
An On-LineAlgorithm for Improving Performancein
Navigation

Avrim Blum
�

Schoolof ComputerScience
Carnegie Mellon University

Pittsburgh,PA 15213
avrim@theory.cs.cmu.edu

PrasadChalasani
Schoolof ComputerScience
CarnegieMellon University

Pittsburgh,PA 15213
chal@cs.cmu.edu

Abstract

We considerthefollowing scenario.A point robotis placedat somestartlocation � in a 2-
dimensionalscenecontainingorientedrectangularobstacles.Therobotmustrepeatedlytravel
backandforth between� andasecondlocation

�
in thescene.Therobotknowsthecoordinates

of � and
�

but initially knows nothingaboutthepositionsor sizesof theobstacles.It canonly
determinetheobstacles’locationsby bumpinginto them.We wouldlike anintelligentstrategy
for the robotso that its trips between� and

�
botharerelatively fast initially, andimprove as

moretrips aretakenandmoreinformationis gathered.
In this paperwe describean algorithmfor this problemwith the following guarantee:in

thefirst ����� trips, theaveragedistancepertrip is at most �
	 � �� � � timesthelengthof the
shortest� - � pathin thescene,where� is theEuclideandistancebetween� and

�
. Wealsoshow

a matchinglower boundfor deterministicstrategies. Theseresultsgeneralizeknown bounds
on the one-tripproblem. Our algorithmis basedon a novel methodfor makingan optimal
tradeoff betweensearcheffort andthegoodnessof thepathfound. We improve this algorithm
to a “smooth” varianthaving the propertythat for every ����� , the robot’s � th trip length is
�
	 � �� � � timestheshortest� - � pathlength.

A key ideaof thispaperis amethodfor analyzingobstaclescenesusingatreestructurethat
canbedefinedbasedon thepositionsof theobstacles.

1 Intr oduction

Thispaperaddressesanabstractionof thefollowing typeof scenario.Imagineyouhave justmoved
to a new city. Youareatyourhomeandmusttravel to youroffice,but youdonot have amap(let’s
assumeyou know the coordinatesof your office; you just do not know thestreetlayout). Several
papersin recentliteraturehave discussedstrategiesthatcanbeusedto planone’s routein this type
of situationso that the distancetraveledis not too much longerthanthe shortestpath. But now,
supposeyou have reachedyour office, spentthe day there,andit is time to go home. You could
retraceyourpath,but you now havesomeinformationaboutthecity (whatyousaw onyourway to
work in themorning)andwouldlike todobetter. Thenext morningyouhaveevenmoreinformation
andsoon. Whatis astrategy thatallowsyourpathtakeneachtimeto begood,andto improvewith
experience?Perhapsyoumightevendesignyourpathsexplicitly soasto gainmoreinformationfor
futuretrips.

Specifically, weconsiderthescenario(examinedin [17, 7, 11, 10]) wherethereis astartpoint �
andtarget � in a2-dimensionalplanefilled with non-overlapping,axis-parallelrectangularobstacles,
�
Thismaterialis baseduponwork supportedunderNSFNationalYoungInvestigatorgrantCCR-9357793andaSloan

FoundationResearchFellowship.

having cornersat integral coordinates.A point robotbeginsat � , andknowsits currentpositionand
thatof thetarget,but it doesnotknow thepositionsandextentsof theobstacles;it only findsoutof
theirexistenceasit bumpsinto them.In theproblemconsideredin previouspapers,therobot’sgoal
is to travel from � to � asquickly aspossible.We call this theone-tripproblem.For this problem,
if � is the Euclidean � -� distance,[7] presentsan algorithm that guaranteesan ��� � ��� ratio of
the distancetraveled to the shortestpath length,which is known to be optimal for deterministic
algorithms[17]. Here,we considerthe situationwherethe robot may be askedto makemultiple
trips between� and � . We would like an intelligentstrategy for therobotso that its trips between
� and � bothareasfastascanbehopedfor initially, andimprove asmoretrips aremadeandmore
informationis gathered.For instance,aftermakingonetrip thatachievesthe above ��� � ��� ratio
therobothassomepartial informationaboutthescene.Canit exploit this informationto improve
its ratio on thesecondtrip? Canit continueto exploit new informationgainedon future trips? It
is importantto notethatpartial informationmaynot helpif it is somehow not sufficiently relevant.
Thusthe challengeis to performaswell aspossibleon eachtrip given the informationgainedso
far, andat thesametime acquireinformationthatwill beusefulfor improving on later trips. This
makesthemulti-trip problemmoredifficult thanthesingletrip problem.

Themulti-trip problemhasaspectsof botha machinelearningandanon-linealgorithmsprob-
lem. As in machinelearningsettings,wewouldlike ouralgorithmto improve its performancewith
experience.As in standardon-linealgorithmssettings(e.g.,[16]), decisionstherobotmakesnow
mayaffectthecostsit experiencesin thefuture.However, ourscenarioalsoexhibitskey differences.
In particular, unlike typical on-line algorithmsproblems,herethe algorithmmayhave partial in-
formationaboutthe future— namely, the positionsof obstaclesthat lie aheadthat it hasalready
encountered.Thereis alsoa valueassociatedwith informationgatheringin oursettingin thesense
thatsuchinformationmay(ormaynot)provetobeusefulonthefuturetripsmade.Onecontribution
of our work is a methodfor analyzingproblemsof this sortandquantifyingtheinformationthat is
mostrelevantin thissetting.

Westudythecaseof orientedrectangularobstaclesfor two mainreasons.First,scenescontain-
ing suchobstaclesarecomplex enoughto embodymany of the strategic issuesthat arisein path
planning.For example,thequestionof whenoneshould“giveup” onadifficult region in thescene
andmove to a new region thatmight bemorepromising;alsothequestionof which informationis
worth gathering.Second,if oneallows arbitrarily shapedobstacles,it is known [7] that onecan-
not performmuchbetterin the worstcasethana simplemindeddepth-first-searchstrategy. Thus,
suchscenesdo not allow oneto demonstratetheoreticallythe valueof a usefulapproachby the
performanceguaranteesachieved.

An extendedabstractof thispaperappearsas[6].

1.1 Resultsand goodnessmeasures

Giventhebasicscenariodescribedabove,thefirst questionto beaddressedis themeasureof success
to use. Clearly we do not want to give high marksto a solution in which the robot makesan
artificially long first trip andthensubsequently“improves” on future trips. Insteadwe would like
an algorithmthat performsaswell aspossibleat all times. For this reason,we will analyzeour
algorithmsusingatypeof “competitiveanalysis”.Theideaof competitiveanalysisis tocomparethe
performanceof one’salgorithmto thebestonecouldhopeto doif therewerenomissinginformation
(in ourcase,if amapof thescenewasknown). For instance,for theone-tripproblem,Papadimitriou
andYannakakis[17] showed that for any deterministicalgorithmandinteger � �"! , thereexist
sceneshavingEuclidean� -� distance� (thewidth of thethinnestobstacleis takenas1 unit), forcing
thealgorithmto travel #$� � ��� timesthelengthof theshortestpath.Subsequently, Blum, Raghavan
andSchieber(BRS) [7] showed an algorithm having a performanceguaranteethat matchesthis
lowerbound.

For themulti-trip problemweconsidertwo similarmeasuresof performance.In thecumulative

2

measure,we comparethe total distancetraveled on the first % trips to the length of the optimal
path. Our first main result is a deterministicstrategy having the propertythat given % &(' , it
guaranteesthat the total distancetraveledin thefirst % trips is at most)�* +-, '�%/. , where + is the
lengthof theshortest0 -1 path. (If %32 ' the distancebecomes)�* +-%. .) We alsoshow thatup to
constantfactorsthis is the bestguaranteeachievableby a deterministicstrategy. In particular, for
any deterministicstrategy andany ' and %�45' , thereexist sceneswhichforcethestrategy to travel
distance6$* +-, '�%/. onthefirst % trips. Oneproblemwith thecumulativemeasureis thatit doesnot
force the algorithmto performaswell aspossibleon each trip. For this reason,we alsoconsider
a per-trip measurein which we separatelyboundthecostof eachtrip. Our secondmain resultis
an improvementon thecumulative algorithmhaving thepropertythat for all 78&�' , the 7 th trip of
therobothaslengthat most)�* +89 '�: 7 . . This is optimalin thesensethat(up to constantfactors)it
meetsthecumulative lowerboundsimultaneouslyfor all 7 .

1.2 Main ideasand the basicstrategy

Thecoreof ourresults(andthebulk of thepaper)is amethodfor achieving asmoothsearch-quality
tradeoff: smoothlytradingoff in a singletrip the explorationcostwith the goodnessof the path
found. Specifically, we designanalgorithmthatgivenany %34 ' , searchesa distance)�* + , '�%.
andfinds an 0 -1 pathof lengthat most)�* + 9 '�: %. . In otherwords,at a costof only 1 timesthe
costof theBRSalgorithm(1�; , % in our case)we find a paththat is a factorof 1 betterthanthe
BRSguarantee.In addition,our methodfor achieving this tradeoff hasthepropertythat it canbe
performedin a “piecemeal”fashion(somewhat like the piecemeallearningof [5]). In particular,
thesearchingcanbeperformeda little bit ata timeoneachtrip. This latterpropertyis whatallows
us to turn our cumulative algorithminto onethat is more like a learningalgorithm,with optimal
per-trip performance.As moretrips aremade,bettersearchesareperformed,andcheaperpathsare
foundfor thefuturetrips. An exampleof anexploratorytrip achieving thedesiredtradeoff is given
in Fig. 1.

Our main ideafor achieving this search-qualitytradeoff is a methodfor analyzinganobstacle
sceneanddeterminingwhich piecesof informationarethemostimportant.In particular, we show
thata treestructurecanbedefinedin thescene,wherethenodesareportionsof certainobstacles
andthe edgesareshortpathsfrom a nodeto its children. This treecanbe tailoredto the search
costandpathquality desired.Our searchalgorithmis essentiallyanonline strategy to traversea
sequenceof treesoptimally, andthepathfoundis aconcatenationof specificroot-to-leafpathsfrom
eachtree. Besidesits usefor achieving a search-qualitytradeoff on a singletrip, thetreestructure
enablesusto spreadthesearchover severaltrips: sincethereis a “short” pathfrom theroot to each
node,we cansuspendour tree-traversalon onetrip andresumethe explorationon a later trip by
moving quickly to thepointwherewe stopped.Thetreestructureis definedformally in Section5.

1.3 RelatedWork

Versionsof the multi-trip problemhave beenaddressedin the framework of reinforcementlearn-
ing. Thrun[18] describesheuristicsfor pathimprovementin scenescontaining(possiblyconcave)
obstaclesandpresentsempiricalresults.KoenigandSimmons[12] considera similar problemon
graphs.In othermachinelearningliterature,Chen[9] considershow thecomputationtimefor path-
planningin a knownscenecanbe improvedby makinguseof (portionsof) solutionsto previous
pathplanningproblemsin thesamescene.

Betke,RivestandSingh[5] considerarelatedproblemof completelyexploringanenvironment,
but with therestrictionthattherobotmustreturnto thestartto refuelevery < stepsfor somedistance
< . They call this piecemeallearningandprovide algorithmsfor thecaseof a boundedregion with
axis-parallelrectangularobstacles.

Lumelsky andStepanov [13, 14, 15] describesomevery simplealgorithmsthat canbe used

3

Figure1: An exampleof aninitial searchtrip, =
>3? . Thethick line showsthe @ - A pathfound(@ is at center
top, A is at thebottom),andthethin andthick linesarethesearchpath.Therobotoccasionallywill backup,
which accountsfor thedeadends.Obstacleshit areshaded.In each“fencegroup” (seeSection5.1) fences
1 and3 are lightly shadedandfence2 is darkly shaded.This figure is a screendumpof a demonstration
programthatallowsa userto createa “simplescene”(seeSection4) andthenrunvariousalgorithmson it.

4

to solve the one-tripproblemfor arbitrary (non-convex) obstacles,having the propertythat the
distancetraveledis at mosttheEuclideanB -C distanceplus D E F timesthesumof theperimetersof
all theobstacles.

2 The model

Let G
H I�J denotethe classof scenesin which the EuclideandistancebetweenB and C is I . We
define B to be at the origin H KL K J . As mentionedabove, we assumethat the width andheightof
eachobstacleis at least1 (this in essencedefinestheunitsof I) andfor simplicity assumethattheM -coordinatesof thecornersof obstaclesareintegral. Thusnomorethan I obstaclescanbeplaced
sideby sidebetweenB and C . We assumethat whenobstaclestouch, the point robot canmove
betweenthem.

To simplify theexposition,for mostof thispaperwewill take C to betheinfinite verticalline (a
“wall”) MON I andrequiretherobotonly to getto any pointon this line; this is theWall Problemof
[7]. Our algorithmsareeasilyextendedto thecasewhere C is a point, usingthe“Room Problem”
algorithmsof [7] or [3], andwe describethismodificationin Section8.

We modeltherobotashaving only tactile sensors;thatis, it discoversanobstacleonly whenit
“bumps”into it. It will beconvenientto assume,however, thatwhentherobothitsanobstacle,it is
told whichcornerof theobstacleis nearestto it, andhow far thatcorneris from its currentposition.
As in [7], our algorithmscanbe modifiedto work without this assumptionwith only a constant
factorpenalty. We describethesemodificationstowardtheendof thepaper.

