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We consider the problem of fitting an n x iz distance matrix D by a tree metric T. Let e be the

distance to the closest tree metric under the l,- norm, that is, € = minr{ll f - Dll-}. First we

present an O(n2) algorithm for finding a tree metric Z such that ll Z - D ll- < 3e. Second we show

that it is NP- hard to find a tree metric f such that ll T - D ll- < 9/8e. This paper presents the
first algorithm for this problem with a performance guarantee.
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Abstract. We consider the problem of fitting an n x n distance matrix D by a tree metric ?.
Let e be the distance to the closest tree metric under the l"o norm, that is' e : minr{ll 

" - 
D ll-}.

First we present anO(n2) algorithm for finding a tree metric ? such that ll T - D ll- ( ge. Second

we show itr.t it is,A/?-hard to find a tree metric ? such that ll T - D ll- < $t. This paper presents

the first algorithm for this problem with a performance guarantee.
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1. Introduction. One of the most common methods for clustering numeric data

involves fitting the data to a tree rnetric, which is defined by a weighted tree spanning

the points of the metric, the distance between two points being the sum of the weights

of the edges of the path between them. Not surprisingly, this problem, the so-called

Numerical Taronomy problem, has received a great deal of attention (see [2,7,8] for

extensive surveys) with work dating as far back as the beginning of the century [1]

F itting distances by trees is an important problem in many areas. For example, in

statistics, the problem of clustering data into hierarchies is exactly the tree fitting
problem. In "historical sciences" such as paleontology, historical linguistics, and evo-

lutionary biology, tree metrics represent the branching processes which lead to some

observed distribution of data. Thus, the numerical taxonomy problem has been, and

continues to be, the subject of intense research.

In particular, consider the case of evolutionary biology. By comparing the DNA
sequcnces of pairs of species, biologists get an estimate of the evolutionary time which

has elapsed since the species separated by a speciation event. A table of pairwise

distances is thus constructed. The problem is then to reconstruct the underlying

evolutionary tree. Dozens of heuristics for this problem appear in the literature every

year (see, e.g., [8]).
The numerical taxonomy problem is usually cast in the following terms. Let S

be the set of species under consideration.
The Numerical Taxonomy Problem
Input: D : 52 J ft>0, a distance matrix.
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Output: A tree metric 7 which spans S and fi,ts D.
This definition leaves two points unanswered: first, what kind of tree metric, and
second, what does it mean for a metric to fit D? Typically we are talking about any
tree metric, but sometimes we want to restrict ourselves to ultrametrics defined bv
rooted trees where thc distance to the root is the same for all points in S. In order to
distinguish specific types of tree metrics, such as ultrametrics, from the general case,
we will refer to unrestricted tree metrics as addit'iue metrics. There may be no tree
metric coinciding exactly with D, so by "fitting" v/e mean approximating D under
norms such as Lt, Lz, or .Loo. That is., for k : I,2,. .., oo, we want to find a tree
metric Z minimizing ll ? - D ll* (ll 

" - 
D lll is formally defined in Definition 2.6).

Hrstory. The numerical taxonomy problem for additive metric fitting under 11
norms was explicitly stated in its current form in 1967 [4]. Since then it has collected
an extensive literature. In 1977 [10], it was shown that if there is a tree metric ?
coinciding exactly with D, it is unique and constructible in linear, i.e., O(lSl2), time.
Unfortunately there is typically no tree metric coinciding exactly with D, and in
1987 [5], it was shown that for -L1 and L2,the numerical taxonomy problem is AfP-
hard, both in the additive and in the ultrametric cases. Additional complexity results
appear in 19].

The only positive fitting result is from 1993 [6] and shows that under the -L"o norn]
an optimal ultrametric is polynomially computable, in fact in linear time. However,
while ultrametrics have interesting special case applications, the fundamental prob-
lem in the area of numerical taxonomy is that of fitting D by general tree metrics.
Unfortunately no provably good algorithms existed for fitting distances by additive
metrics, and in [6] the Numerical Taxonomy Problem for general tree metrics under
the troo norm was posed as a major open problem.

