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A GENERALIZATION OF RESOURCE-BOUNDED MEASURE, 
WITH APPLICATION TO THE BPP VS. EXP PROBLEM* 
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D. SIVAKUl\!AR~. AND l\IAHTIN STRAussll 

Abstract. \Ye introduce resource-hounded betting games and propose a gm:1eralizatio:1 of Lutz:s 

n·,;oarc,•-bounded measure in which the choice of the next string to bet on is fully adaptive. Lutz s 

!llart ingales an• equivalent to betting games constrained to bet on string~ in lexicographic ~rder. We 

slio\\· that if strong pseudorandom number generators exist, then betting games are eqmvalent to 

martiugalt's for measure on E and EXP. However, we construct betting gan1es that su.ccee.d on certam 

class<'S whos<' Lutz mea-,ures are important open problems: the class of polynomial-time Tunng

<'<Hllplel<' languages in EXP and its superclass of polynomial-time Turing-autoreducible l~ngua~es. 

lf an EXP-martingalt• succeeds on either of these classes, or if betting garnes have the "fimte u1110n 

prnp••rt.\··· possessed by Lutz's measure, one obtains the nonrelativizable consequence BPP f EXP. 

\\',.also show that if EXP cfa l\IA, then the polynomial-time truth-table-autoredncible languages have 

Lutz m<>asure zero, whereas if EXP= BPP. they have measure one. 

Key words. computational complexity, theory of computation, probabilistic computation, c:om

pk·xity classPs, resource-bounded measure, betting games, polynomial reductions, pseudo random 

gt•nerator,.;. "tmpling, autoreducibility 
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1. Introduction. Lutz':-; theory of measure on complexity classes is now usually 

ddi1wd in tenns of resource-bounded martingales. A martingale can be regarded as 

a gamhliug gam(• played on imseen languages A. Let 8 1 , s2 , s;3 , ... be the standard 

k'xieugraphic: orcleriug of strings. The gambler G starts with capital C 0 = $1 and 

places a bet B1 E [O. C0] on either ''s 1 E A" or "s 1 rf. A." Given a fixed particular 

laHgnagc A. the bet's outcome depends only on whether 8 1 E A. If the bet wim,;, then 

the nt'\\" capital C\ equals C0 + B 1 , while if the bet loses, C1 = C'0 - B 1 . The gambler 

thP11 place~ a bet B2 E [O. C\] on (or against) membership of the string s 2 , then on 
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ss, and so forth. The gambler succeeds if G's capital Ci grows toward +oo. The class 
C of languages A on which G succeeds (and any subclass) is said to have measure 
zero. One also says G covers C. Lutz and others (see [Lutz97]) have developed a rich 
and extensive theory around this measure-zero notion and have shown interesting 
connections to many other important problems in complexity theory. 

We propose the generalization obtained by lifting the requirement that G must 
bet on strings in lexicographic order. That is, G may begin by choosing any string x1 

on which to place its first bet and, after the oracle tells the result, may choose any 
other string X2 for its second bet, and so forth. Note that the sequences xi, x2 , x3 , .•. 

(as well as B1, B2, B3, .. . ) may be radically different for different oracle languages 
A-in complexity-theory parlance, G's queries are adaptive. The lone restriction is 
that G may not query (or bet on) the same string twice. We call Ga betting game. 

Our betting games remedy a possible lack in the martingale theory, one best 
explained in the context of languages that are "random" for classes T> such as E 
or EXP. In this paper, E stands for deterministic time 2°Cn), and EXP stands for 
deterministic time 2n°< 1l. A language L is T>-random if L cannot be covered by a 
!>-martingale. Based on one's intuition about random 0-1 sequences, the language 
L' = {fiip(x) : x E L} should likewise be !>-random, where ftip(x) changes every 
0 in x to a 1 and vice-versa. However, this closure property is not known for E
random or EXP-random languages, because of the way martingales are tied to the 
fixed lexicographic ordering of E*. Betting games can adapt to easy permutations 
of E* such as that induced by flip. Similarly, a class C that is small in the sense 
of being covered by a (T>-) betting game remains small if the languages L E C are 
so permuted. In the r.e./recursive theory of random languages, our generalization is 
similar to "Kolmogorov-Loveland place-selection rules" (see [Lov69]). We make this 
theory work for complexity classes via a novel definition of "running in time t(n)" for 
an infinite process. 

Our new angle on measure theory may be useful for attacking the problem of 
separating BPP from EXP, which has recently gained prominence in [ImWi98]. In 
Lutz's theory it is open whether the class of EXP-complete sets-under polynomial
time Turing reductions--has EXP-measure zero. If so (in fact if this set does not 
have measure one), then by results of Allender and Strauss [A1St94], BPP i EXP. 
Since there are oracles A such that BPPA = EXPA [Hel86], this kind of absolute 
separation would be a major breakthrough. We show that the EXP-complete sets 
can be covered by an EXP-betting game-in fact, by an E-betting game. The one 
technical lack in our theory as a notion of measure is also interesting here: If the 
"finite unions" property holds for betting games (viz., C1 small /\ C2 small ==? 

C1 U C2 small), then EXP i BPP. Likewise, if Lutz's martingales do enjoy the 
permutation-invariance of betting games, then BPP i EXP. Finally, we show that 
• • !1(1) • 
if a pseudorandom number generator of security 2n exists, then for every EXP-
betting game G one can find an EXP-martingale that succeeds on all sets covered by 
G. Pseudorandom generators of higher security 2°Cn) likewise imply the equivalence 
of E-betting games and E-measure. Ambos-Spies, Lempp, and Mainhardt [ALM98] 
proved that the EXP-complete sets have E-measure zero under a different hypothesis, 
namely P = PSPACE. 

Measure theory and betting games help us to dig further into questions about 
pseudorandom generators and complexity-class separations. Our tool is the notion 
of an autoreducible set, whose importance in complexity theory was argued by 
Buhrman, Fortnow, van Melkebeek, and Torenvliet [BFvMT98] (after [BFT95]). A 
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lang11age L is S:~-autorcducible if there is a polynomial-time oracle _Turing machine 
Q such that for all inputs x. QL correctly decides whether x E L without e~er s_ub
mittinµ; .r itself as a query to L. If Q is nonadaptive (i.e., computes a polynonual-t1me 
truth-table reduction). we say L is :3t-autoreduc'ible. We show that the class of 
-:; 1~-anturedncible sets is covered by an E-betting game. Since every EXP-complete 
st't j,; ::; 1;.-autoreducible [BFvl\IT98], this implies results given above. The subclass 
of :S.;'cautoreducible sets provides the following tighter connection between measure 
statements and open problems about EXP. 

• If the :S.frautoreducible sets do not have E-measure zero, then EXP =MA. 
• If the ~rcautoreducible sets do not have E-measure one in EXP, then EXP =/. 

BPP. 
Here l\IA is Babai's "Merlin-Arthur" class, which contains BPP and NP and is con
tai1wd in the level ~~ n TI~ of the polynomial hierarchy [Bab85, BaMo88]. Since 
EXP f. l\IA is strongly believed, one would expect the class of :::;ft-autoreducible sets 
to have E-mea..-;ure zero. but proving this--or proving any of the dozen other measure 
statements in Corollaries 6.2 and 6.5 -would yield a proof of EXP =/. BPP. 

In sum. the whole theory of re::;ource-bounded measure has progressed far enough 
to wind the issues of (pseudo)rnndornness and stochasticity within exponential time 
very tightly. We turn the wheels a fev..· more notches and seek greater understanding 
of complexity classes in the places where the boundary between "measure one" and 
"measure zero" seems tightet>t. 

Section 2 reviews the formal definitions of Lutz's measure and martingales. Sec
tion 3 introduces betting games and shows that they are a generalization of martin
gales. Section 4 shows how to simulate a betting game by a martingale of perhaps 
unavoidably higher time complexity. Section 5, however, demonstrates that strong 
pseudorandom generators (if there are any) allow one to compute the martingale 
in t lw same order of time. Section 6 presents our main results pertaining to au
toreducible sets, including our main motivating example of a concrete betting game. 
The concluding seetion 7 summarizes open problems and gives prot>pects for future 
research. 

2. Martingales. A martingale is abstractly defined as a function d from { 0, 1 }* 
into the nonnegative reals that satisfies the following "average law": for all w E 
{0.1}*. 

( l) d(w) = d(wO); d(wl). 

The iuterpretation in Lutz 's theory is that a string w E { O, 1 } * 8 tands for an 
initial segment of a language over an arbitrary alphabet L: as follows: Let s 1 , s2 , s3 , ... 

be the standard lexicographic ordering of I;*. Then for any lancruage A C I;* write 
b - ' 

11· f;;;" A if for all i, 1 ~ i ~ [w[, s; EA iff the 'ith bit of w is a 1. We also regard was 
a functim_1 wi~h domain ~orn(w) = { s 1, ... ,slwl} and range { O, 1 }, writing w( 8 i) for 
the tth bit of w. A martmgale d succeeds on a language A if the sequence of value8 
d(w) for U' f;;;" .4 is unbounded. 

Ll'.t sx [d] stand for the (possibly empty, often uncountable) class of languages 
011 wh1c'.1 d succ~eds. Lutz originally defined the complexity of a martingale d in 
terms of comi.mtmg f~t-converging rational approximations to d. Subsequently he 
showed tl:at for certam classes of time bounds one loses no generality by requiring 
that martmgales them~elv_es have rational values a/b such that all digits of the integen; 
a and b (not necessanly rn lowest terms) are output within the time bound. That 
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is, given any martingale d meeting the original definition of computability within 
the time bound, one can obtain a rational-valued d' computable within that bound 
such that S00 [d] ~ S00 [d'] [May94t, JuLu95]. We adopt this requirement throughout 
the paper and specify that integers are represented in standard binary notation and 
rationals as pairs of integers, not necessarily in lowest terms. We use the fact that a 
sum aifb1 + · · · am/bm can be computed and written down in e0 <1l time, where e is 
the sum of the lengths of the integers ai and bi. 

