
ar
X

iv
:c

s/
99

07
01

1v
2 

 [
cs

.D
S]

  1
5 

N
ov

 2
00

0

REDUCING RANDOMNESS VIA IRRATIONAL NUMBERS∗

ZHI-ZHONG CHEN† AND MING-YANG KAO‡

Abstract. We propose a general methodology for testing whether a given polynomial with
integer coefficients is identically zero. The methodology evaluates the polynomial at efficiently com-
putable approximations of suitable irrational points. In contrast to the classical technique of DeMillo,
Lipton, Schwartz, and Zippel, this methodology can decrease the error probability by increasing the
precision of the approximations instead of using more random bits. Consequently, randomized algo-
rithms that use the classical technique can generally be improved using the new methodology. To
demonstrate the methodology, we discuss two nontrivial applications. The first is to decide whether a
graph has a perfect matching in parallel. Our new NC algorithm uses fewer random bits while doing
less work than the previously best NC algorithm by Chari, Rohatgi, and Srinivasan. The second
application is to test the equality of two multisets of integers. Our new algorithm improves upon
the previously best algorithms by Blum and Kannan and can speed up their checking algorithm for
sorting programs on a large range of inputs.
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rithms, program checking, perfect matchings, multiset equality test
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1. Introduction. Many algorithms involve checking whether certain polynomi-
als with integer coefficients are identically zero. Often times, these polynomials have
exponential-sized standard representations while having succinct nonstandard repre-
sentations [6, 17, 18, 22]. This paper focuses on testing such polynomials with integer
coefficients.

Given a polynomial Q(x1, . . . , xq) in a succinct form, a naive method to test it is
to transform it into the standard simplified form and then test whether its coefficients
are all zero. Since Q may have exponentially many monomials, this method may
take exponential time. Let dQ be the degree of Q. DeMillo and Lipton [6], Schwartz
[18] and Zippel [22] proposed an advanced method, which we call the DLSZ method.
It evaluates Q(i1, . . . , iq), where i1, . . . , iq are uniformly and independently chosen
at random from a set S of 2dQ integers. This method uses q⌈log(2dQ)⌉ random
bits and has an error probability at most 1

2 . (Every log in this paper is to base
2.) There are three general techniques that use additional random bits to lower
the error probability to 1

t for any integer t > 2. These techniques have their own
advantages and disadvantages in terms of the running time and the number of random
bits used. The first performs ⌈log t⌉ independent evaluations of Q at ⌈log(2dQ)⌉-bit
integers, using q⌈log(2dQ)⌉⌈log t⌉ random bits. The second enlarges the cardinality
of S from 2dQ to tdQ and performs one evaluation of Q at ⌈log(tdQ)⌉-bit integers,
using q⌈log dQ + log t⌉ random bits. The third is probability amplification [15]. A
basic such technique works for t ≤ 2q⌈log(2dQ)⌉ by performing t pairwise independent
evaluations of Q at ⌈log(2dQ)⌉-bit integers, using 2q⌈log(2dQ)⌉ random bits. Stronger
amplification can be obtained by means of random walks on expanders [1, 5, 8].
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In §2, we propose a new general methodology for testing Q(x1, . . . , xq). Our
methodology computes Q(π1, . . . , πq), where π1, . . ., πq are suitable irrational numbers
such that Q(π1, . . . , πq) = 0 if and only if Q(x1, . . . , xq) ≡ 0. Since rational arithmetic
is used in actual computers, we replace each πi with a rational approximation π′

i. A
crucial question is how many bits each π′

i needs to ensure that Q(π′
1, . . . , π

′
q) = 0

if and only if Q(x1, . . . , xq) ≡ 0. We give an explicit answer to this question, from
which we obtain a new randomized algorithm for testing Q. Our algorithm runs in
polynomial time and uses

∑q
i=1⌈log(di + 1)⌉ random bits, where di is the degree of

xi in Q. Moreover, the error probability can be made inverse polynomially small by
increasing the bit length of each π′

i. Thus, our methodology has two main advantages
over previous techniques:

• It uses fewer random bits if some di is less than dQ.
• It can reduce the error probability without using one additional random bit.

