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Abstract

Motivated by the question of the relative complexities of the Graph Isomorphism and
the Graph Automorphism problems, we define and study the modular graph automor-
phism problems. These are the decision problems modg-GA which consist, for each
k > 1, of deciding whether the number of automorphisms of a graph is divisible by k.
The modp-GA problems all turn out to be intermediate in difficulty between Graph
Automorphism and Graph Isomorphism.

We define an appropriate search version of modp-GA and design an algorithm that
polynomial-time reduces the modg-GA search problem to the decision problem. Com-

bining this algorithm with an IP protocol, we obtain a randomized polynomial-time
checker for mod-GA, for all k& > 1.

1 Introduction

The Graph Isomorphism problem (GI) consists of determining whether two graphs are iso-
morphic. It is well known that GI is in NP, but despite decades of study by mathemati-
cians and computer scientists, it is not known whether GI is in P or whether GI is NP-
complete. Many researchers conjecture that GI's complexity lies somewhere between P and
NP-complete. Related to GI are several other decision problems (some graph-theoretic and
others group-theoretic in nature) that are similarly not known to be in P or NP-complete.
One such problem which is closely related to GI is Graph Automorphism (GA): Deciding
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whether a graph has a nontrivial automorphism. Regarding the relative complexities of GA
and GI, it is known that GA is polynomial-time many-one reducible to GI. On the other
hand, GI is not known to be even polynomial-time Turing reducible to GA (see [10] for these
and related results). However, in [12] it is shown that GI is polynomial-time reducible to
the problem of computing the number of automorphisms of a graph.

The notion of program checking was introduced by Blum and Kannan [3] as an algorithmic
alternative to program verification. Since then the design of efficient checkers for various
computational problems has rapidly grown into a discipline of algorithm design [3, 4]. One
of the first program checkers in [3] was a randomized polynomial-time checker for GI. Tt is
an outstanding open question in the area if NP-complete problems have efficient program
checkers. This can be construed as another evidence that GI is not NP-complete. Later,
in [11] it was shown that GA has a nonadaptive checker. In other words, the checker can
make all its queries to the program in parallel, hence enabling it to be fast in parallel (in NC,
to be precise). It is an open question whether GI too has a nonadaptive checker, and the
apparent bottleneck here is that the search problem for GI is not known to be polynomial-
time truth-table reducible to the decision problem for GI (i.e. the reduction is nonadaptive:
it uses only parallel queries).

Thus, a natural next step in investigating the relationship between GI and GA is to
consider exactly how much we need to know about the number of automorphisms of a graph
in order to solve the Graph Isomorphism problem. This motivates us to define and study
modular graph automorphism problems. Let Aut(G) denote the automorphism group of the
graph G.

Definition 1 For any k, let mod;-GA = {G : |Auwt(G)| =0 (mod k)}.

We show in Theorems 4 and 5 that for any £ > 1, GA <P modp-GA <P GI; thus
the mod;-GA problems are intermediate in difficulty between GA and GI. It is an open
question whether any of the modi-GA problems is polynomial-time equivalent to GA or GI.
We conjecture that mody-GA is not polynomial-time equivalent to GA or GI, for any k > 1.
An evidence that some of the modg-GA problems could be actually harder than GA is our
observation that Tournament Isomorphism (graph isomorphism for tournament graphs) is
many-one reducible to mods-GA. This follows from the fact that the automorphism group of
any tournament is of odd size [10], which in turn implies that two tournaments are isomorphic
iff the automorphism group of their disjoint union contains an order-two permutation (which
must switch the two graphs).

The layout of the paper is as follows. Section 2 contains the preliminaries. In Section 3,
we prove that the modi-GA problems are located between GA and GI. In Section 4, we
show that search is polynomial-time Turing equivalent to decision for modi-GA, and in
Section 5 we use this result in combination with an IP protocol for mod,-GA to obtain an
efficient program checker for modi-GA. Notice that although both GA and GI have program
checkers (shown in [11] and [3] resp.) and mod,-GA is intermediate in complexity, it does
not necessarily imply that modi-GA has a program checker [3].



2 Preliminaries

In this paper by a graph we mean a finite directed graph® (see for example [8] or any other
standard text on graph theory for basic definitions). For a graph G, let V(G) denote its
vertex set and E(G) denote its edge set. A permutation 7 on the vertex set V(G) of a
graph G is an automorphism of G if (u,v) € E(G) < (n(u),7m(v)) € E(G). The set
of automorphisms Aut(G), of a graph G, is a subgroup of the permutation group on V(G).
The identity automorphism of any graph will be denoted by id.

Let X be a list of vertices in V/(G) for a given graph G. By Gx] we mean the graph G with
distinct labels attached to the vertices in X. Given two lists of vertices X, Y C V(G), the
graphs G[x] and Gy] have the same labels in vertices occupying the same relative positions
in X and Y. It is not hard to see that in G|y vertices of X are pointwise fixed in any
automorphism®. Thus Aut(G[x)) is isomorphic to the subgroup of Aut(G) which pointwise
fixes the vertices in X. Furthermore, given an automorphism of Aut(G[x)) the corresponding
automorphism of Aut(G) can be efficiently (i.e. in polynomial time) constructed.

Definition 2 Let Gy,...,G, be n graphs.

o Let P, be a directed simple path of n new vertices vy, vq,...,v,, where each verter v;
is labeled with a single label [. The graph Path(Gy,...,G,) is obtained by taking one
copy of each of the graphs G1,...,G, and, for 1 <1 <n, attaching all the vertices of
G; to v;.

o Let C,, denote the directed simple cycle on n new vertices vy, vy, ..., v,, with each vertex
vi, 1 <0< n, labeled with a single label [. The graph Cycle(Gy,...,G,) is obtained by
taking one copy of each of the graphs Gy,..., G, and, for 1 <1 < n, attaching all the
vertices of G; to v;.

