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OPTIMAL BIDDING ALGORITHMS

AGAINST CHEATING IN MULTIPLE-OBJECT AUCTIONS∗

MING-YANG KAO† , JUNFENG QI‡ , AND LEI TAN§

Abstract. This paper studies some basic problems in a multiple-object auction model using
methodologies from theoretical computer science. We are especially concerned with situations where
an adversary bidder knows the bidding algorithms of all the other bidders. In the two-bidder case,
we derive an optimal randomized bidding algorithm, by which the disadvantaged bidder can procure
at least half of the auction objects despite the adversary’s a priori knowledge of his algorithm. In
the general k-bidder case, if the number of objects is a multiple of k, an optimal randomized bidding
algorithm is found. If the k − 1 disadvantaged bidders employ that same algorithm, each of them
can obtain at least 1/k of the objects regardless of the bidding algorithm the adversary uses. These
two algorithms are based on closed-form solutions to certain multivariate probability distributions.
In situations where a closed-form solution cannot be obtained, we study a restricted class of bidding
algorithms as an approximation to desired optimal algorithms.

Key words. auction theory, bidding algorithms, electronic commerce, automated negotiation
mechanisms, software agents, market-based control

AMS subject classifications. 05A99, 60C05, 68R05, 90A09, 90A12, 90D10, 90D13

1. Introduction. This paper investigates some basic problems in auction the-
ory. Broadly speaking, an auction is a market mechanism with explicit or implicit
rules for allocating resources and determining prices on the basis of bids from mar-
ket participants [4, 10, 12, 18]. Auctions are frequently used to price various types
of assets. For instance, the U.S. Treasury raises funds by auctioning T-bonds and
T-notes, while the Department of the Interior sells mineral rights on federally owned
properties via auction. Economists are interested in auctions as an efficient way to
price and allocate goods which have no standard market value. Auctions are believed
to be the simplest and most familiar means of price determination for multilateral
trading without intermediary market makers [10, 12, 18].

In typical auctions, there are one seller and a group of competing buyers who bid
to possess the auction objects. Procurements describe situations in which a single
buyer wishes to purchase objects from a set of potential suppliers. There are four
basic forms of auctions in use [10, 12, 14]. In an English auction or ascending bid

auction, the price of an object is successively raised until only one bidder remains and
wins the object. In a Dutch auction, which is the converse of an English auction, an
initial high price is subsequently lowered until a bidder accepts the current price. In
a first-price sealed-bid auction, potential buyers submit sealed bids for an object. The
highest bidder is awarded the object and pays the amount of his bid. In a second-price

sealed-bid auction, the highest bidder wins the object but pays a price equal to the
second-highest bid. While there are many other forms of auctions, these four are of
the greatest interest.

Previous literature on auction theory mainly studied bidding behavior under the
assumption that the objective of bidders is to maximize expected profits in absence
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of any budget constraints. Such work concentrates on the allocation of a single object
to one of many bidders. Each bidder has a valuation, which is his estimate of the
value of the object. In the independent private valuation (IPV) model, each bidder
knows his valuation for the object ex ante. Each bidder’s valuation is assumed to be
drawn independently from the same probability distribution. In the common value

(CV) model, it is assumed that bidders obtain imperfect estimates of the value of the
object. The bidders all assign the same value to the object ex post. Both models are
well studied in auction theory [13, 14, 15, 16].

Very little work in computer science has been conducted on problems related to
auctions. Neither auction mechanisms nor bidding algorithms have been formally
studied. Nevertheless, computer scientists have realized the importance of auctions
as an efficient method of resource allocation [4]. Gagliano et al. applied auction tech-
niques to the allocation of decentralized network resources [9]. Yang et al. proposed an
auction-based scheme in which task and resource allocations are determined through
negotiations among system entities [19].

Our work investigates some basic issues in the context of automated negotiation
mechanisms which are emerging in electronic commerce and other applications of
software agents for resource allocation. To maximize transaction volume and speed,
we focus on the auction of several objects in parallel and propose a multiple-object

auction model. This model further differs from the IPV and CV models in several
significant ways. In this model, each bidder faces a binding budget constraint which
is identical to all the bidders. Such constraints can be used to enforce fairness of some
form when their compliance is verifiable. In electronic transaction environments,
security has been a major concern. Our model explicitly considers situations where
electronically transmitted information about bids may be legitimately or illegitimately
revealed against the wishes of their bidders. In contrast, the IPV and CV models
assume that no bidder has an informational advantage on bids or bidding algorithms
over other bidders [8].

The assumptions of our model are specified as follows.