In general, randomized algorithms that use the classical DLSZ method can be im-
proved using the new methodology. To demonstrate the methodology, we discuss two
nontrivial applications. In §3, the first application is to decide whether a given graph
has a perfect matching. This problem has deterministic polynomial-time sequential
algorithms but is not known to have a deterministic NC algorithm [7, 10, 13, 21]. We
focus on solving it in parallel using as few random bits as possible. Our new NC
algorithm uses fewer random bits while doing less work than the previously best NC
algorithm by Chari, Rohatgi, and Srinivasan [4]. In §4, the second application is to
test the equality of two given multisets of integers. This problem was initiated by
Blum and Kannan [3] for checking the correctness of sorting programs. Our new
algorithm improves upon the previously best algorithms developed by them and can
speed up their checking algorithm for sorting programs on a large range of inputs.

2. A new general methodology for testing polynomials. The following
notation is used throughout this paper.

• Let Q(x1, . . . , xq) be a polynomial with integer coefficients; we wish to test
whether Q(x1, . . . , xq) ≡ 0.

• For each xi, let di be an upper bound on the degree of xi in Q. Let ki =
⌈log(di + 1)⌉.

• Let k = maxqi=1 ki and K =
∑q

i=1 ki; K is the number of random bits used
by the methodology as shown in Theorem 2.3.

• Let d be an integer upper bound on the degree of Q; without loss of generality,
we assume d ≥ maxqi=1 di.

• Let c be an upper bound on the absolute value of a monomial’s coefficient in
Q.

• Let Z be an upper bound on the number of monomials in Q; without loss of
generality, we assume Z ≤

∑d
i=0 q

i.

• Let ψ = log c+ logZ+ d(log k+ logK
2 + log lnK). Let ℓ be an integer at least

ψ+1+log d; ℓ determines the precision of our approximation to the irrational
numbers chosen for the variables xi.

For example, if all di = 1, then ki = 1, K = q, and our goal is to use exactly q random
bits, i.e., one bit per variable xi.

Lemma 2.1. Let p1,1, . . . , p1,k1 , . . . , pq,1, . . . , pq,kq be K distinct primes. For each

pi,j, let bi,j be a bit. For each xi, let πi =
∑ki

j=1(−1)bi,j
√
pi,j. Then Q(x1, . . . , xq)

6≡ 0 if and only if Q(π1, . . . , πq) 6= 0.
Proof. This lemma follows from Galois theory in algebra [14]. Let A0 = B0

be the field of rational numbers. For each xj , let Kj =
∑j
i=1 ki. Let Aj be the
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field generated by π1, π2, . . . , πj over A0. Also, let Bj be the field generated by
p1,1, . . . , p1,k1 , . . . , pj,1, . . . , pj,kj over B0. By induction, Aj = Bj , the dimension of
Aj over A0 is 2Kj , and the dimension of Aj over Aj−1 is 2kj . Thus, πj is not a root
of any nonzero single variate polynomial over Aj−1 that has a degree less than 2kj .
Since dj < 2kj , by induction, Q(π1, . . . , πj , xj+1, . . . , xq) 6≡ 0. The lemma is proved
at j = q.

In light of Lemma 2.1, the next algorithm tests Q(x1, . . . , xq) by approximating
the irrational numbers

√
pi,j and randomizing the bits bi,j .

Algorithm 1.

1. Compute q, d1, . . . , dq, k1, . . . , kq,K, d, c, Z.
2. Choose p1,1, . . . , p1,k1 , . . . , pq,1, . . . , pq,kq to be the K smallest primes.
3. Choose each bi,j independently with equal probability for 0 and 1.
4. Pick ℓ, which determines the precision of our approximation to

√
pi,j .

5. For each pi,j , compute a rational number ri,j from
√
pi,j by cutting off the

bits after the ℓ-th bit after the decimal point.

6. Compute ∆ = Q(
∑k1
j=1(−1)b1,jr1,j , . . . ,

∑kq
j=1(−1)bq,j rq,j).

7. Output “Q(x1, . . . , xq) 6≡ 0” if and only if ∆ 6= 0.

The next lemma shows how to choose an appropriate ℓ at Step 4 of Algorithm 1.

Lemma 2.2. If Q(x1, . . . , xq) 6≡ 0, then |∆| ≥ 2−ℓ with probability at least 1 −
ψ

ℓ−1−log d .

Proof. For each combination of the bits bi,j , Q(π1, . . . , πq) is called a conjugate.