Considera robot strategy P for making Q trips betweenB and C . Let P�R H S-J be the distance
traveledby therobotin the T th trip, in sceneS . Let U�H S-J bethelengthof theshortestobstacle-free
pathin thescenebetweenB and C . We definethecumulativeQ -trip competitiveratioas

V H PWL IXL QJ NZY�[\]_^ G8` a b
P ` c b H S-J
QU�H S-J L

where P ` c b H S-J Ned cR f�g P�R H S-J is the total distancetraveled by the robot in Q trips. That is,V H PWL IXL QJ is theratiobetweentherobot’saveragedistancetraveledin Q trips,and U . Wedefinethe
per-trip competitiveratio for the T th trip as

V R H PWL I�J NZY�[\]_^ G8` a b
P�R H S-J
U�H S-J E

Giventhis notation,our mainresultscanbedescribedasfollows. First, we show for any Q , I ,
anddeterministicalgorithm P , that V H PWL IXL QJ Nih H j I�k QJ . Second,we describea deterministic
algorithmthatgiven Q�lmI achieves V H PWL IXL QJ Non H j I�k QJ . Finally, weshow animprovementto
thatalgorithmthatachieves V R H PWL I�J N�n H j I�k T J for all T8loI . Noticethatthelatteralgorithmis
optimalin thatit matchesthelowerboundsimultaneouslyfor all Q . I.e., gc d cR f�g j I�k T Nmn H j I�k QJ .
Thesimplestof theseresultsis thelowerbound,whichwedescribefirst.

Conventions.Wewill usethewordsup,down,left, andright tomeanthedirectionsp
q/L r8q/L r M L p M
respectively. Whenwe saypoint s is above, below, behind,or aheadof a point t we will mean
that s is in the p
q/L r8q/L r M L p M directionrespectively from t . Finally, vertical(horizontal)motion
is parallelto the q (respectively, M) axis. At any point in time, thecurrentcoordinatesof therobot
(whichareknown to therobot)aredenotedby H M L q_J .

3 A Lower Bound for u Trips

Theorem 1 (Q -trip Cumulative Lower Bound) For Q�l5I , theratio V H PWL IXL QJ isat leasth H j I�k QJ ,
for anydeterministicalgorithm P .

5

s

Figure2: A 4-coloringof thebrick patternfor thelowerbound.

Proof: Sincev is deterministic,anadversarycansimulateit andplaceobstaclesin w asfollows.
Recallthat x is thepoint y z{ z | .

The adversaryfirst placesobstaclesof fixed height } ~��(� � and width 1, in a full “brick
pattern”on theentireplane,asshown in Fig. 2, with x at thecenterof theleft-sideof anobstacle.
(Recallthatthepointrobotcan“squeeze”betweenbricks).Theadversarysimulatesv onthisscene,
noteswhich obstaclesit hastouchedat theendof � trips, thenremovesall otherobstaclesfrom the
scene.This is the final scenethat the adversarycreatesfor the algorithm,andsayit contains�
obstacles.The brick patternensuresthat v musthave hit at leastonebrick at every integer � -
coordinate,so ���i� . Further, this arrangementforcesthe robot to hit a brick at every integer
� -coordinateonevery trip. Whenever it hitsa brick, it mustmove verticallyupor down a distance
~ , soits total � -trip distancev$� � � is at least���~ .

We now show thatthereis a pathfrom x to thewall of lengthat most ��y � v � � � ~/| . Imaginethe
full brick patternto bebuilt out of four kindsof bricks(red,blue,yellow andgreen,say)arranged
in a periodicpatternasshown in thefigure.This arrangementhasthefollowing property:for each
color, to go from a point on anobstacleof thatcolor to a point on any otherobstacleof the same
color, the robotmustmove a distanceat least ~ . Out of the � obstacleshit by therobot,at least
�5� � musthave thesamecolor, sayblue.Soregardlessof how therobotmoved,sinceit hasvisited
�5� � blueobstacles,we have v$� � �-�5��~/� � , which implies �����_v$� � � � ~ .

Weclaimthereis anon-negativeinteger ��� � � suchthatatmost � � obstacleshavecenters
at the � -coordinate�_~ . This is becausea givenobstacleintersectsat mostone � -coordinateof the
form �_~ , andthereare � obstacles.Thus,thereis apathto � thatgoesverticallyto the � -coordinate
�_~ , thenhorizontallyalongthis � -coordinate,goingaroundatmost � � obstacles.Thetotal length
of thispathis atmost } ~ � ���3} ~ � ���3� , which is atmost � ~ � � since���5� and � ���5} ~ .
Since�����_v � � � � ~ , thispathis in factof lengthatmost � � �_~/v � � � . Thusthe � -trip ratio is at least
v � � � �/y � � � �_~/v � � � | . Recallingthat v � � � �5���~ , this is at least �� �

� ��� ���o�$y � ��� �| .
It is not hardto seethatthis lowerboundalsoholdsfor thecasewhere� is apoint ratherthana

wall.

6

4 The � -trip CumulativeAlgorithm: Preliminar ies

We now givesomepreliminaryobservationsneededfor ouralgorithm.
We begin by assumingfor simplicity that the algorithm knows the length � of the shortest

obstacle-freepathfrom � to � . In Section5.1weshow thatthisassumptioncanberemovedby using
a standard“guessinganddoubling” trick. Onesimpleobservationis thattheshortestobstacle-free
� -� pathmustlie entirelywithin a windowof height � centeredat � , sinceany � -� paththatleaves
thewindow mustbe longerthan � . In theremainderof thepaperwewill refer to therectangular
region of height � centered vertically at � , and extendinghorizontally between� and � as “the
window”. This observationimmediatelyleadsto aneasyalgorithmto achieve a cumulative ¡ -trip
ratioof ¢�£ ¤ ¥ for ¡O¦5§ :

First trip: Usinga depth-first-search,exploretheentirewindow. Thiscanbedoneby walking
atotal distanceof ¨
© ª�«¬ . Computetheshortestobstacle-free - ® path(of length ª).

Remainingtrips: Usetheshortestpath.

Clearlytheaveragetrip lengthis ¢�£ �-¥ , sothecumulative § -trip ratio is ¢�£ ¤ ¥ .
Thus,thecases¡°¯±¤ (the BRSalgorithm)and ¡3¦�§ canbedonewith known methods.In

fact, at thehigh level, our optimalcumulative strategy for ¤O²�¡3²�§ trips is similar to the § -trip
algorithmjustdescribed:

First trip: Somehow performan “exploratory” walk of length ¨
© ª�³ «´ ¬ , in sucha way that
an –® path µ of length ¨
© ª·¶ «¸ ´ ¬ is discovered.
Remaining ´8¹�º trips: Usethepath µ .

Theaveragetrip lengthof thisalgorithmis ¢�£ »¼ £ �-½ §�¡$¾�£ ¡W¿�¤ ¥ �8¶ §�À ¡¥ ¥·¯o¢�£ �8¶ §�À ¡¥ , sothe
cumulative ¡ -trip ratio is ¢�£ ¶ §�À ¡/¥ . Thus,asmentionedin the introduction,the key questionis
how to find a paththat is a factor Á$£ ½ ¡¥ betterthantheBRSguaranteewhile traveling a distance
thatis only ¢�£ ½ ¡¥ longer.

In orderto makethemain ideasclear, we first describeour algorithmfor a classof sceneswe
call simplescenesthatcapturemostof thedifficultiesin designingonlinenavigationalgorithms(for
boththeone-tripand ¡ -trip problems).In Section6 weshow how to extendthisalgorithmto handle
the generalcase.A sceneis simpleif (a) all obstacleshave the sameheight Â andwidth 1, and
(b) theobstaclecornershave coordinatesof the form £ Ã Ä Å_Â/¥ for integer Ã and Å . For instance,the
obstaclesin thelower boundof Section3 form a simplescene.Observe that in a simplesceneone
canmove unimpededverticallyalongany integer Æ -coordinatewithoutencounteringany obstacles.

Notice that if Âm²��-À ½ §�¡ thena brute-forcestrategy thatmovesforwardwhenpossibleand
otherwisearbitrarilygoesaroundany obstacleencounteredwill hit atmost § obstaclesandtherefore
travel a distanceat most ¢�£ §��-À ½ §�¡¥�¯ ¢�£ �8¶ §�À ¡¥ , which is our desiredbound.Thus,we may
assumein whatfollowsthat ÂÈÇ5�-À ½ §�¡ .
Conventions. For convenience,in a simplescenewe definethepositionof anobstacleÉ to bethe
coordinatesof themidpointof the left edgeof theobstacle.A horizontalpathwhoseÊ coordinate
is a multiple of Â is said to hit an obstacleif it hits the obstacle’s center(asopposedto grazing
the top or bottomedge),i.e., if it reachestheobstacle’sposition. We reiteratethatwe will usethe
phrase“the window” to refer to the rectangularregion of height � centeredvertically at � , and
extendinghorizontallybetween� and � . As mentionedabove,we will assumein whatfollows that
ÂÈÇ5�-À ½ §�¡ .

7

2L

1

2

3

4

5

2h

A

B

s

Figure3: A fencein a simplescene.TheobstaclesË Ì Í Î Í Ï Í Ð_Í Ñ Ò with thick boundariesform a fence.The
dashedline connectingpoints Ó and Ô crossesthe fence. The shadedregionsarethe bandsof the fence.
Note: since Õ°Ö3× , thewindow in this figureshouldreally betaller thanits width. However for thesakeof
clarity, in thisandall figuresin this papertheverticaldimensionhasbeencompressedconsiderably.

5 The Algorithm for SimpleScenes

5.1 Fencesand the One-trip BRSAlgorithm

Onekey notionusedin boththeone-tripBRSalgorithmandour Ø -trip algorithmis thatof a fence. Ù
An upfenceÚ isasequenceof Û obstaclesatpoints Ü Ý5Ü Þ ß à áOÜ Þ ß ß à Ü Ý5Ü â ß à á�Ü â ß ß à ã ã ã à Ü Ý5Ü Û�ß à á�Ü Û�ß ß
suchthat áÈÜ Þ ß-äoå8æ , áÈÜ Û�ßèç5æ , andfor éëê Þ à âà ã ã ã à Ûìå5Þ :

Ý5Ü é�ßìäíÝ5Ü é�îmÞ ß (1)

áÈÜ é îmÞ ß�êïá�Ü é�ß�î�ð (2)

SeeFig. 3. A downfencehasthesamedefinitionexcept áÈÜ Þ ß8çmæ , á�Ü Û�ß8ä å8æ , andEquation2
is replacedby á�Ü é îmÞ ß�êëá�Ü é�ß-å�ð . The é th obstacle(countingfrom the left) of fence Ú
ñ is
denotedby Ú�ñ Ü é�ß andits coordinatesare Ü Ý�ñ Ü é�ß à á/ñ Ü é�ß ß . For eaché , therectangularregion of
height ð whoseoppositecornersare Ü Ý5Ü é�ß à á�Ü é�ß ß and Ü Ý5Ü é�îmÞ ß à á�Ü é�îoÞ ß ß is calleda band.
A fencecanthusbeviewedasacontiguoussequenceof bandsextendingacrossthewindow.

A point ò is saidto be left (resp. right) of a fence Ú if an imaginaryhorizontalline from ò
to the left (resp. right) doesnot intersectany obstacleof Ú . A pathis saidto crossthe fenceif it
connectssomepoint left of thefenceto somepoint right of thefence,andstaysinsidethewindow.
Any paththatcrossesafencehasverticallengthat leastð sinceit mustcompletelycrosssomeband
(seeFig. 3).

It is easyto seehow a robot canfind a fencewith vertical motion at most â æ . Specifically,
startingfrom thebottomof thewindow, anup fencecanbefoundasfollows:

Repeatuntil at topof thewindow (i.e. ó8ô3õèÕ): walk to theright until anobstacleis hit, then
move up to thetopof theobstacle.

Theone-tripBRSalgorithmrestrictedto simplescenes(andassumingæ is known) reducesto
thefollowing:

Initially, walk from ö down to thebottomof thewindow. Until thewall is reached,walk to the
right, alternatelybuilding upanddown fencesacrossawindow of height Î Õ centeredat ö .

÷
This is calledasweepin [7].

8

2L

1

2

3

4

5

6

7

88’

9

10

Figure4: Thefencesø�ù·ú5û ü ý þ ý ÿ ý �_ý � � and ø��-ú5û � ý � ý � ý � ý ü 	 � aredisjoint. ø�ù and ø�
8ú5û � ý � ý � � ý � ý ü 	 �
arenot disjoint sincethe bandof ø�
 between� � and9 overlapsthe bandof ø�ù between3 and4. In fact,
onecancrossboth ø�ù and ø�
 at a total costof only by traveling between� � and � . A greedystrategy
for constructinga fencesuchas ø�� disjoint from thepreviously foundfence ø�ù might beto go up andover
obstacle� � until obstacle4 is hit, andthendown around4 to reachobstacle8. However, this typeof strategy
mightbeexpensive,asshown in thenext figure.

The robot never walks backwardin the BRS algorithm,so its total horizontalcost is � , and
since����� , thiscostis only a smallorderterm.Notethateveryobstaclehit by therobotis partof
somefence.Thusevery time therobotspends� � (vertically) to build a fence,it is alsoforcing the
optimaloffline pathto spendat least� to crossthefence.Soif ������� � � , thecompetitive ratio is��� � ��� . Thecase������� � � is eveneasierto handle:therobothitsatmost � obstacles(sincethey
have width 1 andtherobotneverwalksbackwards),soits total verticalcostis atmost ������� � � .

We saythat two fencesaredisjoint if their bandsdo not intersecteachother(seeFig. 4). Be-
causethebandsof disjoint fencesdo not overlap,any paththatcrosses� disjoint fencesmustpay
(vertically) at least � � . For the -trip probleman intuitively reasonableapproachis to extendthe
BRSideaasfollows: On eachtrip, makenew fencesthataredisjoint from previous fences.If on
eachtrip onecouldfind new disjoint fences“cheaply” (

��� ��� cost),andonecouldcrossold fences
cheaply(

��� ��� cost),thenthiswould resultin anoptimalalgorithm.However, we know of no way
to find new disjoint fencesthis cheaply. The naive strategy of extendingeachnew fencegreedily
andusingpreviouslyfoundpathsto bypassobstaclesthatenterexisting fencescanbetooexpensive
in certainscenes.Examplesof suchscenesaregivenin [8].