• There are a total of k bidders, B1, B2, . . . , Bk, each of whom has the same
total resource to devote toward winning objects. We normalize this amount
to be 1. Assume that k ≥ 2.

• A total of n objects are auctioned. Assume that n ≥ k. Each bidder’s goal
is to maximize the number of objects he wins. The objects are therefore of
equal value to a bidder.

• Each bidder submits a sequence of n bids simultaneously for the n objects.
Each object is won by the highest bidder at the price of his bid. If m bidders
submit the same highest bid for an object, each wins the object with proba-
bility 1/m. (Remark: The results of our bidding algorithms in §2 and §3 are
not affected by the specific tie-breaking rules that are used.) For technical
reasons, no zero bid is allowed. (Remark: This restriction is only used in §4.)

• Some bidders may know the bidding algorithms of others. The information
structure can be characterized by a directed graph in which an arc from a
bidder Bi to another bidder Bj means that Bi knows Bj’s algorithm. For
instance, in Figure 1.1, B4 knows the algorithms of B1 and B2; B3 knows
B4’s; B2 knows B3’s; B1 knows only his own. The bidders all compete non-
cooperatively. We assume that each bidder knows the number of bidders and
that of objects.

We analyze the performance of a number of bidding algorithms with which bidders
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Fig. 1.1. A graph of information structure

can assign their bids. Almost all the bidding algorithms in this paper are randomized
ones. We first study the case of two bidders, i.e., k = 2, and then extend the results
to the case of multiple bidders. In the two-bidder case, let B and A denote the
bidders. We assume that A knows B’s bidding algorithm, while B does not know
A’s, i.e., B is a disadvantaged bidder and A an adversary. Here, A is an oblivious
adversary, because although A knows B’s bidding algorithm, he does not know the
outcome of the random choices that B makes. We give an optimal randomized bidding
algorithm for B by which he can procure at least one half of the objects despite A’s
a priori knowledge of his bidding algorithm. The main difficulty with obtaining this
optimal bidding algorithm is finding a closed-form solution to a desired multivariate
probability distribution [1, 5, 6, 11, 17].

We next study the case where there are more than two bidders, and an adversary
bidder knows the bidding algorithms of all the others. If the number of objects is
a multiple of the number of bidders, an optimal randomized bidding algorithm is
found. If all the disadvantaged bidders employ that same bidding algorithm, each of
them can obtain at least 1/k of the objects regardless of the bidding algorithm the
adversary uses. This bidding algorithm is also based on a closed-form solution to a
desired multivariate probability distribution.

When the number of objects is not a multiple of the number of bidders, a closed-
form solution of a desired probability distribution cannot be obtained. Motivated by
this, we study a class of bidding algorithms to approximate desired optimal algorithms.
A bidding algorithm in this class computes an initial sequence of bids, and the actual
bid sequence is a random permutation of the initial sequence.

Section 2 describes the optimal bidding algorithm for the disadvantaged bidder
in the two-bidder case. In §3, the optimal randomized bidding algorithm from §2
is generalized for the multiple-bidder case. In §4, a class of bidding algorithms are
introduced to approximate desired optimal algorithms when a closed-form solution
cannot be determined. Section 5 concludes the paper.

For brevity, let W (Bi) denote the expected number of objects that Bi wins with
a bidding algorithm that is explicitly or implicitly specified.

2. The Two-Bidder Case. This section studies the two-bidder case. We as-
sume that A knows B’s bidding algorithm, while B does not know A’s. We give an
optimal randomized bidding algorithm for B such that W (B) = n/2 despite A’s infor-
mational advantage. Since this problem is a zero-sum game, this bound of n/2 would
be straightforward if von Neumann’s min-max theorem were applicable. However, our
problem has an infinite pure strategy space, and it is not immediately clear that the
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min-max theorem is applicable [2, 3, 7, 8, 18].

2.1. B’s Optimal Bidding Algorithm. The following lemma gives an upper
bound for the expected number of objects B can win.

Lemma 2.1. W (B) ≤ n
2 .

Proof. Since A knows B’s bidding algorithm, A can perform at least as well as
B by employing the same algorithm. Then this lemma follows from the fact that our
auction is a zero-sum game.

Lemma 2.2 describes the marginals of a desired multivariate probability distribu-
tion with which B can form an optimal bidding algorithm.

Lemma 2.2. Assume that B draws his bid sequence b1, b2, . . . , bn from an n-
dimensional probability distribution such that each bi has the same marginal probability

distribution F2(bi), where

F2(bi) =

{

n
2 ·bi bi ∈ [0, 2

n ],
1 bi ∈ ( 2n , 1],

(2.1)

subject to
∑

bi = 1. Then, A’s optimal bidding algorithm wins exactly n/2 objects on

average.