DEFINITION 2.1 ( cf. [Lutz92, May94t]). Let A be a complexity class of functions. 
A class C of languages has A-measure zero, written µt:i.. (C) = 0, if there is a martingale 
d computable in A such that C ~ S00 [ d]. One also says that d covers C. 

Lutz measured the time to compute d( w) in terms of the length N of w, but one 
can also work in terms of the largest length n of a string in the domain of w. For 
N > 0, n equals llog2 NJ; all we care about is that n = 8(1ogN) and N = 2e(nl. 
Because complexity bounds on languages we want to analyze will naturally be stated 
in terms of n, we prefer to use n for martingale complexity bounds. The following 
correspondence is helpful: 

Lutz's "p" 

Lutz's "p2" 

NO(l) = 20(n) 

2(log N)O(l) = 2nO(l) 

measure on E, 
measure on EXP. 

Since we measure the time to compute d(w) in terms of n, we write "µE" for 
E-measure, "µExP" for EXP-measure, and generally µt:i.. for any A that names both 
a language and function class. Abusing notation similarly, we define the following. 

DEFINITION 2.2 (see [Lutz92]). A classC has A-measure one, writtenµt:i..(C) = 1, 
ifµt:i..(A \C) =0. 

The concept of resource-bounded measure is known to be robust under several 
changes [May94t]. The following lemma has appeared in various forms [May94t, 
BuLoOO]. It essentially says that we can assume a martingale grows almost monoton
ically (sure winnings) and not too fast (slow winnings). 

LEMMA 2.3 ("slow-but-sure-winnings" lemma for martingales). Let d be a mar
tingale. Then there is a martingale d' with S 00 [ d] ~ S 00 [ d'] such that 

(2) (\/w)(Vu): d'(wu) > d'(w) - 2d(,.\), and 

(3) (\/w) : d' ( w) < 2(lwl + l)d(.X). 

If d is computable in time t(n), then d' is computable in time (2nt(n))0 <1J. 
The idea is to play the strategy of d but in a more conservative way. Say we start 

with an initial capital of $1. We will deposit a part c of our capital in a bank and only 
play the strategy underlying don the remaining liquid part e of our capital. We start 
with no savings and a liquid capital of $1. If our liquid capital reaches or exceeds $2, 
we deposit an additional $1 or $2 to our savings account c so as to keep the liquid 
capital in the range $[1, 2) at all times. If d succeeds, it will push the liquid capital 
infinitely often to $2 or above, so c grows to infinity, and d' succeeds too. Since we 
never take money out of our savings account c and the liquid capital e is bounded by 
$2, once our total capital d' = c + e has reached a certain level, it will never go more 
than $2 below that level anymore, no matter how bad the strategy underlying d is. 
On the other hand, since we add at most $2 to c in each step, d'(w) cannot exceed 
2(lwl + 1) either. 

We now give the formal proof. 
Proof of Lemma 2.3. Define d' : :E* ---+ [O, oo) by 

d'(w) = (c(w) + e(w))d(.X), 
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where = 0 and c( ,\) = 1, and 

c( 1ch) = c(w) and e(wb) = e(w) if d(w) = O; else: 

c( = c(1c) + 2 and e(wb) = ~\':~le(w) - 2 'f d(wb) '( ) > 3· 1 d(w) E W _ , 

1'( 1l'h) = c( 11') + 1 and e(wb) = ~t~~/ e(w) - 1 'f 2 < d(wb) (w) < 3· 
1 - d(w) e . ' 

('( = c(w) and ( b) d(wb) ( ) e ·w = d(w) e w 'f d(wb) ( ) < 2 
1 d(w) e w . 

To see that the recursion does not excessively blow up the time complexity or Hize 
oft he answer, note that owing to cancellation of values of d, every value e(w) where 
d\ u· i- 0 is gin•11 by a sum of the form 

N 

I: d(w) 
llk ' d(w[l ... k]) 

l.:=O 

wht>n' Htch 01.: is in { -2. -1, 0.1 }, N = )w), and w[l ... k] stands for the first k bits of 
1c. Ea('h tern1 in the sim1 is computable in time O(t(n) 2 N) (using the naive quadratic 
algorithms for multiplication and integer division). Then by the property noted .i ust 
before Definition 2.1, these terms can be summed in time (Nt(n)) 0 <1J. 

By induction on lwl we observe that 

(4) 0:::; e(w) < 2, 

and that 

d'(wb) = { [c(w) + ~Jt:Jle(wl] d(,\) 
d'(w) 

from which it follows that d' is a martingale. 

if d(w) # 0, 

otherwise, 

Now let ,,..: be an infinite 0-1 sequence denoting a language on which d succeeds. 
Then r(u·) will always remain positive for w i;;:;; w, and ~Gv~J e(w) will becorne 2 or more 
infinitdy often. Consequently, lim,,.i;;;w,lwl->oo c(w) = oo. Since d'(w) 2 c(w)d(.A), it 
follows that S'x[cJj ~ sx[d']. J\foreover, by (4) and the fact that C dO(~S llOt decrease 
alcmg an.v si•quence, we have that 

d'(wu) 2 c(wu)d(.A) 2 c(w)d(,\) = d'(w) - e(w)d(.A) > d'(w) - 2d(A). 

Since c can increase by at most 2 in every step, c(w) :::; 2lwl. Together with (4), 
this ,viE'lds that 

d'(w) = (c(w) + e(w))d(.A) < 2(lwl + l)d(,\). D 

Om' can also show that S00 [d'] ~ S00 [d] in Lemma 2.3, so the success set actually 
remaius intact under the above transformation. 

As with Lt'lwsgue measure, the property of having resource-bounded ineasure zero 
is monotone and closed under union ("finite unions property"). A resource-bounded 
vt'rsiou of closure uuder countable unions also holds. The property that becomes 
erncial in resourc:e-bonnded measure is that the whole space ,6. does not have measure 
zero. which Lntz calls the "measure conservation" property. With a ::ilight abuse of 
nwm1ing for "'#." this property is written 11,c::,,(.6..) # 0. In particular, µE(E) # 0 and 
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µExP(EXP) =!= 0. Subclasses of .6. that require substantially fewer resources do have 

.6.-rneasure zero. For example, P has E-measure zero. Indeed, for any fixed c > 0, 

DTIME[2cn] has E-measure zero and DTIME[2n"] has EXP-measure zero [Lutz92]. 

Apart from formalizing rareness and abundance in computational complexity the

ory, resource-bounded martingales are also used to define the concept of a random set 
in a resource-bounded setting. 

DEFINITION 2.4. A set A is .6.-random if µD.({A}) =/= 0. 

In other words, A is .6.-random if no .6.-martingale succeeds on A. 

3. Betting games. To capture intuitions that have been expressed not only for 

Lutz measure but also in many earlier papers on random sequences, we formalize a 

betting game as an infinite process, rather than as a Turing machine that has finite 

computations on string inputs. 

DEFINITION 3.1. A betting game G is an oracle Turing machine that maintains a 

"capital tape" and a "bet tape, " in addition to its standard query tape and worktapes, 

and works in stages i = 1, 2, 3 ... as follows. Beginning each stage i, the capital tape 

holds a nonnegafrve rational number Ci-l · The initial capital C0 is some positive 

rational rmmber. G computes a query string Xi to bet on, a bet amount B;, 0 ::::; B; ::::; 

C;-1, and a bet sign b; E { -1,+1 }. The computation is legal so long as x; does not 

belong to the set { Xi, ... , x;_ 1 } of strings queried in eaTlier stages. G ends stage i by 

entering a speC'ial query state. For a given oracle language A, if x; E A and bi= +1, 

or if :i:; tJ. A and b; = -1, then the new cap'ital is given by C; := C;_ 1 + B;, else by 

C; := C;-1 - B;. We charge M for the time required to write the numerator and 

denominator of the new capital C; down. The query and bet tapes are blanked, and G 

proceeds to stage i + l. 
In this paper, we lose no generality by not allowing G to "crash'' or to loop 

without writing a next bet and query. Note that every oracle set A determines a 

unique infinite computation of G, which we denote by GA. This includes a unique 

infinite seqrn~nc:e x 1 , :r2 , ... of query strings, and a unique sequence Co, C1, C2, ... 

telling how the gambler fares against A . 
DEFINITION 3.2. A betting machine G runs in time t(n) if for all oracles A, every 

query of length n made by GA is made in the first t(n) steps of the comp·utation. 

DEFINITION 3.3. A betting game G succeeds on a lang'uage A, written A E 

5 00 [G], if the sequence of values C; in the computation GA is unbounded. If A E 

S00 [GJ, then we also say G covers A. 
Our main motivating example where one may wish not to bet in lexicographic 

order, or according to any fixed ordering of strings, is deferred to section 6. There 

we will construct an E-betting game that succeeds on the class of :::;~-autoreducible 

languages, which is not known to have Lutz measure zero in E or EXP. 

We now want to argue that the more liberal requirement of being covered by a 

time t(n) betting game still defines a smallness concept for subclasses of DTIME[t(n)] 

in the intuitive sense Lutz established for his measure-zero notion. The following 

result is a good beginning. 
THEOREM 3.4. For every time-t(n) betting game G, we can construct a language 

in DTIME[t(n)] that 'is not covered by G. 
Proof Let Q be a nonoracle Turing machine that runs as follows on any input x. 

The machine Q simulates up to t(lxl) steps of the single computation of G on empty 

input. Whenever G bets on and queries a stringy, Q gives the answer that causes G 

to lose money, rejecting in the case of a zero bet. If and when G queries x, Q does 

likewise. If t(l:z:I) steps go by without x being queried, then Q rejects x. 
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The important point is that Q's answer to a query y =/= x is the same as the 
answer when Q is run on input y. The condition that G cannot query a striug x of 
h'ngth 11 after t(n) steps have elapsed ensures that the decision made by Q when x 
is not queried does not affect anything else. Hence Q defines a language on which G 
never does better than its initial capital Co and so does not succeed. D 

In particular. the class E cannot be covered by an E-betting game, nor EXP by 
an EXP-betting game. Put another way, the "measure conservation axiom" [Lutz92] 
of Lutz's mea..'lure carries over to betting games. 

