
A POLYNOMIAL-TIME ALGORITHM FOR
NEAR-PERFECT PHYLOGENY∗

DAVID FERNÁNDEZ-BACA† AND JENS LAGERGREN‡

SIAM J. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 32, No. 5, pp. 1115–1127

Abstract. A parameterized version of the Steiner tree problem in phylogeny is defined, where
the parameter measures the amount by which a phylogeny differs from “perfection.” This problem
is shown to be solvable in polynomial time for any fixed value of the parameter.

Key words. algorithms, computational biology, character-based methods, evolutionary trees,
parsimony, perfect phylogeny, phylogeny, Steiner tree

AMS subject classifications. 68Q25, 68R05, 68R10, 68W40, 92B99

DOI. 10.1137/S0097539799350839

1. Introduction. A fundamental problem in biology and linguistics is that of
inferring the evolutionary history of a set of taxa, each of which is specified by the set
of traits or characters that it exhibits [4, 6, 15]. Formally, let C be a set of characters,
and for every c ∈ C let Ac be the set of allowable states for character c. Let m = |C|
and rc = |Ac|. A species s is an element of A1 × · · · × Am; c(s) is referred to as the
state of character c for s. A phylogeny for a set of n distinct species S is tree T with
the following properties:

(C1) S ⊆ V (T) ⊆ A1 × · · · × Am,
(C2) every leaf in T is in S.

Define the length of a phylogeny T for S as

length(T) =
∑

(u,v)∈E(T)

dist(u, v),

where, for any two species u, v, dist(u, v) denotes the number of character states in
which u and v differ (that is, dist(u, v) is the Hamming distance between u and v).
The Steiner tree problem in phylogeny (STP) is to find a phylogeny T of minimum
length for a given set of species S.

STP and many of its variants are known to be NP-hard [7, 3]. While polynomial-
time approximation algorithms with constant ratio bound are known for this problem
(for a recent example, see [11]), there are limits to the approximability of STP [5].

STP is related to the problem of determining whether S has a perfect phylogeny,
i.e., one that satisfies (C1), (C2), and the following:

(C3) For every c ∈ C and every σ ∈ Ac, the set of all u ∈ V (T) such that c(u) = σ
induces a subtree of T .

∗Received by the editors January 27, 1999; accepted for publication (in revised form) March 13,
2003; published electronically August 6, 2003. A preliminary version of this paper was presented
at the 23rd International Conference on Automata, Languages, and Programming, Paderborn, Ger-
many, 1996.

http://www.siam.org/journals/sicomp/32-5/35083.html
†Department of Computer Science, Iowa State University, Ames, IA 50011-1041 (fernande@cs.

iastate.edu). The work of this author was supported in part by the National Science Foundation
under grants CCR-9211262, CCR-9520946, and CCR-9988348.

‡Department of Numerical Analysis and Computer Science, Royal Institute of Technology, Stock-
holm, Sweden (jensl@nada.kth.se). The work of this author was supported by grants from the NFR
and TFR.

1115

1116 DAVID FERNÁNDEZ-BACA AND JENS LAGERGREN

The perfect phylogeny problem was shown to be NP-complete by Bodlaender, Fellows,
and Warnow [2] and, independently, by Steel [14]. This motivated the study of the
fixed-parameter versions of the problem, where either m or r is fixed. Both versions
have been shown to be polynomially solvable, the first by McMorris, Warnow, and
Wimer [13], and the second by Agarwala and Fernández-Baca [1]. The time bound of
the latter’s algorithm was improved by Kannan and Warnow [12].

If a set of species admits a perfect phylogeny, the underlying set of characters
C is compatible; thus, the perfect phylogeny problem is often called the character
compatibility problem. In practice most sets of characters are incompatible, and thus
a natural problem is to find a maximum-cardinality subset of C that is compatible.
This problem is, unfortunately, equivalent to CLIQUE [8] and hence not only NP-
hard, but also extremely hard to solve approximately [10].

The difference between m and the maximum-cardinality compatible subset of C
is one measure of the degree of compatibility of a set of species. Here we study a
measure of incompatibility that we believe is equally natural, which is motivated by
the following result [1, 9].

Theorem 1. Let T ∗ be a phylogeny for S. Then length(T ∗) ≥ ∑
c∈C(rc−1) and

T ∗ is a perfect phylogeny if and only if length(T ∗) =
∑

c∈C(rc − 1).
Thus, the length of a perfect phylogeny (assuming one exists) gives a tight lower

bound on the length of any phylogeny for S. Motivated by this observation, let us
define the penalty of a phylogeny T as

penalty(T) = length(T) −
∑
c∈C

(rc − 1).

Obviously, STP can be rephrased as the problem of finding a phylogeny T such that
penalty(T) is minimum. We are interested in the fixed-parameter version of the
problem, namely, given a set of species S and an integer q, does S have a phylogeny
with penalty at most q? We show that for each fixed q and r, the resulting “near-
perfect” phylogeny problem can be solved in polynomial time. The running time of
our algorithm is a polynomial whose degree depends on the parameters, making the
algorithm practical only for small values of the parameters. On the other hand, the
flexibility of allowing one or more characters to violate condition (C3) by some fixed
amount may extend the range of applicability of character-based methods.

Our near-perfect phylogeny algorithm shares several ideas with earlier work on
the perfect phylogeny problem [1, 12]. As in the algorithms for the latter problem,
we rely on the observation that there is a polynomially bounded number of ways in
which species can be partitioned into subfamilies that respect state boundaries for
some character. (See section 2 for a precise definition.) The approach is to build
subphylogenies for these subfamilies, proceeding by increasing cardinality. Subphylo-
genies are joined through their roots to form subphylogenies for larger subfamilies.