Proof. Let a1, a2, . . . , an be A’s optimal bids for the n objects, respectively. A’s
probability of winning the ith object is F2(ai). Since B’s bids are within [0, 2/n], it is
not to A’s advantage to bid over 2/n. Hence ai ≤ 2/n and F2(ai) =

n
2 ai. A’s optimal

bids maximize W (A) as follows:

max
∑

ai = 1,

0 ≤ ai ≤ 2

n

W (A) = max
∑

ai = 1,

0 ≤ ai ≤ 2

n

F2(a1) + F2(a2) + · · ·+ F2(an)

= max
∑

ai = 1

0 ≤ ai ≤ 2

n

n

2
·(a1 + · · ·+ an) =

n

2
.

Lemma 2.4 systematically constructs a bid sequence for B which satisfies the
conditions given in Lemma 2.2. We define two additional functions for Lemma 2.4.
Let

s(v) =
81

2
·

v

2− 3v
.(2.2)

Let h(x, y, z) be the function defined on {(x, y, z)|0 ≤ x, y, z ≤ 1
3} such that

h(x, y, z) = s(|x− y|+ |y − z|+ |z − x|).(2.3)

Lemma 2.3. The function h(x, y, z) is a joint probability density function of x, y
and z.

Proof. Note that h(x, y, z) ≥ 0. To show that h(x, y, z) is a joint probability
density function, we need only verify that the integral of h(x, y, z) over {(x, y, z)|0 ≤
x, y, z ≤ 1

3} is 1. Let

r(x, y) =

∫ 1

3

0

h(x, y, z)dz.(2.4)

Consider the case x ≥ y. Then

if x ≥ y ≥ z, h(x, y, z) = s(2(x− z));



optimal bidding algorithms for multiple-object auctions 5

if x ≥ z ≥ y, h(x, y, z) = s(2(x− y));

if z ≥ x ≥ y, h(x, y, z) = s(2(z − y)).

Hence if x ≥ y,

r(x, y) =

∫ y

0

s(2(x− z)) dz +

∫ x

y

s(2(x− y)) dz +

∫ 1/3

x

s(2(z − y)) dz,(2.5)

which equals

9

2

(

2 ln(1− 3(x− y))− ln(3y(1− 3x))−
1− 6(x− y)

1− 3(x− y)

)

.(2.6)

By symmetry, if y ≥ x,

r(x, y) =
9

2

(

2 ln(1− 3(y − x)) − ln(3x(1 − 3y))−
1− 6(y − x)

1− 3(y − x)

)

.

It can be verified that

∫ 1/3

0

∫ 1/3

0

r(x, y) dxdy = 1.

Thus,

∫ 1/3

0

∫ 1/3

0

∫ 1/3

0

h(x, y, z) dxdydz = 1.

Lemma 2.4. B can use the following procedure to draw his bids b1, b2, . . . , bn
such that

∑

bi = 1 and the marginal probability distribution of each bi is as described

by (2.1).
Case 1: n = 2m is even. B draws b1 from the probability distribution F2 and sets

bi = b1 and bm+i =
2
n − b1 for i = 1, . . . ,m.

Case 2: n = 2m + 1 is odd. B draws b1 from F2 and then sets bi = b1 and

bm−1+i =
2
n − b1 for i = 1, . . . ,m−1. For the remaining three bids b2m−1, b2m, b2m+1,

B draws (x, y, z) according to h in (2.3) and sets

b2m−1 =
3

n
(x − y +

1

3
), b2m =

3

n
(y − z +

1

3
), b2m+1 =

3

n
(z − x+

1

3
).(2.7)

Proof. Note that
∑n

i=1 bi = 1, whether n is even or odd.
Case 1. This lemma is correct since if a random variable X is drawn from the

uniform probability distribution on [0, 2
n ], then

2
n −X has the same probability dis-

tribution.
Case 2. The proof of Case 1 shows that the marginal probability distribution of

each bi is F2 for i = 1, . . . , 2m − 2. It remains to show that b2m−1, b2m, b2m+1 are
also distributed the same way. Because these three random variables are symmetric
to each other in (2.7), we only discuss b2m−1 in detail. Let t = x − y + 1

3 . Since x
and y are defined on [0, 13 ], t is defined on [0, 23 ]. We have two cases: t ∈ [0, 13 ] and
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t ∈ [ 13 ,
2
3 ]. The two cases are symmetric, and we discuss only the latter. Let G(t)

denote the probability distribution of t. Then,

G(t) = 1−

∫ ∫

u−v+ 1

3
≥t,0≤u,v≤ 1

3

r(u, v) dvdu = 1−

∫ 1/3

t−1/3

∫ u−t+1/3

0

r(u, v) dvdu.

