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Abstract. One recursively enumerable real α dominates another one β if there are nondecreasing
recursive sequences of rational numbers (a[n] : n ∈ ω) approximating α and (b[n] : n ∈ ω) approxi-
mating β and a positive constant C such that for all n, C(α− a[n]) ≥ (β− b[n]). See [R. M. Solovay,
Draft of a Paper (or Series of Papers) on Chaitin’s Work, manuscript, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, 1974, p. 215] and [G. J. Chaitin, IBM J. Res. Develop., 21
(1977), pp. 350–359]. We show that every recursively enumerable random real dominates all other
recursively enumerable reals. We conclude that the recursively enumerable random reals are exactly
the Ω-numbers [G. J. Chaitin, IBM J. Res. Develop., 21 (1977), pp. 350–359]. Second, we show that
the sets in a universal Martin-Löf test for randomness have random measure, and every recursively
enumerable random number is the sum of the measures represented in a universal Martin-Löf test.
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1. Introduction. When is a real number effectively random? To a large extent,
this question was answered by the collective efforts of Chaitin [4], Kolmogorov [11],
Martin-Löf [14], Schnorr [15], Solomonoff [16], [17], and Solovay [18], among others.
We present a brief historical account, based in the most part on [19]. One could also
consult [1] or [13].

1.1. Characterizations of effective randomness. To fix some notation, Σ∗

denotes the set of finite binary sequences. For a ∈ Σ∗, |a| denotes the length of
a and 〈a〉 denotes the rational number with binary expansion 0.a. We order Σ∗

lexicographically.
Σω denotes the set of all infinite binary sequences. As above, 〈α〉 denotes the real

number with binary expansion 0.α. We extend the lexicographic ordering of Σ∗ to
that on Σω.

For A ⊆ Σ∗, AΣω denotes the open subset of Σω whose elements have an initial
segment in A, and µ(AΣω) denotes the measure of AΣω.

We have chosen to work with Σ∗ and Σω, as that seemed to work best notationally.
We could have worked with Q and R just as well and come to the same conclusions.
We will refer to elements of R and to elements of Σω as real numbers.

Characterization by measure. Our first characterizations of effective randomness
are based on the hypothesis that an effectively random real should avoid every effec-
tively presented set of measure 0.

Definition 1.1 (Martin-Löf [14]).
1. A Martin-Löf randomness test is a uniformly recursively enumerable sequence

(An : n ≥ 1) of subsets of Σ∗ such that for each n, µ(AnΣω) ≤ 1/2n.
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2. An x in Σω is Martin-Löf-random if for every Martin-Löf test (An : n ≥ 1),
x 6∈

⋂
n≥1 AnΣω.

3. A Martin-Löf test (Un : n ≥ 1) is universal if for every x ∈ Σω, if x 6∈⋂
n≥1 UnΣω, then x is Martin-Löf-random.

Note that when we speak of Martin-Löf tests, we will always be referring to tests
which are applied to infinite binary sequences. Such tests are also known as sequential
Martin-Löf tests to distinguish them from tests applied to finite strings.

A second measure theoretic criterion was proposed by Solovay.
Definition 1.2 (Solovay [18]).
1. A Solovay randomness test is a uniformly recursively enumerable sequence

(An : n ≥ 1) such that the sum
∑

n≥1 µ(AnΣω) is convergent.
2. An x in Σω is Solovay-random if and only if for every Solovay randomness

test (An : n ≥ 1), {n : x ∈ AnΣω} is finite.
It is immediate that every Solovay-random real is Martin-Löf-random, and Solovay

proved the converse.
Theorem 1.3 (Solovay [18]). Every x in Σω which is Martin-Löf-random is also

Solovay-random.
Characterization by algorithmic complexity.. Our second characterization of ef-

fective randomness is based on the hypothesis that an effectively random sequence
should be unpredictable.

Suppose that f is a partial recursive function from Σ∗ to Σ∗. We say that f is
self-delimiting if for all a and b in Σ∗, if f is defined on a and on b, then a and b are
incompatible; that is to say that they are not equal and neither string extends the
other.

Definition 1.4 (Levin [12], Chaitin [4]). Suppose that f is a self-delimiting
recursive function. We write f(a) ↓ to indicate that f is defined on argument a.

1. The halting probability of f is
∑

f(a)↓ 1/2|a|.
2. If b is in the range of f , then the f -complexity of b is the least length of a

string a such that f(a) = b. If b is not in the range of f , then the f-complexity
of b is ∞. Let Hf (b) denote the f-complexity of b.

Note the halting probability of a self-delimiting function is a real number between
0 and 1. Consequently, we can use its binary expansion to identify it with an element
of Σω. This identification is unique for irrational reals.