By the Prime Number Theorem [11],
√
pi,j ≤

√
K lnK and thus |πi| ≤ k

√
K lnK.

Then, since Q has at most Z monomials, each conjugate’s absolute value is at most
2ψ = cZ(k

√
K lnK)d. Let ℓ′ = ℓ − ψ − 1 − log d. Let α be the number of the

conjugates that are less than 2−ℓ
′

. Let β = 2K − α be the number of the other
conjugates. Let Π be the product of all the conjugates. By Lemma 2.1, Π 6= 0,
and by algebra [9], Π is an integer. Thus, |Π| ≥ 1 and α(−ℓ′) + βψ ≥ 0. Hence,
β
2K ≥ ℓ′

ℓ′+ψ ; i.e, |Q(π1, . . . , πq))| ≥ 2−ℓ
′

with the desired probability. We next show

that if |Q(π1, . . . , πq)| ≥ 2−ℓ
′

, then |∆| ≥ 2−ℓ. Since ri,j >
√
pi,j − 2−ℓ,

∑ki
j=1 ri,j >

|πi| − k2−ℓ. So approximating pi,j reduces each monomial term’s absolute value

in Q(π1, . . . , πq) by at most c(k
√
K lnK)d−1dk2−ℓ. Thus, |∆| ≥ |Q(π1, . . . , πq)| −

cZ(k
√
K lnK)d2−ℓ+log d ≥ |Q(π1, . . . , πq)| − 2−ℓ

′−1 ≥ 2−ℓ.

Theorem 2.3. For a given t > 1, set ℓ ≥ tψ + 1 + log d. If Q(x1, . . . , xm) ≡ 0,
Algorithm 1 always outputs the correct answer; otherwise, it outputs the correct answer

with probability at least 1− 1
t . Moreover, it uses exactly K random bits, and its error

probability can be decreased by increasing t without using one additional random bit.

Proof. This theorem follows from Lemma 2.2 immediately.

Let ||Q|| be the size of the input representation ofQ. The next lemma supplements
Theorem 2.3 by discussing sufficient conditions for Algorithm 1 to be efficient.

Lemma 2.4. With Z =
∑d

i=1 q
i, Algorithm 1 takes polynomial time in ||Q|| and

t under the following conditions:

• The parameters q, d1, . . . , dq, d are at most (t||Q||)O(1) and are computable in

time polynomial in t||Q||.
• The parameter c is at most 2O(t||Q||) and is computable in time polynomial in

t||Q||.
• Given ℓ′-bit numbers p′i, Q(p′1, . . . , p

′
q) is computable in time polynomial in

t||Q|| and ℓ′.
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Proof. The proof is straightforward based on the following key facts. There are
at most (t||Q||)O(1) primes pi,j , which can be efficiently found via the Prime Number
Theorem. Each ri,j has at most (t||Q||)O(1) bits and can be efficiently computed by,
say, Newton’s method.

We can scale up the rationals ri,j to integers and then compute ∆ modulo a
reasonably small random integer. As shown in later sections, this may considerably
improve the efficiency of Algorithm 1 by means of the next fact.

Fact 1 (Thrash [19]). Let h ≥ 3 be an integer. If H is a subset of {1, 2, . . . , h2}
with |H | ≥ h2

2 , then the least common multiple of the elements in H exceeds 2h.
Thus, for a given positive integer h′ ≤ 2h, a random integer from {1, 2, . . . , h2} does

not divide h′ with probability at least 1
2 .

3. Application to perfect matching test. Let G = (V,E) be a graph with n
vertices and m edges. Let V = {1, 2, . . . , n}. Without loss of generality, we assume
that n is even and m ≥ n

2 . A perfect matching of G is a set L of edges in G such that
no two edges in L have a common endpoint and every vertex of G is incident to an
edge in L.

Given G, we wish to decide whether it has a perfect matching. This problem is
not known to have a deterministic NC algorithm. The algorithm of Chari , Rohatgi,
and Srinivasan [4] uses the fewest random bits among the previous NC algorithms.
This paper gives a new algorithm that uses fewer random bits while doing less work.
For ease of discussion, a detailed comparison is made right after Theorem 3.2.

3.1. Classical ideas. The Tutte matrix of G is the n×n skew-symmetric matrix
M of m distinct indeterminates yi,j :

Mi,j =







yi,j if {i, j} ∈ E and i < j,
−yj,i if {i, j} ∈ E and i > j,

0 otherwise.

