
Better Bounds for Online Scheduling

Susanne Albers

�

Abstract

We study a classical problem in online scheduling. A sequence of jobs must be scheduled

on m identical parallel machines. As each job arrives, its processing time is known. The

goal is to minimize the makespan. Bartal, Fiat, Karlo� and Vohra [3] gave a deterministic

online algorithm that is 1.986-competitive. Karger, Phillips and Torng [11] generalized the

algorithm and proved an upper bound of 1.945. The best lower bound currently known on

the competitive ratio that can be achieved by deterministic online algorithms it equal to

1.837. In this paper we present an improved deterministic online scheduling algorithm that

is 1.923-competitive, for allm � 2. The algorithm is based on a new scheduling strategy, i.e.,

it is not a generalization of the approach by Bartal et al. Also, the algorithm has a simple

structure. Furthermore, we develop a better lower bound. We prove that, for general m, no

deterministic online scheduling algorithm can be better than 1.852-competitive.

1 Introduction

We study a classical problem in online scheduling. A sequence of jobs must be scheduled on m

identical parallel machines. Whenever a job arrives, its processing time is known in advance,

and the job must be scheduled immediately on one of the machines, without knowledge of any

future jobs. Preemption of jobs is not allowed. The goal is to minimize the makespan, i.e., the

completion time of the last job that �nishes.

Algorithms for this scheduling problem are used in multiprocessor scheduling. Moreover,

the problem is important because it is the root of many problem variants where, for instance,

preemption is allowed, precedence constraints exist among jobs, or machines run at di�erent

speeds. The problem was �rst investigated by Graham [10]. In fact, Graham studied the o�ine

version of the problem, when all jobs are known in advance. The problem of computing an

optimal o�ine schedule for a given job sequence in NP-hard [9]. Graham gave a fast scheduling

heuristic that achieves a good approximation ratio. He developed the well-known List algorithm

that takes the given jobs one by one and always schedules them on the least loaded machine.

Clearly, List is also an online algorithm.

Following [13], we call a deterministic online scheduling algorithm A c-competitive if, for all

job sequences � = J

1

; J

2

; : : : ; J

n

,

A(�) � c �OPT (�);

where A(�) is the makespan of the schedule produced by A and OPT (�) is the makespan of an

optimal schedule for �.

�

Max-Planck-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany. E-mail: albers@mpi-

sb.mpg.de. Work supported in part by the EU ESPRIT LTR Project N. 20244 (ALCOM-IT).

1



Graham's List algorithm is (2 �

1

m

)-competitive. Galambos and Woeginger presented an

algorithm that is (2�

1

m

��

m

)-competitive, where �

m

> 0, but �

m

tends to 0 asm goes to in�nity.

It was unknown for a long time whether there is an algorithm that achieves a competitive ratio

of c, c < 2, for general m. Bartal, Fiat, Karlo� and Vohra [3] then gave an algorithm that is

1.986-competitive, for all m � 70. Karger, Phillips and Torng [11] generalized the algorithm and

proved a competitive ratio of 1.945, for all m. This has been the best upper bound known so

far for general m. For the special case m = 4, Chen, van Vliet and Woeginger [6] developed an

algorithm that is 1.733-competitive. With respect to lower bounds, Faigle, Kern and Turan [7]

showed that no deterministic online algorithm can have a competitive ratio smaller than (2�

1

m

)

for m = 2 and m = 3. Thus, for these values of m, List is optimal. Faigle et al. [7] also proved

that no deterministic online algorithm can be better than 1.707-competitive, for any m � 4.

The best lower bound known so far for general m is due to Bartal, Karlo� and Rabani [4]

who showed that no deterministic online algorithm can have a competitive ratio smaller than

1.837, for m � 3454. For more work on related online scheduling problems see, for instance,

[1, 2, 5, 12, 14].

In this paper we present an improved deterministic online algorithm for the scheduling prob-

lem de�ned above. The algorithm is 1.923-competitive, for all m � 2. Our algorithm is based

on a new scheduling strategy, i.e., it is not a generalization of the approach by Bartal et al. [3].

Moreover, the algorithm has a simple structure. At any time, the algorithm maintains a set S

1

of b

m

2

c machines with a low load and a set S

2

of d

m

2

e machines with a high load. Every job is

either scheduled on the least loaded machine in S

1

or on the least loaded machine in S

2

. The

decision, which of the two machines to choose, depends on the ratio of the load on machines in

S

1

to the load on machines in S

2

. A description of the algorithm is given in Section 2. A detailed

analysis follows in Section 3. We also develop a better lower bound for online scheduling. In

Section 4 we show that if a deterministic online scheduling algorithm is c-competitive for all

m � 80, then c � 1:852.

2 The new scheduling algorithm

For the description of the algorithm we need some de�nitions. Let the load of a machine be

the sum of the processing times of the jobs already assigned to it. At any time, the algorithm

maintains a list of the machines sorted in non-decreasing order by current load. Let M

t

k

denote

the machine with the k-th smallest load, 1 � k � m, after exactly t jobs have been scheduled.

In particular, M

t

1

is the machine with the smallest load and M

t

m

is the machine with the largest

load. We denote by l

t

i

the load of machine M

t

i

, 1 � i � m. Note that the load l

t

m

of the most

loaded machine is always equal to the current makespan.

As previous algorithms [3, 11], our new scheduling strategy tries to prevent schedules in

which the load on all machines is about the same. If all machines have the same load, with

all previous jobs being very small, an adversary can present an additional large job and force a

competitive ratio of (2�

1

m

). This is the worst-case scenario for List.

Our new algorithm, called M2, always tries to maintain i machines with a low load and m� i

machine with a high load, where i = b

m

2

c. The goal is to always have a schedule in which the

total load L

l

on the i lightly loaded machines is at most � times the total load L

h

on the m� i

2



heavily loaded machines, for some � to be speci�ed later. A schedule satisfying L

l

� �L

h

is

always prepared to handle a large incoming job and can easily maintain a competitive ratio of

c, where c is 1.923.