Our Resulls. We consider the Numerical Taxonomy Problem for additive metrics
under the -Loo norm as suggested in 16]. Let e be the distance to the closest additive
metric under the,Loo norm, that is, r: min?{ll 

"-D 
ll."}. First we present an

O(n") algorithm for finding an additive metric ? such that ll T - D ll"" < 3r. We
complement this result not only by finding that an .Loo-optimal solution is "A/P-hard,
but we also rule out arbitrarily close approximations by showing that it is,A/Z-hard
to find an additive metric ? such that ll T - D ll." < $r.

Our algorithm is achieved by transforming the general tree metric problem to
that of ultrametrics with a loss of a factor of 3 on the approximation ratio. Since the
ultrametric problem is optimally solvable, our first result follows. We also generalize
our transformation from the general tree metric to ultrametrics under any Lp norm
with the same loss of a factor of 3.

The paper is organized as follows. After some preliminary definitions in Section
2, we give our 3-approximation algorithm in Section 3. We show in Section 4 that
our analysis is tight, and that some natural "improved" heuristics do not help in
the worst case. In Section 5, we give our NP-completeness and non-approximability
proofs. Finally, in Section 6, we generalize our reduction from -Loo to -L6 norms with
finite k.

2. Preliminaries. We present some basic definition.
DortNIttoN 2.1. .4 metric on a set,S: {1, ...,n} is a function D:,S2 -+ $l>s

such that
o Dfr,Al:O # r:y,
o Dlr,al: D[g,r],
o Dlr,Al 3 D[r, z] + D[z,y] (the triangle inequality).
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Likewise, D : 52 J $l>o ts a quas'i-metric if it satisfies the first two conditions.

For (quasi-)metrics A and b, A+B is the usual matrix addition, i.e., (,4 + B)li,il:
Ali,, j) + Bli, j).

DBprNrrIoN 2.2. A (quasi,-)metric D zs (quasi-)additive if, for all points a,b,c,d,

D[a,b] * Dfc,dl < max{ D[a, c] + D[b, d], Dla, dl + Dlb, cl].

Tlris inequality is known as the l-point condi't'ion'

TsooRprr,r 2.3 ( l3l). ,4 metri,c is additiue if and only if it i,s atree metric.

Dnn'INtrtoN 2.4. A metri,c D i,s an ultrametric i'f, for all poi,nts a,b,c,

Dfa,b) < max{D[a, c], D[b, c]].

As noted above, an ultrametric is a type of tree metric'
DBprNrrroN 2.5. A quasi,-metri,c D on n objects is a centroid quasi-metric i'f

3lr,...,InsuchthatYi,+ j,Dli,,j):tt.l-ti. Acentroidquasi-metricDisacentroid
metric \f t.i, > 0 for all z. A centroid metric is a type of tree metric since it can be

realized by a weighted tree with a star topology and edge weights li.
The k-norms are formally defined as follows.

DnprNrrrroN 2.6. For nxn real-ualued matrices M and k ) 1, define the k-norm,

somet'imes denoted Ln, by

ll u lln: (t I Mli,,il l*)+,
i<j

ll M ll"": TlrI{l Mli,ill}.

3. Upper Bound. Let mo: maxz{Dl",il}.LeL C" be the centroid metric with
li: mo- DLo,i], i.e., C"li,il:h1_lj:2mo- Dlo,i'l- Dla,il'

Lnvva 3.1 ([2, Th.3.2]) . For any poi,nt a, D is quasi-additiue i,f and only if
D + C" is an ultrametric.

Lnuve 3.2 (12, Cor.3.3]) . Gi,uen an addi,ti,ue metri,c A and a centroid quasi'-

metri,c Q, A+ Q is additiue if and onty if A+ Q satisfies the triangle inequali'ty.

LeI D be a d.istance matrix and let ,Z be the set of all additive metrics. We define

A(D) to be (one of) the additive metrics such that
ll D- A(D) ll"":mina6ill D-All."