In both Path(Gy,...,G,) and Cycle(Gy,...,G,), since the new vertices vy, vq,..., v,
are labeled with [, any automorphism of these graphs must map the set {vy, vy, ..., v,}
onto itself. Consequently, any automorphism of Path(Gy,...,G,) (Cycle(Gy, ..., Gy)) when
restricted to {v1,vq,...,v,} Is an automorphism of P, (C,) This means that an automor-
phism of Path(Gy, ..., G,) cannot permute the copies of Gy, ..., G, while an automorphism
of Cycle(Gy,...,G,) can permute them but only along the cycle C,,.

The reducibilities discussed in this paper are the standard polynomial-time Turing and
many-one reducibilities. Formal definitions of these and other standard notions in complexity
theory can be found in [2, 1].

We finish this section with some complexity-theoretic concepts which will be used later.
A set A C ¥* is a d-cylinder if there is an FP function OR that takes a list of strings
T1,T9, ..., Ty as argument and produces a string y such that

OR(z1,29,...,¢m) =y €A << T : 1<i<m : ;€A

n this paper we consider the problems GI, GA, and mod-GA on directed graphs. However, all results
of this paper hold for these problems on undirected graphs as well.

2Each label can be implemented with a graph gadget like a long path such that the overall size of the
graph is still polynomially bounded. See, e.g. [10].



Similarly, a set A C ¥* is a c-cylinder if there is an FP function AND that takes a list of
strings x1, 9, ..., T, as argument and produces a string y such that

AND(zy,29,...;2m) =y €A <= Vi : 1<i<m : z; € A
Now, we recall that GI satisfies both properties®.
Proposition 3 [5, 11| GI is a d-cylinder and a c-cylinder.

The relative complexity of decision and search for NP problems is well studied [2, 1]. For
instance, it is known that search and decision are polynomial-time Turing equivalent for all
NP-complete problems. In particular, we recall that for GI, search is polynomial-time Turing
reducible to decision [13] whereas for GA a stronger result holds: search is nonadaptively
polynomial-time reducible to decision [11].

3 Locating the mod;-GA Problems
We show in this section that mod;-GA is located between GA and GI, for all £ > 1.
Theorem 4 For all k > 1, GA <P, mod;-GA.

Proof. Given a graph G, we define for every 1,7 with 1 <1 < j < n, the graph H;; =
Cycle(Giy Gy - - - » Gigyyy) which contains one copy of Gy and k — 1 copies of Gy
Further, let H be obtained by applying the Path operator to all the graphs H, ; with 1 <
1 < 3 < n. We claim that G has a nontrivial automorphism if and only if H is in mod;-GA.

Suppose that G has a nontrivial automorphism . There exist two vertices ¢ and j such
that ¢(7) = j. Notice that H, ; has the following nontrivial automorphism o that cyclically
permutes the &k graphs in Cycle(Gy, Gy, -- - Giyy) as follows. The automorphism o
maps the first graph Gy to Gy by . It maps each of the first & — 2 copies of Gy to
the next copy of Gy;)) by the identity automorphism. Finally, o maps the last copy of G
back to Gy by the automorphism ¢~

The order of o is k since the vertices in H;; are moved in a cyclic way through the
different k& subgraphs. In fact, the permutation « is a product of a bunch of k-cycles. Thus
H; ; € mod-GA. Since |Aut(H)| = [li<i<j<n |Aut(H; ;)|, it follows that H € mod,-GA.

For the converse, assume that H € mody-GA. Then, H has a nontrivial automorphism,
say, a. Notice that o must induce an automorphism 3 in one of its subgraphs H; ;. Since
H; j = Cycle(Ga, Gy - - - Gigyy), there are two possibilities: either 8 induces a nontrivial
automorphism of Gy or Gy y), or else 3 maps the copy of G,y to some copy of Gy In
either case, it is clear that we get a nontrivial automorphism of G. ]

Mathon [12] has shown that |Aut(G)| is polynomial-time computable with GI as oracle.
From this it easily follows that modg-GA <% GI. In the next theorem, we strengthen this to
a <P -reduction using some permutation group theory.

3Elsewhere in the literature, e.g. [10], these properties are called OR and AND functions respectively.



Theorem 5 For all k > 1, mod,-GA <P, GI.

We need a couple of definitions and group-theoretic lemmas before we prove Theorem 3.
Let A be a subgroup of S, and let [n] denote the set {1,2,...,n}. A subset X C [n] is
A-invariant if g(X) = X for all ¢ € A. If X C [n] is A-invariant then consider the action
of A restricted to X. This gives rise to a subgroup of the symmetric group Sx, which we
denote by A*. A useful property that is obvious is that |A*| < |A], for all A-invariant sets
X.

Lemma 6 Let A be a subgroup of S, s.t. |A| = m. Then there exists an A-invariant subset
X C [n] with | X| < mlogm, such that A is isomorphic to A*.

Proof. Consider the following procedure for constructing the set X:

X « 0

while 3; ¢ X : |AX| < |4¥V40)] do

/% A(i) denotes the orbit of i under A */
{

Pick such an ¢;

X « X UA()

First we claim that, as a loop invariant, X is always an A-invariant subset of [n]. To see
this, notice that it holds at the beginning when X is empty, and if X is A-invariant then so
is X U A(7) since we are including an entire A-orbit in the set.