Convention 1.5. In the following, we will make implicit use of the identification
between R and Σω whenever we say that a real number has a property defined only on
Σω.

Definition 1.6 (Chaitin [4]). A recursive function u is Chaitin-universal if and
only if the following conditions hold:

1. u is self-delimiting.
2. For any self-delimiting recursive function f , there is a constant C such that

for all a, Hu(a) is less than or equal to Hf (a) + C.
Proposition 1.7 (Chaitin [4]). There is a recursive function which is Chaitin-

universal.
Definition 1.8 (Chaitin [4]). An x ∈ Σω is Chaitin-random if there is a re-

cursive function u which is Chaitin-universal and a constant C such that for all n,
Hu(x � n) > n− C. (Here x � n is the sequence given by the first n values of x.)

It is straightforward to check that every Martin-Löf-random real is Chaitin-
random. Schnorr proved the converse; see [3].
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Theorem 1.9 (Schnorr [15]). For every x ∈ Σω, if x is Chaitin-random, then x
is Martin-Löf-random.

Since all of the preceding notions of effective randomness coincide, except for
historical references, we will drop the prefixes and speak of a real’s being random.

Natural examples. Chaitin provided a natural class of random reals.
Definition 1.10 (Chaitin [4]). A Chaitin Ω-number is the halting probability of

a universal function u as above.
Theorem 1.11.

1. (Chaitin [4]). Every Ω-number is Chaitin-random.
2. (Solovay [18]). Every Ω-number is Solovay-random.

Consequently, every Ω-number is random.

1.2. Recursive enumerability.
Definition 1.12. An α in Σω is recursively enumerable if there is a nondecreas-

ing sequence (a[n] : n ∈ ω) from Σ∗ such that limn→∞ a[n] = α.
The Ω-numbers provide natural examples of recursively enumerable reals.
Solovay formulated the following notion for recursive increasing sequences of ra-

tional numbers converging to real numbers. We take the liberty of presenting his
definition in terms of recursive increasing sequences from Σ∗ converging to elements
of Σω.

Definition 1.13 (Solovay [18]). Let (a[n] : n ∈ ω) and (b[n] : n ∈ ω) be recursive
monotonically (lexicographically) increasing sequences from Σ∗ which converge to α
and β, respectively.

1. (a[n] : n ∈ ω) dominates (b[n] : n ∈ ω) if there is a positive constant C such
that for all n in ω, C(〈α〉 − 〈a[n]〉) ≥ (〈β〉 − 〈b[n]〉).

2. (a[n] : n ∈ ω) is universal if it dominates every recursive monotonically
increasing sequence from Σ∗.

3. α is Ω-like if it is the limit of a universal monotonically increasing recursive
sequence from Σ∗.

Solovay showed that every Ω-number is Ω-like. Additionally, Solovay’s proof that
every Ω-number is Solovay-random generalizes to Ω-like reals.

Theorem 1.14 (Solovay [18]). If α is Ω-like, then α is random.
Calude et al. [2] sharpened Theorem 1.14 as follows.
Theorem 1.15 (Calude et al. [2]). If α is Ω-like, then α is an Ω-number.
Thus, every Ω-like number is an Ω-number.
Calude et al. [2] posed the natural question, “Is every recursively enumerable

random real an Ω-number?” In Theorem 2.1, we show that every recursively enumer-
able random real is Ω-like and conclude from Theorem 1.15 that the answer to this
question is yes.

A second natural class of random reals. Chaitin’s Ω-numbers come from universal
objects in the complexity theoretic formulation of randomness. Calude et al. [2] raised
the question whether the universal objects in the measure theoretic formulation of
randomness are also random. They asked, “If (Un : n ≥ 1) is a universal Martin-
Löf test, then is

∑
n≥1 µ(UnΣω) random?” In Theorem 3.1, we show that the answer

is yes. As we discuss below, an equivalent form of this fact was known in the context
of recursive analysis.

A dual statement is also true. Theorem 3.3 states that every random recursively
enumerable real number is the sum of the measures in a some universal Martin-
Löf test.
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This paper represents work conducted independently by the authors. Where
appropriate, we have indicated places where they came to their solutions to these
problems differently.

2. Random recursive enumerability implies Ω-like.
Theorem 2.1. Suppose that α is a random recursively enumerable element of

Σω. Then α is Ω-like.
Proof. Let (a[n] : n ∈ N) be a recursive nondecreasing sequence from Σ∗ which

converges to α. Let β be recursively enumerable, and let (b[n] : n ∈ N) be a recursive
lexicographically nondecreasing sequence from Σ∗ which converges to β.