The construction of subphylogenies is complicated by issues that do not arise
in the perfect phylogeny problem. Each edge in a perfect phylogeny corresponds to
a character partition, i.e., a partition of S into subfamilies such that there exists
a character c on which no state is shared between species of different subfamilies.
This property and the fact that the number of character partitions is polynomially
bounded when r is fixed are keys to the efficient solution of the perfect phylogeny
problem. Unfortunately, it can easily be seen that imperfect phylogenies may have
bad edges, i.e., edges not inducing character partitions. We show, however, that
the number of bad edges is polynomially bounded when the penalty is bounded.

POLYNOMIAL-TIME NEAR-PERFECT PHYLOGENY ALGORITHM 1117

Our strategy to build a subphylogeny for a subset of species is therefore to generate
different candidate trees consisting only of bad edges and use them as skeletons from
which to hang subphylogenies for character subfamilies. From among all of the trees
thus enumerated, we select the one that results in the least penalty. It is nontrivial
to determine which subphylogenies to connect to a candidate bad tree, because there
is no a priori bound on the degree of a vertex. (Such a bound would imply that the
subphylogenies could be found in polynomial time by simply trying all combinations of
character subfamilies.) We show that it suffices to enumerate a polynomially bounded
number of labeled candidate trees.

The rest of the paper is organized as follows. Section 2 gives definitions and
notation. Section 3 explains how to compute perfect phylogenies. The properties of
low-penalty phylogenies and subphylogenies are studied in section 4. In particular,
bounds are derived there on the number of bad edges in a near-perfect phylogeny and
on the amount of information that must be enumerated to construct such a phylogeny.
Our near-perfect phylogeny algorithm is presented in section 5. Section 6 concludes
the paper.

2. Basic definitions and notation. The vertex sets of all trees are assumed
to be subsets of A1 × · · · ×Am. Note that this implies that every two adjacent nodes
are distinct. No generality is lost, since a tree that does not satisfy this condition can
be transformed into one that does and that has at most the same length.

Throughout the paper, r denotes maxc∈C rc.
Let c be a character. We assume that each state in Ac is exhibited by some

element of S. Obviously, any state that is not exhibited by any species can be deleted
from Ac. We assume that Ai ∩ Aj = ∅ for i �= j. No generality is lost by making
this assumption, since it can always be enforced by replacing each state σ on every
character c by the state (σ, c).

Let T be a tree, and let σ ∈ Ac. Then T [σ] denotes the subgraph of T induced
by all nodes v such that c(v) = σ. For any edge (u, v) ∈ T , Tu and Tv denote the
components of T − {(u, v)} containing u and v, respectively.

Definition 1. Let T be a phylogeny for S. Character c is convex in T if for
every σ ∈ Ac, T [σ] is connected. If T [σ] is not connected, σ is a penalty state in T
and c is nonconvex in T .

In what follows, Cp ⊆ C denotes a set of characters that are required to be convex.
Definition 2. Let T be a phylogeny for S. T is q-near-perfect if penalty(T) ≤ q.

T is Cp-perfect if every c ∈ Cp is convex in T . If Cp = C, T is simply called perfect.
A minimum Cp-perfect phylogeny is a Cp-perfect phylogeny of minimum length.

An example of a Cp-perfect phylogeny is shown in Figure 1. For clarity, the set
of states for every character is written as {0, 1, 2, 3, 4}; in reality, Aci = {(j, ci)}4

j=0

for i = 1, 2, 3, 4. We shall refer to Figure 1 throughout the paper to illustrate various
concepts.

Clearly, a Cp-perfect phylogeny may not exist for a given set Cp. Note also
that, by Theorem 1, all perfect phylogenies have the same (minimum) length, so it is
redundant to talk about minimum perfect phylogenies.

Definition 3. Two subsets X, Y of S share a state on c ∈ C if there exists a
state σ of c such that c(x) = c(y) = σ for some x ∈ X, y ∈ Y . State σ is referred to
as a shared state.

Definition 4. A character partition with respect to a character c is a partition
(S1, S2) of S such that no species in S1 shares a state of c with any species of S2. The
subsets S1 and S2 are character subfamilies. A character subfamily Q is proper if at

1118 DAVID FERNÁNDEZ-BACA AND JENS LAGERGREN

c1 c2 c3 c4
s1 0 2 1 2
s2 4 2 1 1
s3 0 2 3 1
s4 0 4 4 0
s5 0 1 0 0
s6 3 2 1 0
s7 2 0 1 3
s8 1 0 1 2
s9 0 2 2 4
s10 0 3 2 2

x
☛
✡

✟
✠0 2 1 1

✏✏✏✏✏✏✏✏

��������

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
s1

☛
✡

✟
✠0 2 1 2 y

☛
✡

✟
✠0 2 1 0 s2

☛
✡

✟
✠4 2 1 1 s3

☛
✡

✟
✠0 2 3 1

✏✏✏✏✏✏✏✏

��������
s4

☛
✡

✟
✠0 4 4 0 v

☛
✡

✟
✠0 2 1 2 s5

☛
✡

✟
✠0 1 0 0

✏✏✏✏✏✏✏✏

��������
u

☛
✡

✟
✠2 0 1 2 s6

☛
✡

✟
✠3 2 1 0 w

☛
✡

✟
✠0 2 2 2

�
��

❅
❅❅

�
��

❅
❅❅

s7

☛
✡

✟
✠2 0 1 3 s8

☛
✡

✟
✠1 0 1 2 s9

☛
✡

✟
✠0 2 2 4 s10

☛
✡

✟
✠0 3 2 2

Fig. 1. Top: A set of ten species described by their states on a set of characters C =
{c1, c2, c3, c4}, each with five states. Bottom: A Cp-perfect phylogeny for the set of species, where
Cp = {c1, c2, c3}. The length of the tree is 18; its penalty is 2.

most one state is shared between Q and S −Q for every c ∈ Cp.

