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in which each degree is bounded from above by a constant, select, uniformly at random, an

unlabelled connected multigraph with the given degree sequence. We also give the first
polynomial-time algorithm for the following related problem: Given a molecular formula, select,
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Abstract

we give the first polynomial-time algorithm for the following problem: Given a degree

sequence in which each degree is bounded from above by a constant, select, uniformly

at random, an unlabelled connected multigraph with the given degree sequence. We

also give the first polynomial-time algorithm for the following related problem: Given

a molecular formula, select, uniformly at random, a structural isomer having the given

formula.

1 Introduction

In this paper, we give a polynomial-time algorithm for the following problem: Given a

degree sequence in which each degree is bounded from above by a constant, select' uni-

formly at random, an unlabelled connected multigraph with the given degree sequence'

we also give a polynomial-time algorithm for the following related problem: Given an

(empirical) molecular formula, select, uniformly at random, a structural isomer having

the given formula. An empirical molecular formula [15] simply gives the number of atoms

of each kind that occur in a molecule. Astructural formula [14) is a method of represent-

ing the way in which the atoms in a molecule are linked together. A structural isorner

is a structural formula, viewed as an unlabelled multigraph in which the vertices are

of several different kinds. some of the structural isomers corresponding to a given em-

pirical formula are chemically irrelevant due to geometric (and other) constraints' Nev-

ertheless, counting all of the structural isomers colTesponding to a given empirical for-

mula is a long-standing open problem for which no practical general solution has been
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found [15]. Solutions do exist for certain restricted clases of chemical compounds [13, 14,

151. Faulon [7] has developed an algorithm for listing all of the structural isomers corre-
sponding to a given empirical formula. This algorithm is useful if the number of struc-
tural isomers corresponding to the relevant formula is sufficiently small. Faulon has ar-
gued [9] that randomly sampling structural isomers is useful for structural elucidation
and molecular design in cases in which the number ofisomers is too large to list them all.
He [8] has developed a program for randomly sampling structural isomers and has used it
for chemical applications such as a statistical study of the potential energy distribution
of the isomers of Cgl-116 and the structural elucidation of several compounds. Faulon's
program applies to a realistic chemical problem including 3-D simulation of molecules
and chemical analysis. However, his methods are heuristic. By contrast, we study an
idealisation of the problem (randomly sampling structural isomers without regard to ge-

ometric and other chemicai constraints) but we achieve rigorous performance guarantees

- polynomial-time computation and exactly uniform generation. Thus, we describe the
first polynomial-time algorithm that uniformly samples structural isomers given an em-
pirical formula. Our isomer-sampling algorithm is based on our algorithm for uniformly
sampling unlabelled connected multigraphs with a given degree sequence.

Previous work: Nijenhuis and Wilf [12] showed how to uniformly sample uniabelled
rooted trees with a specified number of vertices. This approach was extended by Wilf [18],
who showed how to uniformly sample free (unrooted) trees. Their algorithms are based

on an inductive definition (i.e., a generating function) for the trees. This approach has
been systematised by Flajoiet, Zimmerman and Van Cutsem in an forthcoming paper [11].
More complicated techniques are required when the graphs to be sampled are not trees.
Dixon and Wilf [6] were the first to give an algorithm for uniformly sampling unlabelled
graphs with a specified number, n, of vertices. Their algorithm is based on Burnside's
Lemma. First, a permutation of the n vertices is chosen with the appropriate probabil-
ity and then a graph is chosen uniformly at random from those graphs which are fixed by
the chosen permutation. The choice of the permutation requires a calculation ofthe num-
ber of unlabelled graphs with n vertices. Wormald's algorithm [21] avoids doing this ex-

pensive calculation. Instead, it achieves a uniform distribution by restarting itself when
appropriate. Wormald's method can also be used to sample r-regular graphs uniformly
at random for any fixed degree r ) 3. The method relies on the fact that most unlabelled
r-regular graphs are rigid (without non-trivial s5rmmetries) when r ) 3. This is not true
for r:1 or r:2.
Outline of our algorithm Our algorithm for sampling unlabelied connected nrulti-
graphs with a given degree sequence combines the above ideas with other ideas from the
field of random graphs. A natural approach to the problem is the approach of Wormald

- first generate a permutation of the vertices, then generate a random connected multi-
graph fixed by the permutation, and finally use rejection/restarting to obtain the cor:rect



distribution. Howeveq this approach relies heavily on the fact that many of the desired

structures are rigid (so the algorithm will be likely to choose the identity permutation,

which leads to a quick result without restarting). This is not the case for the set of unla-

belled connected multigraphs with a given degtee sequence, because the degree sequence

may have many vertices of degree 1 and 2. Thus, we first reduce our problem to that of

sampling unlabelled connected multigraphs with degree sequences that do not have any

vertices of degree 1 or 2. Every multigraph G is associated with a unique "core" which

has no vertices of degree 1 or 2. To generate G, we will generate the core of G and we

will then extend the core by adding trees and chains of trees to obtain G .

For the generation of the core, we work in the configuration model of Bender and Can-

field t1l and Bollob6s t3l; a similar model was proposed independently by Wormald t191.

The correctness of our algorithm follows from a careful analysis of unlabelled configura-

tions in which all block sizes are at least 3. This analysis extends Bollob6s's analysis of

unlabelled regular graphs [2]. Our algorithm rejects the generated core if it is not con-

nected. The fact that this does not happen too often follows from a result of Wormald [20].

After generating the core of our random multigraph, we extend the core by adding trees

and chains of trees. This part of our algorithm is based on the generating function ap-

proach mentioned earlier. An alternative approach, also based on generating functions,

is to use P6lya's theorem. This approach was used to enumerate molecules with certain

specified "frames" (a frame is somewhat similar to a core) by P61ya, Read and others [13].

Outline of this paper Section 2 sets up the machinery that we wiil use to reduce the

general multigraph problem to the problem in which the degree sequence has no vertices

of degree 1 or 2. Section 3 solves the problem when there are no vertices of degree 
.l 

or 2.

Section 4 describes the tools that we wiII use to lift the solution from Section 3 to a so-

lution for general degree sequences. Section 5 gives our sampling algorithm and proves

that it is correct. Section 6 extends our result to the chemical problem - given a molec-

ular formula, select, uniformly at random, a structural isomer having the given formula.

2 Cores and coloured configurations

A d-rootedn-vertex multigraphisatuple G : (vrr,E,ro,...,rd l),inwhichv,.: {v1,...,\,^}
is the uertex set of G, E is tlne edge multiset of G, and r0, . . ., r4,1 or€ distinct roots in V'..

Each element of E is an unordered pair of vertices. The expression E(v,w) denotes the

multiplicity of (v,w) in E. Acycle of G is a (closed, simple) path from a vertex v to itself

thatuseseachedge(x,g)atmostE(x,g)times.(Ifanyedgeisusedtwicethenthepathis
in fact of length two.) We use the term rooted multigraph to refer to any d-rooted multi-

graph (for any d, including d : 0) and we use the term multigraph to refer to any 0-rooted

multigraph. A rooted tree is a connected rooted multigraph (in fact a graph) with no cy-

cles. The definitions imply that a connected unicyclic multigraph is either a connected



unicyclic graph, or a multigraph obtained from a tree by doubling one of its edges.