We show that one of the following two conditions must hold:
1. There is a uniformly recursively enumerable sequence of sets (An : n ∈ N)

such that for each n, An ⊆ Σ∗, µ(AnΣω) ≤ 1/2n, and α ∈ AnΣω.
2. There is a C such that for all i, C(〈α〉 − 〈a[i]〉) ≥ (〈β〉 − 〈b[i]〉).

Theorem 2.1 follows. If the first condition holds, then α is not random and
Theorem 2.1 is verified. Otherwise, the second condition holds and the pair β and
(b[n] : n ∈ N) is not a counterexample to α’s being Ω-like. Since β and (b[n] : n ∈ N)
were arbitrary, Theorem 2.1 is verified.

We enumerate An by recursion on stages s. Let An[s] be the finite set of strings
that have been enumerated into An during earlier stages than s. Let s−[s] be the
last stage during which we enumerated an element into An, or equal to 0, if there
was no such earlier stage. If a[s] has an initial segment in An[s] or b[s] = b[s−[s]],
then we let An[s + 1] = An[s]. Otherwise, let a[s] + (b[s] − b[s−[s]])/2n denote the
string c such that 〈c〉 is equal to 〈a[s]〉 + (〈b[s]〉 − 〈b[s−[s]]〉)/2n. We choose a finite
antichain d1, . . . , dk from Σ∗ such that for every d in [a[s], a[s] + (b[s]− b[s−[s]])/2n],
there is an i such that d is compatible with di . We enumerate d1, . . . , dk into An. In
other words, we add the interval from a[s] to a[s] + (b[s] + b[s−[s]])/2n to AnΣω. Our
intention is that if the approximation to β changed by ε, then either α will belong to
AnΣω or the approximation to α must change by an additional amount greater than
or equal to ε/2n.

First, we calculate that µ(AnΣω) ≤ (〈β〉−〈b[0]〉)/2n: AnΣω is a union of a disjoint
set of intervals, and the measure of AnΣω is the sum of the lengths of those intervals.
That sum has the form

(〈b[t1]〉 − 〈b[0]〉)/2n + (〈b[t2]〉 − 〈b[t1]〉)/2n + (〈b[t3]〉 − 〈b[t2]〉)/2n + . . . ,

where t1, t2, . . . is the sequence of stages during which we enumerate intervals into
AnΣω. This is a collapsing sum with limit less than or equal to (〈β〉−〈b[0]〉)/2n. The
inequality could be strict when there are only finitely many terms in the sum. In any
event, µ(AnΣω) ≤ 1/2n.

If α belongs to each AnΣω, then we have condition 1.
Therefore, suppose that n is fixed so that α is not in AnΣω. By our construction,

if we enumerate the interval [a[s], a[s]+(b[s]− b[s−[s]])/2n] into AnΣω during stage s,
then there is a stage t greater than s such that 〈a[t]〉 is greater than 〈a[s]〉+ (〈b[s]〉 −
〈b[s−[s]]〉)/2n).

We claim that for all s, 2n(〈α〉 − 〈a[s]〉) ≥ (〈β〉 − 〈b[s]〉). Fix s and let t0 be the
greatest stage t less than s such that we enumerate something into An during stage t
or be 0 if there is no such stage. Let t0, t1, . . . be the sequence of stages, beginning
with stage t0, during which we enumerate intervals into An. Then t1 is greater than or
equal to s and 〈α〉−〈a[t1]〉 is greater than the sum Σ∞k=1(〈b[tk]〉−〈b[tk−1]〉)/2n. This is
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another collapsing sum and is equal to (〈β〉−〈b[t0]〉)/2n. Consequently, 〈α〉−〈a[s]〉 ≥
〈α〉 − 〈a[t1]〉 ≥ (〈β〉 − 〈b[t0]〉)/2n ≥ (〈β〉 − 〈b[s]〉)/2n, as required.

3. Universal Martin-Löf tests have random measure. Subsequent to our
having proven Theorem 3.1, the first author observed that a version of it appears in
[6], set in the context of recursive analysis. See Remark 3.5.

Theorem 3.1. Let (Un : n ≥ 1) be a universal Martin-Löf test. Then, for each
n ≥ 1, µ(UnΣω) is random.

Proof. We show that for each n, µ(UnΣω) is Ω-like and therefore random.
Let U be one of the elements of (Un : n ≥ 1). We note that µ(UΣω) is less

than or equal to 1/2. Let U [s] denote the set consisting of the first s elements in the
enumeration of U . Let β ∈ Σω be recursively enumerable, and let (b[s] : s ≥ 1) be a
recursive increasing sequence from Σ∗ which converges to β.