Since u ≥ u− t+1/3, r(u, v) can take the form of (2.6), and we can obtain G(t) = 3
2 t.

Since b2m−1 = 3
n t, F2 is the probability distribution of b2m−1.

Theorem 2.5. The bidding algorithm given in Lemma 2.4 is optimal for B and

ensures B at least n/2 objects in expected terms.

Proof. Lemma 2.1 gives an upper bound for W (B). Lemmas 2.2 and 2.4 give
an upper bound for W (A), which in turn gives a matching lower bound for W (B)
because W (B) +W (A) = n.

2.2. Deriving the Joint Probability Density Function h(x, y, z). The most
difficult step of obtaining the function h is guessing that x, y and z appear together
as |x−y|+ |y−z|+ |z−x|. It is worthwhile to show the derivation of the function s in
(2.2) that gives the joint probability density function h(x, y, z). As in (2.4), let r(x, y)
be the probability distribution of (x, y). Also let t = x − y + 1

3 . Since t = n
3 b2m−1

needs to be uniformly distributed over [0, 2
3 ], we need to have

1−

∫ 1/3

t−1/3

∫ u−t+1/3

0

r(u, v) dvdu =
3

2
t, for all t ∈ [

1

3
,
2

3
],(2.8)

and

∫ t

0

∫ 1/3

u−t+1/3

r(u, v) dvdu =
3

2
t, for all t ∈ [0,

1

3
].

These two cases are symmetric, and we only discuss the case given by (2.8) in detail.
For notational simplicity, let

s(2v) = q(v),

∫ u

q(v) dv = p(u), r2(x, y) =
∂r(x, y)

∂y
.

Differentiating (2.8) with respect to t twice, we obtain

∫ 1/3

t−1/3

r2(u, u− t+
1

3
) du+ r(t −

1

3
, 0) = 0.(2.9)

Since x ≥ y in (2.8), the following is derived from (2.5):

r2(u, v) = −(u− v)q′(u − v)− q(
1

3
− v) + q(u− v).

Then,

∫ 1/3

t−1/3

r2(u, u− t+
1

3
) du(2.10)

= −(t−
1

3
)(
2

3
− t)q′(t−

1

3
) + p(t−

1

3
)− p(

1

3
) + q(t−

1

3
)(
2

3
− t).
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We obtain from (2.5),

r(t −
1

3
, 0) = (t−

1

3
)q(t−

1

3
) + p(

1

3
)− p(t−

1

3
).(2.11)

Setting w = t− 1
3 , we can derive the following differential equation from (2.9), (2.10)

and (2.11):

w(1 − 3w)q′(w) = q(w).

The solution to the differential equation is

q(w) = c
3w

1− 3w
,

where c is a constant. Therefore

s(v) = c
3v

2− 3v
.

Since h(x, y, z) is a probability density function for (x, y, z), c is set to 27
2 to satisfy

∫ 1/3

0

∫ 1/3

0

∫ 1/3

0

h(x, y, z) dxdydz = 1.

3. The Multiple-Bidder Case. This section generalizes the results in §2 to
give an optimal randomized bidding algorithm for the case of multiple bidders. We
assume that the bidding algorithms of k − 1 bidders are known to a single adversary
bidder A. If all the k − 1 disadvantaged bidders employ our bidding algorithm, each
of them wins at least a fraction 1/k of the objects regardless of the bidding algorithm
the adversary uses.

Lemma 3.1. Assume that each of the k − 1 disadvantaged bidders independently

draws his bid sequence b1, b2, . . . , bn from an n-dimensional probability distribution

such that each bi has the same marginal probability distribution Fk(bi), where

Fk(bi) =

{

(

n
k ·bi

)
1

k−1 if bi ∈ [0, k
n ],

1 if bi ∈ ( kn , 1],
(3.1)

subject to
∑

bi = 1. Then, W (A) is at most n/k.
Proof. Let bi,j denote the bid on the i-th object of the jth disadvantaged bidder.