Let L = {{i1, j1}, . . . , {in
2
, jn

2
}} be a perfect matching of G where i1 < j1, i2 <

j2, . . . , in
2
< jn

2
and i1 < i2 < · · · < in

2
. Let π(L) = yi1,j1yi2,j2 · · · yin

2

,jn
2

. Let

σ(L) = 1 or −1 if the following permutation is even or odd, respectively:

(

1 2 · · · n− 1 n
i1 j1 · · · in

2
jn

2

)

.

Let Pf(G) =
∑

L π(L)σ(L), where L ranges over all perfect matchings in G.
Fact 2 (Fisher and Kasteleyn [2], Tutte [20]).

• detM = (Pf(G))
2
.

• G has a perfect matching if and only if detM 6≡ 0.
Combining Fact 2 and the DLSZ method, Lovasz [12] gave a randomized NC

algorithm for the matching problem. Since the degree of detM is at most n, this
algorithm assigns to each xi,j a random integer from {1, 2, . . . , 2n} uniformly and
independently and outputs “G has a perfect matching” if and only if detM is nonzero
at the chosen integers. Its error probability is at most 1

2 , using m⌈log(2n)⌉ random
bits. The time and processor complexities are dominated by those of computing the
determinant of an n× n matrix with O(log n)-bit integer entries.

3.2. A new randomized NC algorithm. A direct application of Theorem 2.3
to detM uses O(m) random bits, but our goal is O(n+ logm/n) bits. Therefore, we
need to reduce the number of variables in detM .
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• Let G′ be the acyclic digraph obtained from G by orienting each edge {i, j}
into the arc (min{i, j},max{i, j}).

• For each vertex i in G′, let ni be the number of outgoing arcs from i.
• Let n̂i = 0 if ni = 0; otherwise, n̂i = ⌈logni⌉.
• Let q =

∑n
i=1 n̂i. Note that q < n+ n log mn .

• Let x1, x2, . . ., xq be q distinct new indeterminates.
We label the outgoing arcs of each vertex as follows. If n1 = 0, then ver-

tex 1 has no outgoing arc in G′. If n1 = 1, then label its unique outgoing arc
with 1. If n1 ≥ 2, then label its n1 outgoing arcs each with a distinct mono-
mial in {(x1)a1(x2)a2 · · · (xn̂1

)an̂1 | each ah is 0 or 1}, which is always possible since
2n̂1 ≥ n1. We label the n2 outgoing arcs of vertex 2 in the same manner using
xn̂1+1, xn̂1+2, . . . , xn̂1+n̂2

. We similarly process the other vertices i, each using the
next n̂i avaliable indeterminates xh.

Let fi,j be the label of arc (i, j) in G′. Let Q(x1, . . . , xq) be the polynomial
obtained from Pf(G) by replacing each indeterminate yi,j with fi,j .

Lemma 3.1. G has a perfect matching if and only if Q(x1, . . . , xq) 6≡ 0.
Proof. For each L as described in §3.1, let QL = σ(L)fi1,j1fi2,j2 · · · fin

2

,jn
2

. Then,

Q =
∑

LQL, where L ranges over all the perfect matchings of G. It suffices to prove
that for distinct perfect matchings L1 and L2, the monomials QL1

and QL2
differ by

at least one xh. Let H be the subgraph of G induced by (L1 ∪ L2)− (L1 ∩L2). H is
a set of vertex-disjoint cycles. Since L1 6= L2, H contains at least one cycle C. Let
C′ be the acyclic digraph obtained from C by replacing each edge {i, j} with the arc
(min{i, j},max{i, j}). C′ contains two outgoing arcs (i, j1) and (i, j2) of some vertex
i. So there is an indeterminate xh used in arc labels for vertex i, whose degree is 1 in
one of fi,j1 and fi,j2 but is 0 in the other. Hence, the degree of xh is 1 in one of QL1

and QL2
but is 0 in the other, which makes QL1

and QL2
distinct as desired.

To test whether G has a perfect matching, we use Algorithm 1 to test Q by means
of Theorem 2.3 and Lemma 3.1. Below we detail each step of Algorithm 1.