From this point forward, all character subfamilies that we consider are assumed
to be proper.

The number of character subfamilies is O(2rm), since at most 2r are defined
by the states of any given character [1]. This bound is polynomial when r is fixed,
which motivates the following approach to computing minimum Cp-perfect phyloge-
nies: Enumerate the subfamilies by increasing cardinality, and for each subfamily find
a minimum-length rooted Cp-perfect phylogeny made up of phylogenies for smaller
subfamilies. Since our goal is to compose the phylogenies by linking roots through
edges, the permissible states for the roots are partially determined by convexity. To
formalize these ideas, we need some definitions. In what follows, ∗ denotes an unspec-
ified state, which is in none of the Ai’s.

Definition 5. Let Q ⊆ S be a character subfamily. The splitting vector of Q is
the species Sv(Q) where, for each character c, if c ∈ Cp and Q and S −Q share state
σ on character c, then c(Sv(Q)) = σ; otherwise, c(Sv(Q)) = ∗.

Definition 6. Let Q, Q1 be character subfamilies such that Q1 ⊂ Q. Q and Q1

are compatible if for every c ∈ Cp such that c(Sv(Q)), c(Sv(Q1)) �= ∗, c(Sv(Q)) =

POLYNOMIAL-TIME NEAR-PERFECT PHYLOGENY ALGORITHM 1119

c(Sv(Q1)).
Intuitively, if Q and Q1 are compatible, there conceivably exists a Cp-perfect

phylogeny for Q ∪ {Sv(Q)} such that one of the subtrees of Sv(Q) is a phylogeny for
Q1 ∪{Sv(Q1)}. In such a phylogeny, the states of the root on some characters c ∈ Cp

such that c(Sv(Q)) = ∗ may have to take on specific values, because a state on c may
be shared between Q1 and S − Q1 that is not shared between Q and S − Q. This
motivates the following definition.

Definition 7. Let Q,Q1 be compatible character subfamilies such that Q1 ⊂ Q.
The splitting vector for (Q,Q1) is the species Sv(Q,Q1) where for each character c,
if c ∈ Cp and state σ is shared between Q and S −Q or between Q1 and S −Q1, then
c(Sv(Q,Q1)) = σ; otherwise, c(Sv(Q,Q1)) = ∗.

Definition 8. Let Q ⊆ S and x be a species. Then ∼x denotes the equivalence
relation on Q defined as the transitive closure of the following relation Rx: For s, t ∈
Q, (s, t) ∈ Rx if there exists a character c such that c(s) = c(t) �= c(x) �= ∗. Denote
by Q/x the collection of equivalence classes of ∼x.

Observe that each of the sets in Q/x must be in the same connected component
of T − {x} for any perfect (not just Cp-perfect) phylogeny T for Q ∪ {x}.

Definition 9. Let T be a phylogeny for S and let e = (u, v) be an edge of T .
Then (S∩V (Tu), S∩V (Tv)) is an edge partition of S (with respect to T). The subsets
S ∩ V (Tu) and S ∩ V (Tv) are edge subfamilies. Edge (u, v) is good if the partition
(S ∩ V (Tu), S ∩ V (Tv)) induced by e is a character partition; otherwise, e is bad.

To close this section, we illustrate some of the concepts introduced here, making
reference to Figure 1. Let Q1 = {s9, s10} and Q = {s7, s8, s9, s10}. Then, Sv(Q1) =
(0, 2, ∗, ∗) and Sv(Q) = (0, 2, 1, ∗); thus, Q1 and Q are compatible, and Sv(Q,Q1) =
(0, 2, 1, ∗). In the phylogeny shown, edges (s1, x), (x, y), and (y, v) are bad; all other
edges are good.

3. Finding perfect phylogenies. Before studying near-perfect phylogenies,
we review the perfect phylogeny algorithm of Agarwala and Fernández-Baca and the
improvements devised by Kannan and Warnow. The algorithm relies on two facts.
The first is the aforementioned polynomial bound (for fixed r) on the number of
character subfamilies. The second is that perfect phylogenies can be assembled from
phylogenies for character subfamilies, because, as shown in [1], every edge in a perfect
phylogeny for S is good.

Definition 10. Let Q be a character subfamily. A perfect subphylogeny for Q
is a rooted perfect phylogeny for Q, whose root x satisfies c(x) = c(Sv(Q)) for all c
such that c(Sv(Q)) �= ∗, and c(x) = c(s) for some s ∈ Q otherwise.

It is straightforward to verify that if Q1 and Q2 = S −Q1 have perfect subphy-
logenies T1 and T2, respectively, then the tree obtained by connecting the roots of T1

and T2 by an edge is a perfect phylogeny for S.
Definition 11. Let Q,Q1 be compatible character subfamilies such that Q1 ⊂ Q.