To really satisfv the intuition of ''small," however, it should hold that the union of 
two small cl~tsses i; small. (Moreover, ''easy" countable unions of small classes should 
be small. as in [Lutz92].) Our lack of meeting this "finite union axiom" will later he 
excnst>d insofar as it has the nonrelativizing consequence BPP =/= EXP. Theorem 3.4 
is still good enough for the ""measure-like" results in this paper. 

\Ve note also that several robustness properties of Lutz's measure treated iu sec
tion 2 carry over to betting games. This is because we can apply the underlying 
transformations to the capital function cc of G, which is defined as follows. 

DEFINITION 3.5. Let G be a betting game, and let i 2'.: 0 be an integer. 
(a) A play a of length i is a sequence of i-many oracle answers. Note that a 

determines the first 'i-many stages of G, together with the query and bet for 
the next stage. 

(b) cc (a) is the capital C; that G has at the end of the play a (before the next 
query). 

Note that the function cc is a martingale over plays a. The proof of Lemma 2.:3 
works for cc. \Ve obtain the following lemma. 

LEMl\IA 3.6 (··slow-but-sure winnings" lemma for betting games). Let G be a 
betting game that nms in time t( n). Then we can construct a betting game G' that 
nms in hrne (2"t(n))O(l) such that S00 [G] ~ S00 [G'], G' always makes thP. same 
qv,cries in the same order as G, and 

(5) 

(6) 

l:i B, l:i1: cc 1 Uh) > cc1 (f3) - 2co(>.), 

1:i a: cc' (a) < 2(jaj + l)cc(.\). 

Proof The proof of Lemma 2.3 carries over. D 
To begin comparing betting games and martingales, we note first that the latter 

can be considered a direct special caHe of betting games. Say a betting game G is 
lex-lirnited if for all oracle8 A, the sequence x1 , x 2 , x 3 ... of queries made by GA is in 
lexicographic order. (It need not equal the lexicographic enumeration s 1 , s 2 , s;i, ... of 
E* .) 

THEOREM 3.7. Let T(n) be a collection of time bo'unds that i«> closed under 
squaring and under multiplication by 2n, such as 20(n) or 2n° 01 . Then a class Chas 
tirnc-T(n) measure zero iff C 'is covered by a time-T(n) lex-l,imited betting game. 

Proof From a martingale d to a betting game G, each stage i of GA bets on Si 
au amount B; with sign bi E { -1, +1} given by biB; = d(wl) - d(w), where w is the 
first i - 1 bits of the characteristic sequence of A. This takes 0(2n) evaluations of d 
to run G up through queries of length n, hence the hypothesis on the time bounds 
T(n). In the other direction, when G is lex-limited, one can simulate G on a finite 
initial segment w of its oracle up to a stage where all queries have been answered by 
wand G will_ make no.furth~r queries in the domain of w. One can then define d(w) 
to be the capital entermg this stage. That this is a martingale and fulfills the success 
and run-time requirements is left to the reader. D 
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Hence in particular for measure on E and EXP, martingales are equivalent to 
betting games constrained to bet in lexicographic order. Now we will see how we can 
transform a general betting game into an equivalent martingale. 

4. From betting games to martingales. This section associates to every 
betting game Ga martingale de such that S 00 [G] ~ S00 [dcJ, and begins examining 
the complexity of de. Before defining de, however, we pause to discuss some tricky 
subtleties of betting games and their computations. 

Given a finite initial segment w of an oracle language A, one can define the partial 
computation cw of the betting game up to the stage i at which it first makes a query 
:r; that is not in the domain of w. Define d(w) to be the capital Ci-1 that G had 
entering this stage. It is tempting to think that dis a martingale and succeeds on all A 
for which G succeeds--but neither statement is true in general. The most important 
reat:>on it> that d may fail to be a martingale. 

To see this, t:>uppose x; itself is the lexicographically least string not in the domain 
of w. That is, :i:i is indexed by the bit b of wb, and wl r;;; A iff Xi E A. It is possible 
that GA makes a small (or even zero) bet on xi, and then goes back to make more bets 

'in the domain of w, winning lots of money on them. The definitions of both d( wO) 
and d(wl) will then reflect these added winnings, and both values will be greater 
than d( w). For example, suppose GA first puts a zero bet on Xi = Sj, then bets all 
of its money on ::ri+l = Sj-l not being in A, and then proceeds with Xi+2 = 8j+l· If 
w(s1-il = 0, then d(wO) = d(wl) = 2d(w). 

Put another way, a finite initial segment w may carry much more "winnings po
tential" than the above definition of d( w) reflects. To capture this potential, one needs 
to consider potential plays of the betting game outside the domain of w. Happily, one 
can bound the length of the considered plays via the running time function t of G. Let 
n be the maximum length of a string indexed by w; i.e., n = llog2 (!wl)J. Then after 
t(n) t:>teps, G cannot query any more strings in the domain of w, so w's potential is 
exhausted. We will define dc(w) as an average value of those plays that can happen, 
given the query answers fixed by w. We use the following definitions and notation. 

DEFINITION 4.1. For any t(n) time-bo'Unded betl'ing game G and string w EI:*, 
define the follow·ing. 

(a) A play o is t-maximal if G completes the .first !o:I stages, but not the qv,ery 
and bet of the next stage, within t steps. 

(b) A play o ·is G-consistent with w, written a "'G w, if for all stageB .i s·uch that 
the q'Ueried Btring Xj is in the domain of w, aJ = w(xj). That is, o: ·is a play 
that co·uld poBsibly happen given the information in w. Also let m(a, w) stand 
for the n'Urnber of B'Uch Btages j whose query is answered by w. 

(c) Pinally, p1d de(>.) = cc(>.), and for nonempty w, with n = llog2 (!w!)J a8 
above, let 

(7) dc(w) = ca(o) 2m(a,w)-[a[ . 

a t(n)-maximal,a~cw 

The weight 2m(a,w)-[a[ in (7) has the following meaning. Suppose we extend 
the simulation of cw by flipping a coin for every query outside the domain of w for 
exactly i stages. Then the number of coin-flips in the resulting play o: of length i is 
i-m(a, w), so 2m(n,wJ-i is its probability. Thus dc(w) returns the suitably-weighted 
average oft( n )-step computations of G with w fixed. The interested reader may verify 
that this is the same as averaging d( wv) over all v of length 2t(n) (or any fixed longer 
length), where d is the nonmartingale defined at the beginning of this section. 
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(8) 

LEMMA 4.2. The funct'ion dc(w) is a mart,ingale. 
Proof: First we argue that 

da(w) = cc(o:') 2m(n',w)-t(n). 

Jn'J=t(n),a'~aw 

Observe that when a'= a/3 and a is t(n)-maximal, a ""G w {=::::} a' ""'G w. This is 
because none of the queries answered by /3 can be in the domain of w, else the definition 
of G running in time t(n) would be violated. Likewise if a ""'e w, then m(a',w) = 
m(a,w). Finally, since cc is a martingale, ca(a) = LJ/3J=t(n)-Jal ce(afn 2JaJ-t(nl. 
These facts combine to show the equality of (7) and (8). 

By the same argument, the right-hand side of (8) is unchanged on replacing "t(n)" 
by any t' > t(n). 

Now consider w such that lwl + 1 is not a power of 2. Then the "n" for wO and 
wl is the same as the "n" for dc(w). Let Po stand for the set of a of length t(n) 
that are G-consistent with wO but not with wl, P 1 for thm;e that are G-consistent 
with wl but not wO, and P for those that are consistent with both. Then the set 
{ o: : ial = t(n), a ""'G w} equals the disjoint union of P, Po, and P 1 . Furthermore, 
for a E Po we have m(a,wO) = m(o:,w) + 1, and similarly for P 1 , while for a E P we 
have m(o:, wO) = m(o:, wl) = m(o:, w). Hence da(wO) + de(wl) is given by 

I: ca(o:)2mcn,w0)-t(n) + 2= ca(a)2mca,wl)-t(n) 

nEPUPo aEPUPt 

= L ca(a)2m(o:,wO)-t(n) + L ce(o:)2m(o:,wl)-t(n) + 2 L ca(o:)2m(o:,w)-t(n) 

aEPo o:EP1 o:EP 

= 2 2= ca(n)2111(0:,w)-t(n) + 2 2= ca(o:)2m(o:,w)-t(n) + 2 2= ce(a)2m(a,w)-t(n) 

aEPo o:EP1 aEP 

= 2dc(w). 

Finally, if Jwl + 1 is a power of 2, then dc(wO) and da(wl) use t' := t(n + 1) for 
their length of o:. However, by the first part of this proof, we can replace t(n) by t' 
in the definition of dc(w) without changing its value, and then the second part goes 
through the same way fort'. Hence de is a martingale. 0 

It is still the case, however, that de may not succeed on the languages on which 
the betting game G succeeds. To ensure this, we first use Lemma 3.6 to place betting 
games G into a suitable "normal form" satisfying the sure-winnings condition (5). 

LEMMA 4.3. If G is a betting game satisfy'ing the sure-winnings condition (5), 
then S00 [G] ~ S00 [da]. 