We will construct a Martin-Löf test (An : n ≥ 1) so that for all n, An+1Σω ⊆
AnΣω and so that one of the following conditions holds:

1. For each n, An is finite and µ(AnΣω \ UΣω) > 0.
2. There is a C such that for each s, C(µ(UΣω)− µ(U [s]Σω)) > (〈β〉 − 〈b[s]〉).

In the first case, we will obtain a contradiction by showing that (Un : n ≥ 1) is
not universal. In the second case, we will show that (µ(U [s]Σω) : s ≥ 1) dominates
(b[s] : s ≥ 1). Since β and (b[s] : s ≥ 1) were arbitrary, µ(UΣω) is Ω-like, as required.

We construct the sets An and several auxiliary functions by recursion on stages s.
Our continuing convention is to use the suffix [s] to denote the values of these objects
during stage s. For example, An[s] denotes the finite subset of Σ∗ whose elements
were enumerated into An before stage s.

In our recursion, if the recursion variable i goes to infinity, then we verify the first
disjunct above. If i does not go to infinity in the limit, then its limit infimum i∗ is
the least index for an infinite element of (An : n ≥ 1). In this case, U must cover a
nonzero fraction of the measure of Ai∗ . We add measure to each An so that we can
verify the second disjunct above (where C depends on i∗; see below).

We begin the construction with each An empty. During stage 0, we define m0[0] =
1/2, define A0 = { () }, the set whose only element is the null sequence, and say that 0
is active during stage 0. During stage s greater than 0, we begin in step 1 and follow
the instructions below until reaching one which requires the end of stage s. Upon the
end of stage s, we begin stage s + 1.

1. Let m0[s] = 1/2, let A0[s] = { () }, and let i = 1. Go
to step 2.

2. (a) If i has not been active during any previous
stage or if all of its previous actions have been
canceled, then let s−i [s] equal 0.

(b) Otherwise, let s−i [s] be the most recent stage
during which i was active.

Go to step 3.
3. (a) If s−i [s] = 0 or if µ(Ai[s]Σω \ U [s]Σω) is less than

or equal to di[s−i [s]]mi−1[s]/2, then take the
following actions.
i. Set di[s] = (〈b[s]〉 − 〈b[s−i [s]]〉) and

mi[s] = di[s]mi−1[s]/2.
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ii. Choose a finite set of strings Fi[s] so that
µ(Fi[s]Σω) is equal to di[s]mi−1[s], Fi[s]Σω is a
subset of Ai−1[s]Σω, and Fi[s]Σω is disjoint
from U [s]Σω. Enumerate the elements of Fi[s]
into Ai.

iii. Say that i is active during stage s. For each
j > i, cancel all of the previous actions for
the sake of j.

iv. End the stage s of the recursion.
(b) Otherwise, let di[s] = di[s−i [s]] and

mi[s] = di[s]mi−1[s]/2. Go to step 4.
4. (a) If i is less than s, then increase the value of i

by 1, and go to step 2.
(b) Otherwise, end stage s of the recursion.

Suppose that we reach step 3(a) with i = n. If n is equal to 1, then we are required
to find a set F1[s] such that F1[s]Σω ⊂ (Σω \U [s]Σω) and µ(F1[s]Σω) = d1[s]m0[s]. Of
course, m0[s] = 1/2 and d1[s] is less than 1. Therefore we must find a set of measure
less than 1/2 in Σω \ U [s]Σω. Since U belongs to a Martin-Löf test, µ(UΣω) ≤ 1/2
and it is possible to find the set F1[s]. If n is greater than 1, then at an earlier point in
stage s, we noted that µ(An−1[s]Σω \U [s]Σω) is greater than dn−1[s−n−1[s]]mn−2[s]/2.
We defined dn−1[s] = dn−1[s−n−1[s]] and defined mn−1[s] = dn−1[s]mn−2[s]/2. Then
dn[s]mn−1[s] = dn[s](dn−1[s]mn−2[s]/2). Since dn[s] is less than or equal to 1, this
quantity is less than dn−1[s−n−1[s]]mn−2[s]/2, and again it is possible to find the set
Fn[s].

We say that n is injured during stage s if we cancel all of the previous actions for
the sake of n during stage s. Note that 1 is never injured.

Let Mn be the set of stages during which n is active. Mn is naturally divided into
intervals by injury to n. If Mn is not empty, then start by letting {qj : j ∈ Qn} be
an increasing enumeration of the stages s in Mn such that s−n [s] is equal to 0. Note
that Qn may be finite or may be all of N. In the case that Qn is finite with greatest
element j, we let qj+1 denote infinity and use it to refer to the semi-infinite interval
of stages coming after the final injury to n.

To calculate a bound on the measures of the sets AnΣω, we now compute∑
s∈Mn

dn[s]mn−1[s], when n is greater than or equal to 1.

Divide Mn into intervals.