Step 1. Compute q. Then set d1 = d2 = · · · = dq = 1, k1 = k2 = · · · = kq = 1,
K = q, d = q, c = 1. Further set Z = (2mn )n since the number of perfect matchings
in G is at most Πni=1mi ≤ (2mn )n, where mi is the degree of node i in G.

Step 2. This step computes the q smallest primes p1,1, p2,1, . . . , pq,1, each at
most q ln2 q. Since a positive integer p is prime if and only if it is indivisible by any
integer i with 2 ≤ i ≤ √

p, these primes can be found in O(log q) parallel arithmetic

steps on integers of at most ⌈log(1 + q ln2 q)⌉ bits using O(q1.5 log3 q) processors.
Step 3. This step is straightforward.
Step 4. Set ℓ = ⌈tψ⌉+ ⌈q⌉+ 1, where ψ = n log 2m

n + q log(
√
q ln q).

Step 5. We use Newton’s method to compute ri,1 from pi,1. For the convenience
of the reader, we briefly sketch the method here. We use g0 = pi,1 as the initial
estimate. After the j-th estimate gj is obtained, we compute gj+1 = 1

2 (gj +
pi,1
gj

),

maintaining only the bits of gj+1 before the (ℓ + 1)-th bit after the decimal point.
Thus, gj+1 ≤ 1

2 (gj +
pi,1
gj

). With gj+1 obtained, we check whether g2j+1 > pi,1. If not,

we stop; otherwise, we proceed to compute gj+2. Since the convergence order of the
method is 2, we take the ⌈log(⌈log pi,1⌉+ ℓ)⌉-th estimate as ri,1. So r1,1, . . . , rq,1 can
be computed in O (log(ℓ+ log q)) parallel arithmetic steps with q processors. Note
that each gj has at most ⌈log(1 + q ln2 q)⌉+ ℓ bits.

Step 6. Evaluating ∆ is equivalent to computing ∆2. ∆2 is the determinant of
an n× n skew-symmetric matrix M ′ whose nonzero entries above the main diagonal
in the i-th row are either 1 or products of at most n̂i rationals among r1,1, . . . , rq,1.
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Thus, each matrix entry has at most ⌈logn⌉(⌈log(1 + q ln2 q)⌉ + ℓ) bits. Setting up
M ′ takes O(log n) arithemetic steps on O(n2) processors.

Step 7. This step is straightforward.

The next theorem summarizes the above discussion.

Theorem 3.2. For any given t > 1, whether G has a perfect matching can be

determined in O(log(nt)) parallel arithmetic steps on rationals of O(tn log3 n) bits

using O(n2) processors together with one evaluation of the determinant of an n × n
matrix of O(tn log3 n)-bit rational entries. The error probability is at most 1

t , using

q < n+ n log m
n random bits.

Remark. The best known NC algorithm for computing the determinant of an
n×n matrix takes O(log2 n) parallel arithmetic steps using O(n2.376) processors [16].

Proof. We separate the total complexity of Algorithm 1 into that for computing
detM ′ and that for all the other computation. For the latter, the running time is
dominated by that of Step 5; the bit length by that of the entries in M ′ at Step 6;
and the processor count by that of setting up M ′.

The work of Chari , Rohatgi, and Srinivasan [4] aims to use few random bits
when the number of perfect matchings is small. Indeed, their algorithm uses the
fewest random bits among the previous NC algorithms. For an error probability at
most 3

4 , it uses min{28
∑n
i=1⌈log d̂i⌉, 6m + 4

∑n
i=1⌈log d̂i⌉} + O(log n) random bits,

where d̂i is the degree of vertex i in G. It also computes the determinant of an n× n
matrix with O(n7)-bit entries. In contrast, with t = 2 in Theorem 3.2, Algorithm 1
has an error probability at most 1

2 while using fewer random bits, i.e., q < n+n log mn
bits. Moreover, using the best known NC algorithm for determinants, the work of
Algorithm 1 is dominated by that of computing the determinant of an n× n matrix
with entries of shorter length, i.e, O(n log3 n) bits.

The next theorem modifies the above implementation of Algorithm 1 by means
of Fact 1 so that it computes the determinants of matrices with only O(log(nt))-bit
integer entries but uses slightly more random bits.