A perfect subphylogeny for (Q,Q1) is a rooted perfect phylogeny for Q, whose root x
is such that (i) c(x) = c(Sv(Q,Q1)) for all c such that c(Sv(Q)) �= ∗, and c(x) = c(s)
for some s ∈ Q otherwise, and (ii) the removal of x partitions Q into subsets some of
which union to Q1.

The following result is proved in [12, 1].
Lemma 2. Suppose that Q is a character subfamily and that Q1 ⊂ Q has a

subphylogeny. Let Q2 = Q−Q1. Then, (Q,Q1) has a subphylogeny if and only if (i)
Q2 has a subphylogeny or (ii) every element of Q2/Sv(Q,Q1) has a subphylogeny. In
case (ii), c(Sv(Q,Q1)) �= ∗ for every character c.

1120 DAVID FERNÁNDEZ-BACA AND JENS LAGERGREN

Subphylogeny(Q).
For each subfamily Q1 ⊂ Q compatible with Q do the following:

1. Let TQ1
= N(Q1).

2. If TQ1
�= ∅, then do the following:

(a) Let Q2 = Q−Q1 and TQ2
= N(Q2).

(b) If TQ2
�= ∅, then let TQ be the subphylogeny for Q whose root is a

node xQ satisfying c(xQ) = c(Sv(Q,Q1)) for every c ∈ C such that
c(Sv(Q,Q1)) �= ∗, and c(xQ) = c(xQ1

) for every other c, where xQ1
is

the root of TQ1
. Set N(Q) = TQ and return.

(c) Otherwise, let {Pi}ki=1 be the set of equivalence classes Q2/Sv(Q,Q1).
If TPi

= N(Pi) �= ∅ for every i ∈ {1, . . . , k}, then let TQ be the subphy-
logeny for Q whose root xQ satisfies c(xQ) = c(Sv(Q,Q1)) for every
c ∈ C and whose subtrees are TQ1

and TP1
, . . . , TPk

. Set N(Q) = TQ
and return.

Perfect-Phylogeny(S,C).
1. Allocate a table N with one entry for each character subfamily Q. Set

N(Q) = ∅ for each such Q.
2. Enumerate, by increasing cardinality, each character subfamily Q, and run

Subphylogeny(Q).
3. If there exists a pair of subfamilies Q1, Q2 such that Q2 = S − Q1 and

N(Q1),N(Q2) �= ∅, then return the tree T obtained by linking the roots of
TQ1 = N(Q1) and TQ2

= N(Q2) by an edge. Otherwise, return ∅.

Fig. 2. The perfect phylogeny algorithm.

This leads to the algorithm of Figure 2. The main procedure, Perfect-Phy-
logeny, considers character subfamilies by increasing cardinality; it attempts to build
a subphylogeny for each one using procedure Subphylogeny, inserting the result into
a table N.

Perfect-Phylogeny iterates over all O(2rm) character subfamilies Q. For
each of these, Subphylogeny considers O(2rm) choices of Q1. Kannan and Warnow
show how to find the equivalence classes of Q2/Sv(Q,Q1) in O(n) time at the expense
of precomputing, in O(2rnm2) time, the equivalence classes of S/Sv(G) for every
subfamily G (see [12]). An O(22rnm2) bound follows.

4. Near-perfect phylogenies. The algorithm of Figure 2 relies heavily on the
fact that perfect phylogenies have no bad edges, a property that may not hold for
near-perfect phylogenies. In this section, we show that near-perfect phylogenies can
be decomposed into perfect and imperfect parts. The former can be handled by
the techniques described in the previous section. We prove that the latter can be
generated by examining an amount of information that is polynomial for each fixed q.
As before, Cp denotes a set of characters required to be convex. Before proceeding,
we need some definitions.

Definition 12. A penalty state assignment is a function α that maps each
c ∈ C − Cp to an element α(c) of Ac. The penalty state assignment of a species s is
the penalty state assignment αs, where αs(c) = c(s) for each c ∈ C − Cp.

Definition 13. Let Q be a character subfamily and α be a penalty state assign-
ment. A subphylogeny for (Q,α) is a rooted Cp-perfect phylogeny T for Q whose root
x satisfies the following properties:

POLYNOMIAL-TIME NEAR-PERFECT PHYLOGENY ALGORITHM 1121

(i) For every c ∈ Cp, c(x) = c(Sv(Q)) if c(Sv(Q)) �= ∗; otherwise, c(x) = c(u)
for some u ∈ Q.

(ii) For every c ∈ C − Cp, c(x) = α(c).

T is a minimum-length subphylogeny if it has the smallest length among all subphy-
logenies for (Q,α).

Definition 14. Let T be a subphylogeny with root x for (Q,α). Let (u, v) be
an edge of T , where u is the parent of v. Then, (u, v) is good if S ∩ V (Tv) is a
character subfamily; otherwise (u, v) is bad. The maximal subtree T that contains x
and only bad edges is the bad tree of T and is denoted B(T). T is in normal form if,
for every good edge (u, v) in T such that u is in B(T), Tv is a subphylogeny for some
pair (Qv, αv), where Qv ⊆ Q.

Note that, by the maximality of B = B(T), if an edge of T is not in B but is
adjacent to an edge of B, then it is good; i.e., the associated edge subfamily is a
character subfamily as well.

Definition 15. Let T be a subphylogeny, v be a node of B = B(T), and u be a
child of v not in B. Then the subset of S contained in Tu is an edge subfamily at v.
An edge subfamily Q at v is perfect if no state is shared between Q and S −Q on a
character c except (possibly) c(v), and Q∪{v} has a perfect phylogeny. All other edge
subfamilies at Q are imperfect.