∑
s∈Mn

dn[s]mn−1[s] =
∑

j∈Qn

∑
s∈Mn∩[qj ,qj+1)

dn[s]mn−1[s].

Note that mn−1[s] is constant between qj and qj+1.

=
∑

j∈Qn

mn−1[qj ]
∑

s∈Mn∩[qj ,qj+1)

dn[s]

 .
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Identify the collapsing sum.

=
∑

j∈Qn

mn−1[qj ]
∑

s∈Mn∩[qj ,qj+1)

(〈b[s]〉 − 〈b[s−n [s]]〉)


≤

∑
j∈Qn

mn−1[qj ](〈β〉 − 〈b[0]〉)

≤
∑

j∈Qn

mn−1[qj ].

Note that mn−1[qj ] equal to mn−1[s], where s is the greatest stage less than qj

during which n− 1 was active.

≤
∑

s∈Mn−1

mn−1[s].

The last inequality could be strict, as there may be stages during which n− 1 is
active which are followed by an injury to n− 1 before the next stage during which n
is active.

We now check by induction that
∑

s∈Mn
mn[s] is less than or equal to 1/2n+1.

Consider the case when n is equal to 0. Then, M0 is equal to {0} and m0[0] is
equal to 1/2. Consequently,

∑
s∈M0

m0[s] = 1/2, as required.
Now, suppose that n is greater than 0. Then,

∑
s∈Mn

mn[s] is given by the
following: ∑

s∈Mn

mn[s] =
∑

s∈Mn

dn[s]mn−1[s]/2.

Move the factor 1/2 out of the sum, and apply the previous calculation.

≤ 1
2

∑
s∈Mn−1

mn−1[s].

Apply induction.

≤ 1
2
(1/2n)

= 1/2n+1.

We have the required inequality.
Now, µ(AnΣω) is less than or equal to the sum of the measures of the sets Fn[s]Σω

for s ∈ Mn. Each Fn[s]Σω has measure dn[s]mn−1[s]. Therefore, µ(AnΣω) is less than
or equal to

∑
s∈Mn

dn[s]mn−1[s], which is less than or equal to
∑

s∈Mn−1
mn−1[s], and

hence less than or equal to 1/2n, as above.
Thus, (An : n ≥ 1) is a Martin-Löf test.
Suppose that for each n, n is active only finitely often. Then for each n, there is

a stage s during which we execute step 3(a) for i = n for the final time. Therefore,
for each n, An is finite and AnΣω \ UΣω is a closed set of positive measure. Further,
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for each n, An+1Σω ⊆ AnΣω. Since Σω is compact,
⋂

n≥1 AnΣω \ UΣω is not empty.
Thus,

⋂
n≥1 AnΣω is not a subset of U , contradicting the universality of (Un : n ≥ 1).

Consequently, there are numbers which are active infinitely often, and we let i∗

be the least such number.
The first possibility is that i∗ is equal to 1. Consider the action during a stage

s ∈ M1. We add strings to A1 so that the measure of A1Σω \ U [s]Σω is greater
than or equal to d1[s]m0[s], where d1[s] is the amount that the approximation to
β has increased since the most recent stage s−1 [s] during which 1 was active. At
the next stage s+

1 [s] in M1 after s, the measure of A1[s+
1 ]Σω \ U [s]Σω is less than

d1[s]m0[s]/2 = d1[s]m0[0]/2. Thus, for s in M1, if the approximation to β in-
creases by d1[s] during the interval [s−1 [s], s), then the measure of U [s+

1 ]Σω \ U [s]Σω

is greater than or equal to d1[s]m0[s]/2. It follows that for every s, (〈β〉 − 〈b[s]〉) ≤
(2/m0[0])(µ(UΣω) − µ(U [s]Σω)). Thus, every increase in the approximation to β is
followed by a proportional increase in the approximation to the measure of U , and so
µ(U [s]Σω : s ≥ 1) dominates (b[s] : s ≥ 1).

Second, i∗ may be larger than 1, but the analysis is completely parallel to that of
the previous case. We start from the first stage s[0] in Mi∗ after i∗ is injured for the
last time, we add strings to Ai∗ so that the measure of Ai∗Σω \U [s]Σω is greater than
or equal to di∗ [s]mi∗−1[s] = di∗ [s]mi∗−1[s0], and we observe that the measure of UΣω

increases by at least half that much during the interval from s to the next stage in Mn.
It follows that for every m, (〈β〉 − 〈b[m]〉) ≤ (2/mi∗−1[s0])(µ(UΣω)− µ(U [m]Σω)).