Algorithm M2 always schedules a new job J

t

with processing time p

t

on the least loaded

machine as long as L

l

� �L

h

is satis�ed after the assignment. Note that during this assignment,

the load L

l

on the lightly loaded machines does not necessarily increase by p

t

because the least

loaded machine might become one of the machines M

t

j

, i < j � m. If an assignment of J

t

to

the least loaded machine results in L

l

> �L

h

, then M2 considers scheduling J

t

on the machine

with the (i + 1)-st smallest load. However, if this assignment increases the makespan and the

new makespan exceeds c � (L

l

+L

h

)=m, then J

t

is �nally scheduled on the least loaded machine,

ignoring the violation of L

l

� �L

h

. Note that L

l

+ L

h

is the sum of the processing times of all

jobs that have arrived so far, and thus (L

l

+L

h

)=m is a lower bound on the optimum makespan.

Algorithm M2: Set c = 1:923, i = b

m

2

c and j = 0:29m. Set � =

(c�1)i�j=2

(c�1)(m�i)

. Every new

job J

t

is scheduled as follows. Let L

l

be the sum of the loads on machines M

t

1

; : : : ;M

t

i

if J

t

is

scheduled on the least loaded machine. Similarly, let L

h

be the sum of the loads on machines

M

t

i+1

; : : : ;M

t

m

if J

t

is scheduled on the least loaded machine. Let l

t

m

be the makespan, i.e. the

load of the most loaded machine, if J

t

is scheduled on the machine with the (i+ 1)-st smallest

load. Recall that l

t�1

m

is the makespan before the assignment of J

t

.

Schedule J

t

on the least loaded machine if one of the following conditions holds.

(a) L

l

� �L

h

(b) l

t

m

> l

t�1

m

and l

t

m

> c �

L

l

+L

h

m

Otherwise schedule J

t

on the machine with the (i+ 1)-st smallest load.

Theorem 1 Algorithm M2 is 1.923-competitive, for all m � 2.

Before analyzing the algorithm in the next section, we discuss the choice of �. First observe

that 0 < � < 1, for m � 2. The inequality 0 < � holds because c � 1 > 1=2 and i > j; thus

(c� 1)i� j=2> 0. Inequality � < 1 holds because (c� 1)i� (c� 1)(m� i) and j=2 > 0. In fact,

for even m, � =

(c�1)�j=m

c�1

� 0:686 and, for odd m, � tends to this value as m goes to in�nity.

Always setting � = 0:686 in the algorithm M2 asymptotically results in the same competitive

ratio of 1.923. Choosing � =

(c�1)i�j=2

(c�1)(m�i)

has two advantages. (1) We can prove a competitiveness

of 1.923 for even small m. (2) In the analysis we can do symbolic calculations where a �xed

� = 0:686 would require numeric calculations.

3 Analysis of the algorithm

We present a detailed proof of Theorem 1. The analysis presented by Graham [10] for the

List algorithm, combined with the observation that algorithm M2 only schedules a job on the

machine with the (i+ 1)-st smallest load if the resulting makespan does not exceed 1.923 times

the optimum makespan, shows that M2 is c-competitive, where c = maxf(2�

1

m

); 1:923g, for all

m � 2. This gives the desired bound for small m. For m � 8, the following analysis applies.

3



Consider an arbitrary job sequence � = J

1

; J

2

; : : : ; J

n

. Let p

t

be the processing time of J

t

,

1 � t � n. We will show that M2 schedules every job J

t

, 1 � t � n, such that

M2(�

t

) � 1:923 �OPT (�

t

);

where M2(�

t

) is the makespan of the schedule produced by M2 on the subsequence �

t

=

J

1

; J

2

; : : : ; J

t

and OPT (�

t

) is the makespan of an optimal schedule for �

t

.

3.1 The basic analysis

Suppose that M2 has already scheduled the �rst t � 1 jobs and that a competitive ratio of

c = 1:923 was maintained at all times. Let

L =

t

X

s=1

p

s

:

L is the sum of the loads on all machines after J

t

is assigned.

If the makespan does not change during the assignment of J

t

, then by induction hypothesis

there is nothing to show. Also, if the makespan changes but is bounded from above by c

L

m

, then

we are done because

L

m

is a lower bound on the optimum makespan for �

t

.

Thus we concentrate on the case that during the assignment of J

t

, the makespan increases

and exceeds c

L

m

. Condition (b) in algorithm M2 implies that J

t

is scheduled on the least loaded

machine. Let l

1

= l

t�1

1

be the load of the least loaded machine immediately before J

t

is assigned.

First we consider the case that l

1

� (c� 1)

L

m

= 0:923

L

m

. We have

M2(�

t

) = l

1

+ p

t

� (c� 1)

L

m

+ p

t

:

If p

t

�

L

m

, then

M2(�

t

) � (c� 1)

L

m

+

L

m

� c

L

m

� c �OPT (�

t

):

If p

t

= (1 + �)

L

m

, for some positive �, then

M2(�

t

) = l

1

+ p

t

� (c� 1)

L

m

+ (1 + �)

L

m

� c � (1 + �)

L

m

= c � p

t

� c � max

1�s�t

p

s

� c �OPT (�

t

):

Here we use the fact that max

1�s�t

p

s

is also lower bound on the optimum makespan.

