requests so that each processor has at most one un�nished

message to deliver� As part of the spreading procedure we will allocate one processor to do the

��



book
keeping associated with each memory request and we will ensure that all messages associated

with the request know the identity of this processor� During this procedure of our simulation the

three messages associated with a request may be sent to various processors but they will keep the

book
keeping processor informed about their whereabouts�

After the �spreading�� we will use the �deliver to target groups� procedure from ���� to deliver

the rest of the messages to their target groups in O�lg lg n� steps� With probability at least ��n��

�for any constant �� every message will be in its target group at the end of the �deliver to target

group� procedure� Furthermore� each sender will have at most � undelivered messages to send and

�by Lemma 
���� the number of un�nished messages in a target group will be less than k� At this

point we can sort the messages in the target groups by destination� After the sorting� each sender

will have at most one message to send�

We now wish to allocate a contiguous block of c� processors from the appropriate target group

to each un�nished destination �for a su�ciently large constant c��� We wish to do the allocation

in such a way that all senders know which processors are allocated for their destination� We do

this as follows� If a destination is the destination of fewer than c� requests we simply deliver them�

Otherwise� we allocate c� processors for the destination� The processors allocated will be the �rst

c� processors with requests for that destination�

At this point we wish to send all but O�n��c� lg lgn� of the messages in any group to their �nal

destinations� We will say that a message is bad if its destination is also the destination of at least

c� lg lgn other messages� We will use the following lemma�

Lemma ��
 With probability at least � � n�� �for any constant �� at most O�n��c� lg lgn� of the

messages in any group of messages are bad�

Proof� This proof is similar to the second part of the proof of Lemma 
�
� By Property 
��

of the hash functions� the destinations are chosen from a ��� n�
�

�
universal family of hash func


tions with high probability� In this case� the probability that a given message is bad is at most

�
��n lg lgn
c� lg lgn

�
n�c� lg lgn� By Stirling�s approximation� this is at most ��
e�c��

c� lg lgn which is at most

��c� lg lgn for c� � �e� Therefore� the expected number of bad messages in a group is at most

�n��c� lg lgn�

We now use Theorem 
�� �the bounded di�erences inequality� to prove that with high probability

the number of bad messages in a group is not much more than the expectation�

As in the case of Lemma 
�
� the bounded di�erences inequality would be straightforward if

the hash functions h�� h�� and h� were chosen uniformly at random from the set of functions from

��� � � � � m� to ��� � � � � n�� We would take as the random variable xi the destination of the ith message

and we would let Y be the random variable denoting the number of bad messages� If we change

the value of one of the xis the value of Y would change by at most c� lg lgn � �� Therefore� we

would obtain the following inequality�

��



Pr�Y � �E� � � exp���E����n�c� lg lg n � ������

However� since h�� h�� and h� are in fact drawn from the family R
d�j
m�n� we again follow the ap


proach used in the proof of Lemma ��� in ��	�� Consider the independent random variables a�� � � � � apn�

Let Y be a random variable denoting the number of bad messages� If we change the value of

one of the ais then� with high probability at most �n lg lg n�
p
n messages get new destinations�

�This follows from Property 
�� of the hash functions�� Each new destination could cause at most

c� lg lgn � � messages to become bad� Thus� changing one of the ais could change Y by at most

�
p
n lg lg n�c� lg lg n � ��� So� by the bounded di�erences inequality�

Pr�Y � �E� �
� exp���E���

p
n
�n�lg lg n���c� lg lgn � ����� �

which is su�ciently small�

Given Lemma 
��� it su�ces to route c� lg lgn messages to each destination� This can be done

in O�lg lg n� steps since the messages are sorted by destination� At this point we have �nished the