For point 0, we say a metric M is a-restrictedif Vi,Mla,il: D[a,i]. Let.t" be the

set of o-restricted additive metrics. We define A (D) to be (one of) the a-restricted

additive metrics such that ll D - A(D) ll." : min46.Yo ll D - A 11"". In other words,

A(D) is an optimal a-restricted additive metric for D. We will sometimes refer to

such a metric as a-opti,mal. Similarly, we define U(D) to be an optimal ultrametric
f.or D. Note that the functions, '40, A0,andt/0, need not be uniquely-valued. In
the following, we will let the output be an arbitrary optimal metric, unless otherwise

noted. Recall tinat U0 is computable in O(n') time [6].
Lemma 3.1 suggests that we may be able to approximate the closest additive

metric to D by approximating the closest ultrametric to D * Co, i.e., by computing
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U(D + C") - Co, for some point a. Lemma 3.2 tells us that we need to guaran-
tee the triangle inequality for the final metric to show that it is additive. Thus
we need to modify our heuristic. Specifically, for any point a, we will show that
ll D - A(D) ll"" < 3ll D - A(D) lloo, and we will give a modification t/"0 of U0
such that A"(D) : U"(D + C") - C". We will use the following result implicit in [6].

Tsponpv 3.3. Consider two n x n distance matrices L,M : 52 -+ Wss and a
real ualue h such that Lfi., jl S M[i,, jl < h for all i, j. There is an o(n2) algorithm
to compute an ultrametric U, if it erists, such that for all i, j, Lli,, j) < U[i,, j) < lr,
and ll M - U ll." ,r minimized.

Proof. Our proof uses the construction of Theorem 5 in [6]. First we show how,
given a distance matrix A: 32 J W>0, we can construct in time O(n2) an ultrametric
U, such that U < ,4 (i.e., Y'i, j : Uli,, jl < Ati,,7]) and such that for any ultrametric
u, 1 A,ut <u.

Let T be a minimum spanning tree over the graph defined by A. The ultrametric
[/ is now defined as follows. Let e : (i,, j) be the maximum weight edge of ?, and let
ft and T2be the subtrees of ? obtained by deleting (i,, j). Then U has root at height
Ali, jl12 and the subtrees of the root are the ultrametric trees Ur and U2 recursively
defined on 71 and T.2. Clearly, U < A.

ClaIu: 3.3.1. For any ultrametricUt, if U' < A thenU' < U.
PRoop: Let Sr and ,S2 be the partition of S defined by 

"r 
and T.2. By induction,

for k : 1,2, (Jp >U'lSZ.
Let Ui and Ul be the two subtrees of [/, and let Si and ,9i be the corresponding

partitioning of S. Set tu : Ali,,jl and 111t : min(,,j)esi xs;Ali,il. Since tl is the
maximum weight in the minimum spanning tree 7, w' 1w. However, it is required
that U' ( -4, so the height of the root of U' rs w'f 2, that is, the maximal distance in
U'rsw'. Thus for all (i, j) e ^91 x 52, U[i,, j):w2w'>t]'[i,, j]. n

Consider an ultrametric U' as described in the Theorem 3.3, i.e. for all i,j,
L[i,, j) < U'['i, j) < h,and e : ll M - U' ll*, is minimized. Set

r* : maxi,ir.s, (M[i., i] - U'1i,, iD S u
Suppose that we knew e*. Define -4u* such that -4.'+ [i, j) : min{M[i, j] + e+ , h],

and construct Tt+ and, (J'+ < A'* as described above. Since [J' < A'+ , U'* Ii, j] >
U'li,, jl, so Lf,i, jl . u'* [f ,7] and ll tw - U'* lloo < ll M - U' ll*.

Now observe that if 7 is a minimum spanning tree for M then ? is also a minimum
spanning tree for A'- . Thus it follows that the topology of an optimal ultrametric IJ
may be the same as the one we would construct from 7 and M. Given that ? defines
the right topology, we can construct the optimal ultrametric as follows.

Let e: (i,,,j) be the maximum M-weight edge of T, and let 7r andT2 be the
subtrees of T obtained by deleting (i, j).Let Sr and,S2 be the partitionof ,S defined
by Tt and 72. Set

max(i,j)€s" M[i,,j] + minl;,r)€sr x^s, Mli, j)
l.L -

Then [/ has root at height min{h, p} /2 and the subtrees of the root are the ultrametric
trees [/r and U2 recursively defined on 71 and 72. I

3.1. The troo Approximation. The stem of a leaf is the edge incident on it.
Lprraua 3.4. For all points o, ll D - A"(D) ll." < 3ll D -.A(D) ll-.
Proof. For all i, j,let eli, jl : A(D)[i, j]- Dli,j], and € : rn&X;,i {lu[i, j)l]. Derive

an o-restricted tree Tlo from A(D) as follows. We will move all i either towards or
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away from a until each i is distance Dfa,i] from a. If A(D)l",il - Dlo,i] is negative,

we simply increase the length of its stem. Otherwise, e must be moved closer to a.