Let ai be A’s bid on the i-th object. Because the bids of the k − 1 disadvantaged
bidders are within [0, k/n], A has no incentive to bid over k/n. Thus, ai ≤ k/n, and

F (ai) =
(

n
k ·ai

)
1

k−1 . Since bids from different disadvantaged bidders are independent,

Prob{aiwins the i-th object}

= Prob{bi,1 ≤ ai}·Prob{bi,2 ≤ ai} · · ·Prob{bi,k−1 ≤ ai}

= (Fk(ai))
k−1

=
n

k
·ai.

From the fact that
∑

ai ≤ 1, A wins exactly n/k objects on average.
It appears quite difficult to find a closed-form solution to a joint probability

distribution whose marginals are as described by (3.1).
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Conjecture 3.2. There exists an n-dimensional joint probability distribution

such that its marginal probability distribution of every component is as described by

(3.1), while the components from all dimensions sum to 1.

For k = 2, this conjecture has been proved in §2. If n is a multiple of k, we prove
this conjecture as follows. Let

e(b1, b2, . . . , bk) =

{

(b1b2 · · · bk)
1

k−1
−1 b1 + b2 + · · ·+ bk = 1, bi > 0;

0 otherwise.

Let

α =

∫

b1+...+bk=1

e(b1, b2, . . . , bk)db1db2 · · · dbk−1.

Normalizing e using α, we have

g(b1, b2, . . . , bk) =

{

(b1b2···bk)
1

k−1
−1

α b1 + b2 + · · ·+ bk = 1, bi > 0;
0 otherwise.

(3.2)

With this normalization, g is a probability density function of (b1, b2, . . . , bk). For
example, if n = k = 3, the probability density function shown in (3.2) is

g(b1, b2, b3) =

{ 1
2π

√
b1b2b3

b1 + b2 + b3 = 1, bi > 0;

0 otherwise.

The following lemma proves Conjecture 3.2 for the case n = k.
Lemma 3.3. If n = k and the bid sequence b1, b2, . . . , bn is drawn from the

n-dimensional joint probability distribution in (3.2), then the marginal probability dis-

tribution for each bi is as described by (3.1).
Proof. Because b1, b2, . . . , bk are symmetric for g, we need only show that the

probability distribution of bk is as described in (3.1). Let

bi = (1− bk)uk−i, i = 2, . . . , k − 1.

Then

dbi = (1− bk)duk−i.

Let

α′ =

∫

u1+...+uk−1=1

(u1u2. . .uk−1)
1

k−1
−1

duk−2duk−3· · ·du1.

Note that α = (k − 1)·α′. The probability distribution of bk equals
∫

0 ≤ w ≤ bk
b1 + b2 + · · · + bk−1 + w = 1

g(b1, · · · , bk−1, w)db2 · · · dbk−1dw

=
1

α
·

∫ bk

0

∫ 1−w

0

∫ 1−w−bk−1

0

· · ·

∫ 1−w−···−b3

0

((1− b2 − · · · − w)b2b3· · ·w)
1

k−1
−1

db2 db3· · ·dbk−1dw

=
1

α
·

∫ bk

0

w
1

k−1
−1

∫ 1

0

∫ 1−u1

0

· · ·

∫ 1−u1−···uk−3

0
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(u1u2 · · ·uk−2(1 − u1 − · · · − uk−2))
1

k−1
−1

duk−2· · ·du2du1dw

=
1

α
·

∫ bk

0

α′w
1

k−1
−1dw

=
α′

α
(k − 1)a

1

k−1

= Fk(bk).

The following lemma extends Lemma 3.3 to the case n = k·m for some integer.
Lemma 3.4. If n = k·m for some integer m, there exists a procedure to generate

a bid sequence b1, b2, . . . , bn such that the probability distribution for each bi can be

described by (3.1), and the bids bi sum to 1

Proof. If m = 1, the lemma is the same as Lemma 3.3. If m > 1, we divide the
objects into m groups of k objects each and employ Lemma 3.3 to obtain bids for the
first group. We then set the bids for the other m − 1 groups to the corresponding
bids for the first group. We scale every bid by a factor of 1

m so that the bids sum to
1. This gives the desired probability distribution.

Theorem 3.5. If n = k·m for some integer m, and the disadvantaged bidders

all employ the bidding algorithm characterized by Lemma 3.4, then each can obtain at

least n/k objects in expected terms, which is optimal.

Proof. From Lemmas 3.1 and 3.4 and the fact that our game is a zero-sum game,
the k − 1 disadvantaged bidders win k−1

k ·n objects in total. Since they all use the
same bidding algorithm, by symmetry, each of them wins n/k objects. This upper
bound of n/k is also a lower bound since the adversary can always win at least n/k
objects by employing the same bidding algorithm as the disadvantaged bidders.