Proof. First, let A E S 00 [G], and fix k > 0. Find a finite initial segment w ~ A 
long enough to answer every query made in a play a of G such that a ""'G w and 
cc(a) 2:: k+2 and long enough to make t(n) in the definition of da(w) (see (7)) greater 
than iai. Then every o:' of length t(n) such that a' ""'e w has the form o:' = a/3. The 
sure-winnings condition (5) implies that the right-hand side of (7) defining de(w) is 
an average over terms that all have size at least k. Hence da(w) 2 k. Letting k grow 
to infinity gives A E S00 [da]. 0 
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Now we turn our attention to the complexity of de. If G is a time-t(n) betting 
game, it is clear that de can be computed dPtermi11istically in O(t(n)) spnr:e. because 
we need only cycle through all a of length t(nl, and all the items in (7) are com
putable in space O(t(n)). In particular, every E-betting game can be simulated b~· a 
martingale whose values are computable in deterministic: space 2o(nl (E•wn counti11g 
the output against the space bound), and every EXP-betting g1une cau be simulated 
by a martingale similarly computed in space 2" 0

( 
1 

J. However, we show in the next 
section that one can estimate dc(w) well without having to cycle through all the o, 
using a pseudorandom generator to ·•sample" only a very small fraction of them. 

5. Sampling results. First we determine the accuracy to which we need to 
estimate the values d( w) of a hard-to-compute martingale. \\'c state a stronger version 
of the result than we need in this section. In the next section. we will apply it to 
martingales whose "activity" is restricted to subsets J of { 0, 1 }* in the following 
sense: for all strings x tJ_ .J, and all w such that "'lwl+l = :r. d(wO) = d(wl) = d(w). 
Intuitively, a martingale dis inactive on a string ;r: if tlwre is no possible "past history" 
w that causes a nonzero bet to be made on J:. For short we say that such ad is inactive 
out.5ide .J. Recall that N = 8(2"). 

LEMMA 5 .1. Let d be a martingale that is 'inactive outside .J i;;;; { 0. l } *. and 
let [E('i)]~0 be a nonnegative sequence such that Ls,EJ E(i) converges to a number l\. 
S1Lppose we can corrwnte in time t(n) a .function g(w) such that \g(w) -d(w)\ ::; c(1V) 
for all w of length N. Then there is a martingale d' cornputable in tim1c (2"t(n))O(l) 
such that for all w, \d'(w) - d(w)I::; 4K + 2t(O). 

In this section, we will apply Lemma 5.1 with J = { 0. 1 }* and f(N) = i/t-.i2 = 
l/22n. In section 6.:~ we will apply Lemma 5.1 in cases where J is finite. 

Pn)()f First note that for any w (with N = \ u• I), 

I. g(wO)+g(wl)l ld(wO)-g(wO)l ld(tcl)-g(1ul)\ g(w) - · 2· ::; \.q(w)-d(1u)\ + 2 + 2 

(9) ::; E(N) + E(N + 1). 

In case J = { 0, 1 } *, we inductively define 

{ 
d'(>.) 

d'(wb) 

g(>.) + 2K + c:(O). 

1'( .) ·(· b). y(wO)+g(wl) c u• + g w - 2 • 

Note that d' satisfies the average law (1), and that we can compute d'(w) in time 
0(2"t(n)). . . 

By induction on I w \, we can show using the estnnate prm-1ded by ( 9) that 

00 N--1 

g(w) + c(N) + 2 L E(i) ::; d'(w) ::; g(w) + 2 L E(i) + c(N) + 2K. 
i=O i=N+l 

It follows that 

d'(w) 2". g(w) + E(N) 
= d(w) + (g(w) - d(w)) + E(N) 2". d(w), 

and that 

d'(w) = d(w) + (g(w) - d(w)) + (d'(w) - g(w)) 
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N-1 

:S d(w) + c(N) + 2 L E(i) + c(N) + 2K 
i=O 

$ d(w) + 4K + 2E(0). 

This establishes the lemma in case J = { 0, 1 } •. The generalization to other 
subsets J of { 0, 1 }* is left to the reader. D 

Next, we specify precisely which function fa we will sample in order to estimate 
de and how we will do it. 

Let G be a t(n) time-bounded betting game. Consider a prefix w, and let n denote 
the largest length of a string in the domain of w. With any string p of length t(n), 
we can associate a unique "play of the game" G defined by using w to answer queries 
in the domain of w and the successive bits of p to answer queries outside it. We can 
stop this play after t(n) steps-so that the stopped play is a t(n)-maximal a-and 
then define fa(w,p) to be the capital ca(a). Note that we can compute fc(w,p) in 
linear time, i.e., in time O(lwl + t(n)). The proportion of strings p of length t(n) that 
map to the same play a is exactly the weight 2m(a,w)-iad in (7) for da(w). Letting E 
stand for mathematical expectation, this gives us 

dc(w) = EIPl=t(n)[fc(w, p)]. 

To obtain good and efficient approximations to the right-hand side, we employ 
pseudorandom generators. The following supplies all relevant definitional background. 

DEFINITION 5.2 (see [NiWi94]). 
(a) The hardness HA(n) of a set A at length n is the largest integers such that 

for any circuit C of size at most s with n inputs, 

\Prx[C(x) = A(x)] - ~I :5 ~' 
where x is uniformly distributed over En. 

(b) A pseudorandom generator is a function D that, for each n, maps En into 
Er(n), where r(n) ?: n + l. The function r is called the stretching of D. 

(c) The security Sn(n) of D at length n is the largest integers such that, for any 
circuit C of size at most s with r(n) inputs, 

I Prx[C(x) = l] - Pry[C(D(y)) = l]I :5 ~, 

where x is uniformly distributed over Er(n) and y over En. 

We will use pseudorandom generators with the following characteristics: 
(1) an E-computable pseudorandom generator D1 that stretches seeds super-

polynomially and has super-polynomial security at infinitely many lengths; 
( ) Ex . '1(1) 
2 an P-computable pseudorandom generator D 2 of security 2n ; and 

(3) an E-computable pseudorandom generator D3 of security 2n(n). 

D1 will be applied in the next section; in this section we will use D 2 and D3. None 
of these generators is known to exist unconditionally. However, a highly plausible 
hypothesis suffices for the weakest generator D1 , as follows simply by combining the 
work of [BFNW93] and [NiWi94] with some padding. 

THEOREM 5.3. If MA f. EXP, then there is an E-computable pseudorandom 
generator D1 with stretching n8 (lagn) such that for any integer k, there are infinitely 
many n with Sv1 (n) > nk. 
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Proof. From the proof of Lemma 4.1 of [BFNW93], it follows that if MA i= EXP, 
then there is a set A E. EXP such that for any integer j, there are infinitely many m 
such that HA(m) > m1 . From the proof of the main Theorem 1 in [NiWi94], it follows 
that for any set A E EXP, there is an EXP-computable pseudorandom generator D 
with stretching ne(logn) such that Sn(n) = fi(HA( y'n)/n). Say that Dis computable 
in time 2n° for some integer constant c > 0. For any k > 0, the infinitely many m 
promised above with j = 2(ck + 1) yield infinitely many n of the form m,2/c such that 
Sn(n1lc) > nk. Defining D1(x) = D(x'), where x' denotes the prefix of x of length 
jxj 1/c, yields the required pseudorandom generator. D 

Exponential-time computable pseudorandom generators with exponential security 
have the interesting property that we can blow up the stretching exponentially without 
significantly reducing the security. As with Theorem 5.3, credit for this observation 
should be distributed among the references cited in the proof. 

THEOREM 5.4. 
(a) Given an EXP-computable pseudorandom generator Do of security 2nn(i), we 

can construct an EXP-computable pseudorandom generator D2 of security 
fl(l) 11(1) 

2n and stretching 2n . 
(b) Given an E-computable pseudorandom generator Do of security 2n(n), we can 

construct an E-computable pseudorandom generator D 3 of security 2n(n) and 
stretching 2n(n). 

Proof For (a), Nisan and Wigderson [NiWi94] showed that the existence of an E
computable pseudorandom generator with stretching n+ 1 (a "quick extender" in their 
terminology) with security 2nnol is equivalent to the existence of an E-computable 

pseudorandom generator with stretching and security 2nn(iJ. See statements (3) and 
(4) of their main theorem (Theorem 1) instantiated with s(P) = 2e. As used in 
[BFNW93], their main result carries through if we replace "E-computable" by "EXP
computable" in both statements, owing to padding. Since the existence of Do implies 
the existence of an EXP-computable extender with security 2nn(l), the existence of 
D2 follows. 

For (b), first define D'(x) to be the first lxl + 1 bits of Do(x). Then D' is an 
extender with security 2n(n), and this implies that the range of D' is a language 
in E requiring circuits of size 2n(n). Impagliazzo and Wigderson, in their proof of 
Theorem 2 in [Im Wi97], showed how to transform such a language into a language 
A E E such that HA(n) = 2n(n). Using this A in part (3) of Theorem 2 of [NiWi94] 
yields an E-computable pseudorandom generator D 3 of security and stretching 2n(n). 
(It is also possible to argue that the range of D' is sufficiently hard to employ the 
technique of [NiWi94], without going through [ImWi97].) D 

Pseudorandom generators of security 2nn(iJ (even polynomial-time computable 
ones) are fairly widely believed to exist (see [B1Mi84, RaRu97, Bon99]), and while 
those of security 2n(n) are more controversial even for EXP-computability, their ex
istence was made more plausible by the result of [Im Wi97] used in the proof of (b) 
above. Polynomial-time computable pseudorandom generators of security 2n(n) exist 
relative to a random oracle [Zim95, Imp99pc], and E-computable ones also exist if 
P = NP. (The latter observation follows by combining the techniques of Kannan 
[Kan82] with padding and the above-mentioned result of [Im Wi97]; it is noted by the 
second author as "Corollary 2.2.19" in his dissertation [Mel99].) 

The following general result shows how pseudorandom generators can be used to 
approximate averages. It provides the accuracy and time bounds needed for applying 
Lemma 5.1 to get the desired martingale. 
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THEOREM 5.5. Let D be a pseudorandom generator computable in time t5(n) and 
with stretching r( n). Let f : I:* x I:* -+ ( -oo, oo) be a function that is computed in 
l·inear time on a Turing machine, and let s, R, m : N-+ N be fully time-constructible 
f1mctions such that s(N) 2: N and the following relations hold for any integer N 2: 0, 
w E LN. and p E L:s(N): 

( 10) 

Jf(w,p)J S R(N), 

r(m(N)) 2: s(N), 

So(m(N)) 2: (s(N) + R(N)) 6 • 

Then we can approximate 

( 11) h(w) = EIPl=s(N) [f(w, p)] 

to within N- 2 'in time 0(2m(N) · (s(N) + R(N))4 · 8(m(N))). 
Proof. For any N 2: 0, let IN be a partition of the interval [-R(N), R(N)] into 

subintervals of length ~· Note that JINJ = 4N2 R(N). Define for any I E IN ancl 
any string w of length N 

7r(I, w) = PrlPl=s(N)[f(w, p) EI]. 