�thinning and deliver to target groups� procedure� The book
keeping processor associated with

every memory request now cancels the request if at least two of its messages were delivered� If the

request is canceled then the third message is deleted�

��� Divide into sub�problems and duplicate

Our goal is to divide the ocpc into lg lg n�� sub
ocpcs� each of which has n� � n�� lg lgn proces


sors� Each sub
ocpc will work on the sub
problem of delivering the messages corresponding to a

particular group of messages� For each sub
ocpc we wish to make lg��n�� copies of the relevant

sub
problem� all of which will reside in its processors �� � � � � n����

We will use an approximate compaction tool to divide the problem into sub
problems and to

make copies of the problem� �For similar tools see ��� ��� ��� ����� Given

� an n
ocpc in which at most s senders each have one message to send�

� a set of �s receivers which is known to all of the senders�

the �s� �� approximate compaction problem is to deliver all of the messages to the set of receivers

in such a way that each receiver receives at most one message�

The following lemma is from �����

Lemma ��� For any positive constant � there is a positive constant c� such that the �s� dc� lg lg ne�
approximate compaction problem can be solved in O�lg lg n� communication steps with failure prob�

ability at most ��p
s � s��

�




We proved in the previous subsection that� with high probability� when the �thinning and

deliver to target groups� procedure terminates� the number of undelivered messages is at most


n lg lg n��c� lg lgn� Furthermore� every message is in the target group of its destination and each

processor will have at most one message left to send�

The number of un�nished target groups is at most the number of un�nished messages� which

is at most


n lg lg n��c� lg lgn � n���� lg��n��k�dc� lg lg ne�
for a su�ciently large c�� Therefore� with high probability �by Lemma 
���� we can compact

one message from the �rst processor in each un�nished target group to the �rst n���� lg��n��k��
processors in the n
ocpc� Having done that� we can copy each of the un�nished target groups to

one of the �rst n���� lg��n��k� target groups in the n
ocpc� Next� we can use doubling to make

lg��n�� copies of each un�nished target group� All of these copies will reside in the �rst n����k�

target groups in the n
ocpc�

At this point� the entire problem is copied lg��n�� times into the �rst n����k� target groups in the

n
ocpc� These n����k� target groups will form the �rst half of the processors in the �rst n�
processor

sub
ocpc� Our objective is to use the �rst sub
ocpc to solve the sub
problem of delivering the

messages in the �rst group of messages� The sub
ocpc will do this by simply ignoring all messages

that are not in the �rst group of messages�

The lg��n�� copies of the entire problem can now be copied into the remaining lg lg n�� � �

sub
ocpcs� The jth sub
ocpc will ignore all messages that are not in the jth group of messages�

Our next goal is to allocate the processors n���� � � � � n� of each sub
ocpc such that for each

outstanding memory request �i�e�� for each memory request which has the property that at most one

of its three messages was delivered during the previous procedure�� we allocate lg��n�� processors�

�These lg��n�� processors will do the book
keeping concerning the request in the lg��n�� copies of

the sub
problem��

The allocation can be done in the same way that the problem was split and copied because the

number of remaining requests is at most 
n lg lg n��c� lg lgn�

��� Route messages for each sub�problem

Consider a particular copy of a particular sub
problem� Lemma 
�� tells us that with high proba


bility at most O�n��c� lg lgn� of the memory requests from the �n memory requests associated with

this sub
problem remain� Although each processor has at most one message to send� there is a

book
keeping processor allocated to each memory request and each message knows the identity of

its book
keeping processor� Furthermore� there is a block of c� contiguous processors allocated to

each un�nished destination and each sender knows which processors are allocated to its destination�

For i � f�� �� 
g we will say that a message is an �i
message� if it obtained its destination using

��



hash function i�

We now route messages according to the c�
collision access schedule from Section 
 of Diet


zfelbinger and Meyer auf der Heide�s paper ���� Each round of the access schedule is de�ned as

follows�

For i � �� �� 
�

a� For all destinations d in parallel� repeat dc� lg��c��e times� Each i
message with destination d

that is not already waiting at one of the c� processors allocated to d picks a random processor

from those allocated to d and sends there� Each of the allocated processors will only accept

one message�

b� Each destination d now checks whether there are any other i
messages destined for d �that is�

whether there are any i
messages with destination d that are not at the allocated processors��

To do this� the �rst of the c� processors allocated to d sends to d� Also� any i
messages with

destination d that have not yet been successful in reaching one of the c� processors allocated

to d send to d� Then the �rst of the c� processors allocated to d tells d whether or not it had

a collision�

c� For each destination d� if all of the i
messages destined for d are at the processors allocated to d

then these messages are delivered� Otherwise� no requests are delivered�

d� The book
keeping processor associated with each memory request checks which of the messages

associated with the requests were delivered� If at least � of the messages associated with the

request have been delivered then the request is canceled and the third message is deleted�

Note that no destination receives more than 
c� messages during the c�
collision access schedule

routing� We use the following lemma�

Lemma ��� During one round of the c��collision access schedule routing procedure any processor

that is the destination of at most c� i�messages gets all of the i messages with probability at least ���

�and none of them with the remaining probability�� Any processor that is the destination of more

than c� i�messages receives none of them�

Proof� If d is the destination of at most c� i
messages then the probability that one of them fails

to reach the allocated processors in � � dc� lg��c��e attempts is at most c���� ��c��
� � ����

In their analysis of the c�
collision access schedule routing procedure �as implemented on a

c�
collision dmm�� Dietzfelbinger and Meyer auf der Heide de�ne a hypergraph H � �V�E� for a

set of memory requests x�� ���� x�n with vertex set V � fvrt j � � r � 
� � � t � ng and hyperedge

set E � ffv��h��xi�� v��h��xi�� v��h��xi�g j � � i � �ng�

��



In light of Lemma 
��� we can view the c�
collision access schedule routing as a process on H � In

each round� the process removes each node with degree at most c� �i�e�� the i
messages destined for

the processor are delivered� with probability at least ���� Then the process removes each hyperedge

that consists of only one node �i�e�� memory requests are canceled if at least two of the messages

associated with the request are delivered��

Following Dietzfelbinger and Meyer auf der Heide� we will say that H is s
good if

�� The largest connected component in H has at most � � ��s� lgn nodes�

�� Every set A � V intersects fewer than jAj � s hyperedges from E in at least � points�

Dietzfelbinger and Meyer auf der Heide prove the following lemma� �The proof presented in ���

is based on the assumption that h�� h�� and h� are chosen uniformly at random from the set of

functions from ��� � � � � m� to ��� � � � � n�� However� the lemma is also true if h�� h�� and h� are chosen

randomly from R
d�j
m�n��

Lemma ��
 The probability that H is s�good is � � O�n�s��

We will prove the following lemma�

Lemma ��� Suppose that H is s�good for some positive constant s� Then the probability that any

particular memory request is satis�ed after O�lg lgn� rounds of routing according to the c��collision

access schedule is at least ����

Proof� Let Ht denote the hypergraph obtained by applying t rounds of the c�
collision access

schedule routing process to H � Dietzfelbinger and Meyer auf der Heide have made the following

observation ����

Observation ��� If H is s�good and A � V is a component of Ht for some t � 	� then A contains

at most 
jAj��c� � �� � 
s��c� � �� nodes of degree larger than ct in Ht�

We will use the following lemma�

Lemma ���� Suppose that H is s�good� Let r be an edge in a component of size � � s of Ht for

some t � 	� If c� � �
 then with probability at least � � exp������� the component of r in Ht
�

has size at most �����

��



Proof� Let b � 
�� � s���c� � ��� By Observation 
�� and Lemma 
��� the expected number of

nodes in the component of r in Ht
� is at most ��� � b��� Using a Cherno� bound� we see that the

probability that there are at most ��
�����b��� � ���� nodes is at least �� exp�������b��������

Using Lemma 
��	� we conclude that for some constant c� � s� with probability at least 
���

O�lg lgn� rounds of the c�
collision access schedule routing procedure reduce the size of the compo


nent of a given memory request r to at most c�� We conclude the proof of Lemma 
�� by observing

that as long as c� 	 
s � �� O��� rounds will� with probability at least 
��� further reduce the

component to size ��

��� Combining problem copies and combining sub�problems

Let us focus our attention on the jth sub
problem� Let Sj be the set of messages that were in

the sub
problem when it was created� Let S�
j be the subset containing all messages in Sj that are

delivered in at least lg��n���� copies of the c�
collision access schedule routing procedure�

Note that when the c�
collision access schedule routing procedure terminates the lg��n�� proces


sors per memory request that were allocated in the �divide and copy� procedure to do book
keeping

can inform all of the the messages in Sj �in the �rst copy of the sub
problem� whether or not they

are in S�
j �

We will prove the following lemma�

Lemma ���� With probability at least � � n�� �for any positive constant �� each set S �
j has the

following properties�

�� Each processor is the destination of at most ��c� messages in S�
j�

�� Each memory request in the jth sub�problem will be satis�ed if the messages in S�
j are delivered�

If each set S�
j has the properties described in Lemma 
��� �as it will� with high probability�� then

we can satisfy all of the memory requests in O�lg lg n� steps by routing the messages in S �
S
j S

�
j �

These messages form a ��c� lg lg n��
relation� so we can use the routing algorithm in ���� to route

the messages�

To prove Lemma 
��� we use the following lemma and the following observation�

Lemma ���� With probability at least ��n�� �for any constant �� every memory request in every

sub�problem is satis�ed in at least lg��n���
 of the lg��n�� copies of the c��collision access schedule

routing procedure�

��



Proof� Suppose that every sub
problem is such that the corresponding hypergraph is s
good�

�Lemma 
�� shows that this is so with high probability� as long as s is chosen to be su�ciently

large�� Consider a particular memory request in a particular sub
problem� Lemma 
�� shows that

the probability that this request is satis�ed in any given copy of the sub
problem is at least ����

A Cherno� bound shows that with probability at least � � ne� lg��n����� the request is satis�ed in

at least lg��n���
 copies� The lemma follows by summing the failure probabilities over particular

memory requests�

Observation ��� If x�� x� and x� are the three messages in a memory request that is satis�ed in

at least � copies of the c��collision access schedule routing procedure then there is a pair of messages

from fx�� x�� x�g such that both of the messages in the pair are satis�ed in at least ��
 copies of the

procedure� Similarly� if x� and x� are the two messages in a memory request that is satis�ed in at

least � copies of the c��collision access schedule routing procedure then at least one of x� and x� is

satis�ed in at least ��� copies of the procedure�

Proof of Lemma ����� The fact that �with high probability� each memory request in the jth sub


problem will be satis�ed if the messages in S�
j are delivered follows from Lemma 
��� and from

Observation 
��� To see that each processor is the destination of at most ��c� messages in S�
j note

that a message is a member of S�
j only if it is delivered in at least lg��n���� copies of the c�
collision

access schedule routing procedure� However� we proved in the previous section that each destination

will receive at most 
c� messages in each copy of the procedure� Therefore� at most ��c� messages

that have the same destination will be included in S�
j � This completes the proof of Lemma 
����

� Construction and evaluation of the hash function

In the simulation algorithm we have assumed that a hash function h was chosen uniformly at

random from the family R
d�j
m�n and is available to every processor for constant time evaluation�

When concurrent
read is available in the simulating model� a hash function in use can be kept in

the shared memory� and be read as necessary in constant time� The exclusive
read nature of the

ocpc model� together with the fact that the function h � R
d�j
m�n is represented by a polynomial

number of memory words� imply a more subtle situation� A straightforward implementation is to

keep a copy of the function h at each processor� However� this implies polynomial overheads in both

the time of preprocessing for distributing all copies� and in the space dedicated for this function at

each processor� In the remainder of this section we describe an e�cient implementation in which

the function requires only a total of linear space� and its evaluation increases the simulation delay

by at most a constant factor�

��



��� The family of hash functions

Our basic approach is� �i� replace the class R
d�j
m�n with a class whose functions h have similar

properties� but can be represented in O�n�� space� where ��� � � � �� the modi�ed class will

still satisfy Properties 
���
�
� �ii� make O�n���� copies of the selected function h� and �iii� make

sure that at each simulation step the number of processors that need to read a component of h is

bounded by O�n��� lg lgn�� an average of O�lg lgn� per copy� thereby enable the use of an e�cient

lg lgn
relation algorithm for the read operation� �A similar approach of making duplicates to

reduce contention was used in ����� in implementing a perfect hash function on the qrqw pram��

To implement the approach sketched above we �rst modify the de�nition of R
d�j
m�n from Section 
��

as follows� To choose a random hash function h � ��� � � � � m� � ��� � � � � n� from the modi�ed class�

one �rst chooses a function f uniformly at random from Hd
m�

p
n

and integers a�� � � � � apn uniformly

at random from ��� � � � � n� as before� Similarly� the function r will be chosen uniformly at random

from Hnj�n as before� However� we will use Siegel�s space
e�cient implementation of the class Hnj �n

from �
�� which we will explain below and we will make sure that the implementation satis�es an

additional property �see Lemma ��� below�� The function s will no longer be chosen uniformly at

random from H�
m�nj � Instead� it will be chosen as follows� Let t � j�� and let d be a su�ciently

large constant� We will choose functions s�� s�� � � � � st uniformly at random from the class Hd
m�n�

and we will de�ne s�x� to be the tuple hs��x�� � � � � st�x�i� Finally� we will de�ne h�x� � �r�s�x�� �

af�x�� mod n as before� The following lemma shows that Property 
�� still holds for the new family

of hash functions�

Lemma 	�� Let � � � be arbitrary and let d and j be large enough relative to �� Let S � ��� � � � � m��

n � jSj � n������ If s is chosen randomly as described above then Pr�s is ��perfect on S� is at least

� � n���

Proof� The probability that two given distinct points x� y � S will collide under s� i�e�� that

s�x� � s�y�� is at most ���n��t� since the si�s are ��� d�
universal� The probability that any pair of

points from S will collide is therefore at most�
jSj
�

�
���n��t � n������j�j��

The lemma follows by taking j 	 � � ����	�

��� The implementation of Hnj�n

We now describe Siegel�s space
e�cient implementation of the class Hnj �n from �
���

Siegel de�nes a �p� �� d� h��weak concentrator H as a bipartite graph on the sets of vertices I

�inputs� and O �outputs�� where jI j � p� and jOj � p�� that has outdegree d for each node in jI j�
and that has� for any h inputs� edges matching them one
by
one with some h outputs�

��



A �p� �� d� h�
weak concentratorH is used to construct a function F by storing d random numbers

from �	� � � � � p��� at each node of O� On input i� F �i� is computed by evaluating a polynomial hash

function of degree d� � whose coe�cients are determined by the numbers stored at the neighbors

of i in O� Siegel showed that the family of hash functions F so de�ned is a ��� h�
universal family

of hash functions mapping �	� p� �� 	� �	� p� ���

Let H be a �n�� �� d� n�
�

�
weak concentrator� Siegel showed that the Cartesian product G � H t

is a �nj � �� dt� n�
�

�
weak concentrator� The graph G can therefore be used to construct a ��� n�
�

�


universal family of hash functions mapping ��� ���� nj� to ��� ���� nj�� One obtains a ��� n�
�

�
universal

family of hash functions mapping ��� � � � � nj � to ��� � � � � n� by taking the results modulo n�

In the following lemma� we observe that Siegel�s implementation of Hnj �n only requiresa graph H

with small out
degree� This property will be useful in our OCPC implementation�

Lemma 	�� There exists a graph H that is �n�� �� d� n�
�

��weak concentrator� and which also has the

property that every output of H has degree at most �dn���
�

�

Proof� We use a probabilistic construction� as given in �
�� for �nding an �n�� �� d� n�
�

�
weak

concentrator� Suppose that each input of H chooses its d �distinct� neighbors uniformly at random�

Siegel proves that the probability thatH is not a �n�� �� d� n�
�

�
weak concentrator is at most n���������
�As long as �� is su�ciently small�� We can now use a Cherno� bound to show that the degree of

each output of H is su�ciently small as required�

��� Constructing the hash functions

The graph H from Lemma ��� can be constructed and be built into the machine when the machine

is built� Each of the n� inputs has d neighbors� A set of n��� processors is selected and each

processor in the set is given the name of these dn� neighbors�

A new hash function h from the modi�ed family is constructed in O�lgn� steps as follows�

��� Select �appropriately at random� s�� ��� st and f and distribute to all processors�

��� Each of the nj� output nodes of G � H t chooses dt values in �	� ��� nj � ��� A set of n��j�

processors is selected for each given output node and each processor in the set is given the dt

values associated with the output node�

�
� The values a�� ���� apn are generated�
p
n sets of

p
n processors are selected and each processor

in a set i is given the value of ai�

Recall that it may be the case that a new function needs to be constructed �a �re
hash� opera


tion�� when the selected one does not satisfy the required properties� �This occurs with polynomially

small probability for each parallel step� and with high probability after a polynomial number of

steps��

�	



��� Evaluating the hash function

At each simulation step� the hash function is computed for all memory addresses in O�lg lg n� time�

as described next� Let S be the set of 
n lg lgn requests from ��� ��� m�� Recall from Section ��� that

h�x� � �r�s�x�� � af�x�� mod n�

Each processor executes the following steps for each request x�

��� Compute s��x�� ���� st�x��

��� Compute the names of the neighbors of hs��x�� ���� st�x�i in G�

�
� Read the values corresponding to the neighbors of

hs��x�� ���� st�x�i in G�

��� Apply r to hs��x�� ���� st�x�i�

��� Compute f�x��

��� Read af�x��

��� Compute r�s�x�� � af�x��

The executions of Steps ������ and � are in constant time� The following lemma of Dietzfelbinger�

given in ��
�� is central to the analysis of the other steps�

Lemma 	�� Let X�� ���� Xn be 	 � � valued� d�independent� equidistributed random variables� Let

� � E�Xi�� Then� for n � d������

Pr

�
nX
i	�

�Xi � �� � 


�
� ��n��d��


d

where � is a constant that depends on d but not on n�

Claim 	�	 In Step �� with high probability� for every y in ��� ���� n�� �i�e�� for every input of H�

there are at most

O�n��� lg lg n� pairs �i� x� such that x � S and si�x� � y�

Proof� Note that the set of values si�x� � � � x � m is d
independent� Following Kruskal�

Rudolph� and Snir ��
� we use Lemma ��
� Fix a y and i and let Xb be a 	
� random vari


able which is � if and only if si maps the b�th member of S to y� � is ��n�� Let 
 be jSj�n�� Then

the probability that si maps more than �
 to y is O�n�d��������� Choose d large enough to sum

over all i and y�

��



We conclude that at most O�n��� lg lg n� processors want to read the information about input

y� and so we have a �target group O�lg lg n� relation�� The requests can be routed using �����

Claim 	�
 In Step �� with high probability� for every output y of G there are at most O�n��j� lg lg n�

values x in S such that hs��x�� ���� st�x�i is a neighbor of y in G�

Proof� Fix y � hy�� ��� yti� Let Li denote the neighbors of yi in H � Note that jLij � �dn���� � If

s�x� has a neighbor y in G then si�x� is in Li� for � � i � t�

The probability of this event is at most ��d�n�
�

�t� Let Xb be a 	
� random variable which is �

if and only if the b
th member x of S has s�x� mapped to y in G� Apply Lemma ��
� � is at most

��d�n�
�

�t by Lemma ���� let 
 be jSj��d�n���t� The probability that there are more than 
 such

values x is at most �n��d������j���
Given the claim� we have a �target group O�lg lg n� relation�� The requests can be routed using

�����

It remains to analyze Step �� By Property 
��� with probability at least � � n�� each group

needs to be read by at most �
p
n lg lg n of the requests� so we have a �target group � lg lgn relation��

The requests can be routed using �����

� Conclusions

In this paper we have described a work
optimal algorithm which simulates an n lg lg n
processor

erew pram on an n
processor ocpc with O�lg lg n� expected delay� The probability that the delay

is longer than this is at most n�� for any constant ��

It would be interesting to determine whether this is the fastest possible work
optimal simulation�

It would also be interesting to discover how much delay is required in order to simulate a crcw

pram� We have recently derived an algorithm that simulates an n
processor crcw pram step

on an n
processor ocpc in time O�lg k � lg lg n� with high probability� where k is the maximum

memory contention of the crcw step�

The simulation algorithm assumes that k is known� This assumption can be removed by aug


menting the ocpc model to include a single bus which can be used to synchronize all of the

processors� each processor can broadcast a  �� bit and every processor can determine whether or

not any processor is broadcasting a  �� at any given time�

We note that the lg k term in the simulation algorithm is provably necessary� as implied by an

��lg k� expected time lower bound for broadcasting the value of a bit to k processors on a qrcw

pram �and hence on an ercw�� by Gibbons� Matias and Ramachandran �see ������

Evidently� the performance of the crcw simulation depends on the maximum contention� A

model that accounts for memory contention was recently proposed in ��
�� In this model the run

time of each step is a function of the memory contention encountered at this step� Thus� in the