Consider the (weighted) path from i to o. Let p be the point on this path which is
distance Dla,i,) from a. We simply move i to this location. In either case, no point i
is movcd more than le[a,e]1, an<l so l" (D)[i,i)-T/"li,r]l S le[a,z]l+ le[o,7]1. Now,

T/u ts additive by construction, and for alli,,T/"[a,'i): Dla,i]. Further, for all 2,.7,

lD[i,, j) - r/o'li, j)l < lA(D)li., il - T/"[i,i]l + lDlt, il - A(D)li, i)1,

< (lr[o, e]l + le[a, /]l) + lrli, i)l
( 3e.

Finally, by the optimality of A(D),

ll D - A(D) ll"" < ll D - r/" ll,- 13e.

l
LBrrrtR 3.5. For any po'int a, A(D) can be computed i,n polynomial timc.
Proof. We say an ultrametrtc (J is a-restricted (with respect to D) if it satisfies

the following constraints:

2moluli,, j)> 2max{\,lj}, for alli, j,
U[a,i,] -- 2nlo,, for all i * a.

For any distance matrix M, define U"(M) to be an a-restricted ultrametric which

minimizes llM -U"(M)ll,-. Note that for all i,i, U"(M)li',il < 2m". We can

tlrerefore apply Theorem 3.3, and so ll M -U"(M) llo" can be computed in O(n')
time.

Let T : l.l"(D + C") - C". We now show that T : A(D).
CtRIv: 3.5.1. T is an a-restri,cted addi,tiue metric.
PRoor': Let D": D I C". Constraint (2) implies that 7 is a-restricted, since

Tla, i') : I'1" (D + C ")[o, i) - C " lo, i] : 2m o - (2* 
" - Dlo, il) : Dlo,,]' Bv Lemma 3' 2,

we only need to show that T satisfies the triangle inequality, i.e.,

fli,, jl S rli,kl + Tlk,jl, for all distinct i, i,k
<+ t/"(D")li,, i) - c"li, ile u"(D")li, il<+ u"(D")li, il

* min{1,1" (D")!i,, kl,t/" (D")lk, il} - 2l n.

Now, sinceU"(D") is an ultrametric,

l/" (D")[i., jl S r.rlax{l/" (D")li, k], U" (D")lk, i)) .

Also, min{t/"(D")li,,kl,t/"(D")lk,il} } 2In by constraint (1). Hence, the claim is
proved. n

CrRIu: 3.5.2. A(D) + C" 'is an a-restri,cted ultrametri'c.
.PRoor': Flom Lemma 3.I, A(D) + C" is an ultrametric. To show that

Constraint (2) is satisfied, define T' : A(D) + C" and note that:

T'la,i): A"(D)la,i,l + C"lo,i): Dlo,i] + li * lo : )'7no'

For Constraint (1), we use the fact that A(D) is a metric, and therefore, for all
i,i * a,
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A" (D)[", il : A" (D)li, il + A" (D)[a, i,]

+ T'lo, j) - C"lo, jl < T'[i, jl - C"li,, j] + T'la,i,l - C"[a,i.)

+ T'[o, j] . T'lj,i,l + T'fa,il - zti

+ 2mo I T'U, il * 2mo - 2li

+ T'lj,i) ) 2tt.

By symmetry, T'lj,il > 2l j. Also,

T'[i,, il : A" (D)1i., il + t,i I li
< A"(D)la,i,l t A"(D)1", jl + t,i.-r ti

- 2mo

Therefore, Constraint (1) is also satisfied and Claim 3.5.2 is proved. n
Finally,

ll T - D ll." >_ ll A(D) - D ll"" (by Claim 3.5.1)

: ll (A(D) + c") - (D * C") ,,o,

> llU"(D + C") - (D + C") ll"" (by Claim 3.5.2)

: ll 7 - D ll"" (by construction).