Our approach,ashintedin Section4, is to give up on trying to createnew disjoint fenceson
eachtrip, andinsteadto try to find agroupof disjoint fencesall atonceononetrip. Specifically, we
do thefollowing. Supposethat ��!#"$��� � �� for some"%�#& (recallthat � � is theobstacleheight,
and "%�'& is aneasycaseto handle).Thenourstrategy is:

9

h L a

2L

fences:k /a workO(kL)

=
n k

O(L) path

Figure5: High-level view of the optimal (-trip strategy. First trip: creategroupsof fenceswith short
group-crossingpaths.Remainingtrips: follow theseshortpaths.

First trip: Build a sequenceof fencegroupsin which eachgroupconsistsof) * + , disjoint
fences(alternatebetweengroupsof up-fencesandgroupsof down-fences)until the
wall is reached.Ensurethat

(a) thecostof building eachgroupis -/. (0�1 ,
(b) an -/. 0�1 lengthpathcrossingeachgroup(i.e. goingfrom the 2 -coordinateof

theleftmostobstacleof theleftmostfenceto the 2 -coordinateof therightmost
obstacleof therightmostfence)is found,and

(c) the right endof eachgroup-crossingpathis the left endof the next group-
crossingpath.

Remaining (4365 trips: Follow thegroup-crossingpathsto thewall .

The first trip is shown schematicallyin Fig. 5. To seewhy the above strategy achieves an7�8 9 :�; <>=
ratio, assumingwe cansomehow satisfy(a), (b) and(c), noticethat theaverageonline

costper trip to getpasteachfencegroupis
7�8 ?�=

(amortizingthe
7�8 <>?�=

building cost). Crossing
eachgroupcoststhe optimal offline pathat least

8 <>; @$= A�BC?�;>9 :�; <
, so the averageonline trip

lengthis within an
7�8 9 :�; <>=

factorof optimal,asdesired.

A Search-Quality Tradeoff. Since eachfence group coststhe offline optimum path at least?�; 9 :�; <
to cross,the robot will find at most

9 :�; <
groupsbeforereachingthe wall. Thus the

total lengthof its first trip is
7�8 <>? 9 :�; <>=�B'7�8 ?�D :�<>=

, andthetotal lengthof thegroup-crossing
pathsis

7�8 ? 9 :�; <>=
. Therefore,thisachievesthesearch-qualitytradeoff mentionedearlier.

The Doubling Strategywhen
?

is unknown. Notethatif
?

is notknown,wecanjustbegin with
a guessof

?�BE:
, andif thewall hasnot beenreachedafterbuilding

9 :�; <
fencegroups,we can

doubleour guessandrepeatthe entireprocedure.Thusthereis only a constantfactorpenaltyfor
notknowing

?
.

Theadvantageof building anentirecollectionof fenceson onetrip is thatthisallows therobot
to makemoreeffective useof its movements. In [8] a detailedexampleis given wherebuilding
fencesone-by-oneonconsecutive tripscanbetoo expensive. In fact acrucialpropertyof thefence
collectionswe will defineis that the F th obstacleof a fenceis alwayseasilyreachableeitherfrom
theprecedingobstacleon thesamefenceor thecorrespondingobstacleof thefenceabove.

10

1

p

A

B

C

2

3

4

5

6

7

8

9

10

11

12

Figure6: A sceneshowing a GIHKJ fence-tree,wherethe root L�M N O P is obstacle1. The shadedobstacles
arethenodesof the tree,andthedark linesarethe edges.Dif ferently-shadedobstaclesconstitutedifferent
fences;otherobstaclesarenot partof any fence.For instance,obstacle4 is node L�M N J P , obstacle7 is nodeL�Q N G P , andobstacle8 is node L�Q N J P . Note that the treedefines3 disjoint fenceswith 4 obstacleseach. If
we hadfailed to follow the Fence-TreeRulesandinsteadhadmadeL�Q N J P beup-right from L�Q N G P (that is,
obstacleR) thenfences1 and2 wouldnotbedisjoint.

5.2 Fence-trees

We would like to build a collectionof SCTVU WX>Y up-fencesacrossthe window, andfind an Z�[\�]
lengthpathcrossingthecollection,while payinga costof only Z�[^>\�] . Our key ideais to definea
treestructurewhosenodesareobstaclesin thescene,andwhoseedgesare“short” pathsbetween
thenodes.Thesenodeswill constitutethedesiredcollectionof fences,andthepathfrom theroot
nodeto therightmostnodeis thedesiredZ�[\�] lengthpaththatcrossesthecollection.Furthermore,
traversingall edgesof this treewith acostof Z�[^>\�] is equivalentto building thedesiredcollection
of fences.

In orderto definethetreestructurewe introducesomenotationandterminology. Thenodesof
this treewill bedenotedby _�` [a�] , for bcTed f g>f h h h f S and aiTed f g>f h h h f j (j is roughly g \�k l
andwill be fully specifiedlater). Thereasonfor this notationis that _�` [a�] will turn out to bethea th obstacleof the b th fence.Thecoordinatesof obstacle_�` [a�] aredenotedby [mK` [a�] f n�` [a�]] .
We say an obstacleo is down-right (up-right) from an obstaclep if o is the first obstaclehit
whenmoving to theright from thebottom(top) of p . Thefollowing rulesthendefinethe Srqsj
fence-treewith root _ct [d] (anexampleis givenin Fig. 6).

Fence-TreeRules.

1. For u>vxw y G y z z z y { , L�| N O P is down-right from L�| }�M N O P .
2. For ~'v6w y G y z z z y � , L�M N ~�P is up-rightfrom L�M N ~��6O P .
3. For u>vxw y G y z z z y { :

For ~'v6w y G y z z z y � :
If ��| N ~��6O P��s��| }�M N ~�P ,

then L�| N ~�P is up-rightfrom L�| N ~��6O P
elseL�| N ~�P is down-right from L�| }�M N ~�P .

(E.g.,in Fig. 6, obstacle7 is up-rightfrom obstacle6, andobstacle8 is down-right
from obstacle4.)

Thus eachnode _�` [a�] (except the root node _ct [d]) is definedto be either up-right from

11

��� � �e��� �
or down-right from

��� ��� � ���
. We will call that “defining obstacle”of

��� � ���
its par-

ent, and call the up-right or down-right path from the parentto
��� � ���

(consistingof a vertical
portionof height � followedby a horizontalportion)anedgein the tree. That is, if rule 2 is used
or if

��� � �i�'� �
is to the right of

��� ��� � ���
then

��� � �i�'� �
is the parentof

��� � ���
andotherwise��� ��� � ���

is theparentof
��� � ���

.
Thefencetreerulesdefinea naturalbinary rootedtreestructure.Thetreestructureis visually

apparentin Fig. 6. The �E��� fence-treein fact definesexactly thegroupof fencesthatwe want
to build:

Theorem 2 (Fence-Tree) Let � be an obstaclewith � coordinate
�4�

in a simplescene,and let���E� � ����I� � �� � . Then,theobstaclesin a ���I� fencetreewith root � form � disjointup-fences
with � obstacleseach, with � asthefirst obstacleof theleftmostfence.

Proof: It iseasytoseethattheobstacles
�c� � ���

definedbyRule2 constituteafence
�c�

. In addition,
for all �¡ � , theobstacles

��� � ���
,
�i¢E� £ ¤>£ ¥ ¥ ¥ £ � constitutea fence

���
sinceeachis to theright

of andexactly � higherthanthepreviousobstacle.By Rule1, the initial obstacleof eachfenceis
down-right from theinitial obstacleof thefence

��� ���
above it. Therefore,thefencesaredisjoint if

andonly if for each
�i¢E¤>£ ¦>£ ¥ ¥ ¥ £ � ,

��� � ���
is to theright of

��� ��� � ���
, andthis is guaranteedby

Rule3.
It is easyto verify that thevalue � ¢ � � ������ � �� � is sufficient to ensurethateven the fence�¨§
thatstarts�I� ¢ ��� �� � below thebottomof thewindow extendsat least

¤ �
above theobstacle� , andthusall fencescrossthewindow.

Recallthatwewantedto definethefencegroupsothatthereis a cheap(© � ��� length)paththat
crossesthegroup.Onesuchpathis thepathfrom therootof thetreeto therightmostobstacleonthe
rightmostfence(strictly speaking,thispathdoesnotcrosstherightmostfence,but it canbecheaply
extendedto onethatdoes).In fact, theuniquepathin thetreefrom theroot

�c� � � �
to eachnodehas

lengthatmost © � ��� , asweshow below.

Lemma 3 In a �E��� fence-treein a simplescene,where � ¢ � �� � and � ¢ � � � �c� � � ���� ,
(a) theuniquepathin thetreefromtheroot to each nodehaslength © � ��� , and
(b) thetotal lengthof all edgesis © � ª>��� .
Proof: Recallfirst that

ªx«r¬
and
� � ¬ . Sincetheuniquetreepathfrom theroot to any given

nodealwaysproceedsto theright, the total horizontalcostof this pathis at most
¬

. On this path,
eachdown-edgeleadsto alowerfence(andthereareonly � ¢ � �� � fences),andeachup-edgeleads
to anobstacleon thesamefence(andthereareonly � ¢ � � � ��� � � �� � obstaclesper fence). So,
thetotal verticalcostof thispathis atmost � � � � � � . Thusthetotal lengthof any suchpathis at
most

¬ � � � � � � �c¢'¬ � � � ¤ � �� �s� � � ���� � , which is © � ��� since� ¢'$��® ¯ ¬�ª�«�$��® ª .
To boundthetotal lengthof all edges,notethateachedgecanbeassociatedwith auniquenode,

namelytheoneon its right (thechild). Thus,thesumof thevertical portionsof all edgesis at most� � �I� �'� �I¢ © � ª>��� . By fencerules2 and3, the lengthof the horizontalportion of the edge
associatedwith

��� � ���
is no morethanthehorizontaldistancebetween

��� � ���
andits predecessor��� � �e��� �

on thesamefence.Thusthesumof thehorizontalportionsof theedgesis a most � ¬ :¬
for eachfence.This is also © � ª>��� .

Thusif therobot traversesall edgesof this treeit will have foundnot only a groupof disjoint
fencesbut alsoacheappaththatcrossesall of them.

As notedin theproof above, thereare �I� obstaclesin the fence-tree,and �I�#� «rª �#� ¢© � ª>��� . Thuswe would like therobotto traversethefence-treewith a costproportionalto � times
thenumberof obstaclesin thefences,or acostproportionalto thetotal lengthof thetreeedges.We
remarkherethat the fence-treemustbe traversedonline; a simpleapproachbasedon depth-first-
traversalmaynot beefficient sincethealgorithmdoesnot know whereexactly thenodesare: the
robotcanlocate

��� � ���
onlyafterit haslocatedbothits potentialparents

��� ��� � ���
and
��� � �e��� �

or

12

at leastafterit hasdeterminedwhetheror not °K± ² ³e´�µ ¶4·�°K± ¸�¹ ² ³�¶ . So,intuitively thedifficulty
is that beforevisiting a nodesuchas º�± ² ³�¶ we needto visit both potentialparentnodes,which
maybein very differentpartsof thetree.(Actually, onecouldimagineanalgorithmthatattempted
to visit nodesbeforefinding bothparents,andonly laterverifiedwhetheror not thosenodeswere
actuallylegally partof thetree;ouralgorithmdoesnotdo this.)

Conventions. In thesubsequentsections,we will find it convenientto associateanedgein thetree
with theobstacleat its right end,andwe definethecoordinatesof anedgeto bethecoordinatesof
its associatedobstacle.We sayanedgebelongsto a fence º�± if its associatedobstaclebelongstoº�± . Whenwesayanobject » , suchasanedgeor obstacle,is left (right) of anotherobject ¼ wewill
meanthatthe ½ -coordinateof » is strictly smaller(greater)thanthatof ¼ . We will oftenidentify a
fencewith its rightmostobstacle;thuswhenwesay“fence º�± is to theleft of obstacle¾ ” we mean
that thelastobstacleof º�± is left of ¾ . We use ² °K± ¿ À�± ¶ to denotethecoordinatesof therightmost
obstacleof º�± , and Á º�± Á will denotethenumberof obstaclescurrentlyin º�± . To simplify thewording
of ouralgorithmswewill assumethat °KÂ4Ã'Ä , and Á º�Â$Á Ã'ÅVÆ'µ .
5.3 Finding the Fence-tree

Our algorithm builds a treeusing a conservativestrategy in the following sense. It addsa new
edgeto the currentpartial treeonly whensuchanedgeis certainto bepartof thefinal treebeing
built. In addition,the algorithmvisits a node º�± ² ³�¶ , ÇIÈCµ ¿ ³ÉÈCµ , only after both its possible
parentsº�± ¸�¹ ² ³�¶ and º�± ² ³e´�µ ¶ havebeenvisited.At any stageouralgorithmwill belocatedatthe
rightmostnodefoundsofar for somepartial fence,andtheneitheraddsa (down-rightor up-right)
edgefrom thecurrentfence,or “jumps” to anotherfence.

It is reasonabletowonderwhetheranefficientfence-tree-traversalstrategyexiststhatonlywalks
alongthetreeedgeswhenjumpingfrom onefenceto another. Wedonotknow of any suchstrategy;
our algorithmmay often shortcutto anotherfencewithout necessarilywalking alongtreeedges.
Evenwith this freedomto walk outsidethe tree,it is importantto notethata badorderof visiting
thenodesof thefence-treemaymakethejumpsprohibitivelyexpensive.