T}r,e degree of vertex v in a rooted multigraph 6 : (Vr., E) is

d(v) :2E(v,v)f f E(v,w)'
*e-V*+u

Let A be any fixed constant. In this paper we will be concerned with rooted multigraphs
whose vertices have degree at most A. The degree sequence of such a rooted multigraph G

isthesequencen: rlo,...,rrA,whereni denotesthenumberofverticesof G withde-
gfee i. The integers rt6, . . ., na are represented in unary, so the input size of the degree

sequence n : n0,...,ila is n : no *...*na. Ifn'and n are degree sequences, then
wewrite n'( n toindicate that n{ ( ni for every i € [0,...,4] and, wewrite n'< n to
indicate that n'( n and n'ln.

Let 9" be the set containing

o Every connected multigraph with degree sequence n that has at least two cycles,

and

. every 1-rooted connected tree with degree sequence n, and

. every I -rooted connected unicyclic multigraph with degree sequence n, in which the
root is part ofthe cycle.

d-rootedmultigraphs G : (VE,ro,...,rd r)and G': (VE',rj,...,r! r) are said to
be isomorphic (written G = G') if there is a permutation n (an isomorphisrn) of the'ver-
tices in V such that, for all unordered pairs (v, w) ofvertices in V, E(v, w) : E'(n(v), n (w)),
and for ali roots r; of G , n(r; ) : ri. Isomorphism is an equivalence relation and the equiv-
alence classes are called isomorphism classes. We use the notation V(G) to denote the
isomorphism class of rooted multigraph G and the notation V l(U) to denote the lexico-

graphically least rooted multigraph in isomorphism class U. If Gr = Gz then G1 and G2

have the same number of roots and the same degree sequence, and either both of them
are connected or neither of them is connected. We use the notation 9* to denote the set

of isomorphism classes of $,..
We consider two non-deterministic transformations which may be applied to a rooted

multigraph G € 9" with vertex set V and edge multiset E. Similar transformations were

used by Zb,an in [22],

T1 : Choose a degtee-1 vertex v other than the root of G. Remove v from V and the edge

containing v from E.

T2: If T1 cannot be applied to G, choose a degree-2 vertex v other than the root of G

such thatforvertices w lv and x *u, (v,w) and (v,x) are in E. (We allow w:x,
but naturally insist that (v, w) and (v, x) are taken to be distinct elements from the



edge multiset.) Remove v from V. Remove (v,w) and (v,x) from E and add (w,x)

to E.

A rooted multigraph G e 9n is irreducible if neither transformation Tr nor T2 can be

applied to it.

Observation 2.1 If G e 9n and G can be transformed into G' by T1 or T2 then, for some

n' ( lr, G' € 9r,,.

Informally, the transformations T1 and T2 preserve the properties of being connected, and

of having at least two cycles.

Observation2.2 If G e 9n andson'Le sequenceof T1 and.T2transforms G into G'then
the sequence is of length less than n.

We say that a degree sequence n is irceducible if any of the following applies, and that

it is degenerate if one of the first two possibilities applies.

1. n describes the single-vertex multigraph. That is, n6 : 1 and rri : 0 for t t' 0.

2. n describes the single-self-loop multigraph. That is, r:'2 :1 and n1 : 0 for i + 2.

3. n describes multigraphs without low-degree vertices. That is, rro : lrl : n2 : 0

and ni > O for some i € [3,...,4].

We say that a rooted multigraph is degenerate if its degree sequence is degenerate.

Observation 2.3 G e 9,. is irceducible iff its degree sequence is irreducible.

Lemma 2.4 If G € 9n and G can be transformed into irreducible rooted multigraphs G1

and G2 using a sequence of transformations T1 and T2 then Gt : Gz.

Proof: Suppose G has vertex set V and edge multiset E. We wili show that if G can be

transformed into distinct rooted multigraphs G 1 and Gz by a single transformation then

there is a rooted multigraph G3 such that a (possibly empty) sequence of transforma-

tions transforms G1 into G: and another (possibly empty) sequence of transformations

transforms Gz into G3. Thus, the transformation process is locally confluent [17]. As the

process terminates in finite time (see Observation 2.2), it is confluent, wtric}r implies the

result [17].

Suppose that T1 with choice v transforms G into G1 and Tr with choice w +v trans-

forms G into G2. Note that (v, w) / E (otherwise, one of v and w would be the root of G ).

Let G3 be the result of applying Tr to Gr with choice w. Then Tr with choice v transforms

Gz into G:.



Suppose that T2 with choice v transforms G into Gr and T2 with choice w * v trans-
forms G into G2. Note that (v,w) does not appear twice in E (otherwise, one of v and w
would be the root of G). Let G: be the result of applying T2 to G1 with choice w. Then T2

with choice v transforms G2 into G3. u

Note that Lemma 2.4 fails if trees and unicyclic graphs are unrooted, and it is for this
reason that the definition of 9,., is slightly more complicated that might be expected. As

we observed in Observation 2.2, a rooted multigraph G can only be transformed a finite
number of times before an irreducible rooted muitigraph G' is reached. G/ is called the
core of G and is denoted bV A(G ). A(G ) is uniquely defined, by Lemma 2.4.

Lemma 2.5 If G1 and G2 are in Sn and n(Gr ) : G2 then z(A(Gr )) : A(Gz).

Proof: Consider a sequence of transformations that transforms Gr into A(Gr ). Now
apply this sequence of transformations to G2, but choose n(v) instead of v for eachver-
texv thatis chosen. Clearly, theresultis A(Gz). Thus, ! / A(G1)exactlywhen n(v) /
A(Gz). !

Lemma 2.5 implies thatif Gr = G2 then A(Gr) = A(Gz). (This propertywas also

used by Zhan t221.) We use the notation 9,.,,,., to denote the set {U € g* | V(A(\y-t (U))) e
i,r,1;Ioor"ly, 9,.,,., is the set of unlabelled connected multigraphs with degree sequence n

whose cores have degree sequence n'. We will need the following definitions. Let B be

an (infinite) set containing one representative from each isomorphism class of the set of
I -rooted trees. Atree-chain with two roots is constructed f?om any sequence T1, . . . , T1 of
I -rooted trees as follows: If the sequence is empty, then the tree-chain consists of re and

11 and an edge between them. Otherwise, the tree-chain graph is constructed as foliows:

ChoosedistinctlabelsfortheverticesofTl,...,Tk.Letrt,...,ribetherootsofTl,...,Tk.
For i e [.1,...,k- 1], addedge (ti,t{*r). Addthenewroots t6 andrl andedges (16,ri)

and (rf, 11 ). For every tree-chain G, we use the notation R(G ) to denote the tree-chain

constructed from G by swapping 16 and r1 . Let'P be a set containing one representative

flom each isomorphism class of tree-chains. (Note that the two roots of a tree-chain are

distinguishible, and any isomorphism of tree-chains must respect this distinction.)
A colouring of a rooted multigraph G is a function I that maps each vertex in the

vertex set of G to an element of ts and each edge in the edge multiset of G to an element

ol .y-

We will describe a function l- that maps each coloured rooted multigraph (G, A) to an

isomorphism class. f (G,  ) is constructed as follows, where V denotes the vertex set of G

and E denotes the edge multiset of G: Start with the collection of rooted trees {A(v) i

v € Viu {A(e) I e e E}. Let the roots of the resuiting forest be the roots of those brees

that correspond to the roots of G. For each edge (u,w) e E with rt 4 w, identify root
16 of A(u, w) with the root of the tree A(u) and root r1 of l(u, w) with the root of the tree



l(w). Relabel to avoid name clashes. Let f (G,l) be the isomorphism class ofthe resulting

rooted multigraph.
Given a degree sequence n, let m : ] It tnt and let B,' be the lexicographically least

partition of the point set R,. : {.1 , . . . , 2m} into blochs (subsets) such that, for each i, there

€rre rri blocks of size i. A d-root ed configuration C with degree sequence n [1, 3] is a tuple

(Rrr,Br.,P,r0,...,rd l)where P is apartitionof thepointsin R,, intopairings, which are

unordered pairs of points and 16,...,rd r are distinct blocks (roots). We use the phrase

configuration to mean a 0-rooted configuration and the phrase rooted configuration to

mean a d-rooted configuration for any d (including d : 0). We let f (C) denote the rooted

multigraph obtained from C by identifoing the points in each block. We say that C is con'

nected,if f(C) isconnected. If nisdegenerate, Iet€,., bethesetcontainingthe 1-rooted

configuration with degree sequence n. For all other irreducible degree sequences n, let

e,. be the set containing all connected unrooted configurations with degree sequence n.

Acolouring of a rooted configuration C : (R,B,P) is a function I that maps each

block b e B toanelementof ts andeachpairingp € P to anelementof ?. Thefunction f
is defined in terms of the corresponding function for rooted multigraphs. In particular,

T(C,I) is defined to be equal to l'(f(C),1). We use the notation 0,.,',, to denote the set

{(C,l) | C € €,.,, and t-(C,I) € 9,.,,.,,}.

For degree sequence n/ Iet K'., denote tlne Kranz group [5] operating on the points

in R,r,. Each permutation zr in K,r, is associated with a tuple (no, . . . , fi 8,,1) where n6 is a

permutation of blocks and zci for i > 0 is a permutation ofthe points within block i. To ap-

ply zr to R',,, on€ first permutes the blocks using 716, and then permutes the points within

block i (for each i) using nt. Arooted configuration C1 - (R.',81',P1,r0,1,"',rd t,tJ

is said tobe isomorphic to a configuration C2 : (R,.',8r.',P2, r0,2," ',rd 1,2) if there is

apermutationn : (.:..0,...,rtB",1) € Kn,suchthatforallpairings (u,v) € Pt wehave

(n(u), n (v)) in P2 and for all j e [0, d- 1] we have z16(r1 ,) : rz,i. The coioured rooted con-

figuration C{ : (Cl , l1 ) is said to be isomorphic to the coloured rooted configuration Cj :
(Cz,lz)ifthereisanisomorphismr-:(r'0,...,fiB.,1)betweenCl andC2suchthatforall

blocksb € B,r,,Ar(b) :Az(zro(b))andforallpairings (u,v) € Pr,Ar(u,v) :lz(n(u)'n(v)).

Notethatif (Cr,lr): (Cz,lz) and (C1,Ar)€ €,.,,.' then (Cz,lz) € €,',,r'' Weusetheno-

tation 0,.,r., to denote the set of isomorphism classes in 8,',r.'. The automorphism group

of rooted configuration C (denoted Aut(C)) is the group of isomorphisms between C and

itself. Tlne coloured. automorphism group of rooted coloured configuration (C, A) (denoted

Aut(C, l)) is the group of isomorphisms between (C, I) and itself'

Lemma 2.6 If G € 9,. and C is a rooted configuration such that f(C) = A(G) then there

is a colouring /, such that Y(G) : l-(C, A).

Proof: The process of forming core A(G) with vertex set V and edge multiset E can

be viewed as deleting a tree h(v) for each node v € V and a tree-chain h(u,v) for each



edge (u,v) e E. Supposethat zt(f(C)) : A(G). Let I be acolouringof f(C) definedby
l(v) : h(n(v)) and

A(u,v) : if n(u) < n(v),
otherwise,

where we assume the endpoints of the edge (u,v) are normalised so that u < v. Then
G e l-(f(C),A) so G € l-(C,A). tr

Lemma 2.7 Suppose that C1 and C2 are rooted configurations with irreducible degree

sequence n'. If f (C1,11) : f (Cz, Al then (Cr, Ar ) - (Cz,lz).

Proof: Let Gr be the multigraph obtainedin the construction of f (Cr,lr). Make sure
that the relabelling that occurs in the construction of G r does not change the labels of
the vertices of f (C1 ). Similarly, let G2 be the multigraph obtained in the construction of
I- ( Cz, trz ) in which the labels of the vertices of f (Cz ) are unchanged. Now, by the defini-
tion of f , A(Gr) : f(C1)and A(Gz) : f(Cz). Supposethat n(Gr) : Gz. ByLemma 2.5,

n(f (Ct) ) : f ( Cz ). Thus, for any vertex v in the vertex set of f( Cr ), A1 (v) : Az(n(v) ). Fur-
thermore, for any unordered pair (u, v) of vertices, and any colour 0, the number of copies

of (u, v) in the edge multiset of f (Cr ) that are coloured 0 by A1 is equal to the number of
copies of (n(u), lt(v)) in the edge multiset of f ( Cz ) that are coloured 0 by 1,2. Hence, n car,
beextendedtoanisomorphismmapping (Cr,Ar)to (Cz,lz). tr

Corollary 2.8 There is a bijection betuteen !rr.n, and.8r,.r.,.

Prooft The corollarv follows from Lemma 2.6 and Lemma 2.7.

Lemma 2.9 Each isomorphism class in1.n,n, comes up lK'n,l times in

{(C, A, zr) ] (C, A) € €,r,,., and n € Aut(C,l)}.

Proof: This is a straightforward application of Burnside's Lemma [5]. !

3 Samplingirreduciblemultigraphs

The goal of this section is a polynomial-time algorithm that takes as input an irreducible
degree sequence, n, and samples, uniformly at random (u.a.r.), a pair (C, n ), where C €
€,. is a rooted connected configuration with degree sequence n, and zr € Kil is an automor-
phism of C. This is straightforward if n is degenerate, so we focus on the non-degenerate
caseinwhichrro : Tlt - trz:0andnl ) 0forsomei € [3,...,4] . Inthiscase, Sr,

I d{n(u), n(v))

I n(r-'("(u), n(v)))



is the set of connected unrooted configurations with degree sequence n. (The configura-

tions are unrooted because every connected multigraph in which each vertex has degree

at least 3 has more than one cycle.) Thus, our goal is equivalent to generating, u'a.r'' an

unlabelled connected multigraph (possibly with self-loops) with degree sequence n. So

we obtain a solution to our basic problem in the special case in which all vertex degrees

are at least 3. The techniques described in Section 2 provide a reduction from the case

of general degrees sequences to the restricted ones considered here, as we shall see in

Section 5.