Next, suppose X is A-invariant and ¢ ¢ X is some index. Consider the mapping ¢
from AXY40 to AY which maps an element of AXY4(®) to its restriction to X. Since X is
A-invariant, it is easy to verify that ¢ is a surjective homomorphism from AY¥Y40) to AX,
It follows that |A¥| divides |[A¥Y40)|. Suppose now, at some stage of the while loop, i is an
index such that |AY| < |AXY40)|, Then it must hold that 2|A%| < |AXY4®)|. Thus we have
argued that every time X increases by including an orbit A(z) in it, the size of the group
A% increases by at least a factor of 2. Thus the assignment X <+ X U A(i) is executed at
most log m times, implying also that the procedure must stop. Since the size of any orbit
A(7) is bounded by |A], it follows that the procedure stops with an A-invariant set X such
that |X| < mlogm. Let X be the set computed when the while-loop is exited. To complete
the proof we must show that A* is isomorphic to A. Consider the canonical surjective
homomorphism ¢ from A to AX, which maps a given element of A to its corresponding
restriction to X. To show that this homomorphism is an isomorphism we only need to argue
that Ker(¢) is (id). Suppose g € Ker(v) is a nontrivial element. Then there is ¢ ¢ X such
that ¢(i) # i. This in turn implies that the surjective homomorphism ¢ from AXY40) to
AX which maps an element of AXY4() to its restriction to X, has a nontrivial kernel with
g € Ker(p). Consequently, |AX| < |AXY4@)|. Thus, both X and ¢ satisfy the while-loop
condition contradicting the fact that the while loop has terminated. This completes the
proof of this lemma. [ ]



Lemma 7 Let A be a finite group. Let X = {ay1,az,...,a;} andY = {by,by,.... b} be two
subsets of A such that (X) N (Y) = (id) and a;b; = bja;, for 1 < 1,5 < t. Then [(X)|
divides the order of the group ({a;b; : 1 <1 <t}).

Proof. Let H denote the subgroup of A generated by {a;b; | 1 < i < t}, K denote the
subgroup of A generated by {a; | 1 <i < t}, and L denote the subgroup of A generated by
{b; | 1 < i < t}. Notice that, since a;b; = bja;, for 1 < 1,5 < ¢, we have KL = LK and
therefore the set KL is actually a subgroup of A. Next, notice that, by definition of H, any
x € H can be written as a product of elements from the generator set {a;b; | 1 < ¢ < t}.
Using a;b; = bja;, for 1 < 1,5 <t as a rewrite rule, this product of generators expressing
x can be rewritten as ay, where a« € K and y € L. It follows that H C K L. Consider the
following map ¢ from the group H to the group K defined as follows:

Ve € H @ o(x) =a where @ = ay, witha € K and y € L

We claim that ¢ is a well-defined surjective homomorphism from H to K. We first
show that v is well-defined. Suppose there are two distinct elements «,a’ € K such that
x = ay = a'y’ for elements y,y’ € L. This implies, by cancelation laws, that ¢ 'a’ = yy'!,
which belongs to both K" and L. Since K’ N L = (id), we have ¢ = @’. Thus ¢ is well-defined.
To see that ¢ is a homomorphism is routine: we can easily check that (xa’) = () (2')
and that ¢ (z™') = (¢ (2))~" hold using the rewrite rules a;b; = bja;, for 1 <i,5 < t. To see
that 1 is surjective, let @ € K be any element. We can express a as a product II;<,<pa;, for
indices 7, € [t]. Consider the element # = Il <, <pa;.b;, € H. It is easy to see that ¢(z) = a.

Thus by the fundamental theorem of homomorphisms it follows that H/Ker(:) is iso-
morphic to K. Therefore, |H/Ker(y)| = |K|. It follows that |K| divides |H| which proves

the lemma. ]

Proof of Theorem 5
First, we argue that it suffices to show that mod-GA <! GI for all prime p and [ > 0.

To see this, let [];<,«, p;j be the prime factorization of k. Clearly, a graph G € mod;-GA
it G € MNigj<r modpzj—GA. Thus, if modsz—GA <P Gl for 1 < 5 < r, it follows that

modi-GA <P GI, since GI is a c-cylinder.

We first prove a useful group-theoretic claim. Let G be a graph on n vertices and f
be a partial permutation on [n] (i.e. f is defined on a subset of the domain [n] and can be
extended to a permutation in S,). Then we call f a partial automorphism of G if f can be
extended to an automorphism of G.

Claim. Let p be a fized prime and I > 0. A graph G on n wvertices is in mod-GA if and
only if there exist a set X C [n] with |X| < p'(logp') and a subgroup K = {a1,az,...,a,}
of Sx such that each a; € K s a partial automorphism of G.

Proof. Let G € mod,-GA be an n vertex graph. Since p' divides |Aut(G)|, by Sylow’s
theorem Aut(G) has a subgroup A of size p!. By Lemma 6 there is an A-invariant set
X C [n] with |X| < p!(log p'), such that A% is isomorphic to A. Let AY = {ay,as,...,a,}.
Furthermore, it also follows that A% is a subgroup of Sx where each a; € A* is a partial
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automorphism of G. Conversely, suppose there is X C [n] with |X| < p'(logp') and a
subgroup K = {ay,as,...,a,} of Sx where each ¢; € K is a partial automorphism of G.
Then for each ¢ with 1 < ¢ < p!, thereis a b; € Sin-x such that a;b; € Aut(G). We can now
apply Lemma 7 to the elements {a;}, ;<0 and {b;},<;<,1, since the required conditions are
fulfilled. Consequently, |({a;b; : 1 < i < p'})| is divisible by p!. Since ({a;ib; : 1 < i < p'}) is
a subgroup of Aut(G), it follows that p' divides |Aut(G)|. ]

Now, note that the language B = {(G, f) : f is a partial automorphism of the graph
G} is <P -reducible to GI (for details see [10]). We will give a truth-table reduction from
mod-GA to B, where the truth-table is a disjunction of conjunctions. Since the language
B is <P -reducible to GI and since GI is both a c-cylinder and a d-cylinder, it follows that
mod,-GA is <P -reducible to GI. We describe below the said reduction of mod,-GA to B
as a logical expression, which is easily seen to describe a disjunction-of-conjunctions kind of
truth-table reduction:

G € mod,-GA < (3X C[n]:|X]|<p'logp))
(3 subgroup K < Sy : |K| = p')(Va € K)[(G,a) € B]

This completes the proof of Theorem 5. ]

4 Computing Solutions for mod;-GA Instances

The goal of this section is to design a polynomial-time algorithm that reduces the search
problem for modi-GA to the decision problem. Consider modg-GA for an arbitrary k£ > 1.
Notice that if the prime factorization of k is [[j<;<,, P;*, then the natural NP witness of the
membership of a graph G in mod;-GA is a collection of m subgroups {4, A,,..., A} of
Aut(G) where, for each i, A; is of order pi', and A; is listed as a set of permutations. We
consider such a witness as a solution for G for the modi-GA search problem and we design
a polynomial-time algorithm that computes this witness for any given instance of mod-GA
with oracle access to the mod-GA decision problem.