4. Position-Randomized Bidding Algorithms. In §3, an optimal random-
ized bidding algorithm for the bidders with informational disadvantage is derived for
the case where the number of objects is a multiple of that of bidders. This algorithm is
based on a closed-form solution to a desired multivariate probability distribution. If n
is not a multiple of k, a closed-form solution cannot be obtained with our current tech-
niques. Motivated by this, we consider situations where all the bidders are restricted
to a class of bidding algorithms called position-randomized bidding algorithms. A
position-randomized bidding algorithm consists of two steps. Step 1 deterministically
selects an initial sequence of n bids. Step 2 permutes the sequence. The i-th element
of the final sequence is the actual bid for the i-th object. As in §3, we assume that
all the disadvantaged bidders adopt an identical bid sequence at Step 1 and the same
probability distribution at Step 2. A position-randomized bidding algorithm can be
considered as an approximation to optimal bidding algorithms desired for resolving
Conjecture 3.2 in §3.

The next lemma examines how probability distributions chosen at Step 2 affect
the expected numbers of objects bidders win.

Lemma 4.1. For a given initial bid sequence a1, a2, . . . , an of A and a given

initial bid sequence b1, b2, . . . , bn of the disadvantaged bidders,

• W1 denotes the expected number of objects A wins using the uniform prob-

ability distribution while the disadvantaged bidders may use any arbitrary

probability distribution;

• W2 denotes the expected number of objects A wins without permuting his

initial bid sequence while the disadvantaged bidders employ the uniform prob-

ability distribution;
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• W3 denotes the expected number of objects A wins using any given probability

distribution while the disadvantaged bidders employ the uniform probability

distribution.

If a1, a2, . . . , an are all different from b1, b2, . . . , bn, then W1 ≥ W2 = W3.

Proof. For each ai,
• W1,i denotes the expected number of objects ai wins if A uses the uniform
probability distribution while the disadvantaged bidders may use any arbi-
trary probability distribution;

• W2,i denotes the expected number of objects ai wins if A does not permute
his initial bid sequence and the disadvantaged bidders employ the uniform
probability distribution;

• W3,i denotes the expected number of objects ai wins if A uses a given prob-
ability distribution and the disadvantaged bidders employ the uniform prob-
ability distribution.

Since Wj = Wj,1 + · · ·+Wj,n for j ∈ {1, 2, 3}, it suffices to prove that W1,i ≥ W2,i =
W3,i. Without loss of generality, assume that b1 ≤ b2 ≤ · · · ≤ bn. Let p be the
largest index such that bp < ai; if no such bp exists, let p = 0. Since ai < bj for
j = p+ 1, . . . , n,

W2,i =
( p

n

)k−1

.

To calculate W3,i, let Qq,r be the probability that A places aq on the r-th object.
Then,

W3,i =

n
∑

r=1

Prob{ai wins the r-th object}

=

n
∑

r=1

Qi,r·
( p

n

)k−1

.

Since
∑n

r=1 Qi,r = 1,

W2,i = W3,i.

To calculate W1,i, let Pq,r be the probability that a disadvantaged bidder places bq
on the r-th object. Then,

W1,i =

n
∑

r=1

1

n
·Prob{ai wins the r-th object}

=

n
∑

r=1

1

n
·(P1,r + P2,r + · · ·+ Pp,r)

k−1
.

Since
∑n

r=1 Pq,r = 1 for each q, by Hödel’s inequality,

W1,i ≥ W2,i.

Since W1 ≥ W3 in Lemm 4.1, the disadvantaged bidders should always use the
uniform probability distribution at Step 2. Since W2 = W3, we may assume that A
does not permute his initial bid sequence whenever the disadvantaged bidders use the
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uniform probability distribution. We next use Lemma 4.1 to derive a lower bound for
the expected number of objects A can win. Let

ǫ = a positive infinitesimal amount;

β =
n
∑

i=1

ik−1;

ci =
ik−1

β
;

E = {c0, c1, c2, . . . , cn};

D = {ǫ, c2 + ǫ, c3 + ǫ, . . . , cn + ǫ}.

Lemma 4.2. A can win at least β−1
nk−1 objects on average for any given initial bid

sequence and probability distribution employed by the disadvantaged bidders.

Proof. Given an initial bid sequence b1 ≤ b2 ≤ · · · ≤ bn of the k−1 disadvantaged
bidders, A chooses his initial bid sequence to be b1−(n−1)ǫ, b2+ǫ, . . . , bn+ǫ. Since A’s
bids are different from b1, b2, . . . , bn, in light of Lemma 4.1, we may assume that the
disadvantaged bidders permute their bids with the uniform probability distribution.
Consequently, the expected number of objects won by A is as desired.