��



sub
model of simd
qrqw�log� pram� a step in which the maximum memory contention is k is

assumed to take lg k time units�

The crcw simulation implies that an n
processor simd
qrqw�log� pram algorithm can be sim


ulated on an n
processor ocpc� augmented with a bus� with delay O�lg lgn� with high probability�

We note that the simd
qrqw�log� pram is strictly stronger than the erew pram�

References

��� H� Alt� T� Hagerup� K� Mehlhorn and F�P� Preparata� Deterministic Simulation of Idealized

Parallel Computers on More Realistic Ones� SIAM Journal of Computing �� ������ �	���
��

��� R�J� Anderson and G�L� Miller� Optical Communication for Pointer Based Algorithms� Techni


cal Report CRI ��
��� Computer Science Department� University of Southern California� Los

Angeles� CA �		��
	��� USA� �����

�
� B� Bollob�as� Martingales� Isoperimetric Inequalities and Random Graphs� in Combinatorics

�eds A� Hajnal� L� Lov�asz� and V� T� S�os�� Colloq� Math� Soc� J�anos Bolyai 
� �North Holland

����� ��
��
��

��� J�L� Carter and M�N� Wegman� Universal Classes of Hash Functions� Journal of Computer and

Systems Sciences �
 ������ ��
�����

��� B�S� Chlebus� K� Diks� T� Hagerup� and T� Radzik� New Simulations between CRCW PRAMs�

Proc� Foundations of Computation Theory � � Lecture Notes in Computer Science �
�

�Springer
Verlag ����� ����	��

��� M� Dietzfelbinger and F� Meyer auf der Heide� How to Distribute a Dictionary in a Complete

Network� Proceedings of the ACM Symposium On Theory of Computing �� ����	� ��������

��� M� Dietzfelbinger and F� Meyer auf der Heide� Simple� E�cient Shared Memory Simulations�

Proceedings of the ACM Symposium On Parallel Algorithms and Architectures 
 ����
� ��	�

����

��� M�M� Eshaghian� Parallel Computing with Optical Interconnects� PhD thesis� USC �����

��� M�M� Eshaghian� Parallel Algorithms for Image Processing on OMC� IEEE Transactions on

Computers� 	���� ������ �����

�

��	� M�M� Eshaghian and V�K�P� Kumar� Optical Arrays for Parallel Processing� Proc� Second

Annual Parallel Processing Symposium ������ ������

�




���� A�V� Gerbessiotis and L�G� Valiant� Direct Bulk
Synchronous Parallel Algorithms� Proceedings

of the Scandinavian Workshop on Algorithm Theory � �������

���� M� Ger�eb
Graus and T� Tsantilas� E�cient Optical Communication in Parallel Computers�

Proceedings of the ACM Symposium On Parallel Algorithms and Architectures 	 ������ ������

��
� P�B� Gibbons� Y� Matias� and V� L� Ramachandran� The QRQW PRAM� Accounting for

contention in parallel algorithms� Proceedings of the ACM�SIAM Symposium On Discrete Al�

gorithms 
 ������ �
������

���� P�B� Gibbons� Y� Matias� and V� L� Ramachandran� E�cient Low
Contention Parallel Al


gorithms� Proceedings of the ACM Symposium On Parallel Algorithms and Architectures �

������ �
������

���� J� Gil and Y� Matias� Fast Hashing on a PRAM � Designing by Expectation� Proceedings of

the ACM�SIAM Symposium On Discrete Algorithms � ������ ������	�

���� J� Gil� Y� Matias� and U� Vishkin� Towards a Theory of Nearly Constant Time Parallel Algo


rithms� Proceedings of the IEEE Symposium on Foundations of Computer Science �� ������

������	�

���� L�A� Goldberg� M� Jerrum� T� Leighton and S� Rao� Doubly Logarithmic Communication