Our approach borrows freely from Bollob6s's treatment of unlabelled regular glaphs [2],

though we find it more convenient to work throughout with configurations in place of

(multi)graphs. Recall that 2m : Ir ini. We say that a triple (s, s2, s3) of non-negative

integers is legal if 2sz * 3s3 ( 5 ( 2m. For every legal triple (s, s2, s3), let K,''(s, s2, s3)

denote the set of permutations in K,-, thatcontain exactly s2 transpositions, s3 3-cycles,

and move exactly s points in aII. For convenience, we introduce s4 : (s - 2sU - 3st)/4;

note that s+ is not necessarily an integer. Of course, only three of the four parameters

need to be specified in any situation, but the freedom to move between different triples

according to context is convenient.

To generate the pair (C, n) we first select a legal triple (s, s2, s3 ) , then a permutation

n : Kn(s,s2,s3), and finally a configuration C € Fixn, where Fixn denotes the set of

configurations with degree sequence n that are fixed by n. In the unlikely event that

C is not connected, we return I (see Figure 1 and Theorem 3.3). For every legal triple

(s, s2, s3), define

I tr- r, /6sz\ 'r,' / 3rr\ ",'/ zlro \'ol'-lF,,(s,s2,,r) : 
l+ 

x ffi. (#) (#) ( *",) I (1)

The significance of F,r(s,sz,s:), as we shall see presently, is that it is a uniform upper

bound on lFixnl over all n e K,.(s, s2, s3). Note that in equation (1), and throughout the

proof of Lemma 3.l- (below), we shall encounter expressions such as

that are formally undefined when sz (or s3 or sq or s ) is equal to 0. The intended meaning

is the limit as the variable in question (here sz) tends to 0 from above. In all cases the

upshot is that the factor concerned is I when the variable is 0. Note that F is the square-

root of a rational number, rounded up, and hence can be computed exactly in polynomial

time. Define

( 6rr\"/'
\;'/

Wn(s, sz, s:) : ]K,-,(s, sz, s:)l x F,r(s, s2, s.3), (2)



and let
Wn: L Wr,(s, s2, 53), (3)

s,s2rs3

where the sum is over all legal triples (s, s2, s:). Observe that W,. is a bound on the size

of the set of pairs (C,n) we wish to sample from.

The proposed sampling procedure is conceptually very simple, and is presented in Fig-
ure 1 towards the end of the section. Its analysis rests on the following technical lemma.

Lemma 3.1 With Fn and Wn defined as aboue:

1. I Fix|l : +Fn(0, 0,0), where 0 denotes the identity permutation in Kn;

2. lFixnl ( F,r(s, s2, s3), for all n € Kr.(s, sz, s:);

3. Wn < A Wn(0, 0,0), where A depends only on L.

Proof: The total number of configurations with degree sequence n is equal to the num-
ber of ways of choosing m pairings in a set of size 2m. All configurations are fixed by the
identity permutation, so we have

Fixo : (2m_ l)(2m*3)...3. 1 : q:I
m! 2m'

Comparing the above expression with the definition of F already gives us part (a) of the
lemma.

An asymptotic expression for the number of configurations can be obtained using the
usual Stirling's approximation. For our purposes, it is convenient to have absolute up-
per and lower bounds, which can be obtained using a more refined version of Stirling's
approximation due to Robbins [16] (or see [4, p. 4]):

(4)

While we are on the subject of Stirling's formula, let us note for future reference the foi-

lowing slight strengthening of a familiar bound on binomial coefficients:

t /n\ /en\tt(:')s(. ) (b)

ftrt/ \t/
To verifu this inequality, first observe that the right-hand side is monotonicaily increasing
(viewed as a real function) for t € (0,1), and is greater than 2" for t ) n/3. In the case

t < n/3. the ratio between successive terms on the left-hand side exceeds 2. so the sum

(+)''.#.r(T)^

10



is bounded by the sum of a geometric series with common ratio ]. thus

again using a sufficiently strong form of Stirling's approximation.

Consider C e Fixn, with n € Kn(s, sz, s:). Each point in a 3-cycle of n must be paired

with a point in a d.ffirent three cycle, and the other two pairings of C incident at the first

cycle are then forced. Thus lFixrl : 0 unless s3 is even, in which case C induces a set of

"higher level pairings" on the 3-cycles of n. Given these higher level pairings, there are

3'312 ways to choose the pairings themselves' In all there are

4!Jsz/2
(sz/2)l 2'z/z

ways to choose the restriction of C to the 3-cycles of n. For transpositions, the calcula-

tion is similar, except we must now allow for the pairing to join the two points in single

transposition. But this new freedom can only blow up the number of choices by (crudely)

a factor 2'2, so that there are at most

I(;) .'(l) '+.''(:) ,

/ . r s.l/2

'f(?)

,(Y)""'
ways to choose the restriction of C to the transpositions of n. An optimisation over the

distribution of cycle lengths greater than 3 confirms that the number of ways of choosing

the restriction of C to those cycles is at most

^ /a

,i( t6sq\,^,. 
,-\ e / )

the bound we would obtain by assuming all the remaining cycles have length exactly 4.

The number of wavs of extending C to the fixed points of n is clearly bounded by

.n(z^\t)m 
s\/2 

- .6 .. (2m)l ., (rI\-"'Ur(;) Svlxmt)r1*\;/ ,

where we have used the other part of inequality (4). Multiplying these four bounds to-

gether, recalling s : 2s2 * 3s3 1 4sa, yields the following upper bound on I Fixnl:

IFixn, . o " ffi . (#)""1S)""(#)"",
comparing this expression with equation (1) defining F gives us the second part of the

11



lemma.

For the third part, we introduce a more refined partitioning of the group K,, according

to cycle structure. For each cycle of a permutation n € K*, we distinguish whether the
cycle touches more than one block of R" (type 1), or whether its action is entirely confined
to a single biock (type 2). We write, for example, s2 : sl + sl, where sj is the number of
type 1 transpositions, and si the number of type 2 transpositions. The prime and double
prime convention is applied consistently, so that we write s : s'+s", where s/ is the total
number of points contained in ail type 1 cycles, and s " the number in aII type 2 cycles.

Naturally, s{ and sN are definedby s':2s)+3s'r14s{ and s" :2sl +3si +4si. Denote
by

K,.(s, sl, sl;s", sl, s'!,) c K,r(s' * s" , s'2 + si, sj + si)

the set of permutations with sj type 1 transpositions, sf type 2 transpositions, and so on.