For a node v in B, Pe(v) and Im(v) stand for the sets of perfect and imperfect
edge subfamilies at v, respectively. P(v) is the union of all perfect edge subfamilies
at v, and F(v) is the union of all edge subfamilies at v.

Let T be a subphylogeny for (Q,α), and let v be a node in T . Then, by definition,
the subtree of T consisting of v, together with all Tu such that S ∩ V (Tu) is a perfect
edge subfamily at v, is a subphylogeny for P(v).

We now illustrate some of the notions introduced so far, making reference to
Figure 1. The subtree rooted at y in that diagram is a subphylogeny for (Q,α),
where Q = {s4, s5, s6, s7, s8, s9, s10} and α(c4) = 0; its bad tree consists of edge (y, v).
Indeed, if the set P = {s1, . . . , s10} is a character subfamily within a larger set S such
that P and S−P share (say) state (1, c3), then the whole tree at x is a subphylogeny
for (P, α), where α(c4) = 1. The bad tree in this case consists of edges (s1, x), (x, y),
and (y, v). Both of the subphylogenies we have described are in normal form. Observe
that Pe(v) = {{s7, s8}, {s9, s10}} and Im(v) = {{s6}}.

The results that follow characterize the structure of near-perfect phylogenies and
subphylogenies.

Lemma 3. Let T be a Cp-perfect phylogeny, and let (u, v) be a bad edge in T .
Then, for each c ∈ Cp, c(u) = c(v). Furthermore, there is some c ∈ C −Cp such that
c(u) �= c(v).

Proof. We first show that for each c ∈ Cp there exists a shared state on c between
Qu = S ∩ V (Tu) and Qv = S ∩ V (Tv). Suppose that this is false. Then (Qu, Qv) is a
character partition and (u, v) is, by definition, a good edge, a contradiction.

Because of the state shared between Qu and Qv on c ∈ Cp and the fact that T is
Cp-perfect, we must have c(u) = c(v). We must have c(u) �= c(v) for some c ∈ C−Cp

because we are dealing with phylogenies where every two nodes differ in at least one
state.

Lemma 4. Let T be a Cp-perfect phylogeny such that penalty(T) ≤ q. Then T
has at most qr bad edges.

Proof. Let C ′ = C − Cp. For each c ∈ C ′ let lc be the number of edges (u, v)
in T such that c(u) �= c(v). Since penalty(T) ≤ q, |C ′| ≤ q. By Lemma 3, for every

1122 DAVID FERNÁNDEZ-BACA AND JENS LAGERGREN

bad edge (u, v) there must be some c ∈ C ′ such that c(u) �= c(v). Thus, the number
of bad edges is at most

∑
c∈C′ lc. Moreover,

∑
c∈C′(lc − (rc − 1)) ≤ q. Hence, the

number of bad edges is bounded by q +
∑

c∈C′(rc − 1) ≤ qr.
Lemma 5. Suppose that Q is a character subfamily having a rooted Cp-perfect

phylogeny T , with root x such that, for every c ∈ Cp, c(x) = c(Sv(Q)) if c(Sv(Q)) �= ∗.
Let α be the penalty state assignment of x. Then, (Q,α) has a subphylogeny of length
at most length(T).

Proof. T is a subphylogeny for (Q,α), except that there might be some c ∈ Cp

such that c(x) �= c(u) for any u ∈ Q. For each such c, carry out the following step
until it no longer applies:

Let c(x) = σ be such that σ �= c(u) for any u ∈ Q. Let A be the
connected component of T [σ] containing x, and let (u, v) be any edge
of T such that u ∈ A and v �∈ A. Then, c(u) = β �= σ. Set c(w) equal
to β for all w in A.

Each application of the above step preserves perfection with respect to Cp; fur-
thermore, it does not affect the contribution of the nonconvex characters to the length.
When the step no longer applies, T is a subphylogeny.

Lemma 6. Suppose that the pair (Q,α) has a subphylogeny. Then, (Q,α) has a
minimum-length subphylogeny in normal form.

Proof. Let T be a minimum-length subphylogeny for (Q,α), and let B = B(T).
If T is in normal form, we are done, so suppose it is not. Successively consider each
good edge (u, v) in T such that u is in B and Tv is not a subphylogeny for (Qv, αv),
where Qv = S ∩ V (Tv) and αv is the penalty state assignment of v. For each such
edge, apply the following transformation to T : Let T ′

v be a subphylogeny for (Qv, αv)
such that length(T ′

v) ≤ length(Tv); such a tree T ′
v exists by Lemma 5, since Tv is a Cp-

perfect phylogeny for Qv where, for every c ∈ Cp, c(v) = c(Sv(Qv)) if c(Sv(Qv)) �= ∗.
Replace Tv by T ′

v by deleting Tv and making the root of T ′
v a child of u.

Each application of the transformation preserves the properties that T is of min-
imum length and that T is a subphylogeny for (Q,α). After the final application, T
is in normal form.

Lemma 7. Let T be a subphylogeny for (Q,α), let B = B(T), and let

U = (S −Q) ∪ {u ∈ P : P ∈ Im(v), v ∈ B}.

Then, for each v ∈ V (B), P(v) = G(v) − U for some set G(v) =
⋂l

i=1Qi, where
{Qi}li=1 is a set of character subfamilies for different characters c ∈ C − Cp.