Therefore, ll Z - l) ll"" : ll A"(D) - D 11"". This proves the lemma. !
Lemmas 3.4 and 3.5 imply:
Tnoonont 3.6. Giuen an n x n d'istance matrir D. we can find a tree metrzc T

i,n O(n2) time such that

ll r -, ll"" < 3ll A(D) - D ,,oo.

4. Tightness of analysis. In this section we show that the constant in Lemma 3.4
is tight, and that for some distance matrices it is not improved by trying different
values of c.

Tuoonov 4.1. There is an n x n distance matrir D such that, for all poi,nts c,

ll D -.4"(D) ll""
-a-J.ll D -.A(D) ll""

Proof. Consider the following distance matrix D for the points eo,..',es:

Dlqt,qi : d- e if,i:(f +t; modg ori:(j- 1) modg
: 0 ifl:jmod3
: d+e otherwise.

Note that for each c : ei, there exists a! : q7+r)rnods, a2 : Q(i,-t)moas, br :
q7+ )rnods, and bz : Q1-n)-o4g such that

Dlc,all : D[a2,c] : Dlb2,b.) : d-e,
Dlfu,cl : Dlc,b2l : D[a1,a2]: d+e,and
Dla1,b1l: Dla2,b2]:0'
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If we take d to be much larger than e, it is easy to see that any reasonable

approximation by a tree metric Z uscs a tree with a central vertex rn from which
three edges lead to subtrees containing c, {at,b1} and {or,br} respectively.

Hence,

Tlb1, c) - Tlr, ar] + Tlor, orl - Tlor, c) + T[c,b2] - T[b2, br] : 0,

whereas

Dlbr, c] - D[c,or] + D[ot, or] - Dlor,, c) + D[c,b2) - Dlb2,b1) -- 6e.

Therefore any such approximation ? satisfies ll D - Z ll." > e.

For a c-restricted approximationT (where T[u,c): Dlu,c] for allc), we find that

Tlot, a2l - D[a1, az] - T[b2,br] + D[b2, br] : 6E,

andsoll D-ZIl"")3e.

Q2t Q5' Q8 QL t Q4t Q7

Ftc. 1. TYees approrimating D.

Figure 1 shows optimal solutions which establish that ll D - A(D) llo" : e and

that ll D - A'(D) ll"" :3E. I
Some rather involved examples show that there are c-optimal trees for which

changing the edge-lengths cannot bring the error down below 3e - o(1). Thus there

is no significant worst-case advantage to the obvious heuristic of changing the edge-

lengths optimally using linear programming.

5. Lower bound. In this section, we show that the problem of finding a tree ?
such that ll f - , ll"" < te is NP-hard. First, we show that a decision version of the
Numericai Taxonomy Problem is,A,/2-complete.
The Numerical Taxonomy Problem
Input: A distance matrix D : 52 --) $t>0, and a threshold A e $t>0.

Question: Is there a tree metricT which spans S and for which ll 
" - 

D ll"" < n.
TuponBu 5.1. The Numerical TarononxA Problem is NP-complete.
Proof. That the problem is in NP is immediate. We show NP-completeness by

reduction from 3SAT. For an instance of 3SAT with variables c1, . ..,frn and clauses

Cr,...,Ck, we will construct a distance matrix D such that the 3SAT expression
is satisfiable if and only if ll D - A(D) ll"" < L, : 2. Let integer r represent some

qo, q3, q6

l
't'

I

I

Dr

I

I

I

I

I

c: QO,Q3tQ6

A'(D)

d12 - e,'

,2ft1 ,,
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sufficiently large distance (like 10). We construct a distance matrix D to approximate
path lengths on a tree with leaves ri,i;,h6 for 1 < i < n, and ci,Ci,Ci for | < j < k,
and u.

To simplify the description of the construction we first present it in the form
of a set of inequalities on the distances between the vertices of a tree ?, which are
expressed later in the required form. For example, we shall write "Tf*;,16]) 2r" at
first, and realize this constraint eventually by letting Dlro,I l:2r * L. We classify
the inequalities as follows.