The predicate in [ ... ] can be computed by circuits of size O(s(N) log s(N)), using 
the t-to-0( t log t) Turing-machine-time-to-circuit-size construction of Pippenger and 
Fischer [PiFi79]. Since So(m(N)) = w(s(N) log s(N)), it follows that 

ir(I, w) = Prlal=m(N)[f(w, D(CT)[l ... s(N)]) E J] 

approximates 7r(f, w) to within an additive error of (S0 (m(N)) )- 1 , and we can com
pute it in time 0(2m(N) ·s(N)·8(m(N))). We define the approximation fi(w) for h(w) 
as 

h(w) = L ?T(I, w) min(I). 
IEIN 

Since we can write h ( w) as 

h(w) = L 7r(f, w)E[pj=s(NJ[f(w, p) J f(w, p) EI], 
lEIN 

we can bound the approximation error as follows: 

lh(w) - h(w)I 

S L 7r(l,w) IEIPl=s(N)[f(w,p) lf(w,p) EI]- min(J) I 
lEIN 

+ L 17r(I, w) ir(I, w) I min(J) 
lEIN 

S max(llJ) + IINI · (So(m(N)))- 1 · R(N) 
lEIN 

S ? ~,2 + 4N2 · R2 (N) · (So(m(N)))- 1 s _l . -1• N2 
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Computing h(w) requires IINI = 4N2R(N) evaluations of ?r, which results in the 
claimed upper bound for the time complexity of h. D 

Now we would like to apply Theorem 5.5 to approximate h = de given by (7) 
to within N-2 , by setting f = Jc and s(N) = t(log N). However, for a general 
betting game G running in time t(n), we can only guarantee an upper bound of 
R(N) = 2t(logN) ·cc(>.) on lf(w,p)I. Since Sv can be at most exponential, condition 
(10) would force m(N) to be O(t(logN)). In that case, Theorem 5.5 can only yield an 
approximation computable in time 20(t(log N)). However, we can assume without loss 
of generality that G satisfies the slow-winnings condition (6) of Lemma 3.6, in which 
case an upper bound of R(N) E O(N) holds. Then the term s(N) in the right-hand 
side of (10) dominates, provided t(n) = 2n(n). 

Taking everything together, we obtain the following result about transforming E
and EXP-betting games into equivalent E-, respectively, EXP-martingales. 

THEOREM 5.6. If there is a pseudorandom generator computable in E with se
curity 2n(n), then for e·very E-betting game G, there exists an E-martingale d such 
that S 00 [G] ~ S 00 [d]. If there is a pseudorandom generator computable in EXP with 

. !l(l) 
security 2" , then for every EXP-betting game G, there exists an EXP-martingale 
d such that S00 [G] ~ S00 [d]. 

Proof By Lemma 3.6, we can assume that cc satisfies both the sure-winnings 
condition (5) as well as the slow-winnings condition (6). Because of Lemmas 4.3 and 
5.1 (since the series I::i b converges), it suffices to approximate the function dc(w) 
given by (7) to within N-2 in time 2°<nl, respectively, 2n°<'l, where N = lwl and 
n = logN. 

Under the given hypothesis about the existence of an E-computable pseudo
random generator D0 , we can take D to be the pseudorandom generator D3 pro
vided by Theorem 5.4(b). Thus we meet the conditions for applying Theorem 5.5 
to h = de with s(N) = N°<1l, R(N) = O(N), and m(N) = O(log N), and we 
obtain the approximation of de that we need. In the case of an EXP-betting 
game G, to obtain an EXP-martingale we can take D to be the pseudorandom gen
erator D 2 of weaker security guarantee 2nno> provided by Theorem 5.4(a). Then we 

. (l N)O(l) meet the requirements of Theorem 5.5 with s(N) = 2 og , R(N) = O(N), and 
m(N) = (log N)O(l). 0 

6. Autoreducible sets. An oracle Turing machine M is said to autoreduce a 
language A if L(MA) =A, and for all strings x, MA on input x does not query x. That 
is, one can learn the membership of x by querying strings other than x itself. If M 
runs in polynomial time, then A is P-autoreducible-we also write 5.~-autoreducible. 
If M is also nonadaptive, then A is 5.fcautoreducible. 

One can always code M so that for all oracles, it never queries its own input
then we call M an autoreduction. Hence we can define an effective enumeration 
[Mi]~ 1 of polynomial-time autoreductions, such that a language A is autoreducible 
iff there exists an i such that L(M;A) =A. (For a technical aside: the same M1 may 
autoreduce different languages A, and some Mi may autoreduce no languages at all.) 
The same goes for Sft-autoreductions. 

Autoreducible sets were brought to the polynomial-time context by Ambos-Spies 
[Amb84]. Their importance was further argued by Buhrman, Fortnow, Van Melke
beek, and Torenvliet [BFvMT98], who showed that all 5.~-complete sets for EXP 
are S~-autoreducible (while some complete sets for other classes are not). Here we 
demonstrate that autoreducible sets are important for testing the power of resource
bounded measure. 
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6.1. Adaptively autoreducible sets. As stated in the introdnction, if the:::;~
autoreducible sets in EXP (or sufficiently the :::;~-complete sets for EXP) are covered 
by an EXP-martingale, then EXP f. BPP, a nonrelativizing consequence. However, it 
is easy to cover them by an E-betting game. Indeed, the betting game uses its adaptive 
freedom only to "look ahead" at the membership of lexicographically greater strings, 
betting nothing on them. 

THEOREM 6.1. Ther·e is an E-betting game G that covers all -::;j,-autoreducible 
languages. 

Proof. Let M 1 , lvh, ... be an enumeration of :::;~-autoreductions such that each 
]}[i runs in time n; + 'i on inputs of length n. Our betting game G regards its capital 
as composed of infinitely many "shares" c;, one for each !vf;. Initially, ci = 1/2.;. 
Letting (·, ·) be a standard pairing function, inductively define no = 0 and n(i,j)+1 = 
(n(i,j) )i +i. 

During a stages= \i,j), G simulates !vfi on input ons- 1 • Whenever !vl; makes a 
query of length less than n8 _ 1, G looks up the answer from its table of past queries. 
vVhenever Al; makes a query of length n 8 _ 1 or more, G places a bet of zero on that 
string and makes the same query. Then G bets all of the share c; on 0"'- 1 according 
to the answer of the simulation of M;. Finally, G "cleans up'' by put.ting zero bet::; on 
all strings with length in [n8 _ 1 , ns) that were not queries in the previous steps. 

If M; autoreduces A, then share c; doubles in value at each stage \i,j) and 
makes the total capital grow to infinity. And G runs in time 20(n)_indeed, only the 
''cleanup" phase needs this much time. 0 

COROLLARY 6.2. Each of the following statements implies BPP =/:-EXP. 
1. The class of ::;~-uutoreducible sets has E-rneasnrc zero. 
2. The class of ::;j,-cornplete sets for EXP has E-rneas,ure zero. 
3. E-betting games and E-martingales are equivalent. 
4. E-betting games have the fi:n'ite 'Union property. 

The same holds if we replace E by EXP 'in these statements. 
Proof Let C stand for the class of languages that are not ::;~.-hard for BPP. 

Allender and Strauss [A1St94] showed that Chas E-rneasure zero, so trivially it is also 
covered by an E-betting game. Now let V stand for the class of ::;~,-complete sets for 
EXP. By Theorem 6.1 and the mmlt of [BFvMT98] cited above, 1) is covered by an 
E-betting game. 

If EXP= BPP, the union CU V contains all of EXP, and 
• if V would have E-measure zero, so would CUD and hence EXP, contradicting 

the measure conservation property of Lutz measure; 
• if E-betting games would have the finite-union property, then CU V and EXP 

would be covered by an E-betting game, contradicting Theorem 3.4. 
Since statement 1 implies statement 2, and statement 3 implies statement 4, then 
these observations suffice to establish the corollary for E. The proof for EXP is 
similar. 0 

Since there is an oracle A giving EXPA. = BPPA [Hel86], this shows that rela
tivizable techniques cannot establish the equivalence of E-martingale::; and E-betting 
games, nor of EXP-martingales and EXP-betting games. They cannot refute it either, 
since there are oracles relative to which strong pseudorandom generators exist---all 
"random" oracles, in fact [Zim95]. 

6.2. Nonadaptively autoreducible sets. It is tempting to think that the 
nonadaptively P-autoreducible sets should have E-measure zero, or at least EXP
measure zero, insofar as betting games are the adaptive cousins of martingales. How-
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ever, it is not just adaptiveness but also the freedom to bet out of the fixed lexi
cographic order that adds power to betting games. If one carries out the proof of 
Theorem 6.1 to cover the class of Sft-autoreducible sets, using an enumeration [Mi] 
of Sft-autoreductions, one obtains a nonadaptive E-betting game (defined formally 
below) that (independent of its oracle) bets on all strings in an order given by a single 
permutation of :E*. The permutation itself is E-computable. It might seem that an 
E-martingale should be able to "untwist" the permutation and succeed on all these 
sets. However, our next results, which strengthen the above corollary, close the same 
"nonrelativizing" door on proving this with current techniques. 

THEOREM 6.3. For any k ~ 1, the Sft-complete languages for .6.j; are sfr 
autoreducible. 