In either case, U is Ω-like and therefore random.
The following corollary follows easily.
Corollary 3.2. Let (Un : n ≥ 1) be a universal Martin-Löf test. Then∑

n≥1 µ(UnΣω) is random.
Theorem 3.3. For each recursively enumerable random r in Σω there is a uni-

versal Martin-Löf test (Un : n ≥ 1) such that 〈r〉 is equal to
∑

n≥1 µ(UnΣω).
Proof. We fix a universal Martin-Löf test (An : n ≥ 1), and construct another

(Un : n ≥ 1) based on it so that 〈r〉 =
∑

n≥1 µ(UnΣω). Let An[s] denote the finite
set of sequences which enter An during the first s steps of its enumeration. We may
assume that for all n and s, if s < n, then An[s] is empty. With analogous notation,
we will make use of a universal Martin-Löf test (Vn : n ≥ 1) and a nondecreasing
recursive sequence (r[s] : s ≥ 1) with limit r such that for all s,

∑
n≥1 µ(VnΣω) −∑

n≥1 µ(Vn[s]Σω) is less than 〈r〉−〈r[s]〉. We first argue that there are such sequences.
For s greater than or equal to 1, let b[s] be the binary string such that the following

condition holds:

〈b[s]〉 =
∑

s≥i≥1

2i
∑

s≥j≥1

µ(A2i+j+1[s]Σω).

Note that ∑
s≥i≥1

2i
∑

s≥j≥1

µ(A2i+j+1[s]Σω) ≤
∑
i≥1

2i
∑
j≥1

µ(A2i+j+1Σω)

≤
∑
i≥1

2i
∑
j≥1

(1/22i+j+1)

≤
∑
i≥1

1/2i+1

≤ 1/2,
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and so there is such a b[s]. Let β be lims→∞ b[s]. Since r is random, Theorem 2.1
applies and we may let (r[s] : s ≥ 1) be a recursive nondecreasing sequence from
Σ∗ with limit r and let C be constant such that for all s, 〈β〉 − 〈b[s]〉 is less than
C(〈r〉 − 〈r[s]〉). Now let k be fixed so that 2k is greater than C. Then for all s,

2k(〈r〉 − 〈r[s]〉) > C(〈r〉 − 〈r[s]〉)
≥ 〈β〉 − 〈b[s]〉

=
∑
i≥1

2i
∑
j≥1

µ(A2i+j+1Σω)−
∑

s≥i≥1

2i
∑

s≥j≥1

µ(A2i+j+1[s]Σω)

≥ 2k
∑
j≥1

µ(A2k+j+1Σω)− 2k
∑

s≥j≥1

µ(A2k+j+1[s]Σω).

Consequently, for each s,

(〈r〉 − 〈r[s]〉) >
∑
j≥1

µ(A2k+j+1Σω)−
∑

s≥j≥1

µ(A2k+j+1[s]Σω).

Then, (A2k+j+1 : j ≥ 1) is a universal Martin-Löf test such that for all s,∑
j≥1 µ(A2k+j+1Σω)−

∑
s≥j≥1 µ(A2k+j+1[s]Σω) is less than 〈r〉 − 〈r[s]〉.

We first handle the case in which 〈r〉 is less than 1/2. Choose m so that

〈r〉+ µ(A2k+m+1Σω) < 1/2

and so that

〈r〉 >
∑
j≥1

µ(A2k+m+j+1Σω).

For n ≥ 1, let Vn = A2k+m+n+1. For s greater than or equal to 1, let v[s] be∑
s≥n≥1 µ(Vn[s]Σω), and let v be

∑
n≥1 µ(VnΣω). By the estimates given above, for

each s, v − v[s] is less than or equal to 〈r〉 − 〈r[s]〉.
We now construct our Martin-Löf test (Un : n ≥ 1) so that V1 ⊆ U1 and for all n

greater than 1, Vn = Un.
Assuming that we establish

∑
n≥1 µ(UnΣω) = 〈r〉, then since µ(U1Σω) is less than

or equal to 〈r〉 and 〈r〉 is less than or equal to 1/2, (Un : n ≥ 1) is a Martin-Löf test.
Further, ∩n≥1An is a subset of ∩n≥1Un and so (Un : n ≥ 1) is universal.

We enumerate U1 by recursion on stages s. Let U1[s] be set of strings enumerated
into U1 during stages less than s. Let u[s] be µ(U1[s]Σω) +

∑
n>1 µ(Vn[s]Σω), and let

u be the limit of u[s], as s goes to infinity.
During stage s, if u[s] is less than 〈r[s]〉, then we enumerate a finite set of strings

F [s] into U1 so that F [s]Σω ∩ U1[s]Σω = ∅ and µ(F [s]Σω) is equal to 〈r[s]〉 − u[s].
(Not to ignore a fine point, since 〈r[s]〉 and u[s] have finite binary expansions, there
is such a finite set.) We then enumerate all of the strings that enter V1 during stage
s into U1.