Theorem 3.3. For any given t > 2, whether G has a perfect matching can

be determined in O(log(nt)) parallel arithmetic steps on rationals of O(tn log3 n) bits
using O(n2) processors together with ⌈log t⌉ evaluations of the determinant of an n×n
matrix of O(log(nt))-bit integer entries. The error probability is at most 2

t , using

q + O(log t log(nt)) random bits, which is at most n+ n log mn +O(log t log(nt)).

Proof. We modify Steps 6 and 7 of the above implementation as follows.

Step 6.

• Compute M ′ as above.
• For each (i, j)-th entry of M ′, we multiply it with 2(n̂i+n̂j)ℓ in O(1) parallel
arithmetic steps using O(n2) processors. Let M ′′ be the resulting matrix;
note that detM ′′ = 22qℓ detM ′ and each entry ofM ′′ is an integer of at most
3⌈logn⌉(ℓ + ⌈logn⌉) bits.

• Let λ = ⌈log t⌉. Let u = n!·23n⌈logn⌉(ℓ+⌈log n⌉); note that | detM ′′| ≤ u. We
uniformly and independently choose λ random positive integers w ≤ ⌈log u⌉2
using O(λ log(nt)) random bits in O(λ) steps on a single processor. For each
chosen w, we first compute M ′′′ = M ′′ modw in O(1) parallel arithmetic
steps using O(n2) processors; and then compute detM ′′′ instead of detM ′.

Step 7. Output “G has a perfect matching” if and only if some detM ′′′ is nonzero.

By Fact 1, if detM ′′ 6= 0, then some chosen w does not divide detM ′′ with
probability at least 1−2−λ. Thus, the overall error probability is at most 1

t +2−λ ≤ 2
t .

We separate the total complexity of Algorithm 1 into that for computing detM ′′′ and
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that for all the other computation. As with Theorem 3.2, the running time of the
latter remains dominated by that of Step 5; the bit length by that of the entries in
M ′ at Step 6; and the processor count by that of setting up M ′.

4. Application to multiset equality test. Let A = {a1, . . . , an} and B =
{b1, . . . , bn} be two multisets of positive integers. Let a be the largest possible value
for any element of A∪B. Given A,B, and a as input, themultiset equality test problem

is that of deciding whether A ≡ B, i.e., whether they contain the same number of
copies for each element in A∪B. This problem was initiated by Blum and Kannan [3]
to study how to check the correctness of sorting programs. They gave two randomized
algorithms on a useful model of computation which reflects many sorting scenarios
better than the usual RAM model. For brevity, we denote their model by MBK and
the two algorithms by ABK1 and ABK2.

This section modifies the MBK model to cover a broader range of sorting appli-
cations. It then gives a new randomized algorithm, which improves upon ABK1 and
ABK2 and can speed up the checking algorithm for sorting by Blum and Kannan [3]
on a large range of inputs.

4.1. Models of computation and previous results. In both the MBK model
and the modified model, the computer has O(1) tapes as well as a random access
memory of O(log n+log a) words. The allowed elementary operations are +, −, ×, /,
<, =, and two bit operations shift-to-left and shift-to-right, where / is integer division.
Each of these operations takes one step on integers that are one word long; thus the
division of an integer of m1 words by another of m2 words takes O(m1m2) time. In
addition, it takes one step to copy a word on tape to a word in the random access
memory or vice versa.

The only difference between the two models is that the modified model has a
shorter word length relative to a and therefore is applicable to sorting applications
with a larger range of keys. To be precise, in the MBK model, each word has 1+⌊log a⌋
bits, and thus can hold a nonnegative integer at most a. In the modified model, each
word has ξ = 1 + ⌊logmax{⌈logn⌉, ⌈log a⌉}⌋ bits, and thus can hold a nonnegative
integer at most max{⌈logn⌉, ⌈log a⌉}.

Note that sorting A and B by comparison takes O(n log n) time in the MBK
model and O( log aξ n logn) time in the modified model. However, in both models, if

n ≥ 2a, the equality of A and B can be tested in optimal O(n) time with bucket sort.
Hence, we hereafter assume n < 2a. We briefly review ABK1 and ABK2 as follows.

Let Q1(x) be the polynomial
∑n
i=1 x

ai −
∑n
i=1 x

bi . ABK1 selects a random prime
w ≤ 3a⌈log(n+1)⌉ uniformly and computesQ1(n+1)modw in a straightforwardman-
ner. It outputs “A ≡ B” if and only if Q1(n+1)modw is zero. Excluding the cost of

computing w, ABK1 takes O(n log a) time in the MBK model and O
(

( log aξ )2n log a
)

time in the modified model. The error probability is at most 1
2 .