Proof. Pick G(v) as follows. For each node v of B and each nonconvex character
c, let Q(v, c) be the character subfamily consisting of all species s ∈ S such that
c(s) = c(x) for some x ∈ P(v). The set G(v) is the intersection of Q(v, c) over all
characters c ∈ C − Cp.

To prove the claim, we show containment in both directions:
• Suppose s ∈ P(v). Then, s ∈ Q(v, c) for each c ∈ C−Cp. Hence, s ∈ G(v)−U .
• Suppose s ∈ G(v) − U . By definition of G(v), for each c ∈ C − Cp there is a

species x ∈ P(v) such that c(x) = c(s). Also, there must exist a node u ∈ B
such that s ∈ F(u). Since s �∈ U , c(s) = c(v) = c(u) for every c ∈ C − Cp.
But then, by Lemma 3 we must have u = v. Hence, s ∈ P(v).

Lemma 8. Let T be a subphylogeny for (Q,α) such that penalty(T) ≤ q and B
be the bad tree of T . Then, |⋃v∈B Im(v)| ≤ 4q.

Proof. An edge subfamily P at v is imperfect if either (a) P shares a state σ
with S − P on character c and c(v) �= σ or (b) P ∪ {v} does not have a perfect

POLYNOMIAL-TIME NEAR-PERFECT PHYLOGENY ALGORITHM 1123

Near-Perfect-Phylogeny(S,C, q).
1. Let T = Perfect-Phylogeny(S,C). If T �= NIL, then return T .
2. If |S| ≤ qr + 1, then use exhaustive enumeration to search for a minimum-

length q-near-perfect phylogeny for (S,C). Return NIL if no such phylogeny
exists. Otherwise, return any such phylogeny.

3. For each Cp ⊆ C such that |Cp| ≥ m− q, find a minimum-length Cp-perfect
phylogeny TCp

of penalty at most q for S, if one exists, as follows:
(a) Allocate a table N with one entry for each possible pair (Q,α), where

α is a penalty state assignment and Q is a subfamily. Initialize N(Q,α)
to NIL for every pair (Q,α).

(b) Enumerate, by increasing cardinality of Q, the pairs (Q,α) such that
α is a penalty state assignment and Q is a subfamily. For each (Q,α),
attempt (using Lemma 9) to find a minimum-length Cp-perfect sub-
phylogeny of penalty at most q. If such a subphylogeny TQ exists, set
N(Q,α) = TQ.

(c) Let TCp
be the minimum-length tree from among those that can

be obtained by putting an edge between the roots of subphylo-
genies for (Q1, α1) and (Q2, α2) such that Q2 = S − Q1 and
N(Q1, α1),N(Q2, α2) �= NIL.

4. Return the tree TCp
that minimizes length(TCp

) over all sets Cp enumerated
in the previous step. If no tree exists, return NIL.

Fig. 3. The near-perfect phylogeny algorithm.

phylogeny. The number of subfamilies of the latter sort is at most q, since each of
them contributes at least 1 to the total penalty. Let K be the set of subfamilies
P that satisfy (a). Let K0 be the subset of K consisting of all subfamilies P such
that there is a character c and species s ∈ P satisfying the requirements that P is
a subfamily at v ∈ V (B), c(v) �= c(s), and c(s) = c(s′) for some s′ ∈ S − Q. Since
each P ∈ K0 contributes at least 1 to the total penalty, |K0| ≤ q. Let J be the graph
whose vertex set is K−K0 and whose edge set is defined as follows. Let Qu ∈ K−K0

and Qv ∈ K −K0 be imperfect subfamilies at u and v, respectively. There is an edge
between Qu and Qv in J if and only if there are a character c and species su ∈ Qu

and sv ∈ Qv such that c(u) �= c(su) = c(sv) �= c(v). Let µ be the size of a maximum
matching in J . One can verify that

q ≥ µ+ |K −K0| − 2µ ≥ |K −K0|/2.

Therefore, |K −K0| ≤ 2q, and the lemma follows.

5. The algorithm. Our near-perfect phylogeny algorithm is shown in Figure 3.
Its analysis relies on the result below, proved in the next subsection.

Lemma 9. A minimum-length subphylogeny for a pair (Q,α) can be found in

|Q|mO(q)2O(q2r2) time and O(q(r + logm)) space.
We now have the main result of this paper.
Theorem 10. The algorithm Near-Perfect-Phylogeny runs in time

|S|mO(q)2O(q2r2). That is, for fixed q and r, the problem of determining whether
S has a q-near-perfect phylogeny, and, if so, finding such a tree of minimum length,
can be solved in polynomial time.

Proof. Step 1 takes O(22rnm2) time, as explained in section 3. By Theorem 1, if

1124 DAVID FERNÁNDEZ-BACA AND JENS LAGERGREN

S has a perfect phylogeny, this tree must also be an optimum near-perfect phylogeny.
It can be shown that step 2 can be completed within the claimed time bound.

We now argue that step 3 of Near-Perfect-Phylogeny finds an optimal phy-
logeny for each choice of Cp. Assume that step 3(b) correctly computes a minimum-
length subphylogeny for each pair (Q,α) it considers (or determines that no such tree
exists). Let T be any minimum-length Cp-perfect phylogeny for S. It suffices to prove
that in step 3(c) the algorithm encounters a Cp-perfect phylogeny T ′ for S such that
length(T ′) = length(T).