In the following lemma we introduce one of the two last graph gadgets which we will
need in order to prove the main result of this section.

Lemma 8 Given t graphs Gy, G, ..., Gy, each with n nodes, we can construct in polynomial
time a new graph Paste(Gy,Gs,...,Gy) such that the following properties hold.

1. A permutation » € S, is an automorphism of Paste(Gy,Gs,...,Gy) iff there is a
permutation ™ € (y<;<; Aut(G;) such that i restricted to Gy is 7, for 1 <1 <t

2. Let p be a prime. Paste(Gy,Gs,...,Gy) has an automorphism of order p iff there is
an order-p permutation ™ € y<;<; Aut(G;).

3. Given i € Aut(Paste(Gy,Gs,...,Gy)) we can in polynomial time construct the corre-
sponding ™ € My <;<; Aut(Gi).



Proof. Notice that parts 2 and 3 of the lemma are both direct consequences of part 1. Thus
it suffices to prove the first part. The graph Paste(Gy,Gs,...,G;) basically consists of one
copy of each of Gy, G, ..., G, Furthermore, for 1 < ¢ <t we color the nodes of the copy
of G; using color C;. This forces every automorphism of the new graph to map the copy of
G, to itself. Next, we use n distinct labeling nodes L;, 1 < j < n, as follows: from the jth
node of every graph G; put a long path of some fixed length N to node L;. This ensures
that for any automorphism of Paste(Gy,Gs,...,Gy), if node j; is mapped to node j3 in G;
then j; gets mapped to the node j, also for each Gy, ¢/ # i. This construction guarantees

the following: given an automorphism ¢ of Paste(Gy, Gs,...,G;), there is a permutation
T € Mi<ict Aut(G;) such that o restricted to G; is 7, for 1 <4 < t. This proves the lemma.
|

Before we proceed we need to recall a definition.

Definition 9 [9] Let 7 € S, be a permutation. The cycle graph of 7 is the directed graph
G = ([n), E), where (i,) € E iff (i) = J.

We next recall a lemma from [9].

Lemma 10 [9] If G is the cycle graph of m € S, then Aut(G) is precisely the set of all
permutations in S, that commute with .

The second graph gadget needed is the following.

Lemma 11 Let G be a graph on n nodes and S = {¢1, 92, ..., g} C S, be a set of permuta-
tions. Further let C = {C1,Cy,...,Cs} C S, be a set of pairwise disjoint cycles, p be a fized
prime, and T be a permutation on [t]. Then we can compute in time polynomial in n a graph

Comb(t,G,S,C,p) such that Comb(r,G, S,C,p) € mod,-GA iff one of the following holds.

1. G has a nontrivial automorphism © of order p such that rgim™' = ¢;, for 1 < i < t,
and such that w(z) = z for all v € U<, Ci.

2. G has a nontrwial automorphism 7 such that Cy,Cs, ..., Cs are cycles of m and such
that mg;m ™" = gry, for 1 <1 <t.

Proof. Let the composition C1C5 - - - Cy of the cycles of C be denoted by ¢ € 5,,. Further,
let G’ denote the graph obtained from G by coloring each node x € |J;«;«, C; with a distinct
color n,. Similarly, let G denote the graph obtained from G by coloring each node ¥ (z) €
Ui<i<s Ci with the color n,, for each x (where n, is used to color node x in G).

Now, let H = Paste(G', Gy, G, ..., Gy), where G is the cycle graph of g;, for 1 <1 < t.
Similarly, let K = Paste(G",Gr1), Gr(2), - - ., Grry). Finally, we put one copy of H and p—1
copies of K together to build the graph Cycle(H, K, ..., K) (in which we have p — 1 copies
of K'). This graph Cycle(H, K, ..., K) is defined to be Comb(r,G, S,C, p).

Suppose Comb(1,G, S,C,p) € mod,-GA. Now, suppose the first of the above two prop-
erties does not hold for G. We will prove that the second property must hold. Let p be
an order-p automorphism of the graph Comb(r, G, S,C,p). Since the first property does not
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hold, notice that the order-p automorphism p of the graph Cycle(H, K, ..., K) cannot map
H to itself and each copy of K to itself. Therefore, since p is prime, p must permute the
p graphs in the list (H, K, ..., K) by a p-cycle. More precisely, p can be seen as a p-tuple
(p1,p2,--.,pp) of permutations p; € S,, 1 < ¢ < p, where p; maps the copy of H into a
copy of K, and the permutations ps,....,pp,—1 map a copy of K into a fresh copy of K, and
finally p, maps a copy of K back to H. Recall that H = Paste(G',G1,Ga,...,G;) and
K = Paste(G", Gy, Gr(2)s - - -, Grry), and observe that py, which maps H to I, is forced
due to the color labels to map G’ to G" and to map G; to G, ;) for each 7, 1 <1 < ¢. Thus,
p1 is an automorphism of G that has Cy,C,,...,C, as its cycles, and g;p1g; " = (i), for
1 < ¢ <t as claimed by the second property.