A: Literal pai,rs

T[16,z6) ) 2r, Tfri,hl) I r, Tfri,h1] { r,, for all i.

These inequalities force h; to be the midpoint of the path between r; and ri, for
all i.

B: Star-li,ke tree

(1) Tlu,r6) ( r f 1, Tlu,nll ( r * 1, for all z,

(2) T[fu, hi) > Z, Tfhi, ri] > r, T[h6, ri] ] r,

The inequalities B(1), together with those in A, imply
we can then use the first inequality of B(2) to deduce that

for all 'i, j
Tlu, hll <
Tlu, h;l :

-lt

j).

all i, and
all z.

\, 7_

1 for
I lor

-" - -\ -------X2
\

h2

Flc. 2. Portion of sample layout

The vertex u must be at the center of a star with each hi at distance 1 from it
along separate edges. From each hi, at least one of the two paths of length r to ri
and 11 proceeds away from u. An impression of a general feasible configuration is
presented in Figure 2.

The essential feature of such configurations, which we shall use in our reduction,
is that for each i, at least one of ri and r; is at distance r + 1 from u. The final
inequalities will represent the satisfaction of clauses by literals. A satisfying literal
will correspond to a vertex fti e. {r;,2;} such that Tla,rt;l: r - L. Clearly, r; and i;
cannot both be satisfying literals.

Now, we present the third set of inequalities that deal with the "clause" vertices
ci, Ci, cll. Specifically, we will show that a clause is satisfied if and only if at least one

of its literals is at a distance less than r * 1 from u.
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C: Clause satisfacti,on
For each clause ci : (ai,u'i,u'l) where ai,a'i,al are literals, we have three vcrtices

c5 , cti, c'l and. the following inequaiities (where we drop the subscript j for clarity):

Tlr,a\ { r * 1, Tlc,a"l < r * I,

Tlr',a") 1 r t l, Tlc',El 3 r * 1,

Tlr",Lt) 1 r * 1, Tfc",y'l I r I l,

Tlc, c') ) 2, Tlct , c"l >- 2, Tlc" , cl > 2.

If Tlu,al, Tlu,a,i7 andTlr,y'i) are all r *7., then the first inequalities in c force each

of ci,Ci,Cj tocoincidewithu,contraveningthelastthreeinequalities. However,if at

least one bf thcs" literals is at a distance r - L of 'r.r then a configuration of the form

illustrated in Figure 3 is feasible.

FIc. 3. Lagout of clause uertices

We claim that the complete set of inequalities is satisfiable if and only if the

corresponding 3SAT formula is satisfi.able. In one direction, suppose that there is a
satisfying truth assignment to the logical variables. For each variable, lay out the

corresponding tree vertices so that the vertex corresponding to the true literal is at

distancer-lfromu(the"false"literalwillbeatdistancer*lfromu).Eachclause
has a satisfying literal, therefore, for each j, at least one of Ui,A'i,A'l is at distance r-1
from u in the tree, thus allowing a legal placement of ci,Ci,Ci.On the other hand, if
there is a tree layout satisfying all the inequalities then at least one of Ai,A'i,A'l must
be within distance r - L of u for each j. Since at most one of r,i and ri cau be within
r - 1 of u, the layout yields a (partial) assignment which satisfies the logical formula.

To complete the proof, we construct a distance matrix D such that (1) if for some

tree metric ?, ll T - D ll." < A, then ? satisfies all the inequalities from A, B and

C, and (2) for the tree layout ? described above, corresponding to a satisfiable 3SAT

expression, we have ll 
" 

- D ll." < A.
Concerning (1), for all vertices a,b, and all z e ft>6, if an inequality is of the

form ?[o, b) > ,,Iet Dla,b]: , * A. Correspondingly, if the inequality is of the form
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Tla,bl { z, let D[a,b]: z - A.. Concerning Q), for i6 € {rn,rt), ri e {ri,ri},
i * i, in our intended configurations we have 2r - 2 <:rlfti,r j) I 21 12, with either
extreme possible. Therefore we take Dlio,rtil : 2r. Since L, : 2, this covers both
extremes. Sirnilarly, for each clause C we take Dlc,yl: D[c',y']: Dlc",A"): r * 1.