By Lemma 4 and the fact that |S| > qr + 1, T must have at least one good edge
e = (u1, u2). For i = 1, 2, let αi be the penalty state assignment of ui, and let Qi =
S ∩V (Tui

). Then, for i = 1, 2, Qi is a character subfamily and, by Lemma 5, (Qi, αi)
has a subphylogeny T ′

i of length at most length(Ti). Without loss of generality, assume
that this T ′

i is generated in step 3(b). Then, step 3(c) generates a tree T ′ by putting an
edge between the roots of T1 and T2. By the minimality of T , length(T ′) = length(T),
as claimed.

Note that Near-Perfect-Phylogeny enumerates only sets Cp of size at least
m− q, because a q-near-perfect phylogeny has at most q nonconvex characters. Thus,
the result returned by step 4 is a minimum-length q-near-perfect phylogeny for S, if
one exists.

The total number of sets Cp considered in step 3 is

m∑
i=m−q

(
m

i

)
= O(qmq),

and step 3(b) enumerates O(m2rrq) (Q,α) pairs. By Lemma 9, this leads to a total

running time of |S|mO(q)2O(q2r2).

5.1. Computing a subphylogeny. We now prove Lemma 9 by giving an al-
gorithm to find a minimum-length Cp-perfect subphylogeny T for (Q,α). The key
idea is given by Lemma 6, which suggests that, to find a Cp-perfect subphylogeny T
of minimum penalty, it suffices to guess B = B(T) and, for each node v of B, the
perfect and imperfect edge subfamilies at v. Our procedure enumerates a sequence of
candidates, each of which is used to generate a potential tree. A candidate consists
of four pieces of information:

• B̃, a guess as to the bad tree of T .
• For each node v of B̃, a penalty state assignment αv such that αv = α if v is

the root of B̃.
• P̃, a mapping from each vertex v of B̃ to a subset of S representing a guess

as to the union of perfect edge subfamilies at v.
• ˜Im, a mapping from each vertex v of B̃ to a collection of subsets of S repre-

senting a guess as to the collection of imperfect edge subfamilies at v.

Assume that the candidate is a correct guess as to the various components of
a subphylogeny for (Q,α). We now describe how to construct such a subphylogeny
from this information.

We first find, for each v ∈ B̃, the decomposition P̃e(v) of P̃(v) into perfect edge
subfamilies. As in algorithm Subphylogeny (Figure 2), we rely on Lemma 2, which
states that if we know one of the subfamilies R such that R ⊆ P̃(v), we have one of
two possibilities:

POLYNOMIAL-TIME NEAR-PERFECT PHYLOGENY ALGORITHM 1125

(i) P̃e(v) = {R, P̃(v) −R} or
(ii) P̃e(v) = R ∪ (P̃(v) − R)/v, where c(v) = c(Sv(P̃(v), R)) for every character

c ∈ C.

In the latter case, c(Sv(P̃(v), R)) �= ∗ for every character c. There are polyno-
mially many (for fixed r) choices for R; one of these must enable us to make the
appropriate decomposition of P(v) if the candidate is a correct guess.

The distribution of perfect and imperfect edge subfamilies across the vertices of
B̃ forces the states of some its nodes to assume certain values in order to maintain the
convexity of the corresponding characters. For a vertex v in B̃, let Qv be the set of all
species in the subtree of T rooted at v. The state of vertex v in B̃ on character c ∈ Cp

is forced to equal σ if either Qv and S −Qv share a state on character c or there are
distinct subtrees T1, T2 at v, where T1, T2 contain species x1, x2, respectively, such
that c(x1) = c(x2). The remaining unforced states are set in any way that is consistent
with convexity of the characters in Cp. This can be done in time polynomial in n, m,
and r.

We now produce a subphylogeny for (Q,α) by doing the following for each v ∈ B̃:

(a) For each R ∈ ˜Im(v), enumerate all penalty state assignments γ to find the pair
(R, γ) such that TR = N(R, γ) �= ∅ and length(TR) + dist(u, v) is minimum,
where u is the root of TR. Connect the root of TR to v.

(b) For every R ∈ P̃e(v), enumerate all penalty state assignments γ to find a pair
(R, γ) such that TR = N(R, γ) �= ∅ and the tree obtained by linking v to the
root of TR is a perfect phylogeny for R ∪ {v}. Connect the root of TR to v.

There is, of course, no guarantee that a candidate is a correct guess from which
a minimum-length subphylogeny can be constructed. Indeed, it is possible that a
candidate simply cannot be used to produce a subphylogeny for (Q,α). For instance,
a candidate is invalid if some s ∈ Q is neither a vertex in B̃ nor contained in some
set in either ˜Im(v) or P̃e(v) for some v ∈ V (B̃). A candidate is also invalid if
it is impossible to make a state assignment for B̃ on the characters in Cp in any
consistent way. Finally, in either of steps (a) or (b) above, it may be impossible to
find the required subtrees of a node v ∈ B̃. In any case, if an invalid candidate is
encountered, we dismiss it. If no valid candidate can be generated for a (Q,α) pair,
we set N(Q,α) = ∅.

It is also possible that a candidate allows us to generate a subphylogeny but not a
minimum-length one. This issue is resolved by enumerating all potential candidates.
The tree T stored in N(Q,α) is the one that minimizes the length among all trees
generated from valid candidates.

5.2. Generating candidates. We now describe how candidates are generated
and derive a bound on their number. First, observe that, by Lemma 4, we need to
consider only trees B̃ with at most qr edges. Thus, qrO(qr) distinct tree topologies
B̃ are generated. Enumerating them takes time qrO(qr) and space O(qr log qr). The

number of penalty state assignments enumerated for the nodes in B̃ is rO(q2r). These
can be generated in time 2O(q2r2) and space O(q2r2).