For the converse implication, suppose the first property holds. Let m be an order-p au-
tomorphism of G satisfying the first property. Consider the permutation v of the nodes
of the graph Comb(r,G, S,C,p), where the copy of H and each copy of K is mapped to
itself under 7. Clearly, v is an order-p automorphism of Comb(r, G, S,C, p). Next, suppose
that the first property fails and the second property holds. Again, let 7 denote the auto-
morphism of G satisfying the second property. Consider the permutation g of the nodes
of Comb(r,G,S,C,p), which maps the copy of H into the first copy of K according to ,
and then successively maps the first p — 2 copies of K by the identity permutation into the
corresponding next copy of K in the cyclic order, and finally maps the last copy of K to H
according to 77!, Observe that the permutation u is in fact a product of disjoint p-cycles:
the p-cycles are the orbits of vertices of H. It follows that p is an order-p automorphism of

Comb(7,G,S,C,p). [ |

The next theorem is the main result of this section. Its proof draws on group-theoretic
results concerning p-groups.

Theorem 12 For any prime p, there is a polynomial-time algorithm Ay with mod,-GA
as oracle such that given a graph G € mod,-GA as input, the algorithm Ay lists out the
elements of an order-p* subgroup of Aut(G).

We will prove Theorem 12 by induction on k. We first take care of the base case (when
kE =1) in the following lemma.

Lemma 13 For any prime p, there is a polynomial-time algorithm A, with mod,-GA as
oracle such that given a graph G € mod,-GA as input, the algorithm A, outputs a cyclic
group of order p contained in Aut(G).

Proof.  For any list of vertices X = {i1,...,im}, let r(X) be a right shift of X, this is
r(X) = {im,01,...,tm-1}. Consider the following algorithm, which computes an order-p
automorphism of an input graph G € mod,-GA.

Algorithm A;:

input G;
if G & mod,-GA then stop;
X 0



for 1 =1 to |V(G)| do
if G[Xu{i}] € mod,-GA then X « X U{i};
S+« V(G) - X;
C « 0;
G+ G[X]; G" + G[X];
for each p-cycle C C S —Upee D do
if Cycle(Giey, Gireyps - - - » Glrey) € mod,-GA then
/* There are p — 1 copies of Gly(cy) in the above Cycle definition */
{
G/ — GEC], G// — GE;(C)],
C+Ccu{C}
};

output the order-p automorphism consisting of p-cycles C and fixed-point set X

We now prove the correctness of the above algorithm. Notice that the first for-loop takes
G € mod,-GA as input and computes the graph Gx] € mod,-GA with X as its set of fixed
points (such that no more points can be fixed preserving membership in mod,-GA). We have
to show that when the algorithm stops it outputs an order-p automorphism which has C as
its collection of p-cycles and X as its fixed-point set. To begin with, notice that any order-p
automorphism with X as its fixed-point set is a product of disjoint p-cycles and 1-cycles
(corresponding to elements of X).

We will prove this by showing as loop invariant that at each stage there is an order-p
automorphism of GG that contains C among its p-cycle set and contains X in its fixed point set.
Clearly, before the loop is entered, there is an order-p automorphism of Gpy) with C = 0 as
subset of its p-cycle set. Suppose this property holds at the beginning of some iteration of the
for-loop. Suppose in the next iteration a new p-cycle C gets included in C. We have to show
that there is an order-p automorphism of G with X as fixed-point set and such that CU{C} is
contained in its p-cycle set. Consider Cycle(GfC], Gf;(c)], e Gf;(c)]), which is in mod,-GA.
Notice that the corresponding order-p automorphism @ of Cycle(GfC],GE;(C)], . .,GE;(C)])
cannot map the copy of GEC] to itself since G cannot have order-p automorphisms (because
it forces G to have order-p automorphisms with X U C as fixed points). Thus ¢» must map
the p graphs in Cycle(GfC], Gf;(c)], e Gf;(c)]) by a p-cyclic rotation. In particular, it implies
that ¢ maps G} to some copy of Gf;(c)]- Hence, ¢ restricted to the nodes of G yields an
automorphism ¢ of G with X as fixed-point set and such that C U {C} is contained in the
p-cycle set of .

By induction, it follows that when the loop is exited we have an order-p automorphism
which is completely specified: C is its collection of p-cycles and X is the fixed point set. m

Proof of Theorem 12

We will prove the theorem by induction on k. Notice that the base case for £ = 1 is
proven in Lemma 13. More precisely, the induction hypothesis is the following:
Suppose that we have a polynomial time algorithm A;_, with oracle mod,-GA that computes
F=1 subgroup of Aut(G) given a graph G € mod,x-1-GA as input.

We now prove the induction step by designing a polynomial-time algorithm with oracle
mod,-GA that, given as input a graph G' € mod x-GA, computes the elements of an order-p*

an order-p
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subgroup of Aut(G). The induction hypothesis gives us the algorithm A;_; using which we
can compute in polynomial time an order-p*~! subgroup of Aut(G) (call it Si_;). Let

Sk—l = {917927 s 7gpk_1}

We first recall the following result from the theory of p-groups (for instance, it is well-
known consequence of Sylow’s theorems) [7]:

Proposition 14 If A is a finite group such that p* divides |A| for some prime p, then for
every subgroup H of A such that |H| = p*~! there exists a subgroup K of A such that |K| = p*
and H is a normal subgroup of K.

Let now G be a graph such that G € mod,»-GA. Furthermore, let S;_; be a subgroup
of Aut(G) such that |Sy_i| = p*~'. An immediate consequence of this proposition is the
following fact.

Fact 15 There is a subgroup Sy, of Aut(G) of order p* such that Sy_y is a normal subgroup
Of Sk .

The quotient group Si/Sk_1 has p elements, more explicitly we can write it as
Sk/Sk—1 = {Sk=19,. -, Sk—14" = Sk_1}, for some g € S

As afirst step to designing the required algorithm for computing Sy we prove the following
claim.