Algorithms for Optical Communication Parallel Computers� To appear in this journal� �A

preliminary version appeared in Proceedings of the ACM Symposium On Parallel Algorithms

and Architectures 
 ����
� 
		�
	���

���� L�A� Goldberg� M� Jerrum and P�D� MacKenzie� An ��
p

lg lg n� Lower Bound for Routing in

Optical Networks� To appear in this journal� �A preliminary version appeared in Proceedings

of the ACM Symposium On Parallel Algorithms and Architectures � ������ ���������

���� J� J�aJ�a� An Introduction to Parallel Algorithms� �Addison
Wesley� ������

��	� R�M� Karp� M� Luby and F� Meyer auf der Heide� E�cient PRAM Simulation on a Distributed

Memory Machine� Pre
print� ����� �A preliminary version of this paper appeared in Proceedings

of the ACM Symposium On Theory of Computing �	 ������ 
���
����

���� A�R� Karlin and E� Upfal� Parallel Hashing ! an E�cient Implementation of Shared Memory�

Proceedings of the ACM Symposium On Theory of Computing �
 ������ ��	�����

���� R�M� Karp and V� Ramachandran� Parallel Algorithms for Shared
Memory Machines� Hand�

book of Theoretical Computer Science� Volume A� �J� van Leeuwen� editor� Elsevier� ���	�

��������

��



��
� C�P� Kruskal� L� Rudolph� and M� Snir� A Complexity Theory of E�cient Parallel Algorithms�

Theoretical Computer Science� �� ����	� ����
��

���� F�T� Leighton� Methods for Message Routing in Parallel Machines� Proceedings of the ACM

Symposium On Theory of Computing �	 ������ ������

���� Y� Matias� Highly Parallel Randomized Algorithmics� PhD thesis� Tel Aviv University� Israel�

�����

���� Y� Matias and U� Vishkin� Converting High Probability into Nearly
Constant Time ! with

Applications to Parallel Hashing� Proceedings of the ACM Symposium On Theory of Computing

�� ������ 
	��
���

���� F� Meyer auf der Heide� C� Scheideler� and V� Stemann� Fast simple dictionaries and shared

memory simulation on distributed memory machines� upper and lower bounds� Pre
print �����

���� P�D� MacKenzie� C�G� Plaxton� and R� Rajaraman� On Contention Resolution Protocols and

Associated Probabilistic Phenomena� Proceedings of the ACM Symposium On Theory of Com�

puting �� ������ ��
����� To appear�

���� C� McDiarmid� On the Method of Bounded Di�erences� Surveys in Combinatorics� London

Math� Soc� Lecture Notes Series �	� �Cambridge Univ� Press� ����� ��������

�
	� W�F� McColl� General Purpose Parallel Computing� in Lectures on Parallel Computation�

Proc� ���� ALCOM Spring School on Parallel Computation� Edited by A�M� Gibbons and

P� Spirakis� �Cambridge University Press ���
� 

��
���

�
�� K� Mehlhorn and U� Vishkin� Randomized and deterministic simulations of PRAMs by parallel

machines with restricted granularity of parallel memories� Acta Informatica� ���

��
��� �����

�
�� A�G� Ranade� How to Emulate Shared Memory� Journal of Computer and Systems Sciences

	� ������ 
	��
���

�

� S�B� Rao� Properties of an Interconnection Architecture Based on Wavelength Division Multi


plexing� Technical Report TR
��
		�


		��
�� NEC Research Institute� � Independence Way�

Princeton� NJ 	���	 USA� �����

�
�� J�H� Reif� editor� A Synthesis of Parallel Algorithms �Morgan
Kaufmann� ���
��

�
�� A� Siegel� On Universal Classes of Fast High Performance Hash Functions� Their Time
Space

Tradeo�� and Their Applications� Proceedings of the IEEE Symposium on Foundations of

Computer Science �� ������ �	����

��



�
�� E� Upfal� E�cient Schemes for Parallel Communications� Journal of the ACM �� ������ �	��

����

�
�� E� Upfal� A Probabilistic Relation Between Desirable and Feasible Models of Parallel Compu


tation� Proceedings of the ACM Symposium On Theory of Computing �� ������ ��������

�
�� E� Upfal� A� Wigderson� How to Share Memory in a Distributed System� Journal of the ACM

�	 ������ ��������

�
�� L�G� Valiant� General Purpose Parallel Architectures� Chapter �� of Handbook of Theoretical

Computer Science� Edited by J� van Leeuwen �Elsevier ���	��

��


