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MOTION PLANNING OF LEGGED ROBOTS∗

JEAN-DANIEL BOISSONNAT† , OLIVIER DEVILLERS† , AND SYLVAIN LAZARD‡

Abstract. We study the problem of computing the free space F of a simple legged robot called
the spider robot. The body of this robot is a single point and the legs are attached to the body. The
robot is subject to two constraints: each leg has a maximal extension R (accessibility constraint)
and the body of the robot must lie above the convex hull of its feet (stability constraint). Moreover,
the robot can only put its feet on some regions, called the foothold regions. The free space F is the
set of positions of the body of the robot such that there exists a set of accessible footholds for which
the robot is stable. We present an efficient algorithm that computes F in O(n2 logn) time using
O(n2α(n)) space for n discrete point footholds where α(n) is an extremely slowly growing function
(α(n) 6 3 for any practical value of n). We also present an algorithm for computing F when the
foothold regions are pairwise disjoint polygons with n edges in total. This algorithm computes F in
O(n2α8(n) logn) time using O(n2α8(n)) space (α8(n) is also an extremely slowly growing function).
These results are close to optimal since Ω(n2) is a lower bound for the size of F .
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1. Introduction. Although legged robots have already been studied in robotics
[13, 14], only a very few papers consider the motion planning problem amidst obsta-
cles [8, 7, 1]. In [8, 7] some heuristic approaches are described while, in [1] efficient
and provably correct geometric algorithms are described for a restricted type of legged
robots, the so-called spider robots to be defined precisely below, and for finite sets of
point footholds.

A legged robot consists of a body with legs. Each leg has one end attached to the
body and the other end (called the foot) that can lie on the ground (or move in space
between two positions on the ground). Compared to the classic piano movers problem,
legged robots introduce new types of constraints. We assume that the environment
consists of regions in the plane, called foothold regions, where the robot can safely
put its feet. A foothold is a point in a foothold region. The legged robot must satisfy
two different constraints: the accessibility and the stability constraints. A foothold
is said to be accessible from a placement (position of the body of the robot) if it can
be reached by a leg of the robot. A placement is called stable if there exist accessible
footholds and if the center of mass of the robot lies above the convex hull of these
accessible footholds. The set of stable placements is clearly relevant for planning the
motion of a legged robot: we call this set the free space of the legged robot. Note that
a legged robot has at least four legs, three legs ensure the stability of a placement and
a fourth leg permits the motion of the robot.

A first simple instance of a legged robot is the spider robot (see Figure 1.1). The
spider robot was inspired by Ambler, developed at Carnegie Mellon University [9].
The body of the spider robot is a single point in the Euclidean plane and all its legs
are attached to the body. The legs are retractable and their lengths may vary between
0 and a constant R. We also assume that the center of mass of the robot is its body.
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Fig. 1.1. The spider robot.

It follows that a placement is stable if the body of the robot lies above the convex
hull of the accessible footholds.

The constraint that the body of the spider robot lies in the plane (instead of in
3D) is not really restrictive. Indeed, consider a legged robot for which that constraint
is relaxed. Then, if a placement (x, y, z) of such a legged robot is stable then, any
placement (x, y, z′), 0 6 z′ 6 z is also stable. Reciprocally, it can be shown that if
(x, y) is in the interior of the free space of the spider robot, then there exists z > 0
such that (x, y, z) is a stable placement of the corresponding legged robot.

The problem of planning the motion of a spider robot has already been studied
by Boissonnat et al. [1]. However, their method assumes that the set of footholds is
a finite set of points and cannot be generalized to more complex environments. This
paper proposes a new method for computing the free space of a spider robot in the
presence of polygonal foothold regions. This method is based on a transformation
between this problem and the problem of moving a half-disk amidst obstacles. Our
method requires the computation of some parts of the free space of the half-disk.
These computations are rather technical and complicated. Consequently, for the sake
of clarity, we first present our algorithm for the simple case of discrete footholds, then
we show how it can be generalized to the case of polygonal foothold regions.

Once the free space of the spider robot has been computed, it can be used to find
trajectories and sequences of legs assignments allowing the robot to move from one
point to another. Indeed, once the free space is known, a trajectory of the body can
be found in the free space. Then, a sequence of legs assignments can be computed as
follows (see [1] for details). Given an initial legs assignment, the body of the robot
moves along its trajectory until it crosses the convex hull of its (three) feet that are
on the ground or one leg reaches its maximal extension. Then, a suitable foothold is
found for the fourth leg and one leg leaves its foothold.

The paper is organized as follows: some notations and results of [1] are recalled in
the next section. Section 3 shows the transformation between the spider robot problem
and the half-disk problem. We present in Section 4 our algorithm for computing the
free space of a spider robot for a discrete set of footholds. Section 5 shows how to
extend the algorithm to polygonal foothold regions.

2. Notations and previous results. In Sections 2, 3 and 4, S denotes a dis-
crete set of distinct footholds {s1, . . . , sn} in the Euclidean plane (S will denote in
Section 5 a set of disjoint polygonal regions). Point G denotes the body of the robot
(in the same plane) and [0, R] is the length range of each leg. The free space F is the
set of all stable placements of G. A placement is said to be at the limit of stability if
it lies on the boundary of the convex hull of its accessible footholds. Notice that F is
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a closed set and contains the placements at the limit of stability.

Let Ci denote the circle of radius R centered at si. A is the arrangement of the
circles Ci for 1 6 i 6 n, i.e., the subdivision of the plane induced by the circles.
This arrangement plays an important role in our problem and we will express the
complexity results in term of |A|, the size of A. In the worst-case, |A| = Θ(n2) but if
k denotes the maximum number of disks that can cover a point of the plane, among
the disks of radius R centered at the si, it can be shown that |A| = O(kn) [15].
Clearly k is not larger than n and in case of sparse footholds, |A| may be linearly
related to the number of footholds.

For any set E , let ∂(E) denote its boundary, CH(E) its convex hull, int(E) its
relative interior1, clos(E) its closure, and compl(E) its complementary set. Let S1

denote the set of angles IR/2πZZ. We denote by x = y[p] the equality of x and y
modulo p. We say in the sequel that two objects properly intersect if and only if their
relative interiors intersect.

The algorithm described in [1] is based on the following observation: for G in a
cell Γ of A, the set of footholds that can be reached by the robot is fixed; the portion
of Γ that belongs to F is exactly the intersection of Γ with the convex hull of the
footholds that can be reached from Γ. Therefore, the edges of ∂(F) are either circular
arcs belonging to A or portions of line segments joining two footholds. Moreover,
a vertex of ∂(F) incident to two straight edges is a foothold (see Figure 2.1). The
complexity of F has been proved to be |F| = Θ(|A|) [1].

s14

s12

s2

s4

s5s6

s7

s9
s10

s11

s13

s1

s3

s8

Fig. 2.1. An example of the free space of a spider robot.

The algorithm presented in [1] computes the free space F in O(|A| log n) time. It
uses sophisticated data structures allowing the off-line maintenance of convex hulls.

The algorithm described in this paper has the same time complexity, uses simple
data structures and can be extended to the case where the set S of footholds is a set

1The relative interior of a set E in a space E is the interior of E in the space E for the topology
induced by E. For example, the relative interior of a closed line segment in IR3 is the line segment
without its endpoints, though its interior in IR3 is empty.
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of polygonal regions and not simply a set of points. For simplicity, we consider first
the case of point footholds and postpone the discussion on polygonal foothold regions
to Section 5.

General position assumption. To simplify the presentation of this paper, we
make the following general position assumptions. All these hypotheses can be removed
by a careful analysis. Recall that we consider here that the set of footholds is discrete.

No two footholds lie at distance exactly R or 2R. Among the circles C1, . . . , Cn

and the line segments joining two footholds, the intersection between three circles or,
two circles and a line segment or, one circle and two line segments, is empty.

3. From spider robots to half-disk robots. In this section, we establish the
connection between the free space of the spider robot and the free space of a half-disk
robot moving by translation and rotation amidst n point obstacles.

Theorem 3.1. The spider robot does not admit a stable placement at point P if
and only if there exists a half-disk (of radius R) centered at P that does not contain
any foothold of S (see Figure 3.1).

Proof. Let R be the set of all the footholds that are reachable from placement
P . By definition, P is not stable if and only if the convex hull of R does not contain
P (see Figure 3.1). That is equivalent to say that there exists an open half-plane
through P containing R, or that there exists a closed half-disk of radius R centered
at P which does not contain any foothold.

P

Fig. 3.1. A placement which is not stable.

xx′

P

R

θ

Fig. 3.2. HD(P, θ).

Definition 3.2. Let HD(P, θ) be the half-disk of radius R centered at P (see
Figure 3.2) defined by:

{

(x− xP )
2 + (y − yP )

2 6 R2

(x− xP ) sin θ − (y − yP ) cos θ 6 0
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Definition 3.3. ∀si ∈ S (1 6 i 6 n) let:

Hi = {(P, θ) ∈ IR2 × S1 | P ∈ HD(si, θ)},

H =

n
⋃

i=1

Hi,

Ci = Ci × S1.

Hi will be called the helicoidal volume centered at si (see Figure 3.3).

Fig. 3.3. Helicoidal volume Hi.

Notice the typographical distinction between the circle Ci defined in IR2 and the
torus Ci defined in IR2×S1. For convenience, we will often identify S1 and the interval
[0, 2π] of IR. This allows us to draw objects of IR2 × S1 in IR3 and to speak of the
θ-axis. Πθ0 denotes the “plane” {(P, θ) ∈ IR2 × S1 | θ = θ0}.

Definition 3.4. The free space L of a half-disk robot moving by translation and
rotation amidst the set of obstacles S is the set of (P, θ) ∈ IR2 × S1 such that the
half-disk HD(P, θ + π) does not intersect S.
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Proposition 3.5. L = compl(H).

Proof. ∀θ ∈ S1, the set L ∩ Πθ is the free space of the half-disk HD(P, θ + π)
moving by translation only, amidst the obstacle s1, . . . , sn. Since the set of points P
such that HD(P, θ + π) contains a si is HD(si, θ), L ∩ Πθ is the complementary set
of the union of the HD(si, θ). Thus, L is the complementary set of the union of the
Hi, that is H.