Claim. G € mod,-GA iff there czists g € Aut(G) such that the following hold
L g¢ Sit.
9. o(g) = ' for some | < k.
3. Sk-19 = 9Sk-1

Proof.  Clearly the forward direction of the claim is the fact stated above. To prove the
reverse implication suppose there exists g € Aut(G) satisfying the above three conditions.
Consider the group H generated by the set Sp_; U {¢}. Since Sx_1g9 = ¢Sk_1 it follows that
Sk—1 is a normal subgroup of H. Notice that the quotient group H/Sk_; is the cyclic group
generated by Si_; g and therefore its order is a power of p (more precisely, it is p’ for some
7 <1). Since p must divide |H/Sy_] it follows that p* divides |H| and thus it also divides
|Aut(G)| proving the claim. u

Observation 16 Notice that if we compute an element g described in the above claim, we
can compute (in polynomial time, by brute-force listing) the subgroup H generated by the
set Sx_1 U {g}. Applying Proposition 14 we know that there is a subgroup Sy of H such
that |Sk| = p* and Si_1 is normal in S,. Since H has at most p** elements, we can do a
brute-force search for Sy in polynomial time.

11



It remains to show how, given an input graph G € modx-GA and S;_;, we can compute
with a mod,-GA oracle an element ¢ satisfying the properties of the above claim. Let

Sk—l = {917927 oo 7gpk—1}

For 1 <i<pFllet F,={j€[n]:¢:i(j) =37} and M; = [n] — F.

For simplicity we explain the rest of the algorithm in two phases. In the first phase of
the algorithm we check if there is an automorphism of order p!, for I < k, that fixes some
x; € M; for all i € [p*].

Phase 1 of Algorithm Ay:

for each choice {z; € M;};<;<,»—1 do
for each p-cycle P € S, disjoint from {z;};<;<,»— do
{
C+ {(z1),(z2),...,(xpr-1), P};
[* Strictly speaking, in C there are no repetitions of the 1-cycles */
for each permutation 7 of [p*~!] do
if Comb(1,G, Sk-1,C,p) € mod,-GA then
{
Use Algorithm A4; of Lemma 13 to compute an
order-p automorphism v of Comb(r, G, Sk-1,C, p);
Applying Lemma 11, from v we compute an
order-p automorphism 7 of G;

To see the correctness of Phase 1 let Comb(7, G, Sk-1,C,p) = Cycle(H, K,...,K) as in
Lemma 11, with p — 1 copies of K, where H and K are appropriately defined. Suppose
v maps H to itself and each copy of K to itself. Then v projected to H gives an order-p
automorphism of G that fixes all points in {z;},<;<px-1 as well as all points in P. On the
other hand, if v cyclically rotates the p graphs (I-j, K,..., K) then by Lemma 11 we get an
automorphism ¢ of G that has a p-cycle P and fixes all points in {@;};<;<x—1. We can easily
compute the order o(t)) = pr. If we choose 7 = ¢)" we get the desired order-p automorphism
of G.

Thus, in either case if Phase 1 succeeds it outputs an order-p automorphism 7 ¢ Si_;

such that mSy_; = Sk_im. Given this element 7 we can compute an order-p* subgroup
of Aut(G) (which contains Sk_1) by a brute-force search for it in the group generated by
Sk—l U {7’[’}

The algorithm goes to the second phase if the first phase does not succeed. In the second
phase of the algorithm we check if there is an automorphism of G of order p, for some [ < k,
that differs from all automorphisms in Si_;. In this phase, the correctness relies on the fact
that Phase 1 has not succeeded.

12



At this point we introduce some notation. Let M denote M; X --- X Mx—1. Let Cy,...,C;
be a collection of t cycles such that for 1 <i <t |C;] = p% and 0 < ¢; < k. We say that the
above collection C1, ..., C; of cycles is good w. r. t. S C [p*'], (l1,l5,...,lx-1) € M, and

f={fieF:jes}yif

fc Ul_,C;, and [; € Ul_ C; for 1 < j < pF~!

Phase 2 of Algorithm Ay:

for ecach S C [pF~!] do
for each tuple [ = (I1,1y,..., L) € M do
for cach set f = {f; € F;: j € §} do
fort =1 to p*' do
for each cycle collection {C}, ..., C,} that is good w. r. t. S, I, and f do
{
For each j € S check that C1Cy--- Ci(l;) = g,(1);
For each j ¢ S check that C1Cy--- Ci(l;) # g,(1));
For each j € S check that C,Cy - - Cy does not fix f;;
if all the above three checks succeed then
{
C+ {Cy,...,C};
for each permutation 7 € Sye—1 do
if Comb(1,G, Sk-1,C,p) € mod,-GA then
{
/* At this point there is ¢ € Aut(G) of order p' that satisfies conditions of the Claim */
Construct such an automorphism ¢ by adaptively querying mod,-GA for
Comb(t,G, S_1,{C}UC,p)
for different cycles C of size p® for o < k, and
including C in C if Comb(7,G, Sk—1,{C} UC,p) € mod,-GA;
if the above construction succeeds then
output a desired automorphism ¢ of G and stop

To see the correctness, we use the fact that the algorithm enters Phase 2 only if Phase
1 is completed unsuccessfully. Now, if Comb(r, G, Sk-1,C,p) € mod,-GA it is not possible
that the witnessing order-p automorphism of Comb(7, G, Sk-1,C,p) = Cycle(H, K, ..., K)
maps the copy of H and each copy of K to themselves. Otherwise we would have an order-p!
(for some [ < k) automorphism of G that commutes with S;_; and fixes each point in a
collection l; € M;, 1 < i < p*~!, contradicting Phase 1’s failure. Thus, it follows that the
order-p automorphism of Comb(r, G, Sk_1,C, p) must cyclically permute the copy of H and
p — 1 copies of K. Hence Cy,...,C, are cycles of the corresponding order-p! automorphism
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of GG, which is computed in the last step of the algorithm. Observe that the three checks
made in Phase 2 guarantee that the sought for automorphism with Cy,...,C; as a subset
of its cycles is not in Sx_;. Now, it is not hard to see that if p* divides |Aut(G)| then, an
element g promised by the Claim is computed either in Phase 1 or in Phase 2.