The strategy for establishing the final part of the lemma is: (i) compute an upper
bound on lK,.(s',sj,sj; s",st,si)1, (ii) optimise over the feasible region to obtain an up-
per bound on lK,.(s, s2, s3)l and hence on W,r(s, sz, s:), and (iii) sum over feasible s, s2, s.3

to obtain an upper bound on W,.. Our upper bound for (i) will be of the form r'(sj, sj, s{) x

""(st,s{,sl'), where r' and K" are bounds on the number of ways of choosing the type 1

cycles and type 2 cycles, respectively. The latter is more tractable, so we deal with it first.
Let n € K,r(s',sj,sj; s",sl,si). The number of ways of choosing the i < s1 blocks

containing the si type 2 transpositions in n is at most

using inequality (5), and so the total number ofways of choosing the transpositions them-
selves is at most

- tl

/ecn\'2\;r/ '

where c : A!. Similar bounds hold for the longer cycles, yielding an overall bound of

/ gq)'1' 
1 9!l 1'j' 1 ecnl'i'

\si/ \s{/ (,?/ (6)

on the number of ways of choosing all the type 2 cycles.

We now consider the type 1 cycles of n. Denote by B : B(s', sj, sj) the set of integer
triples (b, bz, b3) satisfiring

b2,b3 ) Q, 2bz+ 3b3 ( b, * +lzs'z- 6bz) + [3sj - 9b3] ( s"

where Lxl : max{x,0}. The intended interpretation of (b,bz,b:) is as follows: b is the

(7)

12



total number of blocks moved by r, b2 is the number of transpositions of blocks induced

by n, and b3 is the number of 3-cycles on blocks induced by n.The significance of B is

that it contains, as we shall demonstrate, all feasible choices for (b, bz, b: ) consistent with
(s', sl, sj).

Only the final inequality of (7) requires explanation. The weaker inequality 3b ( s' is

easy enough to justi$', as each block contains at least 3 points, so we just have to account

forthe other two terms. If ablock contains p 2 a points, regard p -3 of thepoints as

constituting an "excess." All sj type 1 transpositions in n must be contained within the

2b2 blocks that are transposed by n. If 2ti> 5b2, then ztL- 6b2 points in type l cycles

must be in the excess. Similarly, if 3sj ) 9b3, then 3sj - 9b: further points in type 1

cycles must be in the excess. This justifies the final inequality in (7)'

Applying a crude bound on the number of ways of choosing the type 1 cycles, given

(b, bz, b3), we have

,o,o[., J# < (s'+ 1)3 max tffi : (b' b2' b:) e B) rtl

as a bound on the number of ways of choosing the type 1 cycles. The right hand side of (8)

presents a smali optimisation problem. We claim that at the maximum, b2 ) Lsi/31 (oth-

erwise b2 +- b2 * I and b t- b * 2 leads to an improvement), and b3 >- ls'3/3) (otherwise

b: t- b: * 1 and b +- b * 3 does), andin any case b < s'/3. So, from (8), and using

the lower bound bl > (b/e)b, the number of ways of choosing the type 1 cycles is at most

r'(s'2, sj, sj), where

r'(sL,sj, r,i) : (s'+ l)s(cr,-)"" (;)'"t (t)'"'

: (s, + r ,, (=f ) 
',,' 

( 
,":i*, 

) 
',,'{.,,,10.1,.

(e)

(10)

The extra factor (s'+ 1)2 in (9) takes account of the floor functions. Our upper bound for

lKr,(s', sl, sj; s",sl,sf)l is thus

lKr,(s', s|, sl; s",sl,sl) < K'(sr, sj, s.i) x r"(s'/,sf, sl'),

where *'(sL,sj, s{) and r"(sf , sf , sf ) are as defined in (6) and (10).

The next stage is to bound lKr,(s, sz, s:)1. Clearly we have

K,r ( s, s2, s3 )l
S

I )3 mrax 
{ "'(ri, s-l, si) x r" (sl,ti, tf)},

13
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where S is the regron

s - { (ri, ,j, si, sl,s1, sf ) € (R+)6 :

s'2+ si: s2, si * sf : s3, and s'o+ s'i: ro)

If we bound the (s/+ 1 )5 factor in rc' simply by (s f I J5, then the factors in s'2, sl, in sj, sf ,

and in s{, sj' appearing in the objective function of (11) separate out, and we can optimise

over each pair separately.

o The sa factor is

@n14,1/z(+)"0 . ( cn)a,+/z
\sii / , (12)

since the maximum is achieved at sto : sa and s/ : 0.

o The sj factor is

( 3ec3n3 \ 
'!'' 

1 !!t1 
sl'l'r 

.. , ( e3c3n3 f i/3 
1e:c'rr-'-3 1 

si'l3

\ '1 / \Etr/
r, ,:-/ (14)

Inequaiity (13) uses the fact that x-x 3 2x x/z for all positive x, and inequality (14)

follows from symmetry and unimodality.

r The s2 factor is

( 3:r'n'\'i" / e3c3n31 
si'r:

\ 'j / \B'tr, r rsirt/ \rgirl
, ^ 

( 4e3c3n31sz/3

by similar considerations to the previous case.

Plugging (I2), (14) and (15) into (11) gives

K,,(s, s2, s:)l < 4(s * r,s (4e3c3n-'\ "" f 2"3t3*3 r s'r13

t'i-l (?) (cn;4'0"3'

which, on recalling the definitions (1) and (2) of F,. and W,r, leads to:

w'.(s, sz, s:) < 32(s + 1)s x (2m)! ( 
"\"/n 

/ csst\"/n / co'i \'olo

^,-6. (;J (;'/ (.;.1 ' (16)
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Step 1 If n is degenerate, let C be the sole member of €,., choose n e Aut( C )

u.a.r., and output (C, z). Otherwise, perform Steps 2-6'

Step 2 Choose the triple (s, s2, s3) with probability Wr,(s, sz,sz)/W".

Step 3 Choose n € K"(s, sz, s:), u.a.r.

Step 4 Choose C € Fixn, u.a.r.

Step 5 If C is not connected, output I and halt.

Step6 With probability lFixnl/F"(s,s2,s:,) output (C,n); otherwise out-

Put I.

Figure 1: Procedure CoxrIcSeuplp for sampling a pair (C, n)

where c2, c3 and cq are constants depending only on c and hence only on A. (The mul-

tiplicative factor has been boosted from I 6 to 32 to allow for the ceiling function in the

definition of F.)

To finish offthe proof of the final part of the lemma, we just need to sum (16) over all

legal triples (s, s2, s3):

w, : L wr.(s, s2, s:)
s,s2,s3

f lm)l ,, ,_ /'r\"'o t r?c,-r-1<, -L4c, , ,rs(t,o\"'n/coa:1"'e

,rTI _, fgr) 
,,nr2rr_* 

11,= 32xmr2_-*\;l

x +.' * (2ll : c/ wn(g, o, o),
ml /"'

where c' depends only on c2, arrd hence only on A.

Lemma 3.2 There is a polynomial-time algorithm for computlng lK,.(s, sz, s:)1, and hence

for computing W.,,ft,s2, s:) and Wn. There is also a polynomial-time algorithm for sam-

pling, uniformly at random, a permutation from K,'(s, s2, s3).

Proof: By partitioning 1K,.,(s, s2, s3) , first according to the iength of the first induced

cycle on blocks, and then on the exact pattern of cycies within those blocks (at most A!

possibilities), we obtain an inductive formula for lK,.(s, s2, s3) . Only polynomially many

distinct assignments to the parameters n, s, s2, and s3 arise during the induction, so

lK,.(s, sz, s:)l can be computed in time polynomial in n by dynamic programming. n

15



Theorem 3.3 The procedure CoNTIcSaMPLE presented in Figure 7 is correct: (a) the

probability that the algorithm returns a ualue other than L is bounded auay from 0; (b) for
any configuration C e €,", with degree sequence t, and any automorphism n e Aut(C)
of C, the probability that the pair (C,n) is returned by CoNrtcSnMPLE is a constant,

namely W;l , independent of C and n; and (c) the procedure CoNTIGSaMPLE runs in time
polynomial in n, prouided the maximum degree A is bounded. Indeed, we haue the follout-
ing strengthening of thefirst part: (d) the probability that apair with n: 0 is returned

is bounded away from 0.

Proof: By the second part of Lemma 3.1, the acceptance probability in Step 6 is well
defined. By the third part of Lemma 3.1, the particular triple (0,0,0) is seiected in Step 2

with probability at least A l, which is bounded away from 0. This forces the identity
permutation to be selected in Step 3. In this case, the probability of rejection in Step 5

is bounded away from 0. (By Bollob6s and Bender and Canfield (See [4], page 48), the
probability that a random configuration with degree sequence n corresponds to a simple
graph is bounded away from 0. Each simple graph corresponds to an equal number of
configurations, and by Wormald [20], the probability that a simple graph with degree

sequence n is connected is bounded away flom 0.) By the first part of Lemma 3.1, we

know that the pair (C, 0) survives Step 6 with probability ]. fnis deals with (a) and its
strengthening (d).

Nowconsideranarbitrarypair(C,n)satisfoingC e Fixx,andsupposen€ K,.(s,sz,s:).
For (C,n) to be generated, a certain well defined event must occur at each step of the

algorithm. The probability that (C,n) is generated is simply the product of these four
probabilities:

W*(s, sz, s:)
wrr lK"(s, sz, s:)l

which is clearly independent of C and zr, as asserted in (b).

According to Lemma 3.2 the procedure can be implemented to run in polynomial time.

tr

4 Sampling unlabelled trees

The previous section showed how to sample, u.a.r., an uniabelled connected muitigraph

with a specified irreducible non-degenerate degree sequence. In Section 5 we wiil show

how to sample, u.a.r., an unlabelled connected multigr:aph with any specified degree se-

quence n. Our basic strategy will be to select an irreducibie degree sequence n' ( n

with the "appropriate" probability, sample u.a.r. an unlabelled connected multigraph G'

with degree sequence n', and finally colour G' to obtain a multigraph G with degree se-

1 Fixn 1

" Fixn " Fn(s,s2,sj) Wn'
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quencen. (G'willbethecoreof G asdefinedinSection2.) InsteadofconstructingG'

directly, we will select a pair (C',zr) as described in section 3 such that C' € €,., and

n € Aut(C/). Then we will choose a colouring I such that f (C', l) € 9' . The process of

choosing n' and I involves counting and sampling unlabelled rooted trees. We provide

the relevant tree results in this section.

The basic framework in which we will work is as follows: We will consider "structures"

(trees with one or more root), each ofwhich has a "weight" (a (A+2)-tuple ofintegers) The

weight of a d-rooted n-vertextree G (whichis denoted Lr(G))is the tuple (n-d,io,. . ., ia),

where i, is the number of vertices of degree r, excluding the roots. We let G 1 denote the

I -rpoted tree consisting of a single vertex and Gz denote the 2-rooted tree consisting of a

single edge. We define the following operations on trees. If G is a I -rooted tree, we let [d]G

denote the I -rooted tree obtained by taking d copies of G, identifiring the roots of the d

copies, and then relabelling the remaining vertices of trees 2, . . . , d to avoid name clashes.

If G and G' are I -rooted trees, we let G x G' denote the tree obtained by identifying their

roots and relabelling the remaining vertices of G' to avoid name clashes. If G is a tree-

chain and G' is a 1 -rooted tree then we let G + G' denote the tree-chain constructed from

G and G' as follows. Root 11 of G is is disconnected flom its neighbour, v, in G, and is

connected to the root of G'. The root of G' is connected to v. The vertices in G' are then

relabelled go avoid name clashes. If G is a d-rooted tree and G' is a d'-rooted tree, we

Iet G * G' be the ( d * d/)-rooted tree obtained by relabelling the vertices and roots of G'

to avoid name clashes.

Following Flajolet, Zimmerman and Van Cutsem [10], we form sets of structures from

{G r } and {Gz} using the following constructors.

o S + S/: The disjoint union of S and S'

r For d> 1, [d]S: {tdlc I G e S}

o SxS/: {GxG/ G€S,G'e S';

o Ifall structures in S' have a single root ofa given degree, S * S': {G * G' I G e

S, G, € S,}

r S.S': {G+G/ G€S,G'€S'}

The constructors * and . are from [10], which also considers other constructors. We use

thenotationm.SasanabbreviationforthedisjointunionofmcopiesofS,S+"'+S,
and we use the notation S* as an abbreviation for the Cartesian product of m copies of S,

S.. S.

Aspecification of sets So, . . . , S. (which is sometimes referred to as a specification of S. )

is defined to be a sequence ofequations

mo'So :Vo0,mt 'St :Vt (So),.. -,1111 'S, :Vr(S0, "',Sr-l ),
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where m0,...,mr are positive integers and, for i € [0,...,r], Vi is atermbuilt from {G1},

{Gz}, and So,. . ., Si-1 using the constructors. An 0-specification is a specification using
{ constructors.l For every set S of structures, we use the notation S(i6,...,i;) to denote
the set

ts e S I forsome tj+r,...,in+1, p(s) : (i0,...,ia+r)].

ThegeneratingfunctionforthesetSisafunctions(x0,...,Xa+t)suchthatthecoeffrcient
of xio . rfii in s(x6,...,Xa+t), which is denoted

l*lo ...*fiil s(x0,..., xa+r),

is equal to 1S(i0,. . ., ia+l ) . The following is a straightforward extension of a theorem of
Flajolet et al. [10]

Theorem 4.I Giuen an (.-specification for sets So, . . ., S., a set of equations for the cor-

responding generating functions is obtained automaticaUy by the following translation
rules:

rn.S : S, + S,, J s(x0,...,xa+l) : (j/mJ(s,(x0,...,Xa+l)+ s,,(x6,...,xa+l)),

-.5 : fdlS/ J s(x0,...,Xa+l) : (1/m)s'(x$,...,x[11),
rn. S : S, x S,, 9 s(x0, . . ., Xa+t ) : (j/m)(s,(x6,. . ., Xa+t) . s,,(r0,. . ., xa+r)),
fit.S: S'* S' =) s(x6,...,Xa+t):(xr+z/m) (s,(x0,...,Xa+1) x s,,(x6,...,xa+r)),

where r is the degree of the roots of the structures in 5",
Tn.S : S/ . S// ) s(x0,.. .,Xa+t) : (j/m)(s,(x0,..., Xa+t) x s,,(x6,..., xa+r )).

Furthermore, there is a polynomial p such that all coefficients

k;6 "i^;;ts;(xo, 
. . ., xn+r )

such that ) € [0, . . .,r] and (i6, . . .,i|*r )

p(i0,...,ia+j,r,(.)stepsandamemberofSift6,...,ia+l)canbesampledu.a.ninp(i0,...,i411,r,f)
steps.

Proof: The coefficients of So, . . . , S, can be computed in order and stored in a tabie.
Samplingu.a.r.flomSi(i0,...,ia+t)isaccomplishedasfollows. If m.S;:{Gr}orm.S; :
{Gz}, this is straightforward. If m .Si : So f 56, sample u.a.r. from So(i6, . . ., ia+l) with
probability

lS"(i0,. . ., ia+l )l/lS;(io, . . ., ia+r )1,

andfromSu(i0,...,ia+t)withtheremainingprobability. If m.S' : [d]So thenrecursively
sample from So jo/d,...,ia+t/d) andmake d copiesoftheresultingstructure. If m.S; :

'For this, we count the constructor [d] in [d]S as d constructors.

18



S. x 54, evaluate

Ni,- lS.(i5,...,il*r)l x lSa(io -i6,...,ta+t -il+r)i

foralltuples i' : (t'6,...,i|*r)suchthat (0,...,0) < i' < i: (i0,...,i4+l). Choose

i' with probability N r,/ I;, N;,. Recursively sample structures from S. (i6, . . . , i!*1 ) and

Sd(i0-i6,...,ia+t-il*,)andcombinethestructures. Thecasesinwhichm'S1 :S.*54
and m.S j : S. 'S6 are handles similarly, except that in the case m'S1 : S. * S4 we replace

i,12 with i, rz - I . !

We will now use the above framework to show how to count and sample unlabelled

rooted trees. Let S, be the set containing one representative from each isomorphism class

in the set of 1 -rooted trees with degree-r roots. We will first give a sequence of equations

to define the sets Sr(n) in terms of the constructors and we will then argue that the def-

inition is a specification (that is, the equations can be ordered in such a way that each

equation depends only on sets previously defined). The set of equations is adapted from

Nijenhuis andWilf [12]. First, note that So(0) : {Gr} and So(n) :A fot: n + 0.Further-

more, Sr(0) : A,for r + 0.For n > 0, we have

Sr (n) :
,,11:i5'-,

n.S.(n) : f a.tls]Sr(d+1)xS. ,(n-sd)), forr>1.

,!i:i
The first equation expresses the correspondence between n * I -vertex trees rooted

at a vertex of deglee 1, and n-vertex trees with unrestricted root degree. The second

equation expresses a construction for trees which has the property that each unlabelled

n*]-vertextreeisrepresentedntimes: choosenumbers s,dsatisfying I < s ( r and

I ( sd ( n;chooseatreet/withn*1-sdvertices,rootedatavertexof degreet-s,and
a tree t" with d+ I vertices rooted at a vertex ofdegree 1 ; take s copies of t' and one copy

of t" and identify all the roots (the identified vertices constitute the new root). Make d

copies of the resuiting rooted tree. Nijenhuis and WiIf [12, p.27 l give a combinatorial

proof of the equation by establishing an explicit bijection between the figures enumerated

by the left and right sides.

To see that the sequence of equations given is a specification, consider a 2-dimensionai

table. The first r * 1 entries of column n correspond to sets So(n), . . ., Sr(n) (in the given

order). The remaining entries correspond to the sets [s]Sr 6/s'l1), where s > I divides

n. Note that the equation corresponding to each table entry only uses sets corresponding

to smaller rows or columns of the table. Thus, we have a specification for the sets S'(n).
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As we described in the beginning of this section, our algorithm in Section 5 will sam-
ple u.a.r. acolouringl of aconfiguration C - (Rr,,,8,.,,,P) suchthat f (C, ) e 3,-,. Recall

that a colouring I of C is a mapping from Brr, to ts (the set of block-colours), and flom
P to'P (the set of pairing-colours). The blocks in B,., are ordered and the pairings in P

can be ordered according to the ordering of the blocks, so a colouring may be specified as

a sequence of n' block-colours followed by a sequence of m' : ] Ii i*i pairing colours.

Thus, the set of available colourings depends only on n and n'. Let Ar,,r,, denote the set

of available coiourings. Given the specification for the set Sr(n), we can derive specifica-

tionsfor 8,9, andtherefore, A,r,,.,. Westartbyobservingthat B : So +...+Sa. Let
?g denote the set containing one representative from each isomorphism class of length-0
tree-chains (thus, 'P : 'Po * ?r * 'Pz I .. .). A specification for ? is as follows:

'Po : {Gz}.

?s : (?e-r +So)+...-l(9e r *Sa-z).

Let L,.,,r0,...,r,., denote the set of colourings of a configuration with degree sequence n'
in which the block-colouring for the i.th block is a tree whose root has degree r1. Then the
set Lrr,,.0,...,.,,, cao be specified using the equation

Ln/,rg,...,r,., :'P^''$ro'Sr,r,-

Finally, note that A',,,., is the disjoint union, over all (polynomially many) choices of 16, . . . , rn,

of Lr.,,.',...,r,.,(n - T",no - nf,. . .,Tra - T''il, where

tr{': l{j , t < )--n' andvi *r; :t}1,

where v1 denotes the size of the ith block in B,,,.

Thus, we have a specification for An,n,. While some of the sets used in the specifica-

tion such as ? and So,...,Sa are infinite, these sets are made up by taking the disjoint
union of finite subsets. Accordingly, there is a polynomial-sized specification for A,.,,r,

and the following is a corollary of Theorem 4.1.

Corollary 4.2 There is a polynomial p such that computing 1A,.,,., and sarnpling u.a.r.

from Arr,n, take at most p(n) steps.

5 Sampling unlabelled multigraphs

Let 5{n be the set of connected multigraphs with degree sequence n and let fu.n be the

set of isomorphism classes of 5{n. In this section, we will describe a procedure Multt-
Seupln that samples u.a.r. from 1f,.. The procedure will first (see Steps 1-4 of Figure 2)



Step 1 Select a degree sequence n' ( n according to the probability distribu-
tion p'r.

Step 2 Select a pair (C, n) using the procedure CONtr'IGSAMPLE developed in
Section 3 (see Figure 1), with parameter n'. If that procedure returns r,
then output I and halt; otherwise the result is a pair selected u'a.r. ftom
the set of pairs (C, n), with C € e,., and n € Aut(C).