Suitablc values for the remaining cntries of D are easy to find. This completes the
proof of Theorem 5.1. !

Next, we strengthen Theorem 5.1 to show a hardness-of-approximation result.
Tuoonou 5.2. Giuen a SSAT instance S, a distance matrir D can be computed

in polynornial ti,me such that:
1. If S is sati,sfiable, then ll D - A(D) ll"" < Z.

2. U S i,s not satisfi,able, thenllD-A(D) ll"" > 2+i.
Proof. We extend the construction of Theorem 5.1 by relaxing some of the in-

equalities by a fixed amount d and omitting others. The matrix D is the same as
before.

A: Li,teral pai,rs

Tlri,il)) 2r - 5, Tfri,h;) ( r f d, Tlri,hil 1r |_6, for all z.

B: Star-like tree

T[u,r6) ( r * 1+ d, Tlu,rl] 1r t 1+ d, Tlu,h6l < 1+ d, for all i,

Tlh.i,h,i)> 2 - 5, for all i, j (i + j).

C: Clause satisfact'ion
For each clause C : (y,U',U") where U,U',!J" are literals, we have three vertices

c, c' , c" and the following inequalities:

T[",a') 1 r -f 1 + d, T[r,a"]( r * 1 + d,

Tl"',a") ( r * 1+ d, T["',a) 1r !_1+ d,

T["",a] < r+ 1 + 5, Tfc",a'l < r+ 1 + d,

Tlc, c'l > 2 - 6, Tlc', r"f >_ 2 - 6, Tlc, c"l > 2 - 5.

Note that the inequalities are a relaxation of the inequalities in the construction
of Theorem 5.1. It follows that if S is satisfiable, then there is a tree 7 that satis-
fies these inequalities for all non-negative d. Consequently, if ,S is satisfiable, then
llD-A(D)11""<2.

In the remaining part, we consider an arbitrary tree 7 which satisfies inequalities
A, B and C. Our aim will be to show that if S is not satisfiable then 6 > | 14, and so

ll D - " ll"" 
> 2+114.

For any three distinct tree vertices u,,l))w, let meet(u,u,u.r) denote the inter-
section point of the paths between them. We interpret x; as false if and only if
Tlh;,meet(r,hn,rn)) < Tlht,neet(u, ht,r;)). Without loss of generality, we may re-
strict our attention to a tree for which our i,nterpretation sets aII r; to be false.
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For any variable 16,let lz; denote meet(lz;, rt,rt), and 0i denote meet(u) ht,rt).
Note that r; being false implies that Tlhi,0i) < Tlhi,hi).

Crarv: 5.2.I. For atl i, (1) T[hn,t4.) < Tlh'6,h;] < 36f2, and (2) Tlr;,lt'1)-
Tlhi,hillr-26.

PRoop': tror (1) ,2T'[h4,h,]: Tl"o,hl+T[z6,ht)*Tfri,ri) < 2(r+d)- (2r-5) :
3d.

For (2) ,Tl";.,itl- Tlhi,irul:Tfri,il-Tlro,nl> 2r - 5 - (" + 5): r -26. n
For each j + i., sef hrn: ft€et (hi,ht,rr).
Cr.q.Ina: 5.2.2. For all 6 < + and for all j I i,, T[hr,h!o] <T[h';,01,).

PRoop: Suppose flhi,hril) Tlh;,0;]. Then there are simple paths from h; to
0; to hi and from u to 0; to hi. Therefore

o : Tlh;,01) + Tfoi, hi) - Tllt'i, hi)
< Tlho,0;l t T[u,hl - Tlhi,hj)
s3512+(1 +6)-(2-6)

Hence 5>?. n
Cratlt: 5.2.3. For all 5 < ? and for all i,l j, Tlr;,ril) 2r *2 - 56.

PRoor': By Claims 5.2.2 and 5.2.1O), f[hi,hto] < 3512 and Tflt'i,h'j] < 3612.