We can compute an order-p* subgroup of Aut(G) (which contains Sj_;) by a brute-force
search for it in the group generated by Sk_; U {g}. ]

Notice the following immediate consequence of Theorem 12. Interestingly, it is analogous
to the well-known result that Mod,P and Mod«P are identical. However, technically the
proof of Theorem 12 is very different in nature.

Corollary 17 For any prime p and any k > 0, mod,-GA and mod«-GA are polynomial-
time Turing equivalent.

Another consequence of Theorem 12 is that search is polynomial-time Turing reducible
to decision for modg-GA, for a search problem such as the one defined at the beginning of
this section.

Corollary 18 For each k > 1, search s polynomial-time Turing reducible to decision for

mod,-GA.

5 A Program Checker for mod;-GA

The goal of this section is to show that for each k& > 1 the decision problem modi-GA has a
program checker in the sense of [3]. We first recall the definition of program checkers.

Definition 19 [3] A program checker C4 for a decision problem A is a (probabilistic) algo-
rithm that for any program P (supposedly for A) that halts on all instances, for any instance
xo of A, and for any positive integer k (the security parameter) presented in unary:

1. If P is a correct program, that is, if P(x) = A(x) for all instances x, then with proba-
bility > 1 — 27%, C(x0, P, k)=Correct.
2. If P(z0) # A(xo) then with probability > 1 — 2% C4(xo, P, k)=Incorrect.

The probability ts computed over the sequences of coin flips that C4 could have tossed. Also
Ca 1s allowed to make queries to the program P on some instances.

Before we proceed we also need the definition of IP protocols which was first introduced

in [6].

Definition 20 An interactive proof system consists of a prover-verifier pair P + V. The
verifier V' is a probabilistic polynomial time machine and the prover P s, in general, a
machine of unlimited computational power which shares the input tape and a communication
tape with V.

P <V is an interactive (i.e. IP) protocol for a language L, if for every x € ¥*:

€L — Prob[P makes V accept | > 3/4,
v ¢ L — VY provers P': Prob[P' makes V accept | < 1/4,
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The design of our checker for mod,-GA is based on the following theorem [3].

Theorem 21 [3] If a decision problem A and its complement have both interactive proof
systems, in each of which the honest prover can be simulated in polynomial time with queries
to A, then A has a polynomial-time program checker.

We will first provide a program checker for mod,-GA, for any prime p. Notice that
Lemma 13 already gives an IP protocol for mod,-GA with the prover polynomial-time Turing
reducible to mod,-GA. Thus, it suffices to design an IP protocol for mod,-GA with the

requisite properties.

Lemma 22 For any prime p, there is an IP protocol for mod,-GA in which the honest
prover is polynomial-time Turing reducible to mod,-GA.

Proof.  We rewrite the definition of mod,-GA as follows: mod,-GA = {G : G has no
automorphism with a p-cycle}. Given an input graph G, the aim is to design an IP protocol
which accepts G with high probability if G has no automorphism with a p-cycle, and which
rejects G with high probability otherwise. Notice that since the prime p is a constant, the
total number of p-cycles in S, is bounded by ¢n”, where g is a constant. We will build the
desired IP protocol from an IP protocol for the following related language L = {(G,C) :
[V(G)| =n, C €8, is a pcycle and G has no automorphism with C as one of its cycles }.

2-round IP Protocol for L:

input (G,C);
Yen-{i:ieC}l
1. Verifier:
Pick a permutation ¢» € Sy uniformly at random;
Pick a random bit b € {0,1};
if 5 =0 then
send G’ = ¢(G) to the Prover
else
send G' = ¢ o C(G) to the Prover
2. Prover:
if there exists permutation 7 € Sy such that 7(G) = G’ then
send back a bit ¢ =0
else
send back a bit ¢ =1
if ¢ = b then
Verifier accepts
else
Verifier rejects

We first show that if the prover is honest then the protocol accepts an input (G,C) € L
with probability 1. Suppose b took the value 0 and the graph (G) = G’ was sent to the

15



prover. Then clearly, the prover will find a permutation, namely ¢, such that ¥(G) = G’ and
send back ¢ = 0 leading to the acceptance of the input. Next, suppose b took the value 1. In
that case we claim that there does not exist any permutation 7 € Sy such that 7(G) = G.
Suppose there exists such a 7. Then, since 7(G) = ¥ o C(G), it follows that (7)~'¢ o C is
in Aut(G), which contradicts the assumption that (G,C) € L. In this case the prover will
send back ¢ = 1 and the verifier will again accept.

Now, to prove the soundness of the protocol, we must show that for an input (G,C) & L,
the verifier will reject the input with probability at least 1/2, for any prover. We first need
the following claim. In the sequel we use X to denote the set {i : 7 € C'} and Y to denote
[n] — X.

Claim A. If G has an automorphism 7 with C as one of its cycles then the random graphs
Y(G) and op o C(G) are identically distributed, where ¢ is picked uniformly at random from
Sy .

Proof. Let 7 = poC, where p € Sy. From po C(G) = G it is not hard to see that for any
graph H
Jo € Sy[a(G) = H] <= 30 Sy[foC(G) = H|

Thus for any graph H
Prob,[a(G)=H] = 0 < Probg[foC(G)=H] = 0

where o and 3 are picked uniformly at random from Sy .