In the remainder of this proof we will study the situation that the load on the least loaded

machine is greater than (c� 1)

L

m

, i.e., l

1

= (c� 1 + �)

L

m

for some positive �. Since l

1

cannot be

greater than

L

m

, we have 0 < � � 2 � c = 0:077. Note that all machines must have a load of at

least (c� 1 + �)

L

m

. Since J

t

is assigned to the least loaded machine and the makespan after the

assignment is greater than c

L

m

, we have p

t

> c

L

m

� l

1

� (1 � �)

L

m

� (

1

2

+ �)

L

m

. Our goal is to

show that the sequence �

t�1

= J

1

; J

2

; : : : ; J

t�1

contains m jobs, each with a processing time of

at least (

1

2

+ �)

L

m

. Then there are m + 1 jobs with a processing time of at least (

1

2

+ �)

L

m

, two

of which must be scheduled on the same machine in an optimal schedule. Thus

OPT (�

t

) � (1 + 2�)

L

m

:

4



If p

t

�

L

m

, then

M2(�

t

) = l

1

+ p

t

� (c� 1 + �)

L

m

+

L

m

� c(1 + �)

L

m

� c �OPT (�

t

):

If p

t

= (1 + �)

L

m

for some positive �, then

M2(�

t

) = (c� 1 + �)

L

m

+ p

t

� (c+ �+ �)

L

m

� c �maxf(1 + 2�); (1 + �)g

L

m

� c �OPT (�

t

):

In each case, Theorem 1 is proved. It remains to show that the sequence �

t�1

= J

1

; J

2

; : : : ; J

t�1

does contain m jobs, each with a processing time of at least (

1

2

+ �)

L

m

.

3.2 Identifying large jobs

We have to analyze jobs in the sequence �

t�1

. Let time s, 1 � s � t, denote the point of time

immediately after J

s

is scheduled. (Time 0 is the point of time before any jobs are scheduled.)

For any time s, 1 � s � t, let L

s

be the total load on the m machines, i.e.,

L

s

=

s

X

r=1

p

r

:

Note that L

t

= L.

De�nition 1 At any time s, 1 � s � t, the schedule constructed by M2 is called balanced if

the total load on the i lightly loaded machines M

s

1

; : : : ;M

s

i

is at most � times the total load on

the m� i heavily loaded machines M

s

i+1

; : : : ;M

s

m

.

In the following, when refering to machines M

s

1

; : : : ;M

s

m

, we will often drop s when the

meaning is clear.

Lemma 1 At time t� 1, i.e. immediately before J

t

is scheduled, M2's schedule is not balanced.

Proof: Immediately before J

t

is scheduled, the total load on the machines M

1

; : : : ;M

i

is at

least

L

l

= i(c� 1 + �)

L

m

= (i(c� 1)�

j

2

)

L

m

+

j

2

L

m

+ i�

L

m

:

If M2's schedule was balanced, then the total load on machines M

i+1

; : : : ;M

m

would be at least

1

�

L

l

. Thus the total load before the assignment of J

t

would be at least

L

t�1

� (1 +

1

�

)L

l

= i(c� 1 + �)

L

m

+ (m� i)(c� 1)

L

m

+

1

�

j

2

L

m

+

1

�

�

L

m

= (c� 1)L+

j

2�

L

m

+ �(i+

1

�

)

L

m

> L+ (c� 2)L+

j

2�

L

m

> L

because � =

(c�1)i�j=2

(c�1)(m�i)

�

(c�1)�j=m

c�1

�

7

10

and thus (c�2)L+

j

2�

L

m

> 0. We have a contradiction.

2

5



3.2.1 Analyzing load

De�nition 2 At any time s, 1 � s � t, a machine is called full if its load is at least (c�1+�)

L

m

.

Recall that at time t � 1, all machines have a load of at least (c� 1 + �)

L

m

and, thus, are full.

For k = 1; : : : ; m, let t

k

be the most recent time when exactly k machines were full. Note

that

t

1

< t

2

< : : : < t

m

= t� 1:

Of particular interest to us will be the time t

m�bjc

when exactly m � bjc machines were full.

Let t

0

, t

m�bjc

� t

0

< t � 1, be the most recent time when M2's schedule was balanced. If M2's

schedule was not balanced during the time interval [t

m�bjc

; t� 1], then let t

0

= t

m�bjc

. Let f be

the number of machines that are full at time t

0

.

Our goal is to show that at time t

0

, the total load on the non-full machines M

1

; : : : ;M

m�f

in M2's schedule is at most (c� 1:5)(m� f)

L

m

. We will show this using the following lemmas.

Let

X = (c� 1)L�

j

2

L

m

Y = (c� 1)

2

L�

cj

2

L

m

:

Lemma 2 If at time t

0

, the total load on the non-full machines M

1

; : : : ;M

m�f

in M2's schedule

were greater than (c�1:5)(m�f)

L

m

, then the total load at time t would satisfy L > X+

Y

c

((1�

c

m

)

�(bjc+1)

� 1).

Lemma 3 X +

Y

c

((1�

c

m

)

�(bjc+1)

� 1) � L

Since Lemma 2 is more involved, we start with a proof of Lemma 3.

Proof of Lemma 3: We have

(1�

c

m

)

�(bjc+1)

� (1�

c

m

)

�j

� e

cj=m

:

The �rst inequality follows because bjc+ 1 � j. Thus,

X +

Y

c

((1�

c

m

)

�(bjc+1)

� 1) � (1�

1

c

)L+ (

(c�1)

2

c

L�

j

2m

L) � e

cj=m

= (1�

1

1:923

)L+ (

0:923

2

�1:923�0:145

1:923

L) � e

0:29�1:923

:

Evaluating the last expression gives that it is at least 1L. 2

Proof of Lemma 2: In order to prove the lemma, we have to keep track of the load on the m

machines during the entire time interval [t

0

; t]. For k = f; : : : ; m+ 1, let

Z

k

= X +

Y

c

((1�

c

m

)

�(k�m+bjc)

� 1):

We will show by induction on k that for k = f; : : : ; m,

L

t

k

� �

t

k

> Z

k

; (1)

where � is a non-negative potential that we will de�ne in a moment. Using the inequality

L

t

m

� �

t

m

> Z

m

, we will then prove L > Z

m+1

.

6



We �rst explain the purpose of the potential. We want to show that during the time interval

(t

0

; t� 1], every time another machine becomes full, a job J with a large processing time p must

be scheduled. Since M2's schedule is not balanced, M2 would prefer to assign J to machine

M

i+1

. However, this is impossible because p is too large, and thus M2 has to schedule J on the

least loaded machine, causing another machine to become full. In some cases, when M

i+1

has a

high load, we will not be able to argue that J 's processing time is greater than a certain value.