Suppose that B̃ is indeed the bad tree of a subphylogeny T for (Q,αQ). By
Lemma 8, there is some set of at most 4q character subfamilies containing all imper-
fect edge subfamilies at v; each of these is a potential choice for ˜Im(v). There are
mO(q)2O(qr) choices of subfamilies and (qr)O(q) ways in which these subfamilies can
be distributed among the vertices of B̃.

By Lemma 7, for every v ∈ B̃ we can restrict our attention to P̃(v) of the form

1126 DAVID FERNÁNDEZ-BACA AND JENS LAGERGREN

P̃(v) = G(v) − U, where

U = (S −Q) ∪ {u ∈ P : P ∈ ˜Im(v), v ∈ B̃} and G(v) =

k⋂
i=1

Qi

such that {Qi}ki=1 is a set of character subfamilies for different characters c ∈ C−Cp.

For every node v in B̃, G(v) is the intersection induced by ˜Im(v).

Thus, the total number of candidates is mO(q)2O(q2r2). These can be generated
in time mO(q)2O(q2r2) and space O(q(logm+ r)).

It can be verified that processing a candidate takes time O(|Q|rq). The total time

to find a minimum-penalty subphylogeny for (Q,α) is therefore |Q|mO(q)2O(q2r2), and
the space used is O(q(r + logm)). This concludes the proof of Lemma 9.

6. Conclusions and open questions. We have shown that a relaxed version of
the perfect phylogeny problem, parameterized by the degree q to which the resulting
phylogeny deviates from perfection, can be solved in polynomial time. Since the
perfect phylogeny model is too restrictive, our algorithm may have some practical
use. Unfortunately, its practicality is limited by its running time, which is bounded
by a polynomial whose degree depends on q. We note, however, that the time bound
is based on the perhaps overly pessimistic assumption that all bad edges can occur
together in a bad tree. One may ask whether this is likely to happen in practice. Also,
is there a parameter that is smaller than q in practice, in terms of which to express
the time bound? One candidate is the maximum size of a bad tree.

Perhaps the most important open question raised by our algorithm is whether
it is possible to make the degree of the polynomial describing the running time in-
dependent of the parameters; that is, whether there is an algorithm with running
time O(f(q)p(|S|,m)), where p is a polynomial whose degree does not depend on q.
Alternatively, one could try to show that the case where r is fixed and q is the only
parameter is hard for W [1].

Acknowledgments. We thank the referee and editor for their suggestions, which
substantially improved the presentation.

REFERENCES

[1] R. Agarwala and D. Fernández-Baca, A polynomial-time algorithm for the perfect phy-
logeny problem when the number of character states is fixed, SIAM J. Comput., 23 (1994),
pp. 1216–1224.

[2] H. Bodlaender, M. Fellows, and T. Warnow, Two strikes against perfect phylogeny, in
Proceedings of the 19th International Colloquium on Automata, Languages, and Program-
ming, Lecture Notes in Comput. Sci., Springer-Verlag, 1992, pp. 273–283.

[3] W. H. E. Day, D. S. Johnson, and D. Sankoff, The computational complexity of inferring
rooted phylogenies by parsimony, Math. Biosci., 81 (1986), pp. 33–42.

[4] G. F. Estabrook, Cladistic methodology: A discussion of the theoretical basis for the induction
of evolutionary history, Annu. Rev. Ecology and Systematics, 3 (1972), pp. 427–456.

[5] D. Fernández-Baca and J. Lagergren, A polynomial-time algorithm for near-perfect phy-
logeny, in Proceedings of the 23rd International Conference on Automata, Languages, and
Programming, Lecture Notes in Comput. Sci., Springer-Verlag, 1996, pp. 670–680.

[6] W. M. Fitch, Aspects of molecular evolution, Annu. Rev. Genet., 7 (1973), pp. 343–380.
[7] L. R. Foulds and R. L. Graham, The Steiner problem in phylogeny is NP-complete, Adv.

Appl. Math., 3 (1982), pp. 43–49.
[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness, W. H. Freeman, San Francisco, 1979.

POLYNOMIAL-TIME NEAR-PERFECT PHYLOGENY ALGORITHM 1127

[9] D. Gusfield, The Steiner Tree Problem in Phylogeny, Technical report 334, Computer Science
Department, Yale University, New Haven, CT, 1984.

[10] J. Håstad, Clique is hard to approximate within n1−ε, Acta Math., 182 (1999), pp. 105–142.
[11] S. Hougardy and H. J. Prömel, A 1.598 approximation algorithm for the Steiner problem in

graphs, in Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms,
Baltimore, MD, SIAM, Philadelphia, 1999, pp. 448–453.

[12] S. Kannan and T. Warnow, A fast algorithm for the computation and enumeration of perfect
phylogenies, SIAM J. Comput., 26 (1997), pp. 1749–1763.

[13] F. R. McMorris, T. J. Warnow, and T. Wimer, Triangulating vertex-colored graphs, SIAM
J. Discrete Math., 7 (1994), pp. 296–306.

[14] M. A. Steel, The complexity of reconstructing trees from qualitative characters and subtrees,
J. Classification, 9 (1992), pp. 91–116.

[15] T. Warnow, D. Ringe, and A. Taylor, Reconstructing the evolutionary history of natural
languages, in Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, Atlanta, GA, SIAM, Philadelphia, 1996, pp. 314–322.