Let p//θ denote the mapping (called “orthogonal projection”): IR2 × S1 −→
IR2, (P, θ) 7→ P .

Theorem 3.6. F = compl(p//θ(compl(H)))

Proof. By definition of L, p//θ(L) is the set of points P ∈ IR2 such that there
exists an angle θ ∈ S1 such that the half-disk HD(P, θ) does not intersect S. By
Theorem 3.1, it is equivalent to say that there exists θ ∈ S1 such that HD(P, θ)
does not intersect S, or that P is not a stable placement of the spider robot. Thus,
p//θ(L) is the set of points P where the robot does not admit a stable placement, i.e.,
F = compl(p//θ(L)). The result then follows from Proposition 3.5.

Remark 3.7. compl(p//θ(compl(H))) × S1 is the largest “cylinder” included
in H, whose axis is parallel to the θ-axis (in grey in Figure 3.4). The basis of this
cylinder is F .

0

θ

2 π

E

compl(p//θ(compl(E)))

Fig. 3.4. compl(p//θ(compl(E))).

Remark 3.8. The results of this section do not depend on the fact that the
footholds are discrete points. For more general foothold regions, we simply need to
replace the helicoidal volumes by their analog. This will be done in Section 5.

4. Computation of F . In this section, we propose an algorithm for computing
F based on Theorem 3.6.

A first attempt to use Theorem 3.6 may consist in computing L = compl(H) and
projecting it onto the horizontal plane. The motion planning of a convex polygonal
robot in a polygonal environment has been extensively studied (see for example [10,
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11]). Such algorithms can be generalized to plan the motion of a half-disk. It should
lead to an algorithm of complexity O(nλs(n) log n), where λs(n) is an almost linear
function of n. The projection can be done using classical techniques, such as projecting
all the faces of L and computing their union. Since the complexity of the 3D object
L is not directly related to the complexity of its projection, this approach does not
provide a combinatorial bound on F . However, assuming |F| = O(λs(|A|)) (which
will be proved in this paper) the time complexity of the algorithm of Kedem et al. is
O(nλs(n) logn+ λs(|A|) log2 n).

In this paper, we present a direct computation of F . This approach provides an
upper bound on the size of F , namely |F| = O(λs(|A|)). It also provides an algorithm
for computing F in O(λs(|A|) log n) time. As in [16] and contrary to [11], the algo-
rithm proposed here is sensitive to |A| which is usually less than quadratic. Another
advantage of our direct computation is to avoid the explicit construction of the 3D
object L which is useless for our application. Our algorithm manipulates only two-
dimensional arrangements or lower envelopes and we provide a detailed description of
the curves involved in the construction.

Let us now detail the computation of F in the case of point footholds. We know
that each arc of the boundary ∂(F) of F is either a straight line segment belonging
to a line joining two footholds or an arc of a circle Ci (see Section 2). The circular
arcs ∂(F)∩Ci are computed first (Sections 4.1, 4.2 and 4.3) and linked together with
the line segments in a second step (Sections 4.4 and 4.5).

4.1. Computation of ∂(F) ∩ A. In the sequel, the contribution of an object
X to another object Y is X ∩ Y . We compute the contribution of each circle Ci0 ,
i0 = 1, . . . , n, to ∂(F) in turn. Recall that Ci0 denote the torus Ci0 × S1. The
contribution of each circle Ci0 to ∂(F) will be obtained by computing the intersection
of all the Hi, i = 1, . . . , n, with the torus Ci0 . Let Zi, i = 1, . . . , n, denote these
intersections:

Zi = Hi ∩ Ci0 .
We first show how to compute the contribution of Ci0 to ∂(F) in term of the Zi,

and leave the studies of the shape and properties of Zi to Section 4.2. Figures 4.1
and 4.2 show some (hatched) Zi ⊂ Ci0 (i 6= i0) where Ci0 is parameterized by (u, θ)
(u and θ parameterize Ci0 and S1 respectively); the dark grey region shows Zi0 .

Proposition 4.1. The contribution of Ci0 to ∂(F) is:
Ci0 ∩ ∂(F) = compl(p//θ(compl(∪iZi))) \ int(compl(p//θ(compl(∪i6=i0Zi)))).

Proof. Since F is a closed set, Ci0 ∩ ∂(F) = [Ci0 ∩F ] \ [Ci0 ∩ int(F)]. According
to Theorem 3.6, F = compl(p//θ(compl(H))). One can easily prove that for any

set E ∈ IR2 × S1, int(compl(E)) = compl(clos(E)), clos(compl(E)) = compl(int(E)),
and clos(p//θ(E)) = p//θ(clos(E)). It then follows from the expression of F that
int(F) = compl(p//θ(compl(int(H)))).

Recall that for any sets X,Y ∈ IR2 ×S1, compl(X ∩Y ) = compl(X)∪ compl(Y ),
p//θ(X ∪ Y ) = p//θ(X) ∪ p//θ(Y ), and compl(X ∪ Y ) = compl(X) ∩ compl(Y ). That
implies

compl(p//θ(compl(X ∩ Y ))) = compl(p//θ(compl(X))) ∩ compl(p//θ(compl(Y ))).
We now consider that equation with X equal to H or int(H), and Y equal to the
torus Ci0 . Since compl(p//θ(compl(Ci0))) is the circle Ci0 we get:

compl(p//θ(compl(H ∩ Ci0))) = F ∩ Ci0 and
compl(p//θ(compl(int(H) ∩ Ci0))) = int(F) ∩ Ci0 .

Since H = ∪n
i=1Hi and Zi = Hi ∩ Ci0 by definition, H ∩ Ci0 = ∪n

i=1Zi and
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u

θ

0 π

π

2 π

: Zi0
= Hi0

∩ Ci0

2 π

θ1 θ3

θ1

θ3

θ1 + π

θ3 + π

θ2

θ2

θ2 + π

: Zi = Hi ∩ Ci0

θ = u + π

2

Zi

Zi0

ρ+

i

ρ−

i

Zi0

θ3

si

x

Ci

Ci0

si0

θ1

θ1

θ2
θ3

si

x

Ci

Ci0

si0

θ1

θ2

θ2

θ3

si

x

Ci

Ci0

si0

θ1

θ2 θ3

HD(si, θ1) HD(si, θ3)HD(si, θ2)

Fig. 4.1. Example of Zi for ‖si0si‖ =
√
2R and some corresponding critical positions

of HD(si, θ).
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int(H) ∩ Ci0 = ∪n
i=1(int(Hi) ∩ Ci0). By the general position assumption, no two

footholds lie at distance 2R, thus for i 6= i0, int(Hi) ∩ Ci0 = int(Zi)
2. As int(Hi0) ∩

Ci0 = ∅, we get int(H) ∩ Ci0 = ∪i6=i0 int(Zi). The study of the shape of Zi will
yield (see Lemma 4.8) that ∪i6=i0 int(Zi) = int(∪i6=i0Zi). Therefore, int(F) ∩ Ci0 =
compl(p//θ(compl(int(∪i6=i0Zi)))) = int(compl(p//θ(compl(∪i6=i0Zi)))) and F ∩Ci0 =
compl(p//θ(compl(∪iZi))). Using Ci0 ∩ ∂(F) = [Ci0 ∩ F ] \ [Ci0 ∩ int(F)], we get the
result.

Thus, the contribution of Ci0 to ∂(F) comes from the computation of ∪iZi and
∪i6=i0Zi.

Geometrically, compl(p//θ(compl(∪iZi))) is the vertical projection (along the θ-
axis) of the largest vertical strip Σi0 included in ∪iZi (see Figure 4.2). Similarly,
compl(p//θ(compl(∪i6=i0Zi))) is the projection of the largest vertical strip Σ′

i0 included
in ∪i6=i0Zi. Thus, ∂(F) ∩ Ci0 is the vertical projection onto Ci0 of the vertical strip
Σi0 \ int(Σ′

i0).

In order to compute F efficiently, we need to compute the union of the regions
Zi efficiently. More precisely, we will show that the union of the regions Zi can be
computed in O(ki0 log ki0) time where ki0 is the number of helicoidal volumes Hi

intersecting Ci0 .
This is possible because the Zi have special shapes that allow us to reduce the

computation of their union to the computation of a small number of lower envelopes
of curves drawn on Ci0 , with the property that two of them intersect at most once.
The geometric properties of the Zi are discussed in Section 4.2 and, in Section 4.3,
we present and analyze the algorithm for constructing ∂(F) ∩ Ci0 .

4.2. Properties of the Zi. We study here the regions Zi = Hi ∩ Ci0 . Recall
that we parameterize Ci0 = Ci0 × S1 by (u, θ) where u and θ parameterize Ci0 and
S1 respectively (u = 0 corresponds to the point of Ci0 with maximum x-coordinate).
Figures 4.1 and 4.2 show examples of such regions Zi. For convenience, we will use
the vocabulary of the plane when describing objects on the torus Ci0 . For instance,
the curve drawn on the torus Ci0 with equation a θ + b u + c = 0 will be called a
line. The line u = u0 will be called vertical and oriented according to increasing θ.
Lower and upper will refer to this orientation. The discussion below considers only
non empty regions Zi (such that ‖si0si‖ < 2R).

We introduce first some notations. Let HCi(θ) be the half-circle of the boundary
of HD(si, θ), i.e., HCi(θ) = Ci ∩HD(si, θ). Let ri(θ) be the spoke of Ci that makes
an angle θ with the x-axis, i.e., ri(θ) = {si + λ~uθ | λ ∈ [0, R]} where ~uθ is the unit
vector whose polar angle is θ. The boundary of Hi is composed of the three following
patches:

Ti = {(HCi(θ), θ) ∈ IR2 × S1}
R+

i = {(ri(θ), θ) ∈ IR2 × S1}
R−

i = {(ri(θ + π), θ) ∈ IR2 × S1}

Let ρ−i and ρ+i denote the curves R−
i ∩ Ci0 and R+

i ∩ Ci0 , respectively. Since R−
i

and R+
i are translated copies of one another, i.e., R−

i = R+
i ± (0, 0, π), we have:

Lemma 4.2. ρ−i and ρ+i are translated copies of one another, i.e.,
ρ+i = {(u, θ) ∈ S1 × S1 | (u, θ − π) ∈ ρ−i } = {(u, θ) ∈ S1 × S1 | (u, θ + π) ∈ ρ−i }.