In these cases we will pay some \missing processing time" out of the potential. This way we

can ensure that J 's amortized processing time is greater than the desired value. J 's amortized

processing time is the actual processing time plus the change in potential.

Formally, the potential � is de�ned as follows. At time t

0

, we color some of the load in M2's

schedule. More precisely, on each of the machines M

1

; : : : ;M

i+m�f

we color the load that is

above level (c� 1)

L

m

. We can imagine that we draw a horizontal line at level (c � 1)

L

m

across

M2's schedule and color the load on machines M

1

; : : : ;M

i+m�f

that is above this line. Note

that this way, a job might be partially colored. During time interval (t

0

; t], the colored load is

updated as follows.

1. Whenever M2 schedules a job that causes one more machine to become full, we choose the

least loaded machine with colored load among M

i+1

; : : : ;M

m

and remove the color from

its load.

2. Whenever a job is assigned to a machine with colored load, we color that job.

3. After the �nal job J

t

is scheduled, the color is removed from all machines.

At any time, let I = fkjM

k

has colored loadg and let c

k

, k 2 I , be the amount of the load

that is colored on M

k

. De�ne

� =

X

k2I

c

k

:

During the interval (t

0

; t� 1], the following invariants hold.

(I1) Whenever M2 schedules a job that causes one more machine to become full, there is a

machine in fM

i+1

; : : : ;M

m

g with colored load.

(I2) If a machine has colored load, then all its load above level (c� 1)

L

m

is colored.

(I3) At any time, if machine M

i+1

has load (c � 1 + �)

L

m

for some positive �, then c

k

� � for

all k 2 I with k � i+ 1.

(I4) At any time, there exists a machine among M

1

; : : : ;M

i

with colored load at least �

L

m

.

Invariant (I1) holds because at time t

0

there arem�f machines in fM

i+1

; : : : ;M

m

g with colored

load, exactly m � f more jobs are scheduled in (t

0

; t � 1] that cause a machine to become full

and every time this happens, by update rule 1, the number of machines in fM

i+1

; : : : ;M

m

g with

colored load is reduced by exactly 1. Invariant (I2) follows from update rule 2. (I3) is immediate

from (I2). Invariant (I4) holds because initially, at time t

0

, we color load on the i lightly loaded

7



machines that are full and these machines remain in the set of lightly loaded machines during

(t

0

; t� 1].

Base of the induction. In order to prove inequality (1) for k = f , we have to evaluate

L

t

0

, the total load on the m machines at time t

0

. We will show that

L

t

0
� �

t

0
> Z

f

: (2)

This implies that inequality (1) holds for k = f because between time t

0

and time t

f

the number

of full machines remains the same and whenever the load on the m machines increases by p, the

potential increases by at most p, see update rule 2.

If M2's schedule is not balanced at time t

0

, i.e., t

0

= t

m�bjc

and f = m� bjc, then

Z

f

= X � (c� 1)L�

bjc

2

L

m

: (3)

By assumption, at time t

0

, the load on the non-full machines is greater than (c�1:5)(m�f)

L

m

=

(c�1:5)bjc

L

m

= (c�1)bjc

L

m

�

bjc

2

L

m

. The load on the full machines is at least (c�1)f

L

m

+�

t

0

=

(c� 1)(m� bjc)

L

m

+�

t

0

. We obtain

L

t

0
� �

t

0
> (c� 1)L�

bjc

2

L

m

: (4)

Inequalities (3) and (4) give the desired bound.

We study the case that M2's schedule is balanced at time t

0

. The total load on the non-full

machines is greater than (c� 1:5)(m� f)

L

m

. The load on each machine M

m�f+1

; : : : ;M

i

is at

least (c � 1 + �)

L

m

. Thus the total load on the i lightly loaded machines M

1

; : : : ;M

i

is greater

than

L

l

= (c� 1)(i�m+ f)

L

m

+ (c� 1:5)(m� f)

L

m

= (c� 1)i

L

m

�

1

2

(m� f)

L

m

� (c� 1)i

L

m

�

j

2

L

m

+

1

2

(f �m+ bjc)

L

m

:

Since the schedule is balanced, the total load L

h

on the heavily loaded machines M

i+1

; : : : ;M

m

is at least

1

�

times the above expression, i.e.,

L

h

> (c� 1)(m� i)

L

m

+

1

2�

(f �m+ bjc)

L

m

:

The load (c� 1)(m� i)

L

m

can �ll the machines M

i+1

; : : : ;M

m

up to a level of (c� 1)

L

m

. Of

the additional load

1

2�

(f � m + bjc)

L

m

, at least a fraction of

(m�i)�(m�f)

m�i

=

f�i

m�i

is located on

machines M

i+m�f+1

; : : : ;M

m

and does not go into the potential. Thus,

L

t

0

� �

t

0

> X +

1

2

(f �m+ bjc)(1 +

1

�

f�i

m�i

)

L

m

:

We have to show that

1

2

(f �m+ bjc)(1 +

1

�

f�i

m�i

)

L

m

�

Y

c

((1�

c

m

)

�(f�m+bjc)

� 1) (5)

holds for every f 2 fm� bjc; : : : ; mg.

8



We de�ne functions

g(x) =

1

2

(x�m+ bjc)(1 +

1

�

x�i

m�i

)

L

m

h(x) =

Y

c

((1�

c

m

)

�(x�m+bjc)

� 1):

Obviously, g(m� bjc) = h(m� bjc). We will show that g(m+ j � bjc) > h(m+ j � bjc). Since

g(x) is a polynomial of degree 2 and h(x) is an exponentially increasing function, g(x) > h(x)

must hold for all x 2 (m� bjc; m]. (If g(x

0

) � h(x

0

) were true for some x

0

2 (m�bjc; m], then

g(x

0

) < h(x

0

) for all x > x

0

.)

Recall that, as mentioned in the proof of Lemma 1, � �

7

10

. Also, evaluating Y with its

actual parameters gives Y � 0:574L. If x = m+ j�bjc, then g(x) �

1

2

0:29m(1+

10

7

)

L

m

� 0:35L.