Here is the proof idea, which follows techniques of [BFvMT98] for the theorem 
that all EXP-complete sets are s~-autoreducible. Call a closed propositional formula 
that has at most k blocks of like quantifiers (i.e., at most k- l quantifier alternations) 
a "QBFk formula," and let TQBF k stand for the set of true QBF formulas. Let A be 
a Sft-complete set for A~+i = pE~. Since TQBF k is :E~ -hard, there is a deterministic 
polynomial-time oracle Turing machine M that accepts A with oracle TQBFk. Let 
q(x, i) stand for the ith oracle query made by Mon input x. Whether q(x, i) belongs 
to TQBFk forms a ~~+1-question, so we can Sft-reduce it to A. It is possible that 
this latter reduction will include x itself among its queries. Let bt denote the answer 
it gives to the question provided that any query to x is answered "yes," and similarly 
define bi in case x is answered "no." 

If bt = bi, which holds in particular if x is not queried, then we know the correct 
answer bi to the ith query. If this situation occurs for all queries, we are finished: We 
just have to run M on input x using the bi's as answers to the oracle queries. The bi's 
themselves are obtained without submitting the (possibly adaptive) queries made by 
M, but rather by applying the latter Sft-reduction to A to the pair (x, i), and without 
submitting any query on x itself. Hence this process satisfies the requirements of a 
sfrautoreduction of A for the particular input x. 

Now suppose that bt f. bi for some i, and let i be minimal. Then we will have 
two players play the k-round game underlying the QBFk-formula that constitutes 
the ith oracle query. One player claims that bi is the correct value for bi, which 
is equivalent to claiming that x E A, while his opponent claims that bi is correct 
and that x <f. A. Write XA(x) = 1 if x E A, and XA(x) = 0 if x <f. A. The players' 
strategies will consist of computing the game history so far, determining their optimal 
next move, Sfrreducing this computation to A, and finally producing the result of 
this reduction under their respective assumption about XA(x). This approach will 
allow us to recover the game history in polynomial time with nonadaptive queries to 
A different from x. Moreover, it will guarantee that the player making the correct 
assumption about XA(x) plays optimally. Since this player is also the one claiming 
the correct value for bi, he will win the game. So, we output the winner's value for bi. 

It remains to show that we can compute the above strategies in deterministic 
polynomial time with a E~ oracle, i.e., in FPE~. It seems crucial that the number k 
of alternations be constant here. 

Proof of Theorem 6.3. Let A be a sfccomplete set for ~t+i accepted by the 
polynomial-time oracle Turing machine M with oracle TQBFk. Let q(x,i) denote 
the ith oracle query of MTQBFk on input x. Then q(x, i) can be written in the 
form (3y1)(V'y2) ... (QkYk) <Px,i(Y1,y2, ... ,yk), where y1, ... ,yk stand for the vectors 
of variables quantified in each block, or in the opposite form beginning with the 
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block ('\/yi). By reasonable abuse of notation, we also let Yr stand for a string of 
0-1 assignments to the variables in the rth block. Without loss of generality, we may 
suppose every oracle query made by M has this form where each Yi is a string of length 
lxlc, and M makes exactly Jxlc queries, taking the constant c from the polynomial 
time bound on M. Note that the function q belongs to FPE~. Hence the language 

Lo= { (x, y) : q(x, i) E TQBFk} 

belongs to ~~+i · Since A is sfccomplete for ~~+1' there is a polynomial-time non
adaptive oracle Turing machine N 0 that accepts Lo with oracle A. Now define bt ( x) = 

Nt'u{x}((x,i)) and b.i(x) = Nt\{x}((x,i)). We define languages Li,L2, ... ,Lk E 

~~+l and :::;ft-reductions N1 , N2, ... , Nk inductively as follows. 
Let 1 Sf, S k. The set Le consists of all pairs (x,j) with 1 S j S Jxlc, such 

that there is a smallest i, 1 S i S JxJc, for which bj(x) =/= bi(x), and the following 
condition holds. For 1 $ r Sf, - 1, let the sth bit of Yr equal N,:4u{x}((x,s)) if 
r = bt(x) mod 2, and N/1.\{x}((x,s)) otherwise. We put (x,j) into Le iff there is a 
lexicographically least Ye such that 

and the jth bit of Ye is set to 1. The form of this definition shows that Le belongs 
to ~~+i · Hence we can take Ne to be a polynomial-time nonadaptive oracle Turing 
machine that accepts Le with oracle A. 

Now, we construct a Sfcautoreduction for A. On input x, we compute bt(x) and 
bi(x) for 1 $ i $ lxlc, as well as y~.b) for b E {O, l} and 1 Sr S lxlc. The latter quan
tity y~b) is defined as follows: for 1 $ s $ lxlc, the sth bit of y~b) equals N/u{x} ( (x, s)) 

ifr = bmod2, and N,:4\{x}((x,s)) otherwise. Note that we can compute all these 
values in polynomial time by making nonadaptive queries to A, none of which equals 
x. 

If bt (x) =bi (x) for every 1 Si $ lxlc, we run Mon input x using bt (x) = bi (x) 
as the answer to the ith oracle query. Since it always holds that at least one of bj (x) 
and bi(x) equals the correct oracle answer b;(x), we faithfully simulate Mon input 
x and hence compute XA(x) correctly. 

Otherwise, let i be the first index for which bt(x) =!=bi (x). Since bj (x) = bj (x) = 
bj (x) for j < i, we can determine q(x, i) by simulating Mon input x until it asks the 
ith query. We then output 1 if 

b+( ) _ ,i, ·( (bi(x)) (bi(x)) (bi(x))) 
; x - '+'x,i Y1 , Y2 , · · · , Yk 

and output 0 otherwise. We claim that this gives the correct answer to whether x E A. 

In order to prove the claim, consider the game history Yibi(x)), y;bt(x)), ... , 

Ykbi(x)). The player claiming the correct value for bi(x) gets to play the rounds that 
allow him to win the game no matter what his opponent does. Since this player 
is also the one making the correct assumption about XA(x), an inductive argument 
shows that he plays optimally: At his stages f, the string Ye in the above construc
tion of Le exists, and he plays it. The key for the induction is that at later stages 
f,' > f, the value of Ye at stage f,' remains the same as what it was at stage f. 
Thus the player with the correct assumption about XA(x) wins the game--that is, 
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·( Wi(x)) .. (bi(x)) (bi(x)) • , . . . • . , , <Px,1 Yi , lh , ... , Yk ) equals his guess for b.;(:r:) (and not the other players 
guess). D 

In order to formalize the strenisthening of Corollary 6.2 that results from Theo
rem 6.3, we call a betting game G nonadaptive if the infinite sequence x 1 , x 2 , x3 , .. . 

of queries GA makes is the same for all oracles A. If G runs in 20(n) time, and 
this sequence hits all strings in I:*, then the permutation 7r of the standard ordering 
s1, s2, s3, ... defined by 7r(.si) = X; is both computable and invertible in 2o(n) time. 
It is computable in this amount of time because in order to hit all strings, G must 
bet on all strings in { 0, 1 } 11 within the first 2°Cnl steps. Hence its ·ith bet must be 
made in a number of steps that is singly-exponential in the length of Si. And to 
compute 7r- 1 (.r;), G need only be run for 2°<lxil) steps, since it cannot query Xi after 
this time. Since 7r and its inverse are both E-computable, 7r is a reasonable candidate 
to replace lexicographic ordering in the definition of E-martingales, and likewise for 
EXP-martingales. We say a class C has 7r-E-measure zero if C can be covered by 
an E-martingale that interprets its input as a characteristic string in the order given 
by 7r. 

THEOREM 6.4. The class of S:f1 -autor·educible languages can be covered by a non
adaptive E-betting game. Hence there is an E-computable and invertible permutation 
7r of 2=* such that thi:; class has 7r-E-rnea.mr·e zero. 

Proof. With reference to the proof of Theorem 6.1, we can let Afi,l\.![2 , ... be 
an enumeration of ::;fcautoreductions such that each A1i runs in time ni + i. The 
machine G in that proof automatically becomes nonadaptive, and since it queries all 
strings, it defines a permutation 7r of I:* as above with the required properties. D 

COROLLARY 6. 5. Each of the following statements impl·ies BPP =/= EXP, as do 
the statements obtained on replaC'ing ''E" by "EXP." 

1. The class of ::;ft-autoreduC'ible sets has E-rneas1Lre zero. 
2. The class of ::;f1 -complete sets for EXP has E-meas'nre zero. 
3. Nonadaptive E-betting garnes and E-martingales are equivalent. 
4. If two classes can be covered by nonadaptive E-betting games, then their union 

can be covered by an E-bett'ing game. 
5. For all classes C and all E-computa.ble and inver·tible orderings 7r, if C has 

7r-E-mea.mre zero, then C has E-rneasure zero. 
Proof. It suffices to make the following two observations to argue that the proof 

of Corollary 6.2 carries over to the truth-table cases. 
• The construction of Allender and Strauss [A1St94] actually shows that the 

class of sets that are not ::;fcharcl for BPP has E-measure zero. 
• If EXP = BPP, Theorem 6.3 implies that all S:fccomplete sets for EXP are 

S:fcautoreducible, because BPP c;;; I:~ c;;; 6~ c;;; EXP. 
Theorem 6.4 and the finite-unions property of Lutz's measures on E and EXP do the 
rest. D 

The last point of Corollary 6.5 asserts that Lutz's definition of measure on Eis 
invariant under all E-computable and invertible permutations. These permutations 
include fiip from the introduction and (crucially) 7r from Theorem 6.4. Hence this 
robustness assertion for Lutz's measure implies BPP =/= EXP. Our "betting-game 
measure" (both adaptive and nomidaptive) does enjoy this permutation invariance, 
but asserting the finite-unions property for it also implies BPP =/= EXP. The rest 
of this paper explores conditions under which Lutz's martingales can cover classes 
of autoreclucible sets, thus attempting to narrow the gap between them and betting 
games. 
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6.3. Covering autoreducible sets by martingales. This puts the spotlight 
on the question: Under what hypotheses can we show that the ::Sfcautoreducible 
sets have E-measure zero? Any such hypothesis must be strong enough to imply 
EXP =/. BPP, but we hope to find hypotheses weaker than assuming the equivalence 
of (E- or EXP-) betting games and martingales, or assuming the finite-union property 
for betting games. Do we need strong pseudorandom generators to cover the ::Sfr 
autoreducible sets? How close can we come to covering the ::S~-autoreducible sets by 
an E-martingale? 