2Recall that int denotes the relative interior, thus int(Hi) is the interior of Hi in IR2 × S1 but
int(Zi) denotes the interior of Zi in Ci0 .
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u

θ

Z3

Z1Z2

: Σi0
: Σ′

i0

Zi0

Σi0

Σ′

i0

θ = u + π

2

θ = u − π

2

Z1

: Z1,Z2,Z3 : Zi0

ρ3+

2

ρ1+

2

ρ1+

1

ρ2+

2 ρ2+

1

Fig. 4.2. Contribution of Ci0 to ∂(F) (0 < ‖s1si0‖ < R, R 6 ‖s2si0‖ <
√
2R,

√
2R 6

‖s3si0‖ < 2R).

Lemma 4.3. The curves ρ±i are monotone in u.

Proof. Assume for a contradiction that a curve ρ±i is not monotone in u. Then,
there exists u and θ 6= θ′ in S1 such that (u, θ) and (u, θ′) parameterize points of ρ±i .
By the definition of R±

i , it then follows that the point U ∈ Ci0 parameterized by u
belongs to the two spokes ri(θ) (or ri(θ+π)) and ri(θ

′) (or ri(θ′+π)). The intersection
between any two of these spokes is exactly si. Thus, U = si, which contradicts (since
U ∈ Ci0 ) the general position assumption saying that the distance between si and si0
is not R.

Lemma 4.4. The region Zi0 is the subset of Ci0 parameterized by {(u, θ) ∈ S1 ×
S1 | θ 6 u 6 θ + π} (shown in grey in Figures 4.1 and 4.2).

Proof. For any θ ∈ S1, the intersection between Hi0 and the “horizontal plane”
Πθ is the half-disk HD(si0 , θ). Similarly, the intersection between Ci0 and that plane
is Ci0 . Thus, the intersection between Zi0 and Πθ is HCi0(θ), which is parameterized
on Ci0 by {u ∈ S1 | θ 6 u 6 θ+π}. That intersection is actually on the plane Πθ and
is therefore parameterized on Ci0 by {(u, θ) ∈ S1 × S1 | θ 6 u 6 θ + π}.

Proposition 4.5. Zi is a connected region bounded from below by ρ−i and from
above by ρ+i , i.e., Zi = {(u, θ) ∈ S1×S1 | ∃x ∈ [0, π], (u, θ−x) ∈ ρ−i , (u, θ−x+π) ∈ ρ+i }
(see Figures 4.1, 4.2).

Proof. By cutting Ci0 and Hi by the “horizontal plane” Πθ, we get that a point
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parameterized by (u, θ) on Ci0 belongs to Hi if and only if the point U parameterized
by u on Ci0 belongs to HD(si, θ). Since HD(si, θ) can be seen as the union of the
spokes {ri(θ + γ) | γ ∈ [0, π]}, (u, θ) ∈ Zi if and only if there exists γ ∈ [0, π] such
that U ∈ ri(θ + γ), or equivalently, U ∈ ri(θ − x+ π) with x = π − γ ∈ [0, π]. Since
R−

i = {(ri(θ− x+ π), θ − x) | θ− x ∈ S1}, it follows from U ∈ ri(θ− x+ π) that the
point of Ci0 parameterized by (u, θ − x) belongs to R−

i and thus to ρ−i = R−
i ∩ Ci0 .

From Lemma 4.2, we get that the point parameterized by (u, θ − x + π) belongs to
ρ+i . Therefore, Zi is a connected region bounded from below by ρ−i and from above
by ρ+i .

We want to compute the union of the Zi by computing the “lower envelope”3 of the
lower edges ρ−i , and the “upper envelope” of the upper edges ρ+i . It is unfortunately
impossible to do so because some upper edges ρ+i may possibly be “below” or intersect
some lower edges ρ−j . However, we can subdivide the regions Zi into blocks Zk

i , k ∈ K,

and separate these blocks into two sets Ω1 and Ω2 such that the union of the Zk
i in

Ω1 (resp. Ω2) is the region bounded from above by the upper envelope of the upper
edges of the Zk

i ∈ Ω1 and bounded from below by the lower envelope of the lower
edges of the Zk

i ∈ Ω1 (resp. Ω2). Such property can be realized by showing that all
the upper edges of the Zk

i ∈ Ω1 belong to the strip {(u, θ) ∈ S1× [u+ π
2 , u+

3π
2 ]} and

all the lower edges of the Zk
i ∈ Ω1 belong to the strip {(u, θ) ∈ S1× [u− π

2 , u+
π
2 ]} (a

similar property is shown for Ω2). Note that the upper and lower envelopes are then
defined since they are considered in S1 × IR.

si0

si

Ci0

T
θ

r′′
i
(θ)

r′
i
(θ)

T (θ)

Ci

Fig. 4.3. For the definition of r′i(θ) and r′′i (θ).

We subdivide Zi into blocks Zk
i when R < ‖si0si‖ <

√
2R. That subdivision

is performed such that the upper and lower edges of the Zk
i are θ-monotone. Recall

that the upper edge ρ+i of Zi is the intersection of R+
i = {(ri(θ), θ) | θ ∈ S1} and

Ci0 . The spoke ri(θ) intersects Ci0 twice (for some θ) when R < ‖si0si‖ <
√
2R,

which implies that ρ+i is not θ-monotone. We cut the spoke ri(θ) into two pieces
such that each piece intersects Ci0 at most once. Let T be the intersection point
between Ci0 and on one of the two lines passing through si and tangent to Ci0 (see
Figure 4.3). Let T (θ) be the point on ri(θ) at distance ‖siT ‖ from si. Cutting
ri(θ) at T (θ) defines two sub-spokes r′i(θ) and r′′i (θ) that intersect Ci0 in at most
one point each; without loss of generality, let r′i(θ) denote the sub-spoke joining si to

3Note that the lower and upper envelopes of curves in S1 × S1 are not actually defined.
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T (θ). The set of θ ∈ S1 for which r′i(θ) intersects Ci0 is clearly connected but the
set of θ ∈ S1 for which r′′i (θ) intersects Ci0 consists of two connected components.
We denote by ρ2+i the intersection {(r′i(θ), θ) | θ ∈ S1} ∩ Ci0 and by ρ1+i and ρ3+i
the two connected components of the intersection {(r′′i (θ), θ) | θ ∈ S1} ∩ Ci0 (see
Figure 4.2). Since r′i(θ) and r′′i (θ) intersect Ci0 at most once for any θ ∈ S1, the
curves ρ1+i , ρ2+i and ρ3+i are θ-monotone. The lower edges ρk−i , k = 1, 2, 3 can be
defined similarly or in a simpler way as the translated copies of ρk+i , k = 1, 2, 3, i.e.,
ρk−i = {(u, θ) ∈ S1 × S1 | (u, θ + π) ∈ ρ+k

i }. We denote by Zk
i , k = 1, 2, 3, the subset

of Zi bounded from above by ρk+i and from below by ρk−i .
We can now prove the following proposition that will allow us to compute the

union of the Zi by computing the upper and lower envelopes of their upper and lower
edges.

Proposition 4.6. If 0 6 ‖si0si‖ < R, the line θ = u− π
2 properly intersects Zi,

and the lines θ = u± π
2 properly intersect neither ρ+i nor ρ−i .

If R < ‖si0si‖ <
√
2R, the line θ = u + π

2 properly intersects Z2
i , and the line

θ = u − π
2 properly intersects Z1

i and Z3
i . Furthermore, the lines θ = u ± π

2 properly

intersect none of the edges ρ1+i , ρ1−i , ρ2+i , ρ2−i , ρ3+i and ρ3−i .
If

√
2R 6 ‖si0si‖ < 2R, the line θ = u + π

2 properly intersects Zi, and the lines

θ = u± π
2 properly intersect neither ρ+i nor ρ−i .

Proof. Let (uP , θP ) parameterize a point of a curve ρi. Let P denote the point

of Ci0 with parameter uP and γ = ∠(
−−→
Psi0 ,

−−→
Psi) [2π] (see Figure 4.4). One can

easily show that γ = θP − uP [π]. We prove that γ 6= π
2 [π], except possibly when

(uP , θP ) is an endpoint of ρi (or ρ
k
i when R < ‖si0si‖ <

√
2R), which implies, since

γ = θP − uP [π], that the lines θ = u± π
2 intersect neither ρ+i nor ρ−i (resp. ρk+i nor

ρk−i ), except possibly at their endpoints.

si0

si θP

x
uP

γ
P

Ci0

Ci

si0

si

θP

x
uP

γ

P

Ci0

Ci

Fig. 4.4. For the proof of Proposition 4.6.

Case 1: 0 6 ‖si0si‖ < R. Since si belongs to the disk of radius R centered
at si0 , γ ∈ (−π

2 ,
π
2 ) for any P ∈ Ci0 (see Figure 4.4). Thus, the lines θ = u ± π

2

properly intersect neither ρ+i nor ρ−i . Finally, the point of Ci0 (θ2, θ2 − π
2 ), where

θ2 = ∠(~x,−−→si0si) [2π], belongs to the line θ = u− π
2 and also to the relative interior of

Zi since it belongs to the interior of Hi (see Figure 4.5a). Therefore, the line θ = u− π
2

properly intersects Zi.
Case 2: R < ‖si0si‖ <

√
2R. Let (uP1

, θP1
) parameterize the point connecting

ρ1+i and ρ2+i , and (uP2
, θP2

) parameterize the point connecting ρ2+i and ρ3+i . Let P1
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si0

si

x

θ3 − π

2

(θ3, θ3 − π

2
)

Ci

Ci0

x
si0

si

θ2

θ2 + π

2

(θ2, θ2 + π

2
) Ci

Ci0

si0

si

x
θ2

θ2 − π

2

(θ2, θ2 − π

2
)

Ci

Ci0

θ3

HD(si, θ3 − π

2
)

si0

si

x

θ1 − π

2

(θ1, θ1 − π

2
)

Ci

Ci0

θ1

HD(si, θ2 + π

2
)

HD(si, θ1 − π

2
)

HD(si, θ2 − π

2
)

(b): R < ‖si0si‖ < 2R, (θ2, θ2 + π

2
) ∈ Zi

(d): R < ‖si0si‖ <
√
2R, (θ3, θ3 − π

2
) ∈ Z3

i

(a): 0 < ‖si0si‖ < R, (θ2, θ2 − π

2
) ∈ Zi

(c): R < ‖si0si‖ <
√
2R, (θ1, θ1 − π

2
) ∈ Z1

i

Fig. 4.5. For the proof of Proposition 4.6: section of Hi and Ci0 by the “planes” Πθ2−
π

2
,

Πθ2+
π

2
, Πθ1−

π

2
and Πθ3−

π

2
respectively.

and P2 denote the points of Ci0 parameterized by uP1
and uP2

respectively. According
to the construction of ρ1+i , ρ2+i and ρ3+i , the tangent lines to Ci0 at P1 and P2 pass
through si. At most two tangent lines to Ci0 pass through si, thus P1 and P2 are
the only points of Ci0 where γ = π

2 [π]. Since ρ+i is u-monotone by Lemma 4.3,

(uP1
, θP1

) and (uP2
, θP2

) are the only points of ρ+i where γ = π
2 [π]. Therefore, the

lines θ = u± π
2 do not properly intersect ρk+i , k = 1, 2, 3. Similarly, the lines θ = u± π

2

do not properly intersect ρk−i , k = 1, 2, 3.

Let θ1 and θ3 be the parameters on Ci0 of the intersection points between Ci0

and Ci (see Figures 4.5c and d); to differentiate θ1 from θ3, assume without loss of
generality that, for any ε > 0 small enough, the points of Ci0 parameterized by θ1 + ε
and θ3−ε are in the disk of radius R centered at si. Then, the points (θ1, θ1− π

2 ) and
(θ3, θ3− π

2 ) of Ci0 belong to Z1
i and Z3

i (or to Z3
i and Z1

i ) respectively (see Figures 4.5c
and d). However, these points do not belong to the relative interior of Z1

i and Z3
i

(because they lie on the border of HD(si, θ1 − π
2 ) and HD(si, θ3− π

2 )). Nevertheless,
there clearly exists ε > 0 small enough such that the point parameterized by θ1 + ε
(resp. θ3 − ε) on Ci0 belongs to the interior of the half-disk HD(si, θ1 − π

2 + ε) (resp.
HD(si, θ3 − π

2 − ε)). Thus, the points (θ1 + ε, θ1 + ε − π
2 ) and (θ3 − ε, θ3 − ε − π

2 )
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of Ci0 belong to the relative interior of Z1
i and Z3

i respectively. Therefore, the line
θ = u− π

2 properly intersects Z1
i and Z3

i .

On the other hand, (θ2, θ2 +
π
2 ) (where θ2 = ∠(~x,−−→si0si) [2π]) belongs to relative

interior of Z2
i because the point of Ci0 parameterized by θ2 belongs to the relative

interior of the sub-spoke r′i(θ2 + π) (see Figure 4.5b) which belongs to interior of
HD(si, θ2 +

π
2 ). Therefore, the line θ = u+ π

2 properly intersects Z2
i .

Case 3:
√
2R 6 ‖si0si‖ < 2R. Since ri(θ) intersects Ci0 at most once, γ ∈ [π2 ,

3π
2 ]

(see Figure 4.4). Moreover, γ = π
2 [π] only when ‖si0si‖ =

√
2R, but then, P is at

distance R from si which implies that (uP , θP ) is an endpoint of ρi. Thus, the lines
θ = u± π

2 intersect neither ρ+i nor ρ−i , except possibly at their endpoints. Finally, the
point (θ2, θ2 +

π
2 ) of Ci0 (where θ2 = ∠(~x,−−→si0si) [2π]) belongs to the line θ = u + π

2
and also to the relative interior of Zi (see Figures 4.5b and 4.1). Therefore, the line
θ = u+ π

2 properly intersects Zi.

By Proposition 4.6, we can compute the union ∪i6=i0Zi by separating the Zi,
Zk

i into two sets Ω1 and Ω2 (where Zi, Zk
i belongs to Ω1 if and only if ρ+i , ρk+i

belongs to the strip {(u, θ) ∈ S1 × [u + π
2 , u + 3π

2 ]} and ρ−i , ρ
k−
i belongs to the strip

{(u, θ) ∈ S1× [u− π
2 , u+

π
2 ]}) and computing the union of the Zi, Zk

i in Ω1 (resp. Ω2)
by computing the upper envelope of their upper edges and the lower envelope of their
lower edges. In order to compute efficiently these upper and lower envelopes, we show
that the curves ρ+i , ρ

−
i , ρ

k+
i and ρk−i intersect each other at most once. However, we

need for that purpose to split the regions Zi when 0 < ‖si0si‖ < R into two blocks
Z1

i and Z2
i separated by the vertical line u = θ2 = ∠(~x,−−→si0si); it also remains to split

the θ-interval (or the u-interval) over which ρi is defined into two intervals of equal
length over which ρ1±i and ρ2±i are defined (see Figure 4.2). Note that Proposition 4.6
still holds if we replace (when 0 < ‖si0si‖ < R) Zi by Zk

i and ρ±i by ρk±i , k = 1, 2.

For consistency, we split Zi0 into two blocks Z1
i0

and Z2
i0

separated by a vertical

line (chosen arbitrarily, say u = π). Also for consistency, the curves ρ±i when
√
2R 6

‖si0si‖ < 2R are occasionally denoted in the sequel ρ1±i .

Lemma 4.7. Let ρ′i and ρ′j be some connected portions of ρ±i and ρ±j respectively
(i 6= j). If ρ′i or ρ′j is monotone in θ and defined over a θ-interval smaller than π,
then ρ′i and ρ′j intersect at most once.

Proof. Let (uI , θI) be a point of intersection between ρ′i and ρ′j and I be the point
of the circle Ci0 with parameter uI . Since ρ′i is a portion of the intersection between
Ci0 and R±

i , I is a point of intersection between Ci0 and the diameter of HD(si, θI).
Therefore, the line passing through si and I has slope θI .

By applying the same argument to ρ′j , we obtain that si and sj belong to the
same straight line of slope θI . Therefore, if ρ′i and ρ′j intersect twice, at (uI , θI) and
(uJ , θJ), then θI = θJ [π]. It follows, if ρ′i or ρ′j is defined over a θ-interval smaller
than π, that θI = θJ [2π]. Furthermore, if ρ′i or ρ

′
j is monotone in θ, then (uI , θI) and

(uJ , θI) are equal.

Lemma 4.8. ∀i, j, int(Zi) ∪ int(Zj) = int(Zi ∪ Zj).

Proof. We assume that i 6= j because otherwise the result is trivial. One can
easily show that int(Zi)∪ int(Zj) 6= int(Zi ∪Zj) only if the boundaries of Zi and Zj

partially coincide, i.e., the dimension of ∂(Zi) ∩ ∂(Zj) is 1.

By Proposition 4.5, ∂(Zi) consists of the edges ρ
+
i and ρ−i and of two vertical line

segments joining the endpoints of ρ+i and ρ−i when these endpoints exist (which is the
case when i 6= i0). Moreover, these vertical line segments are clearly supported by
the vertical lines u = θ1 and u = θ3 where θ1 and θ3 parameterize on Ci0 the points
of intersection between Ci0 and Ci (see Figure 4.1).
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By Lemma 4.7, the edges ρ±i and ρ±j do not partially coincide. By the general
position assumption, no three distinct circles Ci0 , Ci and Cj have a common inter-
section point. Thus, for any i 6= j, Ci0 ∩ Ci and Ci0 ∩ Cj are disjoint. Therefore, the
vertical lines ∂(Zi) \ {ρ+i , ρ−i } and ∂(Zj) \ {ρ+j , ρ−j } do not partially coincide. Finally,

since ρ±i is nowhere partially supported by a vertical line by Lemma 4.3, ρ±i and the
vertical lines ∂(Zj) \ {ρ+j , ρ−j } do not partially coincide.

Proposition 4.9. Any two curves among the curves ρk±i intersect at most once
(where k ∈ {1, 2} if 0 6 ‖si0si‖ < R, k ∈ {1, 2, 3} if R < ‖si0si‖ <

√
2R, and k = 1

if
√
2R 6 ‖si0si‖ < 2R).
Proof. By Lemma 4.7, it is sufficient to prove that all the curves ρk±i , i 6= i0, are

monotone in θ and defined over θ-intervals smaller than π. Indeed, the curves ρ1+i0 ,

ρ1−i0 , ρ2+i0 and ρ2−i0 clearly do not pairwise intersect more than once, by Lemma 4.4.

If 0 < ‖si0si‖ < R, any spoke of Ci intersects Ci0 at most once. Hence, ρ±i is
monotone in θ. ρ±i is defined over a θ-interval greater than π but smaller than 2π.
Since we have split that interval in two equal parts, ρ1±i and ρ2±i are defined over a
θ-interval smaller than π (see Z1 in Figure 4.2).

If R < ‖si0si‖ <
√
2R, the θ-interval where ri(θ) (or ri(θ + π)) intersects Ci0 is

smaller than π, which implies that ρi is defined over a θ-interval smaller than π. The
curves ρk+i , k = 1, 2, 3, are defined as the connected components of {(r′i(θ), θ) | θ ∈
S1}∩Ci0 and {(r′′i (θ), θ) | θ ∈ S1}∩Ci0 . Since the sub-spokes r′i(θ) and r′′i (θ) intersect
Ci0 at most once for any θ ∈ S1, the curves ρk+i , k = 1, 2, 3, are θ-monotone.

If
√
2R 6 ‖si0si‖ < 2R, ri(θ) (and also ri(θ + π)) intersects Ci0 in at most one

point, which proves that ρi is monotone in θ. Furthermore, the θ-interval where ρi is
defined is smaller than π because the θ-interval where ri(θ) (or ri(θ + π)) intersects
Ci0 is smaller than π.

4.3. Construction of ∂(F)∩Ci0 . We first show how to compute ∪iZi. Let Ω1

and Ω2 be the following sets of Zk
i :

Ω1 = {Zi |
√
2R 6 ‖si0si‖ < 2R} ∪ {Z2

i | R < ‖si0si‖ <
√
2R},

Ω2 = {Z1
i ,Z2

i | 0 6 ‖si0si‖ < R} ∪ {Z1
i ,Z3

i | R < ‖si0si‖ <
√
2R}.

By Proposition 4.6, the line θ = u+ π
2 properly intersects all the Zk

i ∈ Ω1 but the

lines θ = u ± π
2 properly intersect none of their upper and lower edges ρk+i and ρk−i .

Thus, the regions Zk
i ∈ Ω1 can be seen as regions of {(u, θ) ∈ S1 × [u − π

2 , u + 3π
2 ]}

such that all their upper edges ρk+i lie in {(u, θ) ∈ S1 × [u+ π
2 , u+ 3π

2 ]} and all their

lower edges ρk−i lie in {(u, θ) ∈ S1 × [u − π
2 , u + π

2 ]}. Therefore, the union of the
Zk

i ∈ Ω1 is the region of {(u, θ) ∈ S1 × [u − π
2 , u + 3π

2 ]} bounded from above by the

upper envelope of their ρk+i and bounded from below by the lower envelope of their
ρk−i . Similarly, the union of the Zk

i ∈ Ω2 is the region of {(u, θ) ∈ S1× [u− 3π
2 , u+ π

2 ]}
bounded from above by the upper envelope of the ρk+i and bounded from below by
the lower envelope of the ρk−i .

The union of Ω1 and Ω2, which is ∪iZi, can be achieved by computing, on one
hand, the intersection between the upper edge chain of ∪Zk

i
∈Ω1

Zk
i with the lower edge

chain of ∪Zk

i
∈Ω2

Zk
i (which both belong to {(u, θ) ∈ S1 × S1 | θ ∈ [u + π

2 , u + 3π
2 ]}),

and on the other hand, the intersection between the upper edge chain of ∪Zk

i
∈Ω2

Zk
i

with the lower edge chain of ∪Zk

i
∈Ω1

Zk
i (which both belong to {(u, θ) ∈ S1 × S1 | θ ∈

[u − π
2 , u + π

2 ]}). These intersections can simply be performed by following the two
edge chains for u from 0 to 2π, since they are monotone in u by Lemma 4.3.

Let us analyze the complexity of the above construction. The ki0 helicoidal vol-
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umes Hi that intersect Ci0 can be found in O(ki0 ) amortized time once the Delaunay
triangulation of the footholds has been computed, which can be done in O(n log n)
time [5, 17]. By Proposition 4.9, the upper and lower envelopes can be computed
in O(ki0 log ki0 ) time using O(ki0α(ki0 )) space where α is the pseudo inverse of the
Ackerman’s function [6]. Also by Proposition 4.9, the union of Ω1 and Ω2 can be
done in linear time in the size of the edge chains, that is O(ki0α(ki0 )) time. Thus,
we can compute ∪iZi in O(ki0 log ki0 ) time using O(ki0α(ki0 )) space after O(n log n)
preprocessing time. We can compute ∪i6=i0Zi similarly by removing Z1

i0
and Z2

i0
from

Ω2.

The contribution of Ci0 to ∂(F) is, according to Proposition 4.1, Ci0 ∩ ∂(F) =
compl(p//θ(compl(∪iZi))) \ int(compl(p//θ(compl(∪i6=i0Zi)))). By Remark 3.7,
compl(p//θ(compl(∪iZi))) and compl(p//θ(compl(∪i6=i0Zi))) are the projections onto
Ci0 of the largest vertical strips Σi0 and Σ′

i0 included in ∪iZi and ∪i6=i0Zi, respectively
(see Figure 4.2). These projections are easily computed because the edges of ∪iZi

and ∪i6=i0Zi are monotone with respect to u (Lemma 4.3). These projections, and
therefore the computation of Ci0 ∩ ∂(F), can thus be done in linear time and space
in the size of ∪iZi and ∪i6=i0Zi, that is O(ki0α(ki0)).

Moreover, we label an arc of ∂(F) either by i if the arc belongs to the circle Ci or
by (i, j) if the arc belongs to the straight line segment [si, sj ]. The labels of the edges
of ∂(F) incident to Ci0 can be found as follows, without increasing the complexity.
An arc of ∂(F)∩Ci0 corresponds to a vertical strip Σi0 \Σ′

i0
. An endpoint P of such

an arc is the projection of a vertical edge, or the projection of a point of intersection
between two curved edges. In the first case, P is the intersection of Ci0 with some Ci

and in the second case, P is the intersection of Ci0 with some line segment [si, sj ]. By
the general position assumption, among the circles C1, . . . , Cn and the line segments
joining two footholds, the intersection between three circles or, two circles and a line
segment or, one circle and two line segments, is empty. Thus, P is the intersection
between Ci0 and either a unique Ci or a unique line segment [si, sj ]. Therefore, the
edge of ∂(F) incident to Ci0 at P is either a circular arc supported by Ci or a line
segment supported by [si, sj ]. Hence, the labels of the edges of ∂(F) incident to Ci0

can be found at no extra-cost during the construction.

Since A is the arrangement of the circles of radius R centered at the footholds,
∑n

i0=1 ki0 = O(|A|). The above considerations yield the following theorem:

Theorem 4.10. We can compute ∂(F) ∩ A and the labels of the edges of ∂(F)
incident to the arcs of ∂(F) ∩ A in O(|A| log n) time using O(|A|α(n)) space.

4.4. Computation of the arcs of ∂(F) issued from a foothold. The pre-
vious section has shown how to compute all the vertices of F that are incident to at
least one circular arc. It remains to find the vertices of F incident to two straight
edges. As we have seen in Section 2, a vertex of F incident to two straight edges of
∂(F) is a foothold. Furthermore, considering a foothold si0 in a cell Γ of A, si0 is a
vertex of F incident to two straight edges of ∂(F) if and only if si0 is a vertex of the
convex hull of the footholds reachable from si0 . The k′i0 footholds contained in the
disk of radius R centered at si0 can be found in O(k′i0 ) amortized time because we
have already computed the Delaunay triangulation of the footholds [5, 17]. Thus, we
can decide if si0 is a vertex of the convex hull of these k′i0 footholds in O(k′i0 ) time
and space. When si0 is a vertex of the convex hull, we can also find the two edges
of the convex hull adjacent to si0 in O(k′i0 ) time and space. As the sum of the k′i for
i ∈ {1, . . . , n} is bounded by the size of A, we obtain the following theorem:



MOTION PLANNING OF LEGGED ROBOTS 17

Theorem 4.11. The footholds belonging to ∂(F) and the labels of the arcs of
∂(F) issued from these footholds can be found in O(|A|) time and space.

4.5. Construction of F .
Theorem 4.12. The free space of the spider robot can be computed in O(|A| log n)

time using O(|A|α(n)) space.
Proof. By Theorem 4.10, we have computed all the circular arcs of ∂(F) and the

labels of the edges of ∂(F) incident to them. By Theorem 4.11, we have computed
all the vertices of ∂(F) that are incident to two straight edges of ∂(F) and the label
of these two edges. It remains to sort the vertices of ∂(F) that appear on the line
segments [si, sj ]. We only consider the line segments [si, sj ] such that the correspond-
ing label (i, j) appears during previous computations. Then, we sort the vertices of
∂(F) that belong to each such relevant line. Since |∂(F)| = Θ(|A|) [1], sorting all
these vertices can be done in O(|A| log n) time. A complete description of ∂(F) then
follows easily.

5. Generalization to polygonal foothold regions.

5.1. Introduction and preliminaries. We consider now the case where the
set of footholds is no longer a set of points but a set S of pairwise disjoint polygonal
regions bounded by n line segments e1, . . . , en. Clearly, S is a subset of the free space
F of the spider robot. Let Fe denote the free space of the spider robot using as
foothold regions only the edges e1, . . . , en. Suppose that the spider robot admits a
stable placement outside S with its feet inside some polygonal footholds; then the
placement remains stable if it retracts its legs on the boundary of these polygonal
regions. Hence, F = Fe ∪ S. We show how to compute Fe.

As observed in Remark 3.8, the results of Section 3 remains true if the foothold
regions are line segments provided thatHi is replaced byHei the generalized helicoidal
volume defined by (see Figure 5.1):

Hei = {(P, θ) ∈ IR2 × S1 | P ∈ HD(s, θ), s ∈ ei}.

The helicoidal volume associated to a point site si will be, henceforth, denoted by
Hsi .

θ

ei

Fig. 5.1. Section of Hei by the “plane” Πθ.

Similarly, we define the generalized circle Cei as the set of points at distance R
from ei. Let Ae denote the arrangement of the n generalized circles Ce1 , . . . , Cen .
Notice that |Ae| = Θ(n2).
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Arc of conchoid
Arc of ellipse

Circular arcs

Arc of conchoid

Arc of ellipse

Circular arc

Circular arc

Arc of conchoidArc of conchoid

Arc of ellipse

Line segments

Arc of conchoid

Circular arc

Fig. 5.2. Example of free space Fe for polygonal foothold regions. The polygonal foothold
regions are shown in dark grey. The other parts of Fe are in light grey. The Cei and some arcs of
conchoid are dashed. All the line segments touching the polygons in two points are of length 2R and
represent the ladder introduced in Section 5.3.

Each arc of the boundary ∂(Fe) of Fe is either an arc of Cei corresponding to
a maximal extension of one leg, or an arc corresponding to placements at the limit
of stability of the spider robot. Similarly to what we did in Section 4, we compute
first the contribution of each Cei to ∂(Fe) (Sections 5.2). Thereafter, we compute the
arcs of ∂(Fe) that correspond to placements where the spider robot is at the limit of
stability (Section 5.3). Finally, we show how to construct Fe (and F) in Section 5.4.

Figure 5.2 shows an example of free space Fe for polygonal foothold regions.

5.2. Computation of ∂(Fe) ∩ Ae. We compute the contribution to ∂(Fe) of
each generalized circle Cei in turn. We consider the contribution of Cei0

to ∂(Fe)
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for some i0 ∈ {1, . . . , n}. Cei0
is composed of two half-circles and two straight line

segments. In order to compute the contribution of Cei0
to ∂(Fe), we evaluate first the

contribution of the half-circles and then the contribution of the straight line segments.
For convenience, we will not compute the contribution of the half-circles to ∂(Fe) but
the contribution of the whole circles. Similarly, we will compute the contribution of
the whole straight lines supporting the line segments of Cei0

.
Let si0 and s′i0 denote the two endpoints of the line segment ei0 , and let Csi0

and
Cs′

i0

denote the unit circles centered at si0 and s′i0 respectively. Let li0 and l′i0 denote

the two straight line segments of Cei0
, and Li0 and L′

i0
their supporting lines. We

show how to compute the contributions of Csi0
and Li0 to ∂(Fe); the contributions

of Cs′
i0

and L′
i0

can be computed likewise.

Let Csi0 = Csi0
×S1 and Li0 = Li0 ×S1. Basically, we compute ∂(Fe)∩Csi0

and
∂(Fe)∩Li0 , as explained in Section 4.1, by computing ∪i(Hei∩Csi0 ), ∪i6=i0 (Hei∩Csi0 ),
∪i(Hei ∩Li0 ) and ∪i6=i0 (Hei ∩Li0 ). The properties of the new regions Zei = Hei ∩Csi0
and Yei = Hei ∩Li0 are different though similar to the properties of Zsi = Hsi ∩ Csi0
described in Section 4.2. The analysis of Zei and Yei are subdivided into two parts:
first, we consider the line Di supporting ei and we examine the regions ZDi

= HDi
∩

Csi0 and YDi
= HDi

∩Li0 where HDi
is the generalized helicoidal volume induced by

Di:

HDi
= {(P, θ) ∈ IR2 × S1 | P ∈ HD(s, θ), s ∈ Di}.

Then we deduce Zei (resp. Yei) from ZDi
, Zsi and Zs′

i
(resp. YDi

, Ysi = Hsi ∩ Li0

and Ys′
i
) where si and s′i are the two endpoints of ei. Thereafter, we compute the

contribution of Cei0
to ∂(Fe) in a way similar to what we did in Section 4.3. The

following theorem sums up these results:
Theorem 5.1. We can compute ∂(Fe) ∩Ae and the labels of the edges of ∂(Fe)

incident to the arcs of ∂(Fe) ∩ Ae in O(|Ae|α7(n) log n) time using O(|Ae|α8(n))
space. The proof of this theorem, omitted here, is a direct generalization of the
proof of Theorem 4.10. Details are given in [4] or [12].

5.3. Arcs of ∂(Fe) corresponding to the placements where the spider
robot is at the limit of stability. We now have to compute the edges of Fe that
do not belong to Ae. The arcs of ∂(Fe)∩Ae correspond to placements at the limit of
accessibility of the spider robot, and vice versa. Thus, other edges of Fe correspond to
placements at the limit of stability of the spider robot. We denote by ∂(Fe)stab the set
of those edges. A placement P of the spider robot is at the limit of stability if and only
if there exists a closed half-disk of radius R centered at P that does not contain any
foothold except at least two footholds located on the diameter of the half-disk such
that P is between these footholds (see Figure 5.3). Therefore, the edges of ∂(Fe)stab
are portions of the curves drawn by the midpoint of a ladder of length 2R moving by
translation and rotation such that the ladder touches the boundary of the foothold
regions in two points but does not intersect the interior of the foothold regions. Hence,
the edges of ∂(Fe)stab are supported by the projection (onto IR2) of the edges of the
boundary of the free space of the ladder moving by translation and rotation amidst
the foothold regions considered as obstacles, i.e., the set of (P, θ) ∈ IR2× IR/πZZ such
that the ladder of length 2R that has its midpoint at P and makes an angle θ with
the x-axis does not properly intersect the interior of the foothold regions. According
to [16], the edges of the boundary of the free space of the ladder can be computed in
O(|Ae| logn) time using O(|Ae|) space. The projection (onto IR2) of each edge can
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easily be computed in constant time. Thus, we can compute, in O(|Ae| logn) time
and O(|Ae|) space (using [16]), a set of curves in IR2 that contains the arcs of ∂(Fe)
that correspond to placements at the limit of stability of the spider robot. However,
it remains to compute the portions of these curves that belong to ∂(Fe).

P

Fig. 5.3. Example of placement P at the limit of stability.

5.3.1. Notations and definitions. The relative interior of an ei is called a
wall. An endpoint of an ei is called a corner (when several walls share an endpoint,
we define only one corner at that point). The ladder is a line segment of length 2R. A
placement of the ladder is a pair (P, θ) ∈ IR2 × IR/πZZ where P is the location of the
midpoint of the ladder and θ is the angle between the x-axis and the ladder. A free
placement of the ladder is a placement where the ladder does not properly intersect
the walls or partially lies on some walls and does not properly intersect the others
(if none of the polygonal regions of S are degenerated into line segments or points,
then a free placement of the ladder is a placement where the ladder does not intersect
the interior of the polygonal regions of S). A placement of type corner-ladder is a
placement of the ladder such that the relative interior of the ladder touches a corner.
A placement of type wall-endpoint is a placement of the ladder such that an endpoint
of the ladder touches a wall. A placement of type corner-endpoint is a placement of the
ladder such that an endpoint of the ladder touches a corner. We now define k-contact
placements of the ladder.

(a) (b) (c) (d)

Ladder

Walls

Fig. 5.4. Examples of 2-contact placements of type (a): (corner-ladder)2, (b): (corner-ladder,
wall-endpoint), (c): (wall-endpoint)2 and (d): (corner-endpoint).

A 1-contact placement is a free placement of type corner-ladder or wall-endpoint.
A 2-contact placement is either the combination of two 1-contact placements or a
free placement of type corner-endpoint. A 2-contact placement is said to be of
type (corner-ladder)2, (corner-ladder, wall-endpoint), (wall-endpoint)2, or (corner-
endpoint), in accordance to the types of placements involved in the 2-contact place-
ment (see Figure 5.4). Given two walls (resp. a wall and a corner, two corners, one
corner), the set of 2-contact placements induced by these two walls (resp. the wall
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and the corner, the two corners, the single corner) is called a 2-contact curve. The
type of a 2-contact curve is the type of the 2-contact placement defining the curve.
Note that the 2-contact curves are defined in IR2 × IR/πZZ. A 3-contact placement
is a combination of a 1-contact placement and a 2-contact placement. The types of
3-contact placements are naturally given by (corner-ladder)3, (corner-endpoint, wall-
endpoint). . . With this definition, we unfortunately cannot guarantee that all the 2-
contact curves end at 3-contact placements. Indeed, a 2-contact curve defined by the
ladder sliding along a wall (see Figure 5.4b) ends on one side (if no other wall blocks
the sliding motion) at a 2-contact placement of type (corner-endpoint), where the
ladder is collinear with the wall, without properly intersecting it. In order to ensure
that all the 2-contact curves end at 3-contact placements, we consider these 2-contact
placements as 3-contact placements, and denote their type by (corner-endpoint, ‖). A
k-contact placement, k > 3, is the combination of p 1-contact placements, q 2-contact
placements and r 3-contact placements such that p+ 2q + 3r = k.

Now, we define a 2-contact tracing as the projection onto IR2 of a 2-contact curve.
Similarly as above, we define the types of the 2-contact tracings. Notice that, to any
point P on a given 2-contact tracing K, corresponds a unique placement (P, θ) on the
2-contact curve that projects onto K. It follows that, to any point P on a 2-contact
tracing K, corresponds a unique pair (M,N) of points of contact between the ladder
at (P, θ) and the walls (M and N are equal when K is a 2-contact tracing of type
(corner-endpoint)); when P is an endpoint of K, a 3-contact placement corresponds
to P , however, (M,N) is uniquely defined by continuity. The points M and N are
called the contact points corresponding to P ∈ K. We also define the three contact
points corresponding to a 3-contact placement.

A 2-contact tracing is either a straight line segment, an arc of ellipse, an arc of
conchoid or a circular arc. Indeed (see Figures 5.5, 5.6, 5.7 and 5.8), a 2-contact tracing
of type (corner-endpoint) is a circular arc; a 2-contact tracing of type (wall-endpoint)2

is an arc of ellipse; a 2-contact tracing of type (corner-ladder, wall-endpoint) is an
arc of conchoid (see [4]); a 2-contact tracing of type (corner-ladder)2 is a straight
line segment. As we said before, we can compute all these 2-contact tracings in
O(|Ae| logn) time using O(|Ae|) space [16], and it remains to compute the portions
of these curves that belong to ∂(Fe).

5.3.2. Overview. We first show that only some portions of the 2-contact trac-
ings correspond to positions at the limit of stability of the spider robot (Section 5.3.3).
These portions are called the relevant 2-contact tracings. Then, we prove that we do
not have to take into consideration the intersections between the relative interior of
relevant 2-contact tracings (Proposition 5.2). We also show that, if a point A is an
endpoint of several relevant 2-contact tracings, only two of them can support edges
of ∂(Fe)stab in the neighborhood of A (Propositions 5.3). Finally (Section 5.3.4), we
compute a graph whose edges are relevant 2-contact tracings and where the degree of
each node is at most two. This graph induces a set ∆ of curves supporting ∂(Fe)stab
(Theorem 5.4) that will allow us to compute ∂(Fe)stab in Section 5.4.