Thekey problemsin designinga traversalstrategy thereforeare(a)decidingtheorderin which
the nodeswill bediscovered,and(b) designingthe jump procedures.ProcedureFindFenceTree
in Figure7 findsthedesiredfence-tree,usinga recursive procedureRaise describedin Fig. 8. In
theseprocedures,it shouldbeunderstoodthatif the“wall” ½�Ã#Ê is reachedat any time, therobot
haltsandtheproceduresterminate.TheprocedureJumpDownLeft ² Ç ¶ andJumpDownRight ² Ç ¶
takethe robot from the lastobstacleof the currentfence º�± to the lastobstacleof the next lower
fence º�± Ë�¹ . Theseproceduresaredescribedin Figs9 and10. In all theprocedures,the“retracetoº�± ² Ì$¶ ” statementsareexecutedby simply retracingthepathusedto reachthecurrentpositionfromº�± ² Ì$¶ .

Westartwith anintuitivedescriptionof thealgorithm.Thealgorithmbegins(FindFenceTree)
by finding thefirst obstaclein eachfenceandplacingitself at thefirst obstacleof thetop-mostone.
It thencalls the recursive procedureRaise ² µ ¿ Í ¶ . In generalfor Î6ÏeÇ , the job of Raise ² Ç ¿ Î ¶ is
to raiseall fencesÇ andlower thatarecurrentlybehind º¨Ð , asfar aspossiblegiventheconstraints
imposedby thelocationof º¨Ð . (For ÇcÃeµ ¿ Î�Ã#Í , this meansto raiseall thefencesuntil they each
have Å obstacles).

TheRaise procedureis a bit complicated,sois perhapsbestdescribedthroughtheexampleof
Fig. 6. In thisexample,Raise ² µ ¿ Í ¶ is first calledatobstacle1,andthealgorithmknowsonly about
obstacles1, 5,and9. Raise beginsby addingnew obstaclesto its currentfence(in line 4) solongas
thesearelegalwith respectto constraintsimposedfrom above,until it hasovershotthefencebelow
it. In theexample,theseareobstacles2, 3, and4. Onceit reachesobstacle4, Raise realizesit is to
theright of thefenceº¨Ñ below it (formally, theconditionsof theinnerwhile loopbecomesatisfied),
andwill try to makesufficientprogresson º¨Ñ (andany othersthatarebehindandbelow ºc¹ , in this
caseº�Ò). Unfortunately, becausethecurrentobstacle(number4) of fenceºc¹ is too highrelative to

13

1 procedure FindFenceTree
2 Move to theright until atanobstacleÓ thisdefinesÔcÕ Ö × Ø
3 for Ù�Ú Û�Ü to Ý do
4 Add a down-right edgeto defineÔ�Þ Ö × Ø Ó
5 end
6 Retraceto ÔcÕ Ö × Ø Ó
7 ß�à á â ã�Ö × ä å Ø Ó
8 end

Figure7: Themainprocedurefor finding thefence-tree.

obstacle5 on fence Ô¨æ , the algorithmcannotsimply adda down-right edge(formally, Down(j) is
not satisfied)from obstacle4 to discover thenext obstacleof fence Ô¨æ . So,thealgorithmrunsthe
JumpDownLeft Ö × Ø procedureto reachthe last obstacle(number5) of fence Ô¨æ , andcalls RaiseÖ Ü>ä × Ø recursively to raisethat fence.This call to Raise beginsby finding obstacle6. At this point
therobotis to theright of thefencebelow it (theconditionof theinnerwhile loop is satisfied)andit
is justhighenoughabove thelastobstacleof Ô�ç (i.e. Down Ö è$Ø is satisfied)soit addsthedown-right
edgeto obstacle10 (line 8). At this point it goesbackto obstacle6 (sinceUp Ö Ù Ø is still satisfied)
andmakesthe up-rightedgeto obstacle7. Now, Up Ö Ù Ø is no longersatisfiedbecausethe current
fencehas”bumpedinto” theconstraintimposedby thefenceabove it. So,Raise Ö × ä å Ø dropsdown
to line 17, whereit callsJumpDownRight Ö Ü Ø to getbackto obstacle10 (usingthepathindicated
by ”p” in the figure) and thenrecursively calls itself to work on raising that fence. Finally, that
recursivecall endswith obstacle11,wepopoutof bothlevelsof recursion,andat thevery toplevel
we retraceourpathall theway to obstacle4, finally addingdown-rightedgesto obstacles8 and12
in theinnerwhile loop.

We now give a formal analysisof the formal algorithm given in Figures7-10. In order to
establishthecorrectnessandboundthecostof theseprocedures,we needto show thatcertainpre-
andpost-conditionsholdwheneverthey areinvoked.For easeof referenceweusemnemonicnames
for thevariousconditions:

Up Ö Ù Ø : Ù�ée× andanup-rightedgeis legal from fence Ô�Þ , i.e., either êKÞ�ë'êKÞ ì�Õ andí Ô�Þ í ë í Ô�Þ ì�Õ í î × , or êKÞ¨é�êKÞ ì�Õ and
í Ô�Þ í ë í Ô�Þ ì�Õ í .

Down(Ù): Ùcë�Ý anda down-rightedgeis legal from Ô�Þ , i.e., êKÞ ï�Õ4ë�êKÞ and
í Ô�Þ ï�Õ í Ûí Ô�Þ í î × .

Ord(Ù ä è): if Ùcðxè , then êKÞ¨ð'ñ ñ ñ$ð�êKò .
At Ö Ù Ø : meansthattherobotis at thelastknown obstacleof fenceÔ�Þ .
EqÖ Ù ä è$Ø means“if Ùcðxè then

í Ô�Þ í Ûrñ ñ ñ Û í Ô�ò í ”.
UnchÖ Ù ä è$Ø standsfor “if Ù�ð#è thenthe valuesof

í Ô�Þ í through
í Ô�ò í have not changed

sincethestartof theprocedureor while loopunderconsideration.”

AtNewest:meansthattherobotis at thenewestobstaclefoundsofar.

AlmostOrd:No fencehasmorethanoneobstacleto theright of a lower fence.Thatis,
for Ù�Ûr× ä Ü>ä ñ ñ ñ ä Ý , if

í Ô�Þ í Û'ó , then êKÞ Ö ó î × Øôð�êKò for all èKõ�Ù .
We prependa conditionby NOT to signifiy that the logical negationof the conditionholds.

For easyreference,in Fig. 13 we defineseveralcollectionsof conditionsthatwill beusefulin the
correctnessproofof thealgorithm.

We usethenext several lemmasto establishthe correctnessof theprocedureFindFenceTree
(Theorem9).

14

1 procedure ö�÷ ø ù ú�û ü ý þ ÿ
2 while û Up(ü)ÿ do
3 Retraceto ��� ; ��� �'ü �
4 Add anup-right edgeto ��� ;
5 while (���
	 and ����
��� ���) do
6 Retraceto ��� ;
7 if û Down(�)ÿ
8 Add adown-right edge����� ������� �
9 else

10 � � ������� �!�" ú # $ôû �$ÿ �
11 ö�÷ ø ù ú�û ����� ý �$ÿ �
12 fi
13 od
14 od
15 Let �&% bethecurrentfence�
16 if û '��
	 and �(% �����
�() ÿ
17 � � ������� �!$ö�ø *,+ $4û '$ÿ �
18 ö�÷ ø ù ú�û '��-� ý þ ÿ �
19 fi
20 end

Figure8: Recursive procedureRaise usedby FindFenceTree˙

1 procedure � � ������� �!�" ú # $ôû �$ÿ
2 Move left alongtreeedgesuntil . -coordinate= ��� ��� �
3 Move verticallydown to lastobstacleof ��� ��� �
4 end

Figure9: ProcedureJumpDownLeft to jump from currentfence /,0 to the next lower fence /,0 132 when4 0 132�5 4 0

1 procedure � � ������� �!$ö�ø *,+ $ôû '$ÿ
2 Move verticallydown until ona previously foundtreeedge�
3 Follow treeedgesto theright until at lastobstacleof �&% ��� �
4 end

Figure10: ProcedureJumpDownLeft to jump from currentfence /76 to the next lower fence /76 132 when4 6 13298 4 6

15

B

C

A

F

F

F

F

F
j-3 (m)

(m)

(m)

(m)

j-2

j-1

j

F (m-1)
j+1
:

j+1
(p)

E

N

Figure11: Showing a useof procedureJumpDownLeft to jump from ;,< = >@? to ;,< A3B = C ? . Solid-boundary
rectanglesareobstaclesfoundsofar in thetree.Theset D of rectangleswith dottedboundariesareobstacles
thatwill befoundonfence;,< A3B immediatelyafterthisprocedurecompletes.Thick solid linesaretreeedges.
Thethin solid line is thepathfollowedwhenexecutingtheprocedure.Theprocedurestartsfrom E (obstacle
;,< = >@?), retracestreeedgesto the left to point F , thengoesvertically down to G , at the top of the final
obstacleof ;3H A3B . Theset I is thesetof edgesretracedin EJF . The lengthof F�G is no morethanthetotal
lengthof theedgesin I plustheheightsof theobstaclesin D .

F (m)

A

B

C

F (p)

F (m)

F (m+1)
q

N

E

d

d+1

d+1

Figure 12: Showing a useof procedureJumpDownRight to jump from ;7K = >@? to to ;7K A3B = C ? . Solid-
boundaryrectanglesareobstaclesfoundsofar in thetree.Theset D of dottedrectanglesrepresentsobstacles
thatwill befoundonfence;7K A3B immediatelyfollowing thisprocedure.Thick solid linesaretreeedges.The
thin solid line showsthepathfollowedwhenexecutingtheprocedure.Theprocedurestartsfrom E (obstacle
;7K = >@?), goesverticallydown to a treeedge(point F), thenfollowstheedgesto theright to thefinal obstacle
of ;7K A3B (point G). Theset I is the setof edgesfollowedin F�G . The lengthof EJF is no morethanthe
lengthsof theedgesin I plustheheightsof theobstaclesin D .

16

PreRaiseL M N O P :
1. Eq(OJQ-R N M7S
R),
2. At L M P ,
3. M�T�O ,
4. U�V&W
U(X ,
5. Ord(OJQ-R N Y),

6. If OJQ-RZW�M , thenNOT Up L OJQ-R P ,
7. Up L M P .

PostRaiseL M N O P ([&\ is thecurrentfence):

1. UnchL R N M3S�R P ,
2. EqL O9Q�R N] P ,
3. OrdL OJQ-R N Y�P ,
4. If]�W
Y , U(\ ^�_�`
U(X ,
5. NOT Up L O9Q�R P ,
6. AtNewest.

OuterWhile L a,P ([&\ is thecurrentfence):

1. UnchL R N M3S
R P ,
2. EqL M N] P and]�`�M ,
3. OrdL M N Y�P ,
4. AtNewest holds after the first (if

any) iterationof theloop.

InnerWhile L a,P ([&\ is thecurrentfence):

1. UnchL R N M3S�R P ,
2. EqL M N b�P ,
3. OrdL b�Q�R N Y�P ,
4. AtNewest.

5. If]-Tcb , then all PostRaiseL b�Q
R N b�P conditionshold.

PreJDL L b�P :
1. At L b�P ,
2. U�d ^�_�W
U�d ,
3. Up L b�Q-R P .

PreJDRL e�P :
1. At L e�P ,
2. U(fZg
U(f ^�_�W
U(X ,
3. EqL O9Q�R N e�P ,
4. NOT Up L O9Q�R P ,
5. Up L e�Q�R P .

Figure13: Variousconditionsrequiredfor theformalproof.

17

Lemma 4 Whenever Raise h i j k l is called,thePreRaiseh i j k l conditionshold. Moreover, thepro-
cedure terminates,andthePostRaiseh i j k l conditionsholdat that time.

Proof: It iseasytoverify thatwhenFindFenceTree makesthefirstcall Raise h m j n l , thePreRaiseh m j n l
conditionshold.Weclaimthatif thePreRaiseh i j k l conditionsholdwhenRaise h i j k l is called,then
Raise h i j k l terminatesandthePostRaiseh i j k l conditionshold. We prove this by induction. The
basecaseis i�oqp , i.e., aninvocationof theform Raise h p(j k l : in this casethereareno recursive
callsto Raise, theinnerwhile loop is not entered,andJumpDownLeft andJumpDownRight are
not called. The only effect of Raise h p(j k l is that up-right edgesareadded(line 4) to fence r&s
until Up h p�l is nottrue. It is easyto checkthatRaise h p(j k l terminateswith all thePostRaiseh p(j k l
conditionsholding.

Next, let us inductively assumethat the claim holdsfor all calls to Raise h t j u l , for tvo�i&w
m j u u u j p . Consideran invocationof Raise h i j k l at somepoint whenthePreRaiseh i j k l conditions
hold. Beforetheouterwhile loop is entered,thecurrentfenceis r&x whereyJo�i . It is easilyverified
that the PreRaiseh i j k l conditionsimply that all the OuterWhileconditionshold at this point. By
Lemma5, when the outerwhile loop is exited, all the OuterWhileconditionscontinueto hold,
and NOT Up h i l holds. At this point, if the “If ” conditionon line 16 fails, thenwe claim that all
the PostRaiseh i j k l conditionshold. Most of theseconditionsareeasyto check,so we will only
arguethe lesstrivial ones. To arguethat condition(2) Eqh k�wzm j y l holds,notethat NOT Up h i l ,
combinedwith Ordh kJw�m j p�l and iJ{�k (from PreRaiseh i j k l) imply Eqh i�|�m j i l . This, combined
with Eqh k,w}m j i |�m l (in PreRaiseh i j k l) andEqh i j y l (in OuterWhile)impliesEqh k,w}m j y l . Condition
(5) NOT Up h kJw-m l followsfrom Eqh k9w�m j y l (which impliesEqh k9w�m j i l) andNOT Up h i l .