We next prove a matching upper bound for the expected number of objects A
can win.

Lemma 4.3. If the disadvantaged bidders employ c1, c2, . . . , cn as their initial

bid sequence and permute it with the uniform probability distribution, then A has an

optimal initial bid sequence a′1, a
′
2, . . . , a

′
n such that a′i ∈ D for all i.

Proof. Given an optimal initial bid sequence a1, a2, . . . , an of A, we show that this
sequence can be transformed into a desired sequence a′1, a

′
2, . . . , a

′
n without decreasing

W (A). Let m be the number of A’s bids that are in E. There are three cases.
Case 1: m = 0. For each ai, let a

′
i = cj + ǫ where j is the biggest index such that

cj < ai. Then the expected number of objects won by a′1, a
′
2, . . . , a

′
n is the same as

that of a1, a2, . . . , an, and the new sequence is as desired.
Case 2: m = 1. This case is impossible since A can increase W (A) by decreasing

one of his bids outside E by ǫ and increasing the one that is in E by ǫ.
Case 3: m ≥ 2. Without loss of generality, let a1, a2, . . . , am be A’s m bids in

E in the increasing order. We first decrease a1 by (m − 1)ǫ and increase aj by ǫ
for j = 2, . . . ,m. As shown below, this adjustment never decreases W (A). Then,
since A’s adjusted bids are not in E, his new initial bid sequence can be further
transformed into a desired sequence as in Case 1. Let w1 be the decreased amount of
W (A) resulted from decreasing a1. Let wj be the increased amount of W (A) resulted
from increasing aj for j = 2, · · · ,m. We need to show that −w1 +w2 + · · ·+wm ≥ 0.
It suffices to prove that w2 − w1 ≥ 0. Let #p denote the expected number of objects
aj wins if aj = cp. Then,

#p =
k−1
∑

i=0

1

i+ 1
·Prob{aj ties with i disadvantaged bidders and beats the others}

=
k−1
∑

i=0

1

i+ 1

(

k − 1

i

)(

1

n

)i(
p− 1

n

)k−1−i

=

k−1
∑

i=0

1

i+ 1

(

k − 1

i

)

(p− 1)k−1−i

nk−1
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=

(

p− 1

n

)k−1

·
1

k
·

(

(

1

p− 1

)k

− 1

)

.

Assume that a1 = cq and a2 = cr. Then, w1 = #q − ( q−1
n )k−1 and w2 = ( rn )

k−1−#r.
Note that w2 increases with r. Since q ≤ r, w2 is minimized when a1 = a2 and thus
q = r. Consequently,

w2 − w1 ≥
( q

n

)k−1

−#q −#q +

(

q − 1

n

)k−1

=
( q

n

)k−1

+

(

q − 1

n

)k−1

− 2·

k−1
∑

i=0

1

i+ 1

(

k − 1

i

)

(q − 1)k−1−i

nk−1

=
( q

n

)k−1

−

(

q − 1

n

)k−1

− 2·

k−1
∑

i=1

1

i+ 1

(

k − 1

i

)

(q − 1)k−1−i

nk−1

=

k−1
∑

i=1

(

k − 1

i

)(

q − 1

n

)i (
1

n

)k−1−i

− 2·

k−1
∑

i=1

1

i+ 1

(

k − 1

i

)

(q − 1)k−1−i

nk−1

=

k−1
∑

i=1

(

1−
2

i+ 1

)(

k − 1

i

)

(q − 1)k−1−i

nk−1

≥ 0.

Lemma 4.4. If the k − 1 disadvantaged bidders all employ c1, c2, . . . , cn as their

initial bid sequence and permute it with the uniform probability distribution, then A
can win at most β−1

nk−1 objects on average.

Proof. From Lemma 4.3, A has an optimal initial bid sequence a′1, a
′
2, . . . , a

′
n,

such that for all j, a′j ∈ D. If a′j = ǫ, then it cannot win any object. If a′j = ci + ǫ,

then it can win ( i
n )

k−1 objects on average. The unit price A pays for these objects is
strictly greater than

ik−1

β

( i
n )

k−1
=

nk−1

β
.

Since the expected number of objects won by such a′j is an integral multiple of 1
nk−1 ,

W (A) = m· 1
nk−1 for some integer m, and

m·
1

nk−1
·
nk−1

β
< 1.

Since m is an integer, m ≤ β − 1 and thus W (A) ≤ β−1
nk−1 .