5.3.3. Relevant 2-contact tracings. As mentioned above, a placement P of
the spider robot is at the limit of stability if and only if there exists a closed half-disk
of radius R centered at P that does not contain any foothold except at least two
footholds located on the diameter of the half-disk, one on each side of P . Thus, a
point P of a 2-contact tracing K belongs to an arc of ∂(Fe)stab only if P lies between
the two contact points corresponding to P ∈ K. The portions of the 2-contact tracings
for which that property holds are called the relevant 2-contact tracings. The other
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portions are called the irrelevant 2-contact tracings. We now show how to compute
the relevant 2-contact tracings for each type of contact. Let K denote a 2-contact
tracing, let P ∈ K and let M and N be the two contact points corresponding to
P ∈ K. In Figures 5.5, 5.6, 5.7 and 5.8, the walls and the relevant 2-contact tracings
are thick, the irrelevant 2-contact tracings are dashed thick, and the ladder is thin.

Type (corner-endpoint):

K is a circular arc, M and N coincide with
one endpoint of the ladder. Thus, all the 2-
contact tracings of type (corner-endpoint) are
wholly irrelevant.

K

Fig. 5.5. Irrelevant 2-contact tracing of

type (corner-endpoint), i.e., circular arc.

Type (wall-endpoint)2:

K is an arc of ellipse, M and N are the end-
points of the ladder and thus, P lies between
them. Therefore, all the 2-contact tracings of
type (wall-endpoint)2 are wholly relevant.

K

Fig. 5.6. Relevant 2-contact tracing of type

(wall-endpoint)2 , i.e., arc of ellipse.

Type (corner-ladder, wall-endpoint):

K is an arc of conchoid. If the distance be-
tween the corner and the wall is greater than
R, then K is wholly relevant.

Otherwise, if that distance is smaller than R,
then, the two relevant portions and the irrel-
evant portion of K are incident to the corner
involved in the type of K.

Notice that, if the corner is an endpoint of the
wall (see Figure 5.4b), then K degenerates into
a line segment and the irrelevant portion of K
is the portion which is not supported by the
wall.

K

K

Fig. 5.7. Relevant, and partially relevant,

2-contact tracings of type (corner-ladder,

wall-endpoint), i.e., arcs of conchoid.

Type (corner-ladder)2:

K is a line segment. If the distance between
the two corners is greater than R, then K is
wholly relevant; otherwise, the portion of K
which is relevant, is the line segment joining
the two corners.

K

K

Fig. 5.8. Relevant, and partially relevant,

2-contact tracings of type (corner-ladder)2.
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We now show that the intersections between the relative interiors of the relevant
2-contact tracings are not interesting for the spider robot motion problem. We recall
that, if a vertex A of ∂(Fe) belongs to Ae, then we know by Theorem 5.1 the labels of
the edges of ∂(Fe) incident to A. Otherwise, if A 6∈ Ae, then the two edges of ∂(Fe)
that end at A correspond to placements at the limit of stability of the spider robot.

Proposition 5.2. Any vertex A of ∂(Fe), such that A 6∈ Ae, is an endpoint of
the two relevant 2-contact tracings supporting the edges of ∂(Fe) ending at A.

Proof. Since the two edges of ∂(Fe) that end at A correspond to placements at
the limit of stability of the spider robot, they are both supported by some relevant
2-contact tracings. Thus, we only have to prove that A is an endpoint of these two
relevant 2-contact tracings.

Let K1 and K2 be these two relevant 2-contact tracings and assume for a con-
tradiction that A is not an endpoint of K1 (nothing is assumed for A with respect
to K2). Let L1 = (A, θ1) (resp. L2 = (A, θ2)) be the placement of the ladder that
correspond to A ∈ K1 (resp. A ∈ K2) and let M1 and N1 (resp. M2 and N2) be the
corresponding contact points (see Figure 5.9). First, notice that L1 6= L2. Indeed,
otherwise, L1 is at least a 3-contact placement and then, A must be an endpoint of
K1, which contradicts our assumption.

L1

L2

M2

M1

N1

N2

DA

A

Fig. 5.9. For the proof of Proposition 5.2.

By the definition of the relevant 2-contact tracings, A is between M1 and N1.
Moreover, A cannot be equal to M1 or N1 since A is not an endpoint of K1. It follows
that neither M2 nor N2 is equal to A, because otherwise L1 would be a 3-contact
placement. Therefore, A is strictly between M1 and N1, and strictly between M2 and
N2. Thus, A is strictly inside the polygon (M1M2N1N2).

On the other hand, since A 6∈ Ae, A does not belong to any Cei , and therefore,
the walls supporting M1, N1, M2 and N2 intersect the open disk DA of radius R
centered at A. Thus, there exists four points M ′

1, N
′
1, M

′
2 and N ′

2 on these walls and
in DA, that are close enough to M1, N1, M2 and N2 respectively to ensure that A
belongs to the interior of the polygon (M ′

1M
′
2N

′
1N

′
2). Since the distances from A to

M ′
1, N

′
1, M

′
1 and N ′

2, are strictly smaller than R, A belongs to the interior of Fe. This
contradicts our assumption that A is a vertex of ∂(Fe) and yields the result.

Consider now the adjacency graph G of the relevant 2-contact tracings such that
two relevant 2-contact tracings are connected in G if and only if they have a common
endpoint (the intersections between the relative interiors of the relevant 2-contact
tracings are not considered). Notice that, given the set of relevant 2-contact tracings,
G can be easily computed in O(|Ae| logn) time. Now, given two vertices of ∂(Fe)∩Ae
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that are connected along ∂(Fe) by arcs of ∂(Fe)stab, we want to compute these arcs.
For computing these arcs, we cannot simply use the graph G because the degree of
some nodes of G may be arbitrarily large (see Figure 5.10). We show in the next
proposition that we can deduce from G a graph G∗ such that the degree of each
node of G∗ is at most two and that G∗ supports any portion of ∂(Fe) which is the
concatenation of arcs of ∂(Fe)stab.

ei3

ei2

ei1

ei4

R

P6 = P ′

6

K7

K1

K2

K3

K4

K5

P ′

1

P4 = P ′

4

P1

P2 P ′

2

P ′

3

P7

P3

P5

A

K6

P ′

5

P ′

7

Fig. 5.10. Relevant 2-contact tracings K1, . . . ,K7 ending at A. K1,K2,K3 and K5 are 2-
contact tracings of type (corner-ladder, wall-endpoint) (i.e., arcs of conchoid). K7 is a degenerated
2-contact tracing of type (corner-ladder, wall-endpoint) (i.e., a line segment). K4 and K5 are 2-
contact tracings of type (corner-ladder)2 (i.e., line segments).

We consider four hypotheses (H1,. . .,H4) that obviate the need to consider degen-
erate cases. They are not essential but substantially simplify the proof of the following
proposition. The first three hypotheses are made to ensure that the degree of each
vertex of the free space of the ladder is three.

H1 The line segments e1, . . . , en compose the boundary of a set of non degenerated
polygons (i.e., no polygon is reduced to a line segment or to a point).

H2 The ladder does not admit any 4-contact placement.
H3 The arc (of conchoid) drawn by an endpoint of the ladder when its other endpoint

moves along a wall while the ladder remains in contact with a corner, is not
tangent to any other wall.

H4 The ladder does not admit any 3-contact placement when its midpoint is located
at a corner.

Proposition 5.3. For any node A of G of degree k such that A 6∈ Ae, at most
two relevant 2-contact tracings can support ∂(Fe) in a sufficiently small neighborhood
of A. Moreover, we can determine these at most two curves in O(k log k) time using
O(k) space.

Proof. Let A 6∈ Ae be a node of G of degree k. We assume that k > 2, otherwise
Proposition 5.3 is trivial. Let K1, . . . ,Kk be the relevant 2-contact tracings that end
at A, and let Li = (A, φi) be the placement of the ladder that corresponds to A ∈ Ki.
DA is the open disk of radius R centered at A. We distinguish two cases whether A
is a corner or not.

Case 1: A is a corner. (See Figure 5.10.)

The 2-contact tracing Ki involves at least another contact than the corner-ladder
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APi1

Pi2 = P ′
i2

h2

P ′
i1

h1

AP ′
i1
P ′
i2

AP ′
i1
Pi2APi1P

′
i2

DA

Fig. 5.11. Wedge Pi1APi2 is in Fe near A.

contact at A. This contact cannot be of type corner-endpoint by Hypothesis H4. If
the contact is of type wall-endpoint, we define Pi as the contact point between this
wall and the ladder at placement Li (see Figure 5.11). Since A 6∈ Ae, the wall must
intersect DA and we define P ′

i as a point close to Pi in that intersection. If the contact
is of type corner-ladder, we define Pi = P ′

i as the corner (distinct from A) involved in
this contact (notice that Pi = P ′

i ∈ DA by Hypothesis H4).

Fact: ∀i 6= j , φi 6= φj .
Otherwise, Li = Lj is a 3-contact placement contradicting Hypothesis H4.

Fact: A is a non-flat vertex of CH(A,P1, . . . , Pk) or belongs to the interior of Fe.
Assume that A ∈ ∂(Fe). Then, A lies on the boundary of CH(A,P1, . . . , Pk) because,
otherwise, the P ′

i provide footholds such that the spider robot can move in a neigh-
borhood of A. Furthermore, A must be a non-flat vertex of CH(A,P1, . . . , Pk), by
Hypothesis H4.

Assume now that A ∈ ∂(Fe), and let Pi1 and Pi2 be the two vertices of CH(A,
P1, . . . , Pk) such that Pi1 , A and Pi2 are consecutive along the boundary of CH(A,
P1, . . . , Pk) (see Figure 5.11). We will exhibit a stable placement for the spider robot
at any position P inside the intersection of the wedge Pi1APi2 and a neighborhood of
A. Let h1 and h2 be two points in the wedge Pi1APi2 such that the wedges Pi1Ah1

and h2APi2 are right (see Figure 5.11).
— If P is in the wedge Pi1Ah2, and is close enough to A, the footholds A, Pi1 and
P ′
i2

yield a stable placement for the spider robot.
— If P is in the wedge h2Ah1, and is close enough to A, footholds A, P ′

i1 and P ′
i2

yield a stable placement for the spider robot.
— If P is in the wedge h1APi1 , and is close enough to A, footholds A, P ′

i1
and Pi2

yields a stable placement for the spider robot.