Our final results show that the hypothesis MA=/. EXP suffices. This assumption 
is only known to yield pseudorandom generators of super-polynomial security (at in
finitely many lengths) rather than exponential security (at almost all lengths). Recall 
that MA contains both BPP and NP; in fact it is sandwiched between NPBPP and 
BPPNP. 

THEOREM 6.6. If MA =/. EXP, then the class of ::Sft-autoreduC'ible sets has E
measure zero. 

We actually obtain a stronger conclusion. 
THEOREM 6. 7. If MA =/. EXP, then the class of languages A autoreducible by 

polynomial-time oracle Turing machines that always make their queries in lexico
graphic order has E-measure zero. 

To better convey the essential sampling idea, we prove the weaker Theorem 6.6 
before the stronger Theorem 6. 7. The extra wrinkle in the latter theorem is to use 
the pseudorandom generator twice, both to construct the set of "critical strings" to 
bet on and to compute the martingale. 

Proof of Theorem 6.6. Let (Mi]~ 1 enumerate the ::Sfcautoreductions, with each 
Mi running in time ni. Divide the initial capital into shares si,m for i, rn ;:::: 1, with 
each si,m valued initially at (1/m2 )(1/2i). For each share si,m' we will describe a 
martingale that is active only on a finite number of strings x. The martingale will be 
active only if i :::; m/2 llog2 ml and m :::; lxl s; mi, and further only if x belongs to a 
set J = Ji,m constructed below. Hence the martingale will be inactive outside J, and 
we will be able to apply Lemma 5.1. We will arrange that whenever Mi autoreduces 
A, there are infinitely many m such that share Si,m attains a value above 1 (in fact, 
close to m) along A. Hence the martingale defined by all the shares succeeds on A. 
We will also ensure that each active share's bets on strings of length n are computable 
in time 2an, where the constant a is independent of i. This is enough to make the 
whole martingale E-computable and complete the proof. 

To describe the betting strategy for Si,m, first construct a set I = li,m starting 
with I = { om } and iterating as follows: Let y be the lexicographically least string of 
length m that does not appear among queries made by Mi on inputs x E J. Then 
add y to I. Do this until I has 31log2 ml strings in it. This is possible because the 
bound 3flog2 m lmi on the number of queries Mi could possibly make on inputs in I 
is less than 2m. Moreover, 2m bounds the time needed to construct I. Thus we have 
arranged that 

(12) for all x, y EI with x < y, Mi(x) does not query y. 

Now let J stand for I together with all the queries Mi makes on inputs in I. Adapting 
ideas from Definition 4.1 to this context, let us define a finite Boolean function f3 : 
J ~ { 0, 1 } to be consistent with Mi on I, written /3 "'1 Mi, if for all x E I, Mi 
run on input x with oracle answers given by f3 agrees with the value (3(x). Given a 
characteristic prefix w, also write f3 "' w if (3(x) and w(x) agree on all x in J and 
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the domain of w. Since I and J depend only on i and m, we obtain a "probability 
density'' function for each share 8;,m via 

(13) 

The martingale di.m standardly as8ociated to this density (a8 in [Lutz92]) is definable 
inductively by d;,m(.A) = 1 and 

( 4) d ( ) ( ) 7ri m(·wl) 
1 i,m wl = d;,m w ' ( ' 

Jr· w) i,m 

) ( 7r; m ( wO) 
di,m(wO = di,m w) ' ( ) . 

'Tf'.i 1rn W 

(In case 7r;,m = 0, we already have d;,m(w) = 0, and so both di,rn(wl) and d;,m(wO) 
are set to 0.) 

Note that the values 1ri,rn (wb) for b = 0, 1 can only differ from 1ri,rn(w) if the 
string :r indexed by b belongs to J, i.e., d;,m is inactive outside J. 

CLAil\I 6.8. ff Al.; autoreduces A., then for· all sufficiently large m, ·if share s;,m 

could play the strn.tegy d;,m, then on A 'its value would rise to (at least) m/2;. That 

is, s;,m wou.ld mv.ltiply its initial vafoe by (at least) m 3 . 

To see this, first note that for any w r;;;; A long enough to contain J in its doma.in, 
7r; ,m ( w) = l. We want to show that for any v short enough to have dornain disjoint 
from I, 7r;,m(v) = 1/21 1 1. To do this, consider any fixed 0-1 assignment /30 to strings 
in J \I that agrees with v. This assignment determines the computation of AI; on 
the lexicographically first string x E I, using (30 to answer queries, and hence forces 
the value of (J(:r) in order to maintain consistency on I. This in turn forces the 
value /3(:r') on the next string :r' in I, and so mi. Hence only one out of 21 11 possible 
completions of /10 to f3 is consistent with Af; on I. Thus 1fi,m ( v) = 1 /21II. Since 
d (w) = d . (v)·(rr• (·w)/rr· . (11)) bu (14) and 21 11 = 2:3f!og2ml > m3 Claim 6.8 is 1.,nL 1.,rn 1.,rn l.,1n ..Y , _ ' 

proved. 
The main obstacle now is that 7r;,m in (13), and hence d.;,m(w), may not be com

putable in time 2an with a independent of ·i. The number of assignments (3 to count 
is on the order of 2IJI ~ 2m' ~ 211 '. Here is where we use the E-computa.ble pseudo
random generator D 1 , with super-polynomial stretching and with super-polynomial 
security at infinitely many lengths, obtained via Theorem 5.3 from the hypothesis 
:tvIA =I= EXP. For all i and sufficiently large rn, D1 stretches a seed s of length m into 
at least 3 IJog2 rnl mi bits, which a.re enough to define an assignment /38 to J ( agTeeing 
with any given w). We estimate 7r;,m(w) by 

(15) 

Take f = I/mi+~. By Theorem 5.:3 there are infinitely many "good" m such that 
SD1 (m) > rni+4_ 

CLAIM 6.9. For all lw:qe enough good m, every estimate fr;,m(w) gives \il-;,m(w)-
7r;,m(w)j :::; f. 

Suppose not. First note that (13) and (15) do not depend on all of w, just on the 
up-to-31Jog2 mlmi < mi+l bits in w that index strings in J, and these can be hard
wired into circuits. The tests [/3 "' 1 AI;] can also be clone by circuits of size o( mH 1), 

because a 1\iring machine computation of time r can be simulated by circuits of 
size O(rlogr) [PiFi79]. Hence we get circuits of size less than Sv,(m) achieving a 
discrepancy greater than l/Sv 1 (m), which is a contradiction. This proves Claim 6.9. 

Finally, observe that the proof of Claim 6.8 gives us not only d;,m(w);::: 7r;,m(w) · 
m:3, but also d;,m(w) = 8(7r;,m(w) · m 3 ), when w [;;;:A. For w [;;;:A. and good m, we 
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thus obtain estimates g(w) for d;,m(w) within error bounds E1 = 8(E) = 8(1/mi+1 ). 

Now applying Lemma 5.1 for this g(w) and J = J;,m yields a martingale d~,m(w) 
computable in time 2an, where the constant a is independent of i. This d~,m ( w) is 
the martingale computed by the actions of share s;.,m· Since K = :l:s,EJ E1 = IJIE' S 
(l/m)·3flog2 ml = o(l), we actually obtain ld~,m(w) - d.i,m(w)I = o(l), which is 
stronger than what we needed to conclude that share si,m returns enough profit. This 
completes the proof of Theorem 6.6. D 

To prove Theorem 6.7, we need to construct sets I= Ii,m with properties similar 
to (12), in the case where Mi is no longer a :::;f1-autoreduction but makes its queries 
in lexicographic order. To carry out the construction of I, we use the pseudorandom 
generator D 1 a second time and actually need only that lvli on input ffm makes 
all queries of length < m before making any query of length ~ m. To play the 
modified strategy for share si,m, however, appears to require that all queries observe 
lexicographic order. 

Proof of Theorem 6.7. Recall that the hypothesis EXP =f. MA yields a pseudo
random generator D 1 computable in time 20(m) and stretching m bits to r(m) bits 
such that for all i, all sufficiently large m give r( m) > mi, and infinitely many m give 
hardness SD1 (m) >mi. Let [M;]~1 be a standard enumeration of s1;.-autoreductions 
that are constrained to make their queries in lexicographic order, with each Af; run
ning in time O(n;). We need to define strategies for "shares" Si,m such that whenever 
AI; autoreduces A, there are infinitely many m such that share s;,m grows its initial 
capital from l/m22i to l/2i or more. The strategy for s;,m must still be computable 
in time 2am where a is independent of i. 

To compute the strategy for s;,m, we note first that Si,m can be left inactive 
on strings of length < m. The overall running time allowance 20(m) permits us to 
suppose that by the time s.;,m becomes active and needs to be considered, the initial 
segment w0 of A (where A is the language on which the share happens to be playing) 
that indexes strings of length up to m - 1 is known. Hence we may regard w0 as fixed. 
For any a E { 0, 1 }m' let Mf (x) stand for the computation in which w0 is used to 
answer any queries of length < m and a is used to answer all other queries. Because 
of the order in which M; makes its queries, those queries y answered by w0 are the 
same for all o:, so that those answers can be coded by a string u0 of length at most 
mi. Now for any stringy of length equal tom, define 

P(x,y) = Pr,.[Mf(x) queries y]. 