Let Q2(x) be the polynomial Πni=1(x − ai) − Πni=1(x − bi). ABK2 uniformly se-
lects a random positive integer z ≤ 4n and a random prime w ≤ 3n⌈log(a + 4n)⌉;
and computes P (z)modw in a straightforward manner. It outputs “A ≡ B” if
and only if P (z)modw is zero. Excluding the cost of computing w, ABK2 takes

O
(

nmax{1, ( lognlog a )
2}
)

time in the MBK model and O
(

n (logn+log a)(logn+log log a)
ξ2

)

time in the modified model. The error probablity is at most 3
4 .

Generating the random primes w is a crucial step of ABK1 and ABK2. It is
unclear how this step can be performed efficiently in terms of running time and random
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bits. We modify this step by means of Fact 1 as follows. In ABK1, |Q1(n + 1)| ≤
21+a log(n+1)+logn; in ABK2, |Q2(2n)| ≤ 21+n log(a+4n). Thus, we can replace w in
ABK1 and ABK2 with two random positive integers w1 ≤ (1 + a log(n+ 1) + logn)2

and w2 ≤ (1 + n log(a + 4n))2, respectively. With these modifications, ABK1 and
ABK2 use at most 2 log a + 2 log logn + O(1) and 3 logn + 2 log log(a + n) + O(1)
random bits, respectively. The time complexities and error probabilties remain as
stated above.

4.2. A new randomized algorithm. Our goal in this section is to design an
algorithm for multiset equality test for the modified model that is faster than ABK1

for n = ω((log log a)2) and faster than ABK2 for n = ω
(

(log a)log log a
)

. We can then
use it to speed up the previously best checking algorithm for sorting [3].

• Let q = ⌊log a⌋+ 1.
• Let x1, . . ., xq be q distinct indeterminates.
• For each u ∈ A∪B, let fu denote the monomial (x1)

u1(x2)
u2 · · · (xq)uq , where

u1u2 · · ·uq is the standard q-bit binary representation of u.
• Let Q(x1, . . . , xq) denote the polynomial

∑n
i=1 fai −

∑n
i=1 fbi .

Note that Q(x1, . . . , xq) ≡ 0 if and only if A ≡ B. To test whether A ≡ B, we detail
how to implement the steps of Algorithm 1 to test Q as follows. The algorithm is
analyzed only with respect to the modified model.

Remark. In the implementation, the parameter t of Theorem 2.3 needs to be a
constant so that the algorithm can be performed inside the random access memory
together with straightforward management of the tapes. At the end of this section,
we set t = 4 but for the benefit of future research, we analyze the running time and
the random bit count in terms of a general t.

Step 1. Compute q by finding the index of the most significant bit in the binary
representation of a. Since a takes up O( log aξ ) words, this computation takes O(q) time
by shifting the most significant nonzero word to the left at most ξ times. Afterwards,
set d1 = d2 = · · · = dq = k1 = k2 = · · · = kq = k = 1, K = d = q, c = n, and Z = 2n
in O(q) time. This step takes O(q) time.

Step 2. Compute the q smallest primes p1,1, p2,1, . . . , pq,1 ≤ q ln2 q. We compute
these primes by inspecting i = 2, 3, . . . one at a time up to q ln2 q until exactly q
primes are found. Since i can fit into O(1) words, it takes O(

√
q log q) time to check

the primality of each i using the square root test for primes in a straightforward
manner. Thus, this step takes O(q3/2 log3 q) time.

Step 3. This step is straightforward and uses q random bits and O( qξ ) time.

Step 4. Set ℓ = ⌈t⌉ψ′ + ⌈q⌉ + 1, where t is a given positive number and ψ′ =

2⌈logn⌉ + ⌈ q⌈log q⌉2 ⌉ + q⌈log⌈log q⌉⌉ + 1. The number ⌈logn⌉ can be computed from

the input in O(n) time. The computations of ⌈ log q
2 ⌉ and ⌈log⌈log q⌉⌉ are similar to

Step 1 and take O(log q) time. Thus, this step takes O(n+ log q + log t
ξ ) time.