Since Tllti,hi> 2-d and 5 <I12, we may conclude that we have asimple path frorn

h6 to hlo to h', to /r,r', and a simple path from r; to it,,; to lfo to U ," ir1 to ri. Note,

however, that i; and, hlo may coincide, and similarly for h'1and hr. In conclusion,

T fr ;, r ) : T lr r, irl + r[iro, nt) + T lhto, hl + l:lhi, i, | + T lir" i, r i)
) Tlri,14) + Tlhlo,h}l + Tllti,rl
: Tl*t,i'rd + rlno, hil - TLhi,iri) - Tlh,1,hil + T[it4, rl
22(r - 26) + 2 - 5 : 2r + 2 - 55.

For the last inequality, we used Claim 5.2.1(2). n
Finally, we show that if S is not satisfiable then d > 114. If d > 217 then this is

trivially true, so we may assume that the conclusions of Claims5.2.2 and 5.2.3 apply.

Let vertices tr,r',r" in ? correspond to the three false literals of a clause. Let
p : meet (",*',2"). Without loss of generality, assume Tlr,p] 2 T[r',p] 2 Tlr",pl.
Let rl be at the middle of the path from r to r" . By Claim 5.2.3, Tlr, d) : T[r" , d] ]
r*1- 5512. Hence the bounds of r*1+d on Tlr,c'l andTlr",c'] from the inequalities
in C imply that Tld,c'l < 7612.

Now d is situated on the path from r to p, and Tlp,*'f > TlP,*"1, implying
Tld,r'l>fld,n"l>-r*1- 5612. Hence, as above, the bounds of r+1+ 5 onTlr,c")
and Tlrtt ,c//] imply that Tld, r"l S 76 12. Consequently Tlct , r"l S Tlc' , d]+Tld, 

""1 
<

7d. However, from C we also have the inequality Tlc',"")>2 - 5. Thus 75 > 2 - 6

andso 5>114.
Since ? was arbitrary, we have shown that if S is not satisfiable then there is no

tree ? such that ll D - " ll"" 
<2+rf 4,i.e.,ll D - A(D) ll." > 2+I14. I

Theorem 5.2 immediately implies a hardness-of-approximation result for the Nu-
merical Taxonomy Problem.

Conolleny 5.3. It is an NP-hard problem, giuen a distance matrir D, to find
an addi,ti,ue metric T such that

llD-,l11." 9(:.
Ell D -,4(D) ll."
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Proof. For any such ?, if ll, - 7 ll- > 2 + rf4 then ll D - A(D) ll"" > 2 and S
unsatisfiable, and if otherwise then llD-A(D) ll"" < llD- " ll"" <2+\f 4and
is satisfiable. !

6. Generalization to Other Norms. First, we show that Lemma 3.4 can be
generalized to other norms.

THpoRBu 6.I. Let D be a distnncematrir andT be a.tree suchthatll D -f ll, a
€. Then there erists a point a and an a-restricted treeT/" such thatll D -T/" llo S
3e.

Proof. For any point o, the construction of Lemma 3.4 returns an o-restricted
tree T/" such that

(3) lT/ "[i., j) - Dli,7]l 5 le[e, 7]l +

Also, by the convexity of the function lrle

(4)

We continue the proof by an averaging argument. Clearly,

m"in{(ll T/" - D llo)'} 5 DT,:r|l:r/" - D ll)o

We use inequalities (3) and ( ) to bound the sum.

rLnrln

f(ll T/" - Dllo)o: t t I lrlt,i)-ela,i.)-ela,ille
a:I a:l i-_I,i*a j-l,j*a

< 3o-' i i i luli,ille + lela,ill, + lulo, illo
a:t i:L,i*a j:t,j*a

:spn(ll r-Dll)o.
The theorem follows. I

As in the case of. Loo, we can show that if ? is an a-optimal tree for D under .L6,

then ? + C" is an optimal a-restricted ultrametric for D + C" under the same norm.
We define the AdditioeT, problem as, given a matrix D, output an additive metric
A minimizing ll D - A llx.Similarly, the Ultrametriq" problem is, given a matrix D,
output an ultrametric U minimizing ll D - U ll*.

We conclude with:
THoonpv 6.2. If A(D) is an algorithm which achieues o,n a-approrimation for

the a-restricted Ultrametricp problem and runs in t'ime T(n) on an n x n matrir,
then there is an algorithm F(D) whi,ch ach'ieues a3a-approrimati,on for the Additiuep
problem and ntns in O(nT(n)) time.
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