Also, h(x) =

Y

c

((1�

c

m

)

�0:29m

� 1) is decreasing in m and evaluates to less than 0:34L for all

m � 4. The proof of inequality (5) is complete.

Induction step. We show that if inequality (1) holds for k� 1, then it also holds for k. Let

s

k

be the earliest point of time when exactly k machines are full. We have t

k�1

< s

k

� t

k

. For

all s 2 [t

k�1

; s

k

� 1],

L

s

� �

s

> Z

k�1

:

This is because of the induction hypothesis and the fact that if the load on the m machines

increases by p between time t

k�1

and time s

k

� 1, then the potential increases by at most p.

Let L

s

k

�1

be the total load on the m machines at time s

k

� 1 and let l = l

s

k

�1

i+1

be the load

on machine M

i+1

at time s

k

� 1. Suppose l = (c � 1 + �)

L

m

for some � � 0. The job J

s

k

that

causes the k-th machine to become full is scheduled on the least loaded machine. Since M2's

schedule is not balanced at time s

k

, M2 would prefer to schedule J

s

k

on machine M

i+1

. Since

this is not possible, condition (b) in algorithm M2 implies that the processing time p

s

k

of J

s

k

must satisfy

l+ p

s

k

>

c(L

s

k

�1

+ p

s

k

)

m

;

which is equivalent to

p

s

k

> (

c

m

L

s

k

�1

� l)=(1�

c

m

):

Consider the change in potential during the assignment of J

s

k

. Update rule 1 and invariants

(I1){(I3) imply that the potential drops by at least �

L

m

.

p

s

k

��� > (

c

m

L

s

k

�1

� l)=(1�

c

m

) + �

L

m

� (

c

m

(Z

k�1

+�

s

k

�1

)� l)=(1�

c

m

) + �

L

m

� (

c

m

Z

k�1

+

c�

m

L

m

� (c� 1 + �)

L

m

)=(1�

c

m

) + �

L

m

� (

c

m

Z

k�1

� (c� 1)

L

m

)=(1�

c

m

)

=

Y

m

(1�

c

m

)

�(k�m+bjc)

:

The second inequality follows because of the induction hypothesis. The third inequality holds

because at time s

k

� 1, there is at least one machine in fM

i+1

; : : : ;M

m

g with colored load, i.e.,

�

s

k

�1

� �

L

m

. Thus,

L

s

k

� �

s

k

� L

s

k

�1

� �

s

k

�1

+ p

s

k

���

> Z

k�1

+

Y

m

(1�

c

m

)

�(k�m+bjc)

9



= X +

Y

c

((1�

c

m

)

�(k�m+bjc)

� 1)

= Z

k

:

The induction step is complete because during time interval (s

k

; t

k

] the inequality is maintained.

We �nally have to prove

L > Z

m+1

: (6)

Our inductive proof shows L

t�1

� �

t�1

> Z

m

. Job J

t

is scheduled on the least loaded machine

and by assumption l

1

+ p

t

>

c(L

t�1

+p

t

)

m

, where l

1

= (c� 1 + �)

L

m

is the load of the least loaded

machine at time t� 1, i.e., immediately before J

t

is scheduled. Recall that at time t we remove

the color from the load in M2's schedule. Invariant (I4) implies that the potential at time t must

decrease by at least �

L

m

. Calculations identical to that in the inductive step show inequality (6).

2

We summarize again the results of Lemmas 2 and 3.

Lemma 4 At time t

0

, the total load on the non-full machines M

1

; : : : ;M

m�f

is at most (c �

1:5)(m� f)

L

m

.

3.2.2 Tracing the assignment of large jobs

We now identify jobs with a processing time of at least (

1

2

+ �)

L

m

.

Lemma 5 a) During the time interval (t

m�i

; t

0

], f�m+i jobs, each of size at least (

1

2

+�)

L

m

,

are scheduled.

b) At time t

m�i

, each of the machines M

1

; : : : ;M

f�m+i+1

has a load of at most (c� 1:5)

L

m

.

The total load on the machines M

i�m+f+1

; : : : ;M

i

is at most (c� 1:5)(m� f)

L

m

.

Proof: Part a) At time t

m�i

, m� i machines are full. At time t

0

, f machines are full, where

f � m � bjc. Consider the f �m + i steps in (t

m�i

; t

0

] at which the number of full machines

increases. Since at least m� i machines are full, the number of full machines can only increase

if a job is scheduled on the least loaded machine. By Lemma 4, at time t

0

, the total load on

the m� f least loaded machines is at most (c� 1:5)(m� f)

L

m

. This implies that at time t

0

, the

load on the least loaded machine is at most (c� 1:5)

L

m

. Thus, at any of the f �m+ i steps in

(t

m�i

; t

0

] at which the number of full machines increases, the load on the least loaded machine

is at most (c � 1:5)

L

m

. Hence jobs of size at least (c � 1 + �)

L

m

� (c � 1:5)

L

m

= (

1

2

+ �)

L

m

are

introduced.

Part b) The machine with the (f�m+ i+1)-st smallest load at time t

m�i

becomes the least

loaded machine no later than time t

0

, when f machines are full. Thus, if at time t

m�i

, machine

M

f�m+i+1

(or any machine M

k

with k � f �m+ i) had a load greater than (c�1:5)

L

m

, then the

load of the least loaded machine at time t

0

would be greater than (c� 1:5)

L

m

. Lemma 4 implies

that this is impossible. Similarly, if at time t

m�i

, machines M

i�m+f+1

; : : : ;M

i

had a total load

of at least (c� 1:5)(m� f)

L

m

, then the total load on M

1

; : : : ;M

m�f

at time t

0

would be at least

(c� 1:5)(m� f)

L

m

. Again, Lemma 4 gives the desired statement. 2

Lemma 6 During the time interval (t

0

; t�1], m�f jobs of size at least (

1

2

+ �)

L

m

are scheduled.