Step 5. As at Step 5 in §3.2, we use Newton’s method to compute ri,1 for each pi,1.
With only integer operations allowed, we use 2ℓgj as the j-th estimate for 2ℓ

√
pi,1;

i.e., 2ℓgj+1 = (2ℓgj + 22ℓpi,1/(2
ℓgj))/2. The last estimate computed in this manner

is 2ℓri,1. Since 2ℓ can be computed in O(( ℓξ )
2) time using a doubling process, the

first estimate 2ℓpi,1 can be computed in the same amount of time. Since the other
estimates all are O( ℓξ ) words long, the (j + 1)-th estimate can be obtained from the

j-th in O(( ℓξ )
2) time. Since only O(log ℓ) iterations for each 2ℓ

√
pi,1 are needed, this

step takes O(q( ℓξ )
2 log ℓ) time.
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Step 6. We compute ∆ = Q((−1)b1,1r1,1, . . . , (−1)bq,1rq,1) by means of Fact 1 as

follows. Let λ = ⌈log t⌉. Since |2qℓ∆| is an integer at most 2ψ
′+qℓ, we uniformly and in-

dependently select λ random positive integers w ≤ (ψ′+qℓ)2 using 2λ(log t+log logn+
2 log log a+ o(log log a)) random bits and O(λ log ℓ

ξ ) time. Note that if 2qℓ∆ 6= 0, then

with probability at least 1 − 1
t , some 2qℓ∆modw is nonzero. We next compute all

2ql∆modw. For each element u ∈ A∪B, let e(u) be the number of 0’s in the standard
q-bit binary representation of u. Let h(u) = fu((−1)b1,12ℓr1,1, . . . , (−1)bq,12ℓrq,1).
Then, 2qℓ∆ =

∑n
i=1 2

e(ai)ℓh(ai) −
∑n
i=1 2

e(bi)ℓh(bi), which we use to compute all
2qℓ∆modw as follows.

• Compute the numbers e(u) for all u ∈ A ∪B in O(nq) time.
• For all w, compute all 2ℓri,1 modw in O(λq ℓξ

log ℓ
ξ ) time.

• For all w, use values obtained above to compute h(u)modw for all u in
O(λnq( log ℓξ )2) time.

• For all w, compute 2ℓmodw in O(λ ℓξ
log ℓ
ξ ) time.

• For all w, use values obtained above to compute 2e(u)ℓmodw for all u in
O(λn( log ℓξ )2 log q) time.

• For all w, use values obtained above to compute 2qℓ∆modw in O(λn( log ℓξ )2)
time.

This step uses 2λ(log t + log logn + 2 log log a + o(log log a)) random bits and takes
O(λq ℓξ

log ℓ
ξ + λnq( log ℓξ )2) time.

Step 7. Output “A 6≡ B” if and only if some 2ql∆modw is nonzero.
The next theorem summarizes the above discussion.
Theorem 4.1. For any given t > 2, whether A ≡ B can be determined in time

O

(

q log ℓ

(

ℓ

ξ

)2

+ λnq

(

log ℓ

ξ

)2
)

,

where q = Θ(log a); ℓ = Θ(t(logn+log a log log a)); ξ = Θ(log log(n+a));λ = Θ(log t).
The error probability is at most 2

t using log a+2⌈log t⌉(log t+ log logn+2 log log a+
o(log log a)) random bits.

Proof. The running time of Algorithm 1 is dominated by those of Steps 5 and 6.
The error probability follows from Theorem 2.3 and Fact 1.

We use the next corollary of Theorem 4.1 to compare Algorithm 1 with ABK1

and ABK2 in the modified model.
Corollary 4.2. With t = 4, Algorithm 1 has an error probability at most 1

2
using log a+ 4 log logn+ 8 log log a+ o(log log a) random bits, while running in time

O

(

n log a+ log a
(logn+ log a log log a)2

log log(n+ a)

)

.

By corollary 4.2, Algorithm 1 is faster than ABK1 for n = ω((log log a)2) and
faster than ABK2 for n = ω

(

(log a)log log a
)

. Thus, it can replace ABK1 and ABK2

to speed up the previously best checking algorithm for sorting [3] as follows. We use
bucket sort for 2a ≤ n; Algorithm 1 for (log a)log log a ≤ n < 2a; and ABK2 otherwise.
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