Note that given ua and o:, the test "M;"'(x) queries y" can be computed by circuits of 
size O(mi+ 1 ). Hence by using the pseudorandom generator D1 at length m, we can 
compute uniformly in E an approximation P1 (x,y) for P(x,y) such that for infinitely 
many m, said to be "good" m, all pairs x,y give IP1(x,y)- P(x,y)I:::; Em, where we 
choose fm = l/m4 . 

Here is the algorithm for constructing I = Ii,m· Start with I := 0, and while 
III < 3 log2 rn, do the following: Take the lexicographically least string y E :Em \ I 
such that for all x E I, P1 ( x, y) S fm. The search for such a y will succeed within 
III· mi+4 trials, since for any particular x, there are fewer than mi+4 strings y overall 
that will fail the test. (This is so even if m is not good, because it only involves P1 , 

and because P1 involves simulating M;Di(s) over all seeds s.) There is enough room 
to find such a y provided 1Ilmi+4 S 2m, which holds for all sufficiently large m. The 
whole construction of I can be completed within time 22am. It follows that for any 
sufficiently large good m and x,y E I with x < y, Pr,.[M;°'(x) queries y] < 2Em = 
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2/m4 . 

At this point we would like to define J to be "I together with the set of strings 
queried by Mi on inputs in J" as before, but unlike the previous case where Mi was 
nonadaptive, this is not a valid definition. We acknowledge the dependence of the 
strings queried by Mi on the oracle A by defining 

JA:= I U { y: (3x E I)MiA(x) queries y }. 

Let r =mi. r3logml Then IJAI $ r; that is, JA has the same size as Jin the 
previous proof. This latter definition will be OK because Mi makes its queries in 
lexicographic order. Hence the share si,m, having already computed I without any 
reference to A, can determine the strings in JA on which it should be active on the fly, 
in lexicographic order. Thus we can well-define a mapping f3 from { 0, 1 Y to { 0, 1} 
so that for any k $ r, (J(k) = 1 means that the query stringy that happens to be kth 
in order in the on-the-fly construction of JA is answered "yes" by the oracle. Then we 
may write J13 for JA, and then write f3(y) = 1 in place of f3(k) = 1. Most important, 
given any x E I, every such (J well-defines a computation Mf (x). This entitles us to 
carry over the two "consistency" definitions from the proof of Theorem 6.6: 

• (J"' w if (J(y) = w(y) for ally E J13; 
• /3 "'I Mi if for all x E J, Mf (x) equals (i.e., "agrees with") (3(x). 

Finally, we may apply the latter notion to initial subsets of I and define for 1 $ f, $ 
3 log m the predicate 

Re(/3) = ((3 "'x 1 , ... ,x1 Mi) /\. 

(Vj, k: 1 $ j $ k $ e)Mf (xj) does not query Xk· 

CLAIM 6.10. For alU, Pr13[Rt(.8)] $ l/2e. 
For the base case f, = 1, Pr13[R1((3)] = 1/2, because Mi(x) does not query xi, 

Mi being an autoreduction, and because whether /3 "'xi Mi depends only on the bit 
of .B corresponding to x1. Working by induction, suppose Pr13[Re-1(.B)J :::; l/2£-1. 
If R1.-i (.8) holds, then taking (3' to be f3 with the bit corresponding to Xf. flipped, 
Re-i (.B') also holds. However, at most one of Re(f3) and R1.(f3') holds, again because 
Mi(xe) does not query xe. Hence Pr13[Re(f3)] $ (1/2)Pr,a[Re-1(f3)], and this proves 
Claim 6.10. (It is possible that neither Re(f3) nor Re(f3') holds, as happens when 
Mf ( x j) queries xe for some j, but this does not hurt the claim.) 

Now we can rejoin the proof of Theorem 6.6 at (13), defining the probability 
density function 7ri,m(w) = Pr13~w[.B "'I Mi]· We get a martingale di,m from 7ri,m as 
before, and this represents an "ideal" strategy for share Si,m to play. The statement 
corresponding to Claim 6.8 is the following. 

CLAIM 6.11. If Mi autoreduces A and m is good and sufficiently large, then the 
ideal strategy for share si,m multiplies its value by at least m 3 /2 along A. 

To see this, note that we constructed I = { x 1, ... , X310 g m} above so that for all 
j < k, Pr°'[M.f (xj) queries xk] $ 2/m4 . It follows that 

( r3logml) 2 1 
Pr[(3j,k: 1:::; j $ k::; 3logm) Mi(xj) queries Xk] $ 2 · m4 :::; m3 ' 

provided m ~ r3logml 2. Hence, using Claim 6.10 with .e.= 3logm, we get 

1 1 2 
Prp[.8 "'I Mi] :::; 23logm + m3 = m3 · 
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Since the (3 defined by A satisfies f3 rv I Mi, it follows by the same reasoning as 
in Claim 6.8 that d;,m profits by at least a fraction of m3 /2 along A. This proves 
Claim 6.11. 

Finally, we (re)use the pseudorandom generator D 1 as before to expand a seed 
s of length m into a string f3s of (at least) r = 31!og2 m lmi bits. Given any w, f3s 
well-defines a f3 and a set J (3 of size at most r as constructed above by using w to 
answer queries in the domain of w and f3s for everything else. We again obtain the 
estimate iTi,m(w) = Prlsl=m[f3s ""I Mi] from (15), with the same time complexity as 
before. Now we repeat Claim 6.9 in this new context as follows. . 

CLAIM 6.12. For all large enough good m, every estimate iTi,m (w) gives liTi,m( w)-
1ri,m( w)\ ::;f. 

If not, then for some fixed w the estimate fails. The final key point is that because 
J..1; always makes its queries in lexicographic order, the queries in the domain of w 
that need to be covered are the same for every /38 • Hence the corresponding bits of w 
can be hard-wired by circuitry of size at most r. The test [f3s '""I Mi] can thus still 
be carried out by circuits of size less than mi+1 , and we reach the same contradiction 
of the hardness value So1 • 

Finally, we want to apply Lemma 5.1 to replace di,m(w) by a martingale d~.m(w) 
that yields virtually the same degree of success and is computable in time 20(n). 

Unlike the truth-table case, we cannot apply Lemma 5.1 verbatim because we no 
longer have a single small set J that d' is active on. However, along any set A, the 
values d~ m (w) and d~ m ( wb) ( b = 0 or 1) can differ only for cases where b indexes 
a string in the small ~et J corresponding to A, and the reader may check that the 
argument and bounds of Lemma 5.1 go through unscathed in this case. This finishes 
the proof of Theorem 6.7. D 

7. Conclusions. The initial impetus for this work was a simple question about 
measure: is the pseudorandomness of a characteristic sequence invariant under simple 
permutations such as that induced by flip in the introduction? The question for flip 
is tantalizingly still open. However, in section 6.2 we showed that establishing a ''yes" 
answer for any permutation that intuitively should preserve the same complexity
theoretic degree of pseudorandomness, or even for a single specific such permutation 
as that in the simple proof of the nonadaptive version of Theorem 6.1, would have 
the major consequence that EXP i= BPP. 

Our "betting games" in themselves are a natural extension of Lutz's measures 
for deterministic time classes. They preserve Lutz's original idea of "betting" as a 
means of "predicting" membership in a language, without being tied to a fixed order of 
instances that one tries to predict, or to a fixed order of how one goes about gathering 
information on the language. We have shown some aspects in which betting games 
are robust and well-behaved. We also contend that some current defects in the theory 
of betting games, notably the lack of a finite-unions theorem pending the status 
of pseudorandom generators, trade off with lacks in the resource-bounded measure 
theory, such as being tied to the lexicographic ordering of strings. 

The main open problems in this paper are interesting in connection with recent 
work by Impagliazzo and Wigderson [Im Wi98] on the BPP vs. EXP problem. First we 
remark that the main result of [Im Wi98] implies that either BPP = EXP or BPP has 
E-measure zero [Mel98]. Among the many measure statements in the last section that 
imply BPP i= EXP, the most constrained and easiest to attack seems to be item 4 
in Corollary 6.5. Indeed, in the specific relevant case starting with the assumption 
BPP = EXP, one is given a nonadaptive E-betting game G and an E-martingale 
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d, and to obtain the desired contradiction that proves BPP =/- EXP, one needs only 
construct an EXP-betting game G' that covers S00 [G] U S00 [d]. What we can obtain 
is a "randomized" betting game G" that flips one coin at successive intervals of input 
lengths to decide whether to simulate G or d on that interval. (The intervals come 
from the proof of Theorem 6.4.) Any hypothesis that can derandomize this G" implies 
BPP =I- EXP. We do not know whether the weak hypotheses considered in [ImWi98], 
some of them shown to follow from BPP =I- EXP itself, are sufficient to do this. 

Stepping back from trying to prove BPP =I- EXP outright or trying to prove that 
these measure statements are equivalent to BPP =I- EXP, we also have the problem of 
narrowing the gap between BPP =I- EXP and the sufficient condition EXP =I- MA used 
in our results. l\'loreover, does EXP =I- MA suffice to make the :::;j,-autoreducible sets 
have E-measure zero? Does that suffice to simulate every betting game by a martingale 
of equivalent complexity? We also inquire whether there exist oracles relative to which 
EXP = l'v1A, but strong pseudorandom generators still exist. Our work seems to open 
many opportunities to tighten the connections among pseudorandom generators, the 
structure of classes within EXP, and resource-bounded measure. 

The kind of statistical sampling used to obtain martingales in Theorems 5.5 
and 5.6 was originally applied to construct martingales from "natural proofs" in 
[RSC95]. The derandomization technique from [BFNW93] based on EXP =I- MA 
that is used here is also applied in [BuMe98, KoLi98, LSW98]. "Probabilistic mar
tingales" that can use this sampling to simulate betting games are formalized and 
studied in [ReSi98]. This paper also starts the task of determining how well the bet
ting game and random-sampling ideas work for measures on classes below E. Even 
straightforward attempts to carry over Lutz's definitions to classes below E run into 
difficulties, as described in [IV1ay94t] and [A1St94, A1St95]. We look toward further 
applications of our ideas in lower-level complexity classes. 
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