10



Proof: By the de�nition of t

0

, M2's schedule is not balanced during [t

0

+ 1; t � 1]. Let s 2

[t

0

+1; t� 1] be any of the m� f time steps in [t

0

+1; t� 1] at which the number of full machines

has just increased. If the load on the least loaded machine is at most (c � 1:5)

L

m

when J

s

is

scheduled, then p

s

� (c� 1 + �)

L

m

� (c� 1:5)

L

m

= (

1

2

+ �)

L

m

.

Suppose that immediately before the assignment of J

s

, the least loaded machine has a load

greater than (c�1:5)

L

m

. Let l

s�1

i+1

be the load of machineM

i+1

and suppose l

s�1

i+1

= (c�1+�+�)

L

m

for some non-negative �. By the de�nition of t

0

, at least m� bjc machines are full at any time

in [t

0

; t� 1]. Thus,

L

s�1

� (m� bjc)(c� 1 + �)

L

m

+ bjc(c� 1:5)

L

m

+ (m� i)�

L

m

� (c� 1)L�

1

2

bjc+ (m� bjc)�

L

m

+

�

2

L

� (c� 1)L�

j

2

L

m

+ (m� j)�

L

m

+

�

2

L:

The second inequality follows because m � i �

1

2

m. Since M2's schedule is not balanced, M2

would prefer to schedule J

s

on machine M

i+1

but cannot because

l

s�1

i+1

+ p

s

> c(L

s�1

+ p

s

)=m:

Hence,

p

s

� (

c

m

L

s�1

� l

s�1

i+1

)=(1�

c

m

)

�

c

m

L

s�1

� l

s�1

i+1

� c(c� 1�

j

2m

)

L

m

� (c� 1)

L

m

+ c(1�

j

m

)�

L

m

� �

L

m

+

c�

2

L

m

� �

L

m

:

The load l

s�1

i+1

= (c� 1 + �+ �)

L

m

cannot be greater than (3� c� �)

L

m

since otherwise we would

have, at time t�1, m�imachines each with a load greater than (3�c��)

L

m

and imachines each

with a load of at least (c�1+�)

L

m

, resulting in a total load greater than L. Thus, � � 4�2c�2�

and

p

s

� ((c� 1)

2

�

cj

2m

)

L

m

+ (c� 1�

cj

m

)�

L

m

+ 2(

c

2

� 1)(2� c� �)

L

m

� ((c� 1)

2

� (c� 2)

2

�

cj

2m

)

L

m

+ (1�

cj

m

)�

L

m

� 0:567

L

m

+ 0:442�

L

m

� (

1

2

+ �)

L

m

for all � � 0:12. Recall that our � is at most 2� c = 0:077. 2

We now consider the time t

m�i�bjc

when exactly m � i � bjc machines are full. Let t

00

,

t

m�i�bjc

� t

00

� t

m�i

, be the earliest point of time at which the machine with the (i + 1)-st

smallest load has a load greater than (c� 1:5)

L

m

.

Lemma 7 During the time interval (t

00

; t

m�i

], every job is scheduled on the least loaded machine.

Proof: We �rst show that at any time s 2 [t

00

; t

m�i

], M2's schedule is balanced. Lemma 5

part b) implies that at time s the total load on the lightly loaded machines M

1

; : : : ;M

i

is at

11



most L

l

= i(c� 1:5)

L

m

. By the de�nition of t

00

, the total load on the heavily loaded machines

M

i+1

; : : : ;M

m

at time s is at least

L

h

= (m� i� bjc)(c� 1)

L

m

+ bjc(c� 1:5)

L

m

= (m� i)(c� 1)

L

m

�

bjc

2

L

m

:

We show that at time s, the total load on the lightly loaded machines is at most � times the

load on the heavily loaded machines. This holds if L

l

� �L

h

, i.e., if

i(c� 1:5)

L

m

�

i(c�1)�j=2

(c�1)(m�i)

((m� i)(c� 1)

L

m

�

bjc

2

L

m

);

which is equivalent to

(c� 1)(ibjc+ (m� i)j)� j

bjc

2

� (c� 1)i(m� i):

This in turn holds if

jm�

j

2

2(c�1)

� i(m� i):

The left-hand side is at most 0:245m

2

, and the right-hand side is

1

4

m

2

for even m at and least

0:246m

2

for odd m � 9. Thus, at time s, M2's schedule is balanced.

Now consider job J

s+1

scheduled at time s+1. Let l

s

1

be the load on the least loaded machine

at time s. We have l

s

1

� (c� 1:5)

L

m

. Let p be a processing time such that l

s

1

+ p = (c� 1:5)

L

m

.

The property stated in part b) of Lemma 5 must also hold at time s because the load on the

lightly loaded machines M

1

; : : : ;M

i

can only be smaller. Thus, if J

s+1

has a processing time of

at most p, scheduling J

s+1

on the least loaded machine would result in a total load of at most

i(c� 1:5)

L

m

on machines M

1

; : : : ;M

i

. Since the total load on machines M

i+1

; : : : ;M

m

is at least

(m� i)(c� 1)

L

m

�

bjc

2

L

m

, the calculations of the preceding paragraph show that M2's schedule

must be balanced after the assignment.

Suppose that J

s+1

has a processing time p

s+1

> p and that scheduling J

s+1

on the least

loaded machine results in a load of i(c� 1:5)

L

m

+ �

L

m

on machines M

1

; : : : ;M

i

, for some � > 0.

This implies that at time s + 1, the load on any of the machines M

i+1

; : : : ;M

i+bjc

must be

at least (c � 1 + �)

L

m

. With the above de�nitions of L

l

and L

h

, we conclude that after the

assignment of J

s+1

to the least loaded machine, the total load on M

1

; : : : ;M

i

is at most L

l

+�

L

m

and the total load on M

i+1

; : : : ;M

m

is at least L

h

+ bjc�

L

m

. Since, for m � 8, we have bjc � 2

and � �

1

2

, M2's schedule must be balanced. 2

Lemma 8 At time t

00

� 1, the load on machine M

i+1

is at most (c� 1:5)

L

m

.