Thus if the condition on line 16 fails, then Raise h i j k l terminateswith the PostRaiseh i j k l
conditionsholding,andthe lemmais proved. But if the conditionon line 16 is true uponexit of
theouterwhile loop, thenwe claim that theconditionsPreJDRh ~�l hold. Againwe will only show
theargumentsfor thenon-trivial onesamongthese:Condition(2) �(�Z�
�(� ���Z�
�(� followsfrom
Ordh i j p�l and y��qi (in OuterWhile),which imply �(�����(� ��� (where ~(o�y) andfrom the truth
of theIf condition.Thereasoningto show that(5) Up h ~�wqm l holdsis asfollows. SinceAtNewest
holds(from OuterWhile),this meansthat the robothasjust found the new obstacleon r&x . Since
obstaclenumber� r&� � on r&� ��� canonly befoundafterthecorrespondingobstacleon r&� , thismeans
that � r&� ��� ���q� r&� � . Fromthecondition �(���
�(� ��� thatwejustargued,this impliesthatUp h ~9w�m l
musthold.

Now whenJumpDownRight h ~�l is invokedon line 17, by Lemma8, therobotendsupat (the
most-recentlydiscoveredobstacleof) r&� ��� . At thispointweclaimthattheconditionsPreRaiseh ~&w
m j k l hold. In particular, condition(3) ~@w�m({zk holdssince ~��zi (from OuterWhile)and i�{zk
(from PreRaiseh i j k l). (This actuallyimpliesthat ~�{zk , a fact we will usebelow). Condition(4)
Ordh kZwzm j p�l is oneof the PreRaiseh i j k l conditions,which we assumedto hold. The fact that
~v{zk implies k�wqm}��~Zwqm , andNOT Up h k�wqm l wasalreadyarguedabove, so (5) holds. The
remainingPreRaiseh ~�w-m j k l conditionsareeasyto check.

By inductionassumption,therefore,procedureRaise h ~�w-m j k l terminateswith theconditions
PostRaiseh ~Zwzm j k l holding. Of theseconditions,all but condition(1) dependonly on k andthe
number y of the currentfenceat the endof the procedure.So the conditionsPostRaiseh i j k l (2)
through(6) hold. Finally, condition(1) Unchh m j i,|vm l holdsbecauseit is anOuterWhilecondition,
andthiscompletestheproof.

Lemma 5 TheconditionsOuterWhileare invariantsfor theouterwhile loop.

Proof: Supposeall theOuterWhileconditionshold justbeforeentryof theouterwhile loop. If the
outerwhile loop is entered,anobstacleis addedto thecurrentfence r&xJo�r�� via anup-rightedge
at line 4, andat this point t}o�i . At this stageit is trivial to verify that the InnerWhileconditions
hold. By Lemma6,uponexit of theinnerwhile loop,all theinvariantsInnerWhilecontinueto hold,
andeither t(o�p , or t��qp andOrdh t j t�wqm l holds. At this point we claim that theOuterWhile

18

conditionshold: Condition (1) Unch� � � ���q� � is an InnerWhilecondition. We argue condition
(2) Eq� � � � � as follows. If ����� , thenEq� � � ��� (from InnerWhile) implies Eq� � � � � . Otherwise,
����� , in which casefrom the InnerWhileconditions,all thePostRaise� ���q� � ��� conditionshold.
In particular, Eq� �Z�z� � � � holdsandUp � �Z�z� � is false. Since �}��� we mustalsohave �����
andOrd� � � ���z� � (the failure of the conditionsof the innerwhile loop), i.e., ���(����� ��� . Since
Up � �@�z� � is false, this mustmeanthat ¡�� &�¢ ¡�� ��� . Thuswe have Eq� � � � � . This, combined
with Eq� � � ��� from the InnerWhileconditions,impliesEq� � � � � . Condition(3) Ord� � � ��� is argued
asfollows. TheInnerWhileconditionsOrd� ���-� � ��� andEq� � � ��� , andtheconditionOrd� � � �J��� �
that holdsbecausethe inner while loop wasjust exited, imply Ord� � � ��� . Finally, condition(4)
AtNewestfollowsfrom thefact thatjust beforereturningto thestartof theouterwhile loop,either
anup-rightedgewasaddedat line 4, or theinnerwhile loopwasexecuted,andAtNewestis oneof
its invariants.

Lemma 6 TheconditionsInnerWhileare invariantsfor theinner while loop.

Proof: Supposeall theconditionsInnerWhileholdatthestartof aniterationof theinnerwhile loop.
If the loop is entered,thenclearly �����q��� ��� . If at this point Down � ��� holds,thena down-right
edgeis added,and� is incrementedto �9��� . At thispoint it is easyto checkthatall theInnerWhile
conditionscontinueto hold. On theotherhand,if Down � ��� doesnot hold, thenwe claim that the
conditionsPreJDL� ��� hold: (1) At � ��� is clearlytrue. (2) ��� ���@�-��� holdsaswe observedabove.
(3) Up � ���-� � holdssince��� �����
��� andNOT Down � ��� holds.

By Lemma7,afterJumpDownLeft is executed,therobotis at ¡�� ��� . At thispointweclaimthat
all theconditionsPreRaise� ����� � ��� hold. For instance,condition(5) Ord� �J�-� � ��� holdssinceby
assumptionit heldwhentheinnerwhile loopwasentered(beingoneof theInnerWhileconditions),
andbeforethis invocationof Raise � �9�
� � ��� , nonew obstacleswerediscoveredonany fence.The
remainingRaise � ����� � ��� conditionsaretrivially checked.

By Lemma4, afterRaise is executed,all theconditionsPostRaise� ����� � ��� will hold. At this
pointweclaimthatall theconditionsInnerWhilecontinueto hold: (1) Unch� � � �,��� � is maintained
sincefences¡�� andabove areunaffectedby Raise� �@��� � ��� (this is the Unch� � � ��� condition in
PostRaise� �Z��� � ���), and ��£¤� . (2) Eq� � � ��� is maintainedfor the samereason.Conditions(3)
Ord� �Z�z� � ��� and(4) AtNewestarealsoPostRaise� ���z� � ��� conditions.Finally, we just argued
above thatthePostRaise� �J��� � ��� conditionshold,andthis is condition(5) of InnerWhile.

We establishbelow that theproceduresJumpDownLeft andJumpDownRight work correctly
if they areinvokedunderappropriateconditions.

Lemma 7 Whenever JumpDownLeft � ��� is invoked,theconditionsPreJDL� ��� hold,andthepro-
cedure terminateswith therobotat thelastknownobstacleof ¡�� ��� .
Proof: ThattheconditionsPreJDL� ��� holdwheneverJumpDownLeft � ��� is invokedcaneasilybe
seenfrom the proofsof Lemmas4 and6. The PreJDL� ��� condition ��� �����z��� implies that the
motion in line 2 (following treeedgesto the left) leadsto a point wherethe ¥ -coordinateis ��� ���
(seeFig. 11). Sinceedgesfollowed to the left only leadto the samefenceor a higherone,this
impliesthat thepoint at theendof themotion in line 2 is vertically above (andnot below) thelast
known obstacle¦ of ¡�� ��� . Thusmoving vertically down in line 3 leadsto obstacle¦ .

Lemma 8 Whenever the procedure JumpDownRight � §�� is invoked,the conditionsPreJDR� §��
hold,andtheprocedureterminateswith therobotat thelastknownobstacleof ¡&¨ ��� .
Proof: ThattheconditionsPreJDR� §�� hold whenever JumpDownRight � §�� is invokedcaneasily
beseenfrom theproofof Lemma4. Since�(¨Z���(¨ ��� , moving vertically down from ¡&¨ will lead
to a treeedgethat is to the left of ¡&¨ ��� . So following the treeedgesto the right will leadto the
most-recentlydiscoveredobstacleof ¡&¨ ��� .

FromtheaboveLemmasit is easyto prove thattheprocedureFindFenceTree findsthedesired
fence-tree:

19

Theorem 9 WhenexecutingprocedureFindFenceTree, theroboteitherfindsa complete©�ª�«
fence-tr
¬

ee,or reachesthewall (the line v®�¯) after havingfounda collectionof ° partial fences±�²
,
±&³

, . . . ,
±�´

thatsatisfythefence-treerules.

Proof: Recallthatwe have set µ ±�¶ µ to be «¸·�¹ , and º ¶ to beinfinite. After thefirst obstacleon
fence

±�² » ±&³ » ¼ ¼ ¼ » ±&½
is foundin line 4 of FindFenceTree, therobotreturnsto

±�² ¾ ¹ ¿ . At thispoint
it is easyto checkthat the PreRaise

¾ ¹ » À conditionsaresatisfied. WhenRaise
¾ ¹ » À ¿ is invoked

in line 7, by Lemma4, the robot completesthe procedure(if it hasn’t reachedthe wall) with the
PostRaise

¾ ¹ » À ¿ conditionsholding. In particular, condition(4) impliesthat thecurrentfenceupon
completionof theproceduremustbe

±&Á ® ±&½ (sinceotherwiseº Á Â�²�Ã º ¶ , which is impossible
sinceº ¶ ®qÄ). Also, conditions(2) Eq

¾ ¹ » Å ¿ and(5) NOT Up
¾ ¹ ¿ imply that µ ±�² µ�®�µ ±&³ µ ® ¼ ¼ ¼ ®µ ±&½ µ ®�µ ±�¶ µ Æ
¹�®�« .

Finally weestablishaninvariantthatwill beusefullater.

Lemma 10 TheAlmostOrd invariantholdsthroughoutanyexecutionof Raise
¾ ° » Ç ¿ .

Proof: Theonly two statementsof theprocedurewhich couldpossiblyresultin a violation of the
AlmostOrdinvariantare4 (wherean up-right edgeis added)and8 (wherea down-right edgeis
added).But whenever line 4 is reached,Ord

¾ ° » ©�¿ holds: this follows from Ord
¾ Ç ·�¹ » ©�¿ , which

is oneof the OuterWhileconditions(which we prove below to be invariantsfor the outerwhile
loop),and °JÈ Ç , which is a PreRaise

¾ ° » Ç ¿ condition.Thusevenif thenew obstacleaddedto
±�´

in
line 4 is to theright of (thelastobstacleof) a lower fence,this would betheonly suchobstacleof±�´

. Similarly, whenever a down-right edgeis addedfrom fence
±�É

(therebyaddinganobstacleto±�É Â�²
), Ord

¾ Ê ·�¹ » ©�¿ holds: this is oneof theInnerWhileconditions,which we show below to be
invariantsfor theinnerwhile loop. Thusevenif thenew obstacleaddedto

±�É Â�²
in line 8 is to the

right of somelowerfence,it wouldbetheonly suchobstacleof
±�É Â�²

.

5.4 CostAnalysis

Recallfrom Subsection5.2 thatwe would like our fence-tree-findingalgorithmto travel a distance
of nomorethan Ë ¾ Ì,Í ¿ . Thenext Theoremestablishesthis.

Theorem 11 For ©Î®¢Ï ÐÑ�Ò and «Ó®¢Ï ÐÑ�Ò-·¤Ï
³ ÔÕ Ò , the algorithm FindFenceTree for findinga

©�ªÖ« fence-treein a simplescenehastotal cost Ë ¾ Ì,Í ¿ .
Proof: From Lemma3, it suffices to show that the total distancetraveled by the robot while
executingFindFenceTree is boundedby someconstanttimes the total length of all edgesplus
the heightsof all obstaclesin the fence-tree.Thereare four kinds of motionsperformedby the
algorithm:

× Addinganup-rightedge(line 4 of Raise),× Addinga down-rightedge(line 8 of Raise),× Retracinganold path(lines3, 6 of Raise),× Jumpingfrom a fenceto the next lower one,usingproceduresJumpDownLeft andJump-
DownRight.

Considera specificiterationof theouterwhile loop of Raise. If therobot is not at
±�´

at thestart
of this iteration,it executes“Retraceto

±�´
” at line 3. This motionconsistssimply of retracingthe

pathsit walkedwhile executingtheremaininglinesof this loop,duringthepreviousiterationof the
loop. So theretracingmotionat line 3 in a given iterationof the outerwhile loop canbecharged
off to the non-line-3motionsexecutedduring the previous iterationof the outer loop. Similarly,
theretracingmotionat line 6 in a giveniterationof theinnerwhile loop canbechargedoff to the

20

non-line-6motionsexecutedduring during the previous iterationof this loop. Thusit sufficesto
boundthecostof theremainingthreekindsof motions.Clearly, themotionrequiredto addup-right
anddown-rightedgescanbechargedoff to theedgescreated,soweonly needto boundthecostof
theproceduresJumpDownLeft andJumpDownRight. Lemmas12and13below establishthatthe
totalcostof theseproceduresis Ø}Ù Ú,Û9Ü , which impliesour theorem.

Lemma 12 Thetotal distancetraveledduringall invocationsof JumpDownLeft is Ø}Ù Ú,Û9Ü .
Proof: Considera call to JumpDownLeft Ù Ý�Ü at line 10 of Raise Ù Þ ß à Ü , andsupposethe robot
is at obstacleá�â Ù ã}Ü whenthis procedureis invoked. The edge-following motion in line 2 of this
procedurecanbe charged to the set ä of edgesfollowed. The right endsof all theseedgesare
at obstaclenumber ã of differentfences. Note that just beforeJumpDownLeft Ù Ý�Ü is invoked,
Up Ù ÝZå�æ Ü is true (this is a PreJDLÙ Ý�Ü condition),andwhenRaise Ù Ý@åzæ ß Ý�Ü is completedafter
JumpDownLeft Ù Ý�Ü , Up Ù Ý�å�æ Ü is not true(this is aPostRaiseÙ Ý&å�æ ß Ý�Ü condition).Thismeansthat
theprocedureRaise Ù ÝZåqæ ß Ý�Ü hasdiscovereda collection ç of new obstacleson fence á�â è�é , so
that ê á�â è�é ê would beat least ã�ë-æ . Thecostof theverticalmotion in line 3 of JumpDownLeft
Ù Ý�Ü is clearly no morethanthe total lengthof the edgesä plus the heightsof the new obstacles
ç discoveredby the subsequentcall to Raise. We canthuscharge the total costof this specific
invocationof JumpDownLeft Ù Ý�Ü to theset ä of edgesandthe set ç of new obstacles.Now we
needto arguethatthesetsä and ç of futurecallsto JumpDownLeft will notoverlapwith thoseof
thepresentcall. Sincetheobstaclesç arenew obstaclesdiscoveredon á�â è�é just after thepresent
call to JumpDownLeft Ù Ý�Ü , the only future calls to JumpDownLeft whose ç -setscanpossibly
overlapwith the ç setof thepresentonearecallsto JumpDownLeft from thesamefenceá�â , i.e.,
callstoJumpDownLeft Ù Ý�Ü . However, asweobservedabove,theRaise Ù Ý�å�æ ß Ý�Ü executedjustafter
thepresentJumpDownLeft Ù Ý�Ü findstheobstacleson ç beforeany futurecall to JumpDownLeft
Ù Ý�Ü is made. Moreover, it is easyto seethat the executionof Raise Ù Ý�åzæ ß Ý�Ü doesnot involve
any callsto JumpDownLeft Ù Ý�Ü . Thereforethe ç -setsof differentcallsto JumpDownLeft donot
overlap.