Fact: Ki, i 6∈ {i1, i2}, cannot support an edge of ∂(Fe) incident to A.
We assume that A ∈ ∂(Fe) because, otherwise, the claim is obvious. It follows that A
is a non-flat vertex of CH(A,P1, . . . , Pk). A 2-contact tracing Ki, i 6∈ {i1, i2}, cannot
be an arc of ellipse because, otherwise, Li is a 3-contact placement (because A is
here a corner) contradicting Hypothesis H4. Then, Ki can be either the segment APi

or an arc of conchoid. If Ki is an arc of conchoid, then, by the general properties of
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conchoids (see [4]), Ki is tangent to the segment APi at A. Thus, Ki is always tangent
to the segment APi at A. The point Pi strictly belongs to the wedge Pi1APi2 , because
we have shown that φi 6∈ {φi1 , φi2}. Thus, in a neighborhood of A, Ki is strictly inside
the wedge Pi1APi2 and thus strictly inside Fe. Therefore, Ki cannot support ∂(Fe),
in a neighborhood of A.

Hence, by sorting the Pi by their polar angles around A, we can determine, in
O(k log k) time, if A is a non-flat vertex of CH(A,P1, . . . , Pk), and if so, determine
i1 and i2. If A is a non-flat vertex of CH(A,P1, . . . , Pk), then, only Ki1 and Ki2 can
support an edge of ∂(Fe) incident to A. Otherwise, A belongs to the interior of Fe

and none of the 2-contact tracings K1, . . . ,Kk can support an edge of ∂(Fe) incident
to A.

Case 2: A is not a corner.
Fact: If there exists i 6= j such that φi 6= φj, then A belongs to the interior of

Fe.
For each relevant 2-contact placement Li = (A, φi), there exists two contact points Mi

and Ni on each side of A at distance less or equal to R. Since A is not a corner, neither
Mi nor Ni is equal to A, thus A belongs to the relative interior of the segment MiNi.
It follows, when φi 6= φj , that A belongs to the interior of the polygon (MiMjNiNj)
(see Figure 5.9). Similarly as in the proof of Proposition 5.2, since A 6∈ Ae, there exists
four footholds M ′

i , N
′
i ,M

′
j, N

′
j in DA and in some neighborhoods of Mi, Ni,Mj, Nj ,

respectively, such that A belongs to the interior of the polygon (M ′
iM

′
jN

′
iN

′
j). Thus,

A belongs to the interior of Fe.
Hence, if there exists i 6= j such that φi 6= φj , none of the 2-contact tracings

K1, . . . ,Kk can support an edge of ∂(Fe) incident to A. We now assume that φi = φj ,
∀i, j.

Fact: There are at most six 2-contact tracings incident to A.
The general position hypothesis H2 forbid k-contacts for k > 3, thus A corresponds
to a 3-contact placement. The three possible choices of two contacts among three,
give three 2-contact tracing intersecting in A and thus, six arcs incident to A.

Fact: There are three 2-contact tracings incident to A.
If the 3-contact placement L is of type (corner-endpoint, ‖), then there are only three
2-contact tracings incident to A, that are two circular arcs and one line segment.
Otherwise, it comes from the general position hypotheses H1, H2 and H3 (designed
to ensure that property) that a 2-contact tracing cannot be valid on both side of the
3-contact, i.e., on one side of the 3-contact placement, the placements are not free.
The proof that the hypotheses ensured that fact is detailed in [4].

Fact: There are two relevant 2-contact tracings incident to A.
Since A is not a corner, at the 3-contact placement L, two contact points are on the
same side of A. Thus, only two of the three 2-contact tracings incident to A are
relevant.

5.3.4. Construction of ∆. Now, consider the graph G and each node A in turn.
If A ∈ Ae, we disconnect all the edges of G that end at A. Notice that for each such
node A, we know, by Theorem 5.1, whether A ∈ ∂(Fe) and, in such a case, the labels
of the edges of ∂(Fe) incident to A. If A 6∈ Ae, we disconnect the edges ending at
A except those (at most two) that may support ∂(Fe) in a neighborhood of A (see
Proposition 5.3). In this way, we obtain a graph G∗ such that the degree of each node
is one or two. We consider each connected component of this new graph as a curve.
Let ∆ be this set of curves. These curves are represented in G∗ as chains (open or
closed). It follows that, even if a curve is not simple, there exists a natural order
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along the curve. Then, according to Propositions 5.2 and 5.3, we get the following
theorem:

Theorem 5.4. We can compute, in O(|Ae| logn) time using O(|Ae|) space, a set
∆ of curves that support the edges of ∂(Fe) corresponding to placements at the limit
of stability of the spider robot. Moreover, any portion P of ∂(Fe) either intersects Ae

or belongs to a unique curve of ∆.

5.4. Construction of Fe and F . We can now construct Fe and F . Let λk(n)
denote the maximum length of the Davenport-Schinzel sequence of order k on n
symbols and αk(n) = λk(n)/n. Note that α3(n) = α(n).

Theorem 5.5. Given, as foothold regions, a set of n non intersecting straight
line segments that satisfies Hypotheses H1, H2, H3 and H4, we can compute the free
space Fe of the spider robot in O(|Ae|α8(n) logn) time using O(|Ae|α8(n)) space.

Proof. By Theorem 5.1, we can compute the contribution of Ae to ∂(Fe) and
the label of the edges of ∂(Fe) incident to them in O(|Ae|α7(n) log n) time using
O(|Ae|α8(n)) space. By Theorem 5.4, we can compute, in O(|Ae| logn) time using
O(|Ae|) space, a set ∆ of curves that support the edges of ∂(Fe) that do not belong
to Ae. Moreover, any portion P of ∂(Fe) such that P ∩ Ae = ∅ belongs to a unique
curve of ∆. Thus, by sorting all the vertices of ∂(Fe)∩Ae ∩∆ on the relevant curves
of ∆, we obtain all the edges of ∂(Fe) that belong to a connected component of
∂(Fe) intersecting Ae. Indeed, for each vertex A ∈ ∂(Fe) ∩ Ae ∩ ∆, we know, in
a neighborhood of A, the portion of the curve of ∆ that belongs to ∂(Fe) because
we can simply determine, for each edge, a side of the edge that belongs to Fe (the
contact points corresponding to the edges determine a side that necessarily belongs
to Fe)

4. Then, it is an easy task to deduce all the connected components of ∂(Fe)
that intersect Ae.

It remains to compute the connected components of ∂(Fe) that do not intersect
Ae. Each of these components must be a closed curve of ∆. Moreover, all the curves
of ∆ belong to Fe. Thus, according to Theorem 5.4, any closed curve K of ∆ that
does not intersect Ae is either a connected component of ∂(Fe) or is strictly included
in Fe. Therefore, by considering, in addition, all the closed curves of ∆ that do not
intersect Ae, we finally obtain a set Ψ of closed curves that contains ∂(Fe) and such
that any curve of Ψ is either a connected component of ∂(Fe) or is strictly included
in Fe.

At last, as we can simply determine, for each curve of Ψ, a side of the edge
that belongs to Fe, we can easily deduce from Ψ the free space Fe. That concludes
the proof since all these computations can be done in O(|Ae|α8(n) logn) time using
O(|Ae|α8(n)) space.

As we said at the beginning of Section 5, the free space of the spider robot using
as foothold regions a set of polygonal regions is obtained by adding these polygonal
regions to Fe. This does not increase the geometric complexity of the free space nor
the complexity of the computation. Thus, we get the following theorem:

Theorem 5.6. Given a set of pairwise disjoint polygonal foothold regions with n
edges in total that satisfies Hypotheses H1, H2, H3 and H4, we can compute the free
space F of the spider robot in O(|Ae|α8(n) logn) time using O(|Ae|α8(n)) space.

The function α8(n) is extremely slowly growing and can be considered as a small
constant in practical situations. This result is almost optimal since, as shown in [1],
Ω(|Ae|) is a lower bound for the size of F .

4Observe that when the edge belongs to Fe, its two sides belong to Fe.
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6. Conclusion. We have seen in Theorem 4.12 that, when the foothold regions
are n points in the plane, the free space of the spider robot can be computed in
O(|A| log n) time using O(|A|α(n)) space where α(n) is the pseudo inverse of the
Ackerman’s function and A the arrangement of the n circles of radius R centered at
the footholds. By [1] the size of F is known to be Θ(|A|). The size of A is O(n2) but
it has been shown in [15] that |A| = O(kn), where k denotes the maximum number of
disks of radius R centered at the footholds that can cover a point of the plane. Thus,
in case of sparse footholds, the sizes of A and F are linearly related to the number of
footholds.

When the foothold regions are polygons with n edges in total, the free space of the
spider robot can be computed in O(|Ae|α8(n) logn) time using O(|Ae|α8(n)) space,
where nαk(n) = λk(n) is the maximum length of a Davenport-Schinzel sequence of
order k on n symbols, and Ae is the arrangement of the n curves consisting of the
points lying at distance R from the straight line edges. Note that the size of Ae is
O(n2).

It should be observed that, in the case of point footholds, our algorithm im-
plies that O(|A|α(n)) is an upper bound for |F|. However, this bound is not tight
since |F| = Θ(|A|) [1]. In the case of polygonal footholds, our analysis implies that
O(|Ae|α8(n)) is an upper bound for |F|. We leave as an open problem to close the
(small) gap between this upper bound and the Ω(|Ae|) lower bound.

Once the free space F is known, several questions can be answered. In particular,
given two points in the same connected component of F , the algorithm in [1] computes
a motion of the spider robot, i.e., a motion of the body and a corresponding sequence
of leg assignments that allows the robot to move from one point to the other.

The motion planning problem for other types of legged robots remains to be
studied. The case where all the legs are not attached at the same point on a polygo-
nal/polyhedral body is particularly relevant. A spider robot for which all the legs are
not of the same length is also an interesting model.
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