Theorem 4.5. If the disadvantaged bidders all employ c1, c2, . . . , cn as their

initial bid sequence and permute it with the uniform probability distribution, then

each of them can win at least 1/k of n− β−1
nk−1 objects on average, which is optimal.

Proof. By Lemma 4.4, A wins at most β−1
nk−1 objects on average. By Lemma 4.2,

this upper bound is also the lower bound of the expected number of objects A can
win. Then this theorem follows from the fact that our auction is a zero-sum game.
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5. Extensions and Open Problems. This paper leaves several problems un-
solved. Section 3 still lacks an optimal randomized bidding algorithm for the disad-
vantaged bidders when n is not a multiple of k. In §4, if zero bids are allowed, the
initial bid sequence c1, . . . , cn is no longer optimal for the disadvantaged bidders. In
general, if disadvantaged bidders do not use identical bidding algorithms, it is not
even clear what an optimal bidding algorithm should mean, especially for a more
complicated information structure than discussed in this paper.

Our model can be extended to study sequential bidding. The bidders submit
sealed bids for an object. Once that object is sold, the next object is auctioned the
same way until all the objects are sold. For the case where n is a multiple of k, an
optimal sequential bidding algorithm is described in the following lemma.

Lemma 5.1. If n is a multiple of k and the objects are auctioned sequentially,

then a bidder can obtain n/k objects by bidding k/n on every object until his budget

is exhausted.

Proof. Assume that Bi employs this bidding algorithm. From his budget con-
straint, he wins at most n/k objects. This upper bound is also a lower bound. To
prove this claim by contradiction, assume that Bi wins fewer than n/k objects and
thus does not exhaust all his budget. Then, the total number of objects won by the
other bidders exceeds k−1

k ·n. Because n is a multiple of k and Bi has not exhaust his
budget, every object’s winning bid must be at least k/n. Therefore, the total of the
winning bids of the other bidders exceeds k − 1. Since this contradicts the budget
constraint, Bi can win at least n/k objects.

Our model can also be extended to the case where the objects may have distinct
values. In a general setting, the objects are divided into m groups. Let ni denote
the number of objects in the i-th group, which may be any positive real number.
The bidders are asked to submit bids for the m groups simultaneously. Whoever
bids the highest for a group obtains all the objects in that group subject to the same
tie-breaking rule. An m-group auction is equivalent to an auction of m objects with
distinct values where ni is the value of the i-th group. As before, assume that an
adversary bidder A knows the bidding algorithms of the other k − 1 bidders, and all
those disadvantaged bidders employ the same bidding algorithm.

Lemma 5.2. Assume that each disadvantaged bidder bids ni·bi for the i-th group

where b1, b2, . . . , bm are drawn from an m-dimensional probability distribution such

that the marginal probability distribution of each bi is Fk subject to n1·b1 + · · · +
nm·bm = 1. Then the optimal expected number of objects won by A is n/k.

Proof. Let ni·bi,j denote the bid on the i-th object by the j-th disadvantaged
bidder. Let ni·ai be A’s bid on the i-th object. Because b1, b2, . . . , bm ∈ [0, k/n], A

has no incentive to set ai greater than k/n. Thus, ai ≤ k/n and Fk(ai) =
(

n
k ·ai

)
1

k−1 .
Since bids from different disadvantaged bidders are independent,

Prob{ni·ai wins the i-th object}

= Prob{bi,1 ≤ ai}·Prob{bi,2 ≤ ai} · · ·Prob{bi,k−1 ≤ ai}

= (Fk(ai))
k−1

=
n

k
·ai.

A maximizes W (A) as follows:

max
∑

ni·ai = 1

1 ≤ ai ≤ k

n

W (A)
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= max
∑

ni·ai = 1

1 ≤ ai ≤ k

n

n1·(
n

k
·a1) + n2·(

n

k
·a2) + · · ·+ nm·(

n

k
·am)

=
n

k
.

Conjecture 5.3. There exists an m-dimensional probability distribution for

(b1, b2, . . . , bm) subject to the constraint n1·b1 + n2·b2 + · · ·+nm·bm = 1 such that the

marginal probability distribution of each bi is as described by (3.1).
Remark. This conjecture can be reduced to the case m = 2 or 3.
We conclude the paper with two research directions. One is to consider gen-

eral information structures as specified by arbitrary directed graphs. The other is
to investigate more general budget constraints beyond the homogeneous one of this
paper. It would be of significance to design bidding algorithms that can optimally or
approximately achieve game-theoretic equilibria in meaningful combinations of these
two directions.
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