Now we show that the ä -setsof differentcalls to JumpDownLeft do not overlap. Againcon-
sideraspecificinvocationof JumpDownLeft Ù Ý�Ü from obstacleá�â Ù ã}Ü . As we notedabove,all the
edgesin ä have at their endsthe ã ’ th obstacleof differentfences.Thereforetheonly futureinvo-
cationsof JumpDownLeft whoseä setscanpossiblyoverlapwith thecurrentä setarethosefrom
obstacleã of somefence á�ì below á�â . We establishedbeforethatan invocationof JumpDown-
Left Ù í3Ü is only madewhentheconditionsPreJDLÙ í3Ü hold,andin particular(a) î�ì è�é@ï�î�ì and
(b) Up Ù í@å�æ Ü musthold. However, just afterthepresentexecutionof JumpDownLeft Ù Ý�Ü , Raise
Ù Ý&åvæ ß Ý�Ü is executed,andat thatpointthePostRaiseÙ Ý�åvæ ß Ý�Ü conditionshold. In particular, for any
fencesá�ì below á�â suchthat î�ì�ï�î�â , Up Ù í3Ü doesnot hold. Thereforewhen(if at all) a future
call to JumpDownLeft Ù í3Ü is madefrom obstacleã of a fenceá�ì below á�â , î�ì è�é�ð
î�â Ù ã}Ü must
hold at that time. In sucha future invocationof, in line 2, edgesarefollowedto the left until theñ -coordinateequalsî�ì è�é , sotheseedgeswouldbeto theright of î�â Ù ã}Ü , andsowouldnotoverlap
with theedgesä of thepresentset(all of whichareto theleft of î�â). Thusthe“chargesets” ä and
ç for differentcallsto JumpDownLeft Ù Ý�Ü will not overlap.

Lemma 13 Thetotal distancetraveledduringall invocationsof JumpDownRight is Ø}Ù Ú,Û9Ü .
Proof: Consideraninvocationof JumpDownRight Ù ò�Ü at line 17of Raise Ù Þ ß à Ü . We will present
a charging schemewheredifferentinvocationsof JumpDownRight Ù ò�Ü will bechargedto distinct
portionsof the fence-tree.WhenJumpDownRight Ù ò�Ü is invoked,Up Ù ò�å�æ Ü is true (this is a
PreJDRÙ ò�Ü condition).Subsequentto this invocationof JumpDownRight Ù ò�Ü , Raise Ù ò�å�æ ß à Ü is
invoked,andwhenthatprocedurecompletes,thePostRaiseÙ ò,å�æ ß à Ü conditionsimply thatUp Ù ò,å�æ Ü
is no longertrue. This meansthatRaise Ù òZåqæ ß à Ü hasfounda collection ç of new obstacleson
fence á&ó è�é , andthen ê á&ó è�é ê would equal ê á&ó ê,ô�ã (this is a PostRaiseÙ ò�åqæ ß à Ü condition). The

21

edge-following motionin line 3 of JumpDownRight õ ö�÷ canbechargedto theset ø of edgesthat
arefollowed. The vertical motion in line 2 of JumpDownRight õ ö�÷ is clearly no morethanthe
lengthsof the edgesø plus the heightsof the obstaclesù , so this motion canbe chargedto the
edge-setø andtheobstacle-setù (seeFig. 12).

Note that sinceUp õ ö@úzû ÷ is not true after the Raise procedurecompletesjust after this in-
vocationJumpDownRight õ ö�÷ , thenext invocationof JumpDownRight õ ö�÷ canonly occurfrom
obstacleü�úvû or laterof ý&þ . Sincepresentlyÿ(þ��
ÿ�� , andNOT Up õ ��úvû ÷ andEqõ ��úvû � ö�÷ hold,
theobstacleüzú�û of ý&þ will beto theright of ÿ�� . Sotheedge-setø followedby any futureinvo-
cationof JumpDownRight õ ö�÷ will bedistinctfrom theset ø of thepresentinvocation.Also, since
ù is thesetof new obstaclesdiscoveredjust afterthepresentinvocationof JumpDownRight õ ö�÷ ,
theset ù of any futurecall to JumpDownRight õ ö�÷ will not overlapwith theset ù of thepresent
one. In fact, sincewe arethecharging themotionof JumpDownRight õ ö�÷ only to obstaclesand
edgesassociatedwith fenceý&þ ��� , thesetsù andø of any futurecall to JumpDownRight õ ö 	 ÷ will
alsonotoverlapwith thesetsù and ø of thepresentcall.

6 Extensionto Arbitrary Axis-Parallel RectangularObstacles

We now show how to extendthesearchalgorithmto sceneswith arbitraryaxis-parallelrectangular
obstacles(for brevity we call suchscenesgeneral scenes).That is, we will show how to explorea
distanceof
}õ �� ���3÷ andfind a pathof length
}õ ��� ��� �3÷ . Fortunatelyit turnsout thatalgorithm
FindFenceTree, interpretedappropriately, canbeusedunchangedfor thesescenes.However the
proceduresJumpDownRight andJumpDownLeft mustbemodifiedsincefor generalscenesver-
tical motion is not alwaysunobstructed.In fact if all obstacleshave width 1 (but arbitraryheights
andpositions)theneventheseproceduresremainunchanged.In thenext two subsections,wedefine
thenotionsof � -postanda � -fence,which aretheanaloguesof “obstacle”and“fence” for general
scenes.As statedearlier, we will assumethroughoutthatall obstacleshave their cornersat integer
coordinates.

6.1 � -Posts

Throughoutthissectionwewill denotethevalue �� � ��� by � . Weassume����� so ����û . Recall
that in a simplesceneif theobstacleshave heightlessthan � ����� �� � ��� thenthey canbecon-
sidered“small” – in thesensethatthesimplestrategy of justmoving horizontallyforward(walking
aroundany obstacleson theway by theshortestroute)achievestheoptimalratio of
}õ � ��� �,÷ on
each trip. This motivatesthe following definitionin a generalscene.A point � on the left sideof
anobstacleis calleda � -post if theobstacleextendsvertically at least � above andbelow � . We
will usetheterm � -postto refereitherto theentiresegmentof height2� or just to thecenterof that
segment.Roughlyspeakingwhentherobotencountersa � -post � while moving horizontally, the
obstacleencounteredis “big”, otherwiseit is “small”.

6.2 � -Fences

We definea � -fenceasthegeneralizationof thefencedefinedin Section5.1. Thedefinitions(and
notations)for up � -fence, down � -fence, band, aswell asthedefinitionof a pointbeingleft or right
of a fence,andof a pathcrossing a fence,remainthe sameas in simplescenes,except that we
replacethe word “obstacle”with “ � -post” throughout,andreplace� by � in therelations(1) and
(2) of Section5.1. Notethatconsecutive � -postsof a fencemaylie on thesameobstacle,sincethe
inequality(1) is not strict. The bandbetweentwo suchpostsis empty. We saytwo � -fencesare
disjoint if their non-emptybandsaredisjoint. Thusa collectionof � disjoint � -fencescostsat least
� � to cross. In Fig. 14, the sequenceof � -posts ! ý �� � ý#"� � ý�$� � ý�%� & form a � -fence ý'� . Note that
ý "� � ý $� areon thesameobstacle,andthatthethreefencesin thefigurearedisjoint.

22

1

4

4

3

2
3

3

P

P

P

P4

τ

1

1

1P

P1
2

2

P 2

2

3P1

P

3

2
3

P

P2

3P

1

Figure14: A collectionof 3 disjoint fenceswith 4 postseach.Thesolid rectanglesaretheobstacles.The
bandsof differentfencesareshadeddifferently. For convenience,post (*) + ,'- is denoted.0/) .

For futurereferencewedefinea(right) 1 -pathasthepathof therobotwhenit movesto theright
alonga fixedhorizontalline 2�342 5 until it hits a 1 -postor thewall, moving aroundany non-post
obstacleon its way. For instancein Fig. 15, thepathfrom 6 to 1 -post 798 : ; < is a 1 -path.Observe
thata 1 -pathhasverticalmotionatmost ; 1 atevery (integer) = -coordinateon thepath,so:

Fact 1 A 1 -pathbetweentwopoints : =�> 2?< and : ='@BA =�> 2?< haslengthat mostA ='@B; 1'A = .

6.3 The Initial Search Trip

Roughly speaking,a generalsceneis treatedas if it is a simple scenewith obstaclesof height
; C�3D; 1E3D; FG H I�J . Recallthatfor simplescenes,theinitial trip consistsof building groupsof K
fencesof L obstacleseach(whereKM3ON P 1QSR and LT3ON P 1QER @UN V WQ'R), whereeachgroupmustbe
built “cheaply” (i.e. with cost X�: J F<) andmusthavea known “short” (cost X�: F<) pathcrossingit.
Analogouslyfor generalsceneswe have C�3U1 andwe would like to build groupsJS1 -fenceswith
LY3OJE@ON V W1 R 1 -postseach.We will now pay moreattentionto our progressin the = direction
andwill build eachgroupwith costatmost X�: J F�@ZJ 1E[S=*< , andgiveeachgroupagroup-crossing
pathof length X�: FZ@D1'[S=*< . Here [S= is the = -distancebetweenthe leftmost 1 -post 798 : \ < and
right-most1 -post 7 P : LM< in thegroup.

Theseboundsare sufficient for our purposesfor the following reason. Sincea fencecosts
1Z3]FG H I�J to cross,therecanbe at most H I�J disjoint 1 -fencesin the window between̂ and_
, so the algorithmwill find at most ` I�G J groupsof J fenceseach. Sincethe = -motionsdo not

overlapbetweenthegroupsof fences,the [S= termsaddto at most I , sothetotal distancetraveled
is X�: J F ` I�G J@aI�J 1*<3bX�: FH I�J < . In addition,theconcatenationof thegroup-crossingpathshas
totalcost X�: F�` I�G J#@BI�1*<93bX�: F�` I�G J < .

6.4 Extending FindFenceTree to GeneralScenes

Oncewefix the 1 -post 798 : \ < in ascene,thethreefence-treedefinitionrulesgivenfor simplescenes
canbeusedin a generalsceneto definea groupof K43UJE1 -fenceswith LT1 -postseach,with the
following interpretation.Firstly, “ 1 -post” replacesthe word “obstacle”everywhere.Secondly, an
up-rightedgefrom a 1 -post 7�c : d�< is simply a paththatgoesup to thetop of the 1 -post,thenright
alonga 1 -pathuntil a 1 -postis reached;this 1 -postis 7�c : dM@D\ < . A down-right edgeis a similar
path that leadsto the 1 -post 7�c e�8 : d�< . With this interpretation,the algorithm FindFenceTree
canbe usedunchangedfor generalscenes;only the jump proceduresmustbe changedto handle
arbitraryobstaclewidths, sincethe vertical motions(in line 3 of JumpDownLeft and line 2 of

23

3P1

1
1P

3PP1
2

2

2P
2

1P2

3P1

4
f

P2

4
3PA

P4
1

3
3P

P2
3

Figure15: A g0h#i0j -fence-tree.Theshadedrectanglesaretheobstacles,andsolid linesaretreeedges.The
fencescorrespondingto this treeareshown in Fig. 14. For convenience,post k*l m n'o is denotedp0ql .

JumpDownRight) mayno longerbepossible.Themodifiedjump algorithmsaredescribedin the
next two subsections,andwewill show thatthey work correctly, i.e., thattheanaloguesof Lemmas
7 and8 hold. We will alsoshow that theseproceduresarenot expensive, i.e., that the analogues
of Lemmas12 and13 hold. Giventhecorrectnessof the jump procedures,it is easyto verify that
theRaise procedureworkscorrectly, i.e., satisfiesLemma4, andconsequentlythat theprocedure
FindFenceTree doesindeedfind a r�satYu -fence-tree,if it exists, with the given post v9w x y z
asroot. Furthermore,the invariantAlmostOrdalsoholds(Lemma10throughouttheexecutionof
FindFenceTree.

We mustshow that this algorithmis still “cheap” in a generalscene. Note that if the robot
doesnot encounterany “small” obstacleswhenaddingthevariousedges,then(assumingthejump
proceduresarecheap)our previous argumentssuffice. We begin with the fairly straightforward
argumentthatin generalthecostof goingaround“small” obstaclesis not too large. To do this,we
show theanalogueof Lemma3, namely, thatthetotalcostof thetreeedgesandthecostof thepath
from theroot to therightmostnodearebothwithin our requiredbounds.

Lemma 14 Supposethere is a r�sat{u -fence-tree consistingof fencesvEw | v�} | ~ ~ ~ | v#� , with
t��Dr#�U� } �uS� , where uE�D�� � ��r . Let �S� bethe � -distancefrom v9w x y z to v��?x tMz . Then:
(a) Theuniquepathin thetreefrom v9w x y z to v�� x tMz haslengthat most�?�a�B� u �S� ;
(b) Thetotal lengthof all theedgesin thefence-treeis at most r�x � ����� u?�S�*z

Proof: Sincer���� it followsthat r uS�Dr �� � ��r���� . This implies tMuS�D� ����r u���� � .
Part (a). Thereareexactly x t��brS�B� z edgesin the treepathfrom v9w x y z to v�� x tMz . Since

theverticalportionof eachedgehaslength u , andthe u -pathportionsof theedgesdo not overlap
in the � -direction,thetotal lengthof theseedgesis atmost x t��ZrE��� z u��B� u �S�#�B�S� , which is
atmost x �?����� u �S�*z from theinequalitiesabove.