It remains to check that u =
∑

n≥1 µ(UnΣω) is equal to 〈r〉.
By the construction, for every s, u[s + 1] is greater than or equal to 〈r[s]〉. Con-

sequently, u ≥ 〈r〉.
Since

∑
n≥1 µ(VnΣω) < 〈r〉, there must be a stage s such that 〈r[s]〉 ≥ v(s). At

the first such stage, 〈r[s]〉 ≥ u(s) as well. If there are infinitely many stages s during
which 〈r[s]〉 ≥ u[s], then u = 〈r〉, as required. Otherwise, there are only finitely many
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such stages. We argue that 〈r〉 ≥ u as follows. Let s0 be the greatest stage s during
which 〈r[s]〉 ≥ u[s]. At the beginning of stage s0 + 1, we add a finite set of elements
F [s0 + 1] to U1 so that the measure of U1Σω is momentarily equal to 〈r[s0]〉. Since
u[s] ≥ 〈r[s]〉 during every stage s after s0, we do not add any further elements to U1

other than those in V1. Consequently U1 is equal to U1[s0]∪ F [s0 + 1]∪ V1. Further,
u, which is equal to

∑
n≥1 µ(UnΣω), can be written as

u = µ ((U1[s0]∪ F [s0 + 1])Σω) +
∑
n>1

µ(Vn[s0]Σω)

+ µ(V1Σω \ (U1[s0]∪ F [s0 + 1])Σω) +
∑
n>1

µ(VnΣω \ Vn[s0]Σω).

By the choice of F [s0 + 1],

µ((U1[s0]∪ F [s0 + 1])Σω) +
∑
n>1

µ(Vn[s0]Σω) = 〈r[s0]〉.

Further, V1[s0] ⊆ U1[s0] so

µ(V1Σω \ (U1[s0]∪ F [s0 + 1])Σω) +
∑
n>1

µ(VnΣω \ Vn[s0]Σω)

≤ µ(V1Σω \ V1[s0]Σω) +
∑
n>1

µ(VnΣω \ Vn[s0]Σω)

≤
∑
n≥1

µ(VnΣω)−
∑
n≥1

µ(Vn[s0]Σω)

≤ (v − v[s0]).

Then, however, u ≤ 〈r[s0]〉+(v−v[s0]). By the above, (v−v[s0]) is less than or equal
to (〈r〉 − 〈r[s0]〉). We conclude that u is less than or equal to 〈r[s0]〉+ (〈r〉 − 〈r[s0]〉);
that is, u ≤ 〈r〉, as required.

Next we consider the case when 〈r〉 is greater than 1/2. Again, let (An : n ≥ 1)
be a universal Martin-Löf test. Choose m > 1 so that 1/2 +

∑
n>m µ(AnΣω) is less

than 〈r〉. Let 0n denote the sequence with n many 0’s. For n ≥ 1, let Vn be a subset
of Σ∗ such that Am+nΣω ∪{0n+1}Σω is equal to VnΣω ∪{0n+1}Σω, and each element
of Vn is incompatible with 0n+1. For each n, µ(Am+nΣω ∪{0n+1}Σω) is less than
or equal to µ(Am+nΣω) + 1/2n+1, which is less than or equal to 1/2n. Now we use
the method in the previous construction to find (Un : n ≥ 1) such that the following
conditions hold:

∑
n≥1 µ(UnΣω) = 〈r〉 − 1/2; for each n, Vn ⊆ Un; and every element

of Un is incompatible with 0n+1.
The last constraint is only relevant to the construction of U1. In the notation of

the previous construction, we may be asked during step s + 1 to find a set of finite
sequences F [s+1] such that the measure of F [s+1]Σω is equal to (〈r[s]〉−1/2)−u[s]
and F [s + 1]Σω ∩U1[s]Σω = ∅. For n = 1, the complement of {0n+1}Σω has measure
3/4, so the measure available for the choice of F [s + 1] is greater than or equal to
3/4− u[s]. Thus it is always possible to find the set F [s] as required.

Finally, we let U∗
n be Un ∪ {0n+1}.

Then,
∑

n≥1 µ(U∗
nΣω) is evaluated as follows:∑

n≥1

µ(U∗
nΣω) =

∑
n≥1

µ(UnΣω ∪ {0n+1}Σω).
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Note that UnΣω ∩ {0n+1}Σω is empty.

=
∑
n≥1

µ(UnΣω) +
∑
n≥1

µ({0n+1}Σω)

=
∑
n≥1

µ(UnΣω) + 1/2

= (〈r〉 − 1/2) + 1/2
= 〈r〉.

Remark 3.4. Theorem 3.1 can also be proved by using the following idea. We first
observe that approximating µ(UnΣω) by an open set with measure less than ε is at
least as difficult as approximating 〈L〉, where L is the least element in Σω which is not
in UnΣω. More precisely, let 〈α〉 denote µ(UnΣω). If we were given a Martin-Löf test
(An : n ≥ 1) such that α belongs to

⋂
n≥1 AnΣω, then we could construct another

Martin-Löf test (Bn : n ≥ 1) such that L belongs to
⋂

n≥1 BnΣω. By virtue of L’s
passing the universal Martin-Löf test (Un : n ≥ 1), L is random, a contradiction.
Theorem 3.1 follows.

We sketch the enumeration of (Bn : n ≥ 1). For any σ and s, if s is the least such
that

σ ∈ An[s] and 〈σ〉 ≤ µ(Un[s]Σω) < 〈σ〉+ 2−|σ|,

take the following actions. Choose a finite set of strings Gn[s] such that Gn[s]Σω is
disjoint from Un[s]Σω, µ(Gn[s]Σω) = 〈σ〉+2−|σ|−µ(Un[s]Σω); if β is the least element
in Σω which is not in Un[s]Σω ∪Gn[s]Σω, then

〈β〉 = µ(Un[s]Σω ∩ {γ : γ < β}) + µ(Gn[s]Σω).

(Observe that such set Gn[s] exists.) Enumerate Gn[s] into Bn.
Roughly speaking, enumerate into Bn a finite set of strings Gn[s] such that

Gn[s]Σω presents the leftmost part of the complement of Un[s]Σω (not necessarily
connected) of a total length 〈σ〉+ 2−|σ| − µ(Un[s]Σω).

Remark 3.5. As we mentioned above, a recursive-analysis version of Theorem 3.1
was proven by [6]. Demuth worked in the Markov/Russian style of constructive math-
ematical analysis. He studied a behavior of everywhere defined constructive functions
of a real variable and, among others, questions of differentiation of such functions.
Since random reals from the closed unit interval

1. form a set of measure one,
2. arise by avoiding sets of measure zero from a special class, and
3. can be viewed as “generic,”

one could expect that they would be important in recursive analysis. This is the
case and Demuth devoted a considerable amount of effort toward understanding their
role there. He started with a rather finitistic approach, and he used a more standard
terminology only in his last papers. We briefly survey Demuth’s work here, taking
the liberty to reformulate his definitions and results into a contemporary terminology.

Demuth [6] studied reals recursive in ∅′ and defined π1 and π2 numbers in that
context. According to Demuth, a real x recursive in ∅′ is a π1 number if and only if
for some (equivalently, for any) recursive sequence of rational numbers (a[n] : n ∈ ω)
converging to x there is a recursive sequence of finite recursive sets (Cm : m ∈ ω)
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such that µ(
⋃

s 6∈Cm
(min(a[s], a[s + 1]),max(a[s], a[s + 1]))) is less than 2−m. Dually,

x recursive in ∅′ is a π2-number if x is not a π1-number.
In his own terminology, Demuth constructed a universal Martin-Löf test [6, The-

orem 2] and showed [6, Theorem 5] that for all x recursive in ∅′, x is a π2 number if
and only if x is random in the sense of Martin-Löf. We are omitting some details here.
Later, Demuth [7] worked with arithmetical reals and defined A1 and A2 numbers
as natural extensions of π1 and π2 numbers. Demuth was not aware that Martin-Löf
had formulated these notions earlier.

Finally, Demuth [9] extended these notions to all reals under a different termi-
nology (still not using “randomness”). In [6], he proved, among other things, the
following.

(Demuth [6, Lemma 3]). If r =
∑

n∈ω rn, for nonnegative rationals rn, is a π1-
number (i.e., nonrandom), then

∑
n∈C rn for any recursively enumerable set C is

again a π1-number (no proof was given).
(Demuth [6, Corollary]). Let Q be a recursively enumerable set of strings. If

µ(QΣω) is a π1-number and µ(Q[s]Σω) is less than 1 for all s, then there is a π1-
number x with 0 ≤ x ≤ 1 such that x 6∈ QΣω (no proof was given).

In other words, if µ(QΣω) is not random, then there is a nonrandom real not in
QΣω. It follows that if Un appears as one of the sets in a universal Martin-Löf test,
then µ(UnΣω) is random.

For more on the massive work of Demuth on recursive analysis one could also
consult [10], [8], or [9]. Finally, we note that Demuth also proved several interesting
results from a more recursion theoretic point of view in his last papers; see [8], [9], [10].
He also studied various modifications of randomness, again motivated by problems
arising in recursive analysis.
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