Proof: If t

00

> t

m�i�bjc

, then the lemma follows from the de�nition of t

00

. We show that t

00

cannot be equal to t

m�i�bjc

. Recall that f � m � bjc. Thus, Lemma 5 part b) implies that at

time t

m�i

, machine M

i�bjc+1

has a load of at most (c� 1:5)

L

m

. If t

00

= t

m�i�bjc

, then there are

bjc steps in (t

00

; t

m�i

] at which the number of full machines increases. By Lemma 7, at all these

steps, the jobs are assigned to the least loaded machine. Thus at time t

00

, the load of machine

M

i+1

cannot be greater than the load of machine M

i�bjc+1

at time t

m�i

. This means that M

i+1

has a load of at most (c� 1:5)

L

m

at time t

00

, contradicting the choice of t

00

. 2

12



Lemma 9 During time interval (0; t

m�i

], m� i jobs of size at least (

1

2

+ �)

L

m

are scheduled.

Proof: Let k be the number of machines that are full at time t

00

. Consider the k steps in (0; t

00

]

at which the number of full machines increases. At any of these steps, before the assignment of

the job, the load on M

1

and M

i+1

is at most (c� 1:5)

L

m

each, see Lemma 8. Thus jobs of size at

least (c�1+ �)

L

m

� (c�1:5)

L

m

� (

1

2

+ �)

L

m

must be scheduled. At the m� i�k steps in (t

00

; t

m�i

]

at which the number of full machines increases, jobs are scheduled on the least loaded machine

(Lemma 7). The least loaded machine has a load of at most (c� 1:5)

L

m

and we conclude again

that jobs of size at least (

1

2

+ �)

L

m

must be scheduled. 2

Lemma 5 part a) as well as Lemmas 6 and 9 imply the following statement.

Lemma 10 During time interval (0; t� 1], m jobs of size at least (

1

2

+ �)

L

m

are scheduled.

By the discussion immediately preceding Section 3.2, the proof of Theorem 1 is complete.

4 The lower bound

We develop an improved lower bound for deterministic scheduling algorithms.

Theorem 2 Let A be a deterministic online scheduling algorithm. If A is c-competitive for all

m � 80, then c � 1:852.

Proof: We will construct a job sequence � such that A(�) � 1:852 �OPT (�). The job sequence

consists of several rounds. We assume that m is a multiple of 40.

Round 1:

Subround 1.1: m jobs with a processing time of x

1

= 0:01.

Subround 1.2: m jobs with a processing time of x

2

= 0:06.

Round 2:

Subround 2.1:

19

20

m jobs with a processing time of y

1

= 0:282.

Subround 2.2:

1

20

m jobs with a processing time of y

2

= 0:4.

Round 3:

Subround 3.1:

1

2

m jobs with a processing time of z

1

= 0:5.

Subround 3.2:

1

4

m jobs with a processing time of z

2

= 1� y

2

= 0:6.

Subround 3.3:

3

40

m jobs with a processing time of z

3

= 1� y

1

= 0:718.

Subround 3.4:

3

40

m jobs with a processing time of z

4

= 0:84.

Subround 3.5:

1

10

m+ 1 jobs with a processing time of z

5

= 1.

Note that in the third round, m+ 1 jobs have to be scheduled.

In the following, when analyzing the various subrounds, we will often compare the makespan

produced by an online algorithm A in a subround to the optimum makespan at the end of the

subround. It is clear that the optimum makespan during the subround can only be smaller.

Analysis of Round 1: Clearly, in order to maintain 1:852-competitiveness, online algorithm

A must schedule the m jobs in Subround 1.1 on di�erent machines. Also, A must schedule

13



the m jobs in Subround 1.2 on di�erent machines. Otherwise, A's makespan would be at

least x

1

+ 2x

2

= 0:13. Since the optimum makespan during the subround is always at most

x

1

+ x

2

= 0:07 and

0:13

0:07

> 1:857, A would not be 1.852-competitive. At the end of the �rst

round, A has a load of l

1

= x

1

+ x

2

= 0:07 on each of its machines.

Analysis of Round 2: At the end of Subround 2.1, the optimum makespan is at most x

2

+y

1

=

0:342. On each of

19

20

m machines, OPT schedules an x

2

-job and a y

1

-job. The remaining

1

20

m

machines have an x

2

-job and 20 jobs of size x

1

. If A does not schedule the jobs in Subround 2.1

on di�erent machines, then its makespan is at least x

1

+ x

2

+ 2y

1

= 0:634 > 1:853(x

2

+ y

1

).

The optimum makespan after Subround 2.2 is y

1

+ 2x

2

= 0:402. In an optimal schedule,

1

20

m

machines have a y

2

-job,

1

2

m machines have a y

1

-job and two x

2

-jobs. The remaining machines

have a y

1

-job and at most three x

1

-jobs. Online algorithm A must schedule the jobs of Subround

2.2 on di�erent machines and these machines may not contain any y

1

-job since otherwise A's

makespan is at least x

1

+ x

2

+ y

1

+ y

2

= 0:752 > 1:87(y

1

+ 2x

2

). At the end of Round 2, the

least loaded machine in A's schedule has a load of l

2

= x

1

+ x

2

+ y

1

= 0:352.

Analysis of Round 3: Subround 3.1: After Subround 3.1, the optimum makespan is y

1

+y

2

=

0:682. In an optimal schedule,

1

20

m machines contain a y

1

and a y

2

.

1

2

m machines contain a z

1

,

two x

1

and two x

2

.

9

20

m machines contain two y

1

. Algorithm A must schedule all z

1

-jobs on

di�erent machines. Otherwise its makespan would be at least l

2

+ 2z

1

= 1:352 > 1:98(y

1

+ y

2

).

Subround 3.2: At the end of the subround, the optimum makespan is y

1

+ z

1

= 0:782. In

OPT's schedule,

1

2

m machines have a y

1

and a z

1

.

1

20

m machines have a y

1

and a y

2

.

1

5

m

machines have two y

1

, three x

1

and three x

2

.