Now, since o(G) = H iff ap o C(G) = H, it is straightforward to derive that the set of
permutations {# € Sy : o C(G) = H} is precisely p Aut(Gx1)p which is of size |Aut(Gx)|.
Therefore,

Proby[3o C(G) = H] = |Aut(Gpx)l/(n — p)

where (3 is picked uniformly at random from Sy. ]

It follows from Claim A that if (G, C) ¢ L the prover cannot distinguish between whether
G’ came from the case b = 0 or from b = 1. In fact, whether b = 0 or b = 1 the prover
will find a 7 € Sy such that 7(G) = G'. Therefore, the bit ¢ that is sent back by any
(even cheating) prover can agree with b with probability at most 1/2. Consequently, the
verifier will reject an input (G,C) € L with probability at least 1/2. We now describe the
IP protocol for mod,-GA.

IP Protocol for mod,-GA:

input G; /* G has n nodes */
bool + true;
for each p-cycle C € S, do
if the IP protocol for L rejects (G,C) then
bool + false;
if bool=true then Verifier accepts else Verifier rejects
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Since G € mod,-GA iff (G,C) € L for every p-cycle C, and since the IP protocol for L
has one-sided error it easily follows that the above IP protocol accepts G € mod,-GA with
probability 1 and rejects G € mod,-GA with probability at least 1/2. The error probability
can be made exponentially small (say 27") in the above protocol by repeating the protocol
* (in parallel or sequentially).

The following claim completes the proof of the lemma.

Claim B. There is an honest prover that is polynomial-time Turing reducible to mod,-GA
for the above IP protocol for mod,-GA.

Proof.  First we observe that in bounding the complexity of the honest prover we are
concerned about inputs G € mod,-GA. More precisely, we must show that there is a
polynomial-time algorithm with mod,-GA as oracle that can simulate the honest prover
correctly for inputs G' € mod,-GA. Notice that the honest prover of the overall IP protocol
must actually simulate the honest prover of the IP protocol for L for each input in the set
{(G,C) :C is a p-cycle in S, }, where G € mod,-GA. The honest prover in the protocol for
L is supposed to try and compute a permutation 7 € Sy such that 7(G) = G'. We have
already argued in the correctness proof that for G € mod,-GA such a permutation 7 exists
if and only if the outcome of b is 0 and G’ = ¢(G) for the random permutation ¢ € Sy.
The honest prover constructs the graph G” = Cycle(Gxy, GEX]v e GEX])v with p — 1 copies
of GEX]' Using algorithm A; of Lemma 13 the honest prover computes an automorphism of
G" of order p if it exists. Notice that if there is a permutation 7 € Sy such that 7(G) = G’
then there is a permutation 7’ such that 7'(Gx)) = GfX]. Hence we can find an order-p
automorphism of G which cyclically permutes the p graphs in G”, by mapping the copy of
Gx) to the first copy of GEX] by 7', and each of the first p — 2 copies of GEX] are mapped
to the next copy of GEX] by the identity permutation, and finally, the last copy of GEX] 18
mapped back to Gpyy by n'~!. Tt is easy to see that this is an automorphism of G” of order
p. Conversely, suppose that G has an order-p automorphism 7 computed by the honest
prover. Since G ¢ mod,-GA and G’ € mod,-GA, the p graphs defining G” must be rotated
in some p-cyclic order by the automorphism 7. It follows that the copy of G|x) is mapped
by 7 to some copy of GfX]. Let 7’ be the projection of 7 to these two copies. We have
m(Gx]) = Glx)- From 7" we can easily recover a permutation 7 € Sy such that 7(G) = G
Thus the honest prover finds an order-p automorphism 7 of G” iff there exists 7 € Sy such
that 7(G) = G’, and moreover, from such a 7 the corresponding 7 is easily computed. Hence,
the honest prover is polynomial-time Turing reducible to mod,-GA. ]

We can now conclude that, for any prime p, mod,-GA has an efficient program checker.
Theorem 23 For any prime p, mod,-GA has a polynomial-time program checker.

Proof.  Note that from Lemma 13 we get an IP protocol for mod,-GA with the prover
polynomial-time Turing reducible to mod,-GA and that by Lemma 22 an IP protocol with

*With some modifications we can easily get a constant round IP protocol.
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requisite properties exists for mod,-GA. Now, Theorem 21 proves the existence of an efficient

checker for mod;-GA. [ |

Now 1t is easy to provide a checker for any mod;-GA problem.
Theorem 24 For each k > 1, modp-GA has a polynomial-time program checker.

Proof. Let [1i<;<m p;’ be the prime factorization of k. Because the class of checkable sets
is obviously closed under join and under Turing equivalence [3], by Theorem 23 it suffices to
show that mody-GA =4 mod,-GA @ -+ - @ mod,, -GA. Observe that a graph G belongs to
modi-GA if and only if (Vi < m)[G € mOdpji—GA]. Since, by Corollary 17, modpji—GA =0
mod,,-GA for each i, we have modp-GA <% mod,-GA®D --- @ mod,, -GA. It is easy to
prove that mod,,-GA <. mod,-GA for each i. Therefore, mod, -GA® - - @ mod,, -GA <I.
mod,-GA as well. [

6 Concluding Remarks

In this paper we define modular graph automorphism problems (modi-GA) and locate them
between GA and GI. We also design an efficient program checker for modi-GA based on an
algorithm that reduces search to decision for modi-GA and an IP protocol for mod-GA.
The bottleneck in making our checker nonadaptive is essentially the following: can search
be reduced to decision via parallel queries for mod,-GA, for prime p?

Indeed, our initial motivation in studying the mod;-GA problems was to understand the
difference between GI and GA by introducing problems of intermediate difficulty. In this
context, a challenging question is whether search reduces to decision via parallel queries for
GI (hence yielding nonadaptive checkers for GI). We believe that as a first step this question
must be answered for mod,-GA.
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