Part (b). Notethatwecanassociateeachedgewith auniquepost,namelytheoneat theright-
endof theedge.For any givenpost v�� x ��z otherthan v9w x y z , the � -distanceto its parentis at most
the � -distance� � to its predecessorv�� x �4��y z on thesamefence.Sotheedgeassociatedwith this
posthaslengthat most x u'�b� u � �S�b� �*z . Thesumof the � � termsover all postsof the fence v#�
is the � -distancebetweenthefirst andlastpostsof v#� , which is at most �S� . Sothetotal lengthof
theedgesassociatedwith the t postsof a fenceis at most x tMuE�b� u?�S�S�b�S�*z , which sumsto
r�x tMu9��� u �S����S�*z for r fences.This lastexpressionis atmost r�x � �'��� u �S�*z from theprevious
inequalities.

24

Procedure JumpDownRight � � �
1. Let �D�b� ��� � and ��b� ��� ¡*¢ � .
2. Move greedydown-left until down-left of topof ��� ¡*¢ � � .
3. Move greedyright-downuntil:

£ at ¤ -post ��� ¡*¢ � � , or£ onatreeedge.In thiscase,follow tree-edgesto theright until at ��� ¡*¢ � � .
Figure16: Generalprocedurefor jumpingdown from ��� to ��� ¡*¢ when ¥#�0¦�¥#� ¡*¢ .

F (m)
d

A

B

F (p)
d+1

F (m)
d+1

F (m+1)
q

N

EC

D

F
d
(p+1)

Figure17: A useof thegeneralizedprocedureJumpDownRight to jumpfrom ��� � �'� to ��� ¡*¢ � � , for clarity
shown in a scenewherethefencepostscorrespondexactly to obstaclesof height § ¤ . Shadedrectangleswith
no boundariesareobstaclesthat arenot part of any fence. Solid-boundaryrectanglesarenodesfound so
far in thetree. Dotted-boundaryrectanglesarepostson ��� ¡*¢ thatwill befoundimmediatelyfollowing this
procedure.Thick solid linesaretreeedges.Thethin arrow line showsthepathfollowedwhenexecutingthe
procedure.

Thus,just asin simplescenes,we only needto arguethatthetotalcostof eachjumpprocedure
is at mosta constanttimesthe total lengthof the treeedgesplus the heightsof all ¨ -postsin the
tree.In thenext two subsectionsweshow how theseprocedurescanbemodifiedto handlearbitrary
obstaclewidths,andprove thatthey arenot tooexpensive.As before,ourapproachwill beto argue
thatfor eachjumpprocedure,noportionof thetreeis chargedtoo oftenfor differentexecutionsof
thatprocedure.

6.5 Modifying JumpDownRight

To describethemodifications,it will beusefulto introducethenotionof agreedydown-leftpath:it
is a paththatrepeatedlygoes“downtill it hits anobstacle,thento the left cornerof theobstacle”.
Othergreedypathsaredefinedsimilarly. Also, apoint © ª�« ¬? will besaidto bedown-leftof another
point © ª ® « ¬ ® if ª�¯Dª ® and ¬a¯D¬ ® . As in thecaseof simplescenes,we will find it convenientto
associateanedgein thefence-treewith thepostat its right end.Our modifiedprocedureis shown
in Fig. 16,anda typicalpathwalkedwhile executingthisprocedureis shown in Fig. 17.

25

Wefirst establishthecorrectnessof thismodifiedprocedure,i.e., theanalogueof Lemma8.

Lemma 15 If the general procedure JumpDownRight ° ±?² is called whenthe PreJDR° ±?² condi-
tionshold,thenafter theprocedureis completed,therobotwill beat thelastknown³ -postof ´�µ ¶�· .
Proof: It will beusefulto consultFig. 17whichshowsatypicalpathfollowedwhile executingthis
procedure.FromthePreJDR° ±?² conditions,therobotis intially at (thelastknown ³ -postof) ´�µ , so
theinitial ¸ -coordinateis ¹�µ?° º�² . ThePreJDR° ±?² conditions»�µ#¼B»�µ ¶�· andUp ° ±½Z¾ ² alsoimply
that ¿ ´�µ ¶�· ¿�À�¿ ´�µ ¿ , or Á�ÀMº , which meansthat thebottomof the ³ -post ´�µ ° º�² is no lower than
thetopof the ³ -post ´�µ ¶�· ° Á ² . Thereforethegreedydown-left pathin step2 will notencounterany
tree-edges,sinceevena down-right leadingto thedestination³ -post ´�µ ¶�· ° Á ² canonly originateat
³ -postnumberÁ or lower of ´�µ , which mustbe lower than ´�µ?° º�² . Note that thepathin step2 is
boundedontheleft by the ³ -postsof ´�Â . Also, at theendof thisstep,therobot’s ¸ -coordinateis the
sameasthetopof the ³ -post ´�µ ¶�· ° Á ² to which therobotis jumping.Evenif thegreedyright-down
pathof step3 goesonly to theright, it will hit this ³ -post.In theworstcase,themotionin step3 is
just vertically down until a treeedge(down-rightor up-right)is reached.Fromthedefinitionof the
fence-tree,it is easyto seethatfollowing thetreeedgesto theright mustleadto ´�µ ¶�· ° Á ² .

In thelemmabelow, we show that thecostof all calls to JumpDownRight canbechargedoff
to thelengthsof all edgesin thefence-tree.

Lemma 16 The total costof all calls to JumpDownRight is at mosta constanttimesthe total
lengthof all edgesin thefence-tree,plustheheightsof all ³ -postsin thetree.

Proof: As in the caseof simplescenes(Lemma13) we will presenta charging schemewhere
the costof differentinvocationsof JumpDownRight is chargedto distinct portionsof the fence-
tree. Considera particularcall to JumpDownRight ° ±?² from Raise ° Ã Ä Å ² , to jump from ´�µ?° º�²
to ´�µ ¶�· ° Á ² (that is, whenthis procedureis called, ¿ ´�µ ¿�ÆÇº and ¿ ´�µ ¶�· ¿�Æ�Á). SeeFig. 17. By
a reasoningsimilar to theonein the proof of Lemma13, we canseethat thereis a set È of new
obstaclesthat will be addedto ´�µ ¶�· by the Raise ° ±'½U¾ Ä Å ² procedurethat is invokedjust after
this invocationof JumpDownRight ° ±?² . After thesenew obstaclesare addedto ´�µ ¶�· , ¿ ´�µ ¶�· ¿
would equal ¿ ´�µ ¿�ÆÇº . Let É be the setof edgesof ´�µ ¶�· (if any) thatarefollowedin step3 of
JumpDownRight.

Clearlythe total horizontalandverticalmotionof this procedure(in steps2 and3) is no more
thantwice thetotal lengthof theedgesin É plustheheightsof theobstaclesin È . (This boundis
actuallyquiteloosebut will suffice for our purposes).As beforeit is easyto arguethat thesetsÈ
and É of any futurecall of JumpDownRight ° ±?² will not overlapwith the correspondingsetsof
thepresentcall.

6.6 Modifying JumpDownLeft

The generalprocedureJumpDownLeft is shown in Fig. 18, anda samplepathexecutedby that
procedureis shown in Fig. 19.

Wefirst establishthecorrectnessof thisgeneralprocedure,i.e., theanalogueof Lemma7.

Lemma 17 If thegeneral procedureJumpDownLeft ° Ê?² is calledundertheconditionsPreJDL° Ê?² ,
thentheprocedureterminateswith therobotat thelastknown³ -postof ´�Ë ¶�· .
Proof: Let º and Á bethe quantitiesdefinedin the procedure.SeeFig. 19 for a typical pathof
thisprocedure.ThePreJDL° Ê?² condition»SË ¶�·�ÀB»SË impliesthatfollowing treeedgesto theleft in
step2 will leadto apointwhereÌSÆb»SË ¶�·0Æb»SË ¶�· ° Á ² . ThePreJDL° Ê?² conditions»SË ¶�·�ÀB»SË and
Up ° Ê�½Z¾ ² imply that ÁEÆ4¿ ´�Ë ¶�· ¿?À�ºMÍ�¾ , sothe ° ºMÍ�¾ ² stpostsof fenceś�Ë andabovearehigher
thanthetopof thedestinationpost ´�Ë ¶�· ° Á ² . Supposé�Î is thehighestfencereachedin step2, i.e.,

26

Procedure JumpDownLeft Ï Ð Ñ
1. Let ÒDÓbÔ Õ Ö Ô , ×#Ó�Ô Õ Ö Ø*Ù Ô .
2. Follow treeedgesto theleft until Ú'Ó�Û�Ö Ø*Ù Ï × Ñ .
3. Gogreedydown-left until robotis either

Ü down-left of top of Õ Ö Ø*Ù Ï × Ñ , orÜ down-left of top of Õ*Ý?Ï ÒbÞ�ß Ñ for someàEá�Ð . In this case:

(a) While àEá�Ð do thefollowing:
i. Gogreedyright-downuntil at Õ*Ý?Ï ÒbÞ�ß Ñ or ona treeedge.
ii. If ata treeedge,follow edgesto right until at Õ*Ý?Ï ÒbÞ�ß Ñ .

iii. àEâ ÓZà�ã�ß .
(b) Gogreedydown-left until down-left of topof Õ Ö Ø*Ù Ï × Ñ .

4. Go greedyright-down until at Õ Ö Ø*Ù Ï × Ñ or on a treeedge. If at a treeedge,follow
edgesto right until at Õ Ö Ø*Ù Ï × Ñ .

Figure18: Generalprocedurefor jumpingdown from Õ Ö to Õ Ö Ø*Ù when Û�Ö0ä�Û�Ö Ø*Ù .

B

A

F

F

F
j-3 (m)

(m)

(m)

F (m)
j-2

j-1

j

F (m-1)
j+1

F j+1

E

N

C

D

(p)

E

F
j-3

(m-1)

F
j-2

(m-1)

F
j-1

(m-1)

Fj
(m-1)

Figure19: A useof procedureJumpDownLeft to jumpfrom Õ Ö Ï Ò'Ñ to Õ Ö Ø*Ù Ï × Ñ , for clarity shown in ascene
wherethefencepostscorrespondexactly to obstaclesof height å æ . Shadedrectangleswith noboundariesare
obstaclesthatarenot partof any fence.Solid-boundaryrectanglesarepostsfoundsofar in thetree.Dotted-
boundaryrectanglesarepostsof Õ Ö Ø*Ù thatwill befoundimmediatelyfollowing this procedure.Thick solid
linesaretreeedges.The thin arrow line is thepathfollowedwhenexecutingtheprocedure.Curvedarrows
representmotionsexecutedduringsteps3(a)(i)and4 of theprocedure.

27

thelastedgeretracedhasits right endona ç -postof è�é . By theAlmostOrdinvariant,no fencecan
have morethanonepost to the right of a lower one,so only the last edgeretracedin step2 can
beanup-rightedge;theothersmustbedown-rightedges.Thesameinvariantimplies that the ê -
coordinateof therobotat theendof step2 (i.e. ëSì í�î ï ð ñ) lies in theinterval ò ëSó*ï ô�õBö ñ ÷ ëSó*ï ô�ñ ø ,
for each ù�úÇû ÷ û�üUö ÷ ý ý ý ÷ þ . This meansthat in step3 whenthe robot goesgreedilydown-left,
the robot musteitherreacha point down-left of the top of somepost è�ó�ï ô]õMö ñ , or elsereach
a point down-left of è�ÿ í�î ï ð ñ , the destinationpost. In the former case,the robot entersthe while
loop of step3(a). We claim that in eachiteration of this while loop, the robot jumpsdown to
post ï ô]õMö ñ of the next lower fenceuntil it reachesè�ÿ ï ô]õDö ñ . This motion is similar to that
of procedureJumpDownRight, so we can reasonas in the proof of Lemma15 (correctnessof
JumpDownRight), to show thisclaim. Oncetherobotis at è�ÿ ï ôMõ�ö ñ , step3(b)will taketherobot
to a point down-left of thetop of è�ÿ í�î ï ð ñ . Finally step4 is similar to step3 in thegeneralversion
of JumpDownRight, soby reasoningasin theproofof Lemma15,wecanshow thattherobotwill
eventuallybeat è�ÿ í�î ï ð ñ .
Lemma 18 Thetotal costof all calls to JumpDownLeft is at mosta constanttimesthetotal length
of all thetreeedges,plustheheightsof all the ç -postsin thefence-tree.

Proof: Considera call to JumpDownLeft ï þ?ñ . As in the caseof simplescenes,we can usea
charging schemewheredifferentcalls to JumpDownLeft will be charged to distinct portionsof
the fence-tree.As in the proof of Lemma12, let � be the setof edgesfollowedin step2 of the
procedure,andlet � bethesetof ôBõSö*õ�ð “new” obstaclesthatwill beaddedto è�ÿ í�î by theRaise
procedureinvokedjust after this procedurecompletes.By the samereasoningasin that Lemma,
the � and � setsof thiscall to JumpDownLeft will notoverlapwith thecorrespondingsetsof any
futurecall. Theedge-following motionof therobotduringstep2 of theprocedurecanbecharged
to the edge-set� , andso we only needto accountfor the motionsin the remainingstepsof the
procedure.