1

4

m machines have a z

2

and some of them have

two additional x

1

and x

2

. Algorithm A must schedule each z

2

-job on a machine not containing

any z

1

or z

2

. Otherwise its makespan would be at least l

2

+ z

1

+ z

2

= 1:452, which is greater

than 1:856(y

1

+ z

1

).

Subround 3.3: The optimum makespan after the subround is 3y

1

= 0:846. In an optimal

schedule

1

2

m machines have a y

1

, a z

1

and an x

2

.

1

4

m machines have a z

2

, two x

2

and four x

1

.

3

40

m machines have a z

3

.

3

20

m machines three y

1

.

1

40

m machines two y

2

. As before, A may not

schedule any z

3

-job on a machine containing a z

1

, a z

2

or a z

3

because this would result in a

makespan of at least l

2

+ z

1

+ z

3

= 1:57 > 1:855(3y

1

).

Subround 3.4: The optimum makespan is y

2

+ z

1

= 0:9. In OPT's schedule, all the z-jobs

are scheduled on di�erent machines.

1

20

m machines having a z

1

also contain a y

2

. (

1

2

�

1

20

)m

machines containing a z

1

also have a y

1

, an x

2

and up to three x

1

. The

1

4

m machines having a

z

2

also have a y

1

. Machines having a z

3

also have three x

2

. Machines having a z

4

also have an

x

2

. At this point, OPT is left with

1

10

m machines on which it has to schedule

1

4

m jobs with a

processing time of x

2

and

1

4

m jobs with a processing time of y

1

. This can be done by scheduling

(a)

1

40

m machines with ten x

2

and one y

2

each and (b)

3

40

m machines with three y

1

. As usual,

A may not schedule a z

4

-job on a machine having already any z-job; otherwise its makespan is

at least l

2

+ z

1

+ z

4

= 1:692 = 1:88(y

2

+ z

1

).

Subround 3.5: The online algorithm A must schedule one of the z

5

-jobs on a machines already

containing another z-job, because a total of m+ 1 jobs have to be scheduled in Round 3. This

gives a makespan of at least x

1

+x

2

+y

1

+z

1

+z

5

= 1:852. We will show that OPT can schedule

all the jobs with a makespan of 1 if m � 80. An optimal schedule is as follows.

1

10

m machines

have a z

5

.

1

4

mmachines have two z

1

.

3

40

m machines have a z

4

, two x

1

and two x

2

.

3

40

m machines

14



have a z

3

and a y

1

.

1

5

m machines have a z

2

, one y

1

, two x

1

and one x

2

.

1

20

m machines have a

z

2

and a y

2

.

9

40

m machines have three y

1

, two x

1

and two x

2

. OPT has

1

40

m machines left on

which it has to schedule one z

5

and

1

5

m jobs of size x

2

. This can be done if at least two machines

are left, i.e. if m � 80. OPT can use one machine for the z

5

-job and the remaining machines for

the x

2

-jobs. 2

5 Open problems

An interesting problem is to formulate and analyze a generalization of the algorithm M2 that,

at any time, is allowed to schedule a new job on any of the m machines. In such an algorithm,

the ratio of the load on the i-th smallest machine to the load on the (i+ 1)-st smallest machine

has to be bounded by some �

i

, 1 � i � m � 1. The problem is to specify �

i

's and a proper

scheduling rule that is able to maintain these values. A �rst step in this direction is to maintain

three set S

1

, S

2

and S

3

of m=3 machines with a low, medium and high load, respectively.

More generally, with respect to the scheduling problem studied here, a fundamental open

problem is to develop randomized online algorithms that achieve a competitive ratio smaller

than the deterministic lower bound, for all m.

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin and O. Waarts. On-line machine scheduling with

applications to load balancing and virtual circuit routing. In Proc. 25th ACM Symposium

on Theory of Computing, pages 623{631, 1993.

[2] B. Awerbuch, Y. Azar, E.F. Grove, M.Y. Kao, P. Krishnan and J.S. Vitter. Load balancing

in the L

p

norm. In Proc. 36th IEEE Annual Symposium on Foundations of Computer

Science, pages 383{391, 1995.

[3] Y. Bartal, A. Fiat, H. Karlo� and R. Vohra. New algorithms for an ancient scheduling

problem. Journal of Computer and System Sciences, 51:359{366, 1995.

[4] Y. Bartal, H. Karlo� and Y. Rabani. A better lower bound for on-line scheduling. Informa-

tion Processing Letters, 50:113{116, 1994.

[5] Y. Bartal, S. Leonardi, A. Marchetti-Speccamela, J. Sgall and L. Stougie. Multiprocessor

scheduling with rejection. In Proc. 7th ACM-SIAM Symposium on Discrete Algorithms,

pages 95{104, 1996.

[6] B. Chen, A. van Vliet and G. Woeginger. New lower and upper bounds for on-line schedul-

ing. Operations Research Letters, 16:221-230, 1994.

[7] U. Faigle, W. Kern and G. Turan. On the performance of on-line algorithms for particular

problems. Acta Cybernetica, 9:107{119, 1989.

[8] G. Galambos and G. Woeginger. An on-line scheduling heuristic with better worst case

ratio than Graham's list scheduling. SIAM Journal on Computing, 22:349{355, 1993.

15



[9] M.R. Garay and D.S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman and Company, New York, 1979.

[10] R.L. Graham. Bounds for certain multi-processing anomalies. Bell System Technical Jour-

nal, 45:1563{1581, 1966.

[11] D.R. Karger, S.J. Phillips and E. Torng. A better algorithm for an ancient scheduling

problem. Journal of Algorithms, 20:400{430, 1996.

[12] R. Motwani, S. Phillips and E. Torng. Non-clearvoyant scheduling. In Proc. 4th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 422{431, 1993.

[13] D.D. Sleator and R.E. Tarjan. Amortized e�ciency of list update and paging rules. Com-

munications of the ACM, 28:202{208, 1985.

[14] D. Shmoys, J. Wein and D.P. Williamson. Scheduling parallel machines on-line. In Proc.

32nd IEEE Annual Symposium on Foundations of Computer Science, pages 131{140, 1991.

16