Step 3 Select a colouring I u.a.r. from Arr,,.,.

Step 4 If n e Aut(C, l) then let G be any rooted multigraph in f (C, A); oth-
erwise output I and halt.

StepS If G has at least two cycles then output V(G). Otherwise, let k be

the number of non-isomorphic 1 -rooted multigraphs with the same ver-
tex and edge set as G. (The choice ofroot is arbitrary in the case oftrees,
but must be on the cycle in the case of unicyclic multigraphs.) With prob-

ability k-l output V( G ) ; otherwise output r .

Figure 2: Procedure MuIITSAMPLE for sampling u.a.r. from ft,,.

sample u.a.r. from 9,. and will then use rejection to obtain a uniform distribution on ft''.
All the components of MuInSAMPLE are now ready: Section 2 introduced the ma-

chinery that we will use to reduce the generai problem to the special case in which n is
irreducible, Section 3 solved the irreducible case, and Section 4 described the tools that

we will use to lift the soiution for the irreducible case up to a solution for general deglee

sequences. It only remains to assemble the pieces.

Given a degree sequence n, Iet the probability distribution p,., assign probability

, t, Wn, An.r.'
Prrlllt:-__i;u,vt lNn,

(17)

to irreducible degree sequences satisfying n' < n, and zero probability to the others.

Here,

Vt : f 
Wn'-An'n'

,Qr Nn/r

is the normalising factor required to form a probability distribution. (The sum is over ir-

reducible degree sequences n' ( n. The fact that this is the right summation follows from

Observation 2.3.) The significance of p,. is that it is the "correct" distribution from which

to sample the degree sequence of the core. This is the final ingredient in the sampling

procedure MuLrtSeir,trln, which is presented in Figure 2.

Lemma 5.1 The procedure MulrrSnrr,tPLu presented in Figure 2 is correct: (a) the prob-

abitity that the algorithm produces an output other than L is O(n 1 ): (U for each isornor'

phism closs U e i{rr, the probability that tJ is returned by MulrtSRtvtPLE is a constant,
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namely M | , independent of l); and (c) the procedure MulrtSeuPLE runs in time poly-
nomial in n-, assuming the maximum degree L is bounded.

Proof: The procedure successfully completes Step 2 precisely if some value other than
I is returned by procedure CoNlrcSaMPLE; the probability of this event is bounded

away from 0, by part (a) of Theorem 3.3. Indeed, part (d) of that theorem tells us more:

namely that the automorphism zr € Aut(C) returned by CoNUcSAMPLE is the identity
with probability bounded away from 0. But if n: O, Step 4 is guaranteed to be success-

ful. The probability that Step 5 is successfui it at least I /n. This completes the prc,of of
(a).

We now proceed to compute the probability that a certain isomorphism class U e it,.
appears as output. We start by showing that, after Step 4, the probability that G is in
any given class in 9,. is M-l . Let U be a class in 9.,. By Lemma 2.4, U has a uniquely
defined core with degree sequence n/, say. By Lemma 2.7, A condition for U to be re-

turned in Step 4 is that the degree sequence n' is selected in Step 1, an event which oc-

curs with the probability p,.,(n/), given in equation (17). Now fix attention on a particular
triple (C,n,A), satisfying C e €n, and n € Aut(C,,\). ByTheorem 3.3, the probabiiity

that (C,n,A) is selected in Steps 2 and 3, conditioned on the particular choice of degree

sequence n', is (W',, A,.,,r,]) t. By Corollaries 2.8 and 2.9, exactly ]Kr,,l of these triples
correspond to the desired output U. Thus, again conditioned on the choice of n', the prob-

ability that U is returned is
lK,"

V'lr n""f
Multiplying this expression by the probability (17) that degree sequence n' is selected

in Step 1, we see that the overail probability that U is returned at the end of Step' 4 is

a constant, in fact M I . If U e jt,. has at least 2 cycles, it comes up once ir 9rr. Oth-

erwise, it appears k times ir 9,., where k is as in Figure 2. By accepting U only with
probability k-l , the output distribution after Step 5 is uniform or, ft,..

Step 1 is polynomial time by Lemma 3.2 and Corollary 4.2; Step 2 is polynomial time

by Theorem 3.3; and Step 3 by Corollary 4.2. Step 4 is clearly polynomial time. Step 5 is

reducible to isomorphism of 1 -rooted trees, which can conveniently be decided by a recur-

sive canonical labelling scheme: if the root is the only vertex assign it label ( ) ; otherwise

let 11, L2,. . ., t1 be the labels ofthe t subtrees ofthe root, ordered lexicographically, and

assign label (Lr tz . . . Lt ) to the root. By induction, two 'l -rooted trees are isomorphic iff
their root labels are equal. Thus, we have established (c). !
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Sampling molecules

In this section we extend our results to the chemical problem - given a molecular for-

mula, select, uniformly at random, a structural isomer having the given formula. We

start by extending the algorithm in section 5 so that it can be used to uniformly sam-

ple unlabelled connected self-loop-less multigraphs with a given degree sequence. For

this we use procedure MUIIISAMPLE, except that if the degree sequence of the core is

not degenerate and the core has a self-loop, it is rejected. Furthermore, if the degree se-

quence of the core is that of the single-self-loop multigraph, we reject the trivial colouring

of the single pairing in the core. The rejection probability is not too high in either case.

The reason for this (in the non-degenerate case) is that the core is a simple graph with

probability bounded away from 0 (see section 5)

The modified version of procedure MulrrSAMPLE, which uniformly samples unla-

belied connected self-loop-Iess multigraphs with a given degree sequence, solves the fol-

lowing problem: Given a molecular formula in which each atom has a distinct valence, se-

lect, uniformly at random, a structural isomer having the given formula. We can further

modi$' procedure MuluSattPLE so that it can be used to uniformly sample structuraL

isomers even when the molecular formuia has different atoms with the same valence.

Formally, we fix t types of vertices and we interpret a typed degree sequence

TIO,1,. . .'110,t,. . .,TlA,l,. . ., ll4,t

as a requirement that a multigraph have ni,; degree-i vertices of type j. An isomorphism

between typed multigraphs must map each vertex to a vertex of the same type. Proce-

dure Mut-tISAMpLE can be extended in a straightforward way to give a pol;'nomial-time

algorithm that takes as input a typed degree sequence and selects, uniformly at random,

an unlabelled connected multigraph with the given degree sequence. The generation of

the core is as before, except that the definition of the group K,' changes since blocks can

only be mapped to other blocks of the same type. The inductive specifications in Section 4

must be modified slightly to account for the t54pes, so the choice of n' is modified accord-

ingly. The choice of the colouring A is also modified slightly. The colouring of each block

must have a root that has the same type as the block and a colouring of a pairing between

blocks of types i and j must have roots of types i and j, respectively. Everything else is

as before.

Acknowledgements: We thank Jean-Loup Faulon for proposing the problem and ex-
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