If step3 takesthe robot vertically down to the ç -post è�ÿ í�î ï ð ñ , thenasin the caseof simple
scenesthisverticalmotioncanbechargedto theedge-set� andtheset � . In thiscasewearedone
with the proof. However, in generalscenestherearetwo possibilitiesfor themotionof the robot
duringthisstep:

� (A) The robot may reachsomepoint down-left of the top of è�ÿ í�î ï ð ñ . Let ï ê�î ÷ � î ñ be the
coordinatesof therobotat this point. In this case,step3 is done,andwe chargethevertical
motionto thetotalheightsof the ç -postsin � plusthelengthsof theedgesin � . Also in this
case,while goinggreedydown-left, therobotcannotgoto theleft of post è�ÿ ï ðü�ö ñ , sincethe
bottomof thisposthasthesame� -coordinateasthetop of è�ÿ í�î ï ð ñ . (If therobotwasforced
to goto theleft of è�ÿ ï ð�üaö ñ , case(B) below wouldoccur).Thereforethehorizontalmotionin
thiscaseis nomorethanëSÿ í�î ï ð ñ õ#ëSÿ ï ð�ü�ö ñ ,whichin turnis nomorethanthelengthsof the
portionsof theedgesof è�ÿ í�î thatlie betweenê�úbëSÿ ï ð*üSö ñ andêSúbëSÿ í�î ï ð ñ ; wecancharge
thehorizontalmotionto this edge-set�#î . We now claim that theedge-set�#î of this call to
JumpDownLeft ï þ?ñ will not overlapwith the �#î setof any futurecall to JumpDownLeft
ï þ?ñ . As we arguedin theproof of Lemma12,by thetime any futurecall to JumpDownLeft
ï þ?ñ is made,è�ÿ í�î wouldhaveat leastô�õBö obstacles.SinceëSÿ ï ô�ñ���ëSÿ í�î ï ð ñ , the �#î set
of sucha call would lie entirely to the right of ê�ú�ëSÿ ï ô�üMö ñ��UëSÿ ï ô�ñ , which is to the
right of ê�úDëSÿ í�î ï ð ñ (theright-boundaryof thepresent�#î set).Thereforetheedge-sets�#î
of differentcallsto JumpDownLeft ï þ?ñ cannotoverlap.

� (B) Therobotmayreachsomepoint down-left of the top of post ï ô�õbö ñ of somefence è�ÿ
or above. In thiscasetherobotentersthewhile loopof step3(a),andrepeatedlymovesdown
to the ï ô4õ�ö ñ stpostof thenext lower fenceuntil it reachesè�ÿ ï ô�õ�ö ñ . Themotionin each
iterationof this while loop is similar to themotion in theJumpDownRight procedure.The

28

onlydifferenceis thatinsteadof goingfrom postnumber� of onefenceto alower-numbered
obstacleof thenext lower fence,in thiscasetherobotgoesto thesame-numberedpostof the
next lowerfence.Considersomeiterationof thiswhile loop,wheretherobotis jumpingdown
from �
	�� ���� � to �
	 �
� � ���� � . Let ��� bethesetof edgesof �
	 �
� containedin theregion
betweenthelines ������	�� ���� � and ������	 �
� � ���� � . Theverticalmotionin step3(a)(i)
is nomorethantheheightof thedestinationpost,plustheheightsof thepostsassociatedwith
theedges��� . Thehorizontalmotionin steps3(a)(i) and3(a)(ii) is no morethanthe lengths
of theedgesin ��� . In any futurecall to JumpDownLeft the ��� setcorrespondingto fence�
	 �
� mustlie entirelyto theright of �
	�� � � , which in turn is to theright of �
	 �
� � �!"� � (the
right-boundaryof thepresent��� set).Thusin any futurecall to JumpDownLeft, the ��� set
associatedwith �
	 �
� will notoverlapwith the ��� setof thepresentcall. Similarly, asargued
in the caseof simplescenes,in any future call to JumpDownLeft from post � of a fence
below �
theedge-set� followedin step2 will lie entirelyto theright of ��# � � � , sononeof
the ��� setsof thethatcall will overlapwith thoseof thepresentcall. After exiting thewhile
loop of step3(a),therobotexecutesstep3(b): go greedydown-left until down-left of top of
�
�
� � $%� . Thecharging for this stepis similar to case(A) above, exceptthatwe do not need
to chargetheverticalmotionto theedge-set� sincethis stepstartsat �
� �&'� � . Thesame
argumentasin case(A) establishesthatthecharge-setsfor thisstepwill not overlapwith the
correspondingcharge-setsof any futurecall to JumpDownLeft.

Finally in step4, the robot performsa motion similar to the one in the (generalized)procedure
JumpDownRight, andwe canusea charging-schemesimilar to theoneusedthere.Theargument
to show that the portionsof the treechargedfor step4 of this call to JumpDownLeft � ()� do not
overlapwith the correspondingcharge-setsof any futurecall is similar to the oneusedabove for
case(B) of step3.

7 An incrementalalgorithm

We describehereanimprovementof ourcumulativealgorithm,sothattheper-trip ratioon the * ’ th
trip, for all *,+'- , is . � / -�0 * � . Let usfor simplicity saythatweknow 1 . Fromtheearlierresultsin
this paper, we know thatby searchinga distanceat most 2 143 -�5 we canfind an 6 -7 pathof length
atmost 2 8 1 / -�0 5 , for someconstants2 9 2 8 andany 5�+'- .

Let ussupposethatat theendof * trips we know an 6 -7 -path : of lengthat most 2 8 1;/ -�0 * (for
the basecase,simply usethe BRSalgorithm). Whatwe now want to do is to searchwith costat
most 2 1 3 -�< * andfind a pathof lengthat most 2 8 1 / -�0 < * . Let usdenoteby = thepathwe would
have traveledif we did this entiresearchin onetrip usingthe algorithmof the previous sections.
In orderto maintaina per-trip ratio of . � / -�0 * � , we spreadthework of = over thenext * trips as
follows. Eachtrip consistsof two phases:Thefirst is a search phase,wherewe walk anadditional
portionof = of length � > 2 1 3 -�< *?��2 1;/ < -�0 * , startingfrom wherewe left off on theprevioustrip.
We canalwaysdo this becausethe fencesarein a treestructure,so that the lastpoint in = during
theprevioussearchcanalwaysbereachedfrom thestartpointby a known shortpathwhoselength
addsonly a small constantfactor to the total trip length. Oncethesearchphaseis completed,we
“give up” andenterthefollow phase,wherewe completethetrip by joining (by a greedypath)the
known path : of length 2 8 1;/ -�0 * , andfollowing it to 7 . Thusour trip lengthis still . � 1;/ -�0 * � .
Sincein eachsuchsearch-follow trip wetraverseaportionof = of length 2 1;/ < -�0 * , andthelength
of = is at most 2 1 3 < -�* , after * trips we will have completelywalkedthepath = . Soafterthefirst< * tripswehaveapathof lengthatmost 2 8 1;/ -�0 < * . This reestablishesour invariant.Thus,wehave
thefollowing theorem:

Theorem 19 There is a deterministicalgorithm @ that for every *,+'- achievesa per-trip ratio on
the * ’ th trip, A > � @�9 -�� , of . � / -�0 * � .

29

8 Modification for Point-to-Point Navigation

Our algorithmscanbe extendedto the casewhere B is a point ratherthana wall, with the same
bounds,upto constantfactors,asfollows.Let usassumefor simplicity thattheshortestpathlengthC

is known. As before,if we do not know
C

, we canusethe standard“guessinganddoubling”
approachandsuffer only a constantfactorpenaltyin performance.On thefirst trip, therobotcan
getto B usingtheoptimalpoint-to-pointalgorithmsof [7] or [3], with a single-tripratioof D E F G�H .
Onceat B , the robot createsa greedyup-left pathanda greedydown-left path from B , within a
window of height I C centeredat B . Notethatthehighestpostin a J�K"LNM -fence-treeis L�M�O'P C
above theroot (which is alwaysdistance

C
below B) andthelowestpostis J%MQO C below theroot.

Sotherobot is guaranteedto staywithin a window of height I C centeredat B . Thusafter thefirst
trip, thesegreedypathsplay theroleof a wall; oncetherobothits oneof thesepaths,it canreachB
with anadditionalcostthatis only a low-ordertermin thetotalcost.

9 Modification for a Purely Tactile Robot

We assumedsofar thatwhenever our robothits anobstacle,it is told how far thenearestcornerof
theobstacleis. This informationis usedonly to tell therobotwhetheror not thereis a M -postat the
pointof encounter. With only aconstantfactorpenalty(seetheanalysisin [1]) therobotcanobtain
this informationon its own, usingthestandarddoublingstrategy: Move upa distance1, thendown
2, thenup4, andsoon,eachtimemoving doublethepreviousdistance.

10 Conclusionand OpenProblems

The coreresultof this paperis an algorithmthat performsa smoothtradeoff betweensearchef-
fort andthe goodnessof the pathfound. This algorithmmay be of interestindependentlyof the
performance-improvementproblem.For instancewhenarobothasmoretimeor fuel available,one
would like it to spendmoreeffort andfind a betterroute.Thefence-treestructureis centralto this
searchalgorithm.Intuitively, onecanthink of thefence-treeasrepresentingthecollectionof those
obstaclesin the scenewhich are responsiblefor makingthe scenedifficult to crossfrom R to B .
Thusthefence-treein asensecapturesthe“essence”of ascene,asfar asthedifficulty (i.e.,cost)of
crossingthesceneis concerned.It would be interestingto explorewhetherananalogousstructure
canbedefinedin moregeneralscenes.This might leadto a generalizationof our resultsto such
scenes.

At a higherlevel, ourapproachin designinga“learning” navigationalgorithmwasto startwith
an algorithmthat achieves the above-mentionedcost/performancetradeoff, andconvert that to a
moreincrementalalgorithmby spreadingthework overseveraltrips. Thishigh-level ideamaywell
beusefulin designingperformance-improvementalgorithmsfor othertasks.

Thereareseveralotherinterestingresearchdirectionsthat canbeexplored. For instance,can
randomizationprovideabetteror simpleralgorithm?For theonetrip problem,thebestlowerbound
known is STE U V W4U V W�G�H by Karloff, RabaniandRavid [11], andthebestupperboundis D E G�X Y Z�U V W�G�H
by Berman,Blum,Fiat,Karloff andRosenandSaks[2]. Whataboutextendingourmulti-trip results
to moregeneralscenes?Recently, BermanandKarpinski[4] havedesignedarandomizedD E G�[Y X H -
competitive single-tripalgorithmfor 2-dimensionalscenescontainingarbitraryconvex obstacles
within which a unit circle can be inscribed. Achieving an D E F G
H ratio for suchscenesseems
considerablyharder. A goodfirst stepmight be to considersceneswith rectangularobstaclesin
arbitraryorientations(i.e. notnecessarilyaxis-parallel).

A relatedproblemis the questionof how the robot can efficiently visit several destinations
in a scene,improving performancewherever possible. One difficulty hereis devising a useful

30

performancemeasure(dependingonthelocationof thedestinations,onemaybeabletouseprevious
informationto varyingdegrees)thatappropriatelycapturestheessenceof theproblem.

References

[1] R. Baeza-Yates,J.Culberson,andG. Rawlins. Searchingin theplane. InformationandComputation,
106(2):234–252,1993.

[2] P. Berman,A. Blum, A. Fiat, H. Karloff, A. Rosen,andM. Saks.Randomizedrobotnavigationalgo-
rithms. UnpublishedManuscript.

[3] E. Bar-Eli, P. Berman,A. Fiat, andP. Yan. On-linenavigation in a room. In Proc. 3rd ACM-SIAM
SODA, 1992.

[4] P. BermanandM. Karpinski.Wall problemwith convex obstacles.UnpublishedManuscript,July1994.

[5] M. Betke,R. Rivest,andM. Singh.Piecemeallearningof anunknownenvironment.In Proc.6thACM
Conf. onComputationalLearningTheory, pages277–286,1993.

[6] A. Blum andP. Chalasani.An onlinealgorithmfor improving performancein navigation. In Proceed-
ingsof the34thAnnualSymposiumonFoundationsof ComputerScience, pages2–11,1993.

[7] A. Blum,P. Raghavan,andB. Schieber. Navigatingin unfamiliargeometricterrain.In Proc.23rd ACM
STOC, 1991.

[8] P. Chalasani.OnlinePerformance-improvementalgorithms. PhDthesis,Carnegie Mellon University,
1994.

[9] P. Chen. Improving pathplanningwith learning. In Prof. 9th Int’l Workshopon Machine Learning,
1992.

[10] E.G.CoffmanandE.N.Gilbert. Pathsthrougha mazeof rectangles.Networks, vol. 22,no.4, pp.349–
367,July 1992.

[11] H. Karloff, Y. Rabani,andY. Ravid. Lower boundsfor randomized\ -server andmotion-planning
algorithms.In Proceedingsof the23rd AnnualACM SymposiumonTheoryof Computing, pages278–
288,1991.

[12] S.KoenigandR.G.Simmons.Complexity analysisof real-timereinforcementlearning.In Proc.AAAI,
pages99–105,1993.

[13] V. Lumelsky. Algorithmic issuesof sensor-basedrobotmotionplanning.In 26thIEEE Conferenceon
Decision, pages1796–1801,1987.

[14] V. Lumelsky. Algorithmic andcomplexity issuesof robotmotionin anuncertainenvironment.Journal
of Complexity, 3:146–182,1987.

[15] V. Lumelsky andA. Stepanov. Dynamicpathplanningfor amobileautomatonwith limited information
on theenvironment.IEEETrans.onAutomaticControl, 31:1058–1063,1986.

[16] M.S.Manasse,L.A. McGeoch,andD.D. Sleator. Competitivealgorithmsfor on-lineproblems.Journal
of Algorithms, 11:208–230,1990.

[17] C. PapadimitriouandM. Yannakakis.Shortestpathswithout a map.In Proc.16thICALP, 1989.

[18] S.Thrun.Efficientexplorationin reinforcementlearning.TechnicalReportCMU-CS-92-102,Carnegie
Mellon University, 1992.

31

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice

