
The Impact of Timing Knowledge on the Session Problem�Injong Rheey Jennifer L. WelchzMarch 14, 1999

�A preliminary version of this paper appeared as [RW92]. Much of this work was done while the authors werewith the Department of Computer Science, University of North Carolina at Chapel Hill. This work was supportedby an IBM Faculty Development Award, NSF Presidential Young Investigator Award CCR-9158478, and TAMUEngineering Excellence funds.yDepartment of Computer Science, North Carolina State University, Raleigh, NC 27695-7534. Email:rhee@csc.ncsu.eduzDepartment of Computer Science, Texas A&M University, College Station, TX 77843-3112. Email:welch@cs.tamu.edu

AbstractThe session problem is an abstraction of fundamental synchronization problems in distributedsystems. It has previously been used as a test-case to demonstrate the di�erences in the timeneeded to solve problems in several timing models.The goal of this paper is to compare the computational power of a family of partially syn-chronous models by studying the time needed to solve the session problem. Four timing pa-rameters are considered: the maximum and minimum process step times and message delays.Timing models are obtained by considering independently whether each parameter is known(i.e., is hard-wired into processes' code) or unknown, giving rise to four shared memory mod-els and 16 message passing models. The models are compared based on the time complexity,measured in real time, of the session problem.This paper presents a modular proof technique for obtaining asymptotically tight boundson the time complexity of the session problem for the four shared memory models and the 16message passing models. Timing information known in each particular model can be exploitedby algorithms to count sessions in di�erent ways. This paper reports �ve di�erent countingalgorithms. The matching lower bound for each model suggests that[[]] they are the [[optimal]]ways to count sessions. Based on these bounds, a lattice among unknown parameter models isconstructed, which con�rms the common belief that as more timing information is known in amodel, the model behaves more like a synchronous system.

1 IntroductionEarly work in distributed computing usually assumed one of two extreme timing models: eitherthe completely synchronous model, in which processes operate in lockstep rounds of computationand a message sent in a round is delivered in the next round, or the completely asynchronous,in which there are no bounds on process step time or message delay. However, in most dis-tributed systems, processes operate neither in lock-step nor at completely independent rates.Furthermore, the asynchrony assumption makes it very di�cult to design and verify distributedalgorithms whereas the perfect synchrony assumption is very expensive, if not impossible, toimplement in real distributed systems.Based on these observations, researchers (e.g., [AAT94, ADLS94, AL89, AM94, CT90, CW90,DDS87, DLS88, Po91]) began to investigate the impact on distributed computing if those timingassumptions are relaxed or tightened to some extent in order to re
ect more realistic situations.The new timing models that are obtained by relaxing or tightening the two extreme timingassumptions are called partially synchronous models.The goal of this paper is to compare the computational power of a family of partially syn-chronous models by studying the time needed to solve a distributed computing problem, calledthe session problem.1.1 The Session ProblemThe (s; n)-session problem was �rst presented in [AFL83] and further studied in [AM94]. In-formally, a session is a minimal-length computation fragment that involves at least one special\synchronization" step by every process in a distinguished set of n processes. An algorithm thatsolves the (s; n)-session problem must guarantee that in every computation there are at least sdisjoint sessions and eventually all the n processes become idle.The (s; n)-session problem is an abstraction of the synchronization used in many distributedcomputing settings. The (s; n)-session problem, like the mutual exclusion and dining philoso-phers problems, concerns possible ordering of process events (e.g., a process �nishing its assignedtask) rather than the computation of particular outputs.Consider, for example, barrier synchronization [GVW89], a fundamental mechanism in con-current systems which guarantees that all processes have �nished a speci�ed task in their execu-tion before any proceeds. Barrier synchronization is a special case of the (s; n)-session problemwhen s = 2, and solutions for the (2; n)-session problem can be used to construct barrier syn-chronization: after each process �nishes its speci�ed task, it keeps taking synchronization stepsuntil the (2; n)-session algorithm terminates.As discussed in [AM94], another example of the (s; n)-session problem can be found in adistributed linear equation solver, where each process holds part of the input data (cf. [Ba78])and iterates to solve equations by relaxation. Each process takes one synchronization step whenit changes its data. Su�cient interleavings of synchronization steps by di�erent processes ensure1

a correct output since they imply su�cient interaction among the intermediate values computedby the processes.The (s; n)-session problem is also an astraction of a simple message distribution system inwhich a sending process writes a sequence of s messages one at a time on a board (e.g., port ormailbox) visible to all and waits after each message until all n� 1 other processes have read themessage before writing the next one. Each reading step by a process is one synchronization stepof the process. Any protocol which ensures that the sender has waited su�ciently long solvesthe (s; n)-session problem.Since the time complexity of the session problem is very sensitive to the timing assumptionsof the underlying model, it has been used as a test-case to demonstrate the theoretical di�erencesin the time needed to solve problems in various timing models [AFL83, AM94, Ma93, RW92].Using the session problem, we can quantify di�erences between various models in terms of thetime complexity needed to solve distributed computing problems. Precise time complexities forvarious timing models allow us to show complexity gaps among the models. Time complexitygaps can provide valuable information to system designers in evaluating and comparing thevarious timing models and deciding what timing guarantees they have to provide or do not haveto provide to build e�cient, yet cost-e�ective distributed systems.A solution for the (s; n)-session problem normally involves several methods to count sessionsduring execution. In particular, the �rst or last session is often counted in a di�erent way thanthe other sessions. Hence, the time complexity of a solution is usually expressed as a functionof s, n and some additional terms to account for the complexity of counting the �rst or lastsession. When we qualitatively evaluate relative time complexities of di�erent timing models,the term associated with s has more weight than the other terms in deciding the time complexityhierarchy.1.2 Timing ModelsWe consider two di�erent interprocess communication models: shared memory (SM) andmessagepassing (MP). In the shared memory model, processes communicate only by means of sharedvariables.In the message passing model, communication is done by exchanging messages across anetwork. A process can broadcast a message at a step; the message is guaranteed to be deliveredto every process after some �nite time.Process step time is the amount of time between two consecutive steps of the same processand message delay is the amount of time between when a message is sent and when the messageis received. The relevant timing parameters of a model are the minimum step time, c1, themaximum step time, c2, and additionally, for the message passing model, the minimum messagedelay, d1, and the maximum message delay, d2.We consider families of timing models for both SM and MP systems. The timing models areobtained by considering independently whether each parameter is known (i.e., can be hard-wired2

into processes' code) or unknown, giving rise to four SM models and 16 MP models. Some ofthese models have been studied previously in both practical and theoretical contexts.Models with knownmaximum andminimum step times are commonly called semi-synchronousmodels and have been previously studied for various distributed computing problems, includingthe consensus problem, the mutual exclusion problem, and the session problem, in the literature(see [AM94, AAT94, ADLS94, AL89, AT92, CT90, LS92, Po91, RW92]). The semi-synchronymodels systems where information about timing parameters, such as process step time, is onlyapproximately known, e.g., processes may have access to inaccurate clocks that operate at ap-proximately, but not exactly, the same rate.Models with unknown step times have been studied for the consensus problem [DLS88] andfor the mutual exclusion problem [AAT94]. As those papers argue, these models provide a usefulabstraction of the timing constraints in real systems.Models in which the minimum step time is known, but the maximum step time is unknownabstract event-driven processing such as responding to user inputs or non-periodic device in-terrupts [RW92]. In these models, processes can be blocked for an arbitrarily long (but �nite)time waiting for a certain condition to be true or a certain event to occur, but cannot take twoconsecutive steps faster than a certain amount of time.A lower bound result or impossibility result shown for an asynchronous model does notautomatically carry over to a model with unknown bounds. For instance, the work on theconsensus problem in [DLS88] showed that fault-tolerant consensus can be solved in a modelwith unknown bounds, although it cannot be solved in an asynchronous system [FLP85]. Thereis more leeway in constructing \bad" executions in an asynchronous system than there is in onewith unknown bounds. Thus, it is worth investigating how knowledge of step time and messagedelay a�ects the session problem.1.3 Previous Work on the Session ProblemThe upper and lower bounds on the time required to solve the session problem in an asynchronousshared memory system shown by Arjomandi, Fischer and Lynch [AFL83] demonstrated the�rst such case where asynchronous systems are less e�cient than synchronous systems. In thesynchronous model, all processes run in lockstep, while in the asynchronous model, no boundson process running rates exist. Their result showed an inherent time complexity gap between thesynchronous and asynchronous models: s steps are su�cient for s sessions in the synchronousmodel, i.e., no interprocess communication is needed, but (s� 1)bloga nc steps are necessary forthe asynchronous model. The bloga nc factor is essentially the cost of communication, where ais the maximum number of distinct processes that are ever allowed to access any given sharedvariable. Thus, one interprocess communication per session is needed in the asynchronous sharedmemory model.Attiya and Mavronicolas [AM94] show a similar result for an asynchronous message passingsystem in which there is a maximum message delay d2, but the minimum message delay d1 is3

zero. Their results show that the asynchronous message passing model requires (s� 1) � d2 timeto solve the (s; n)-session problem (at least one message delay per session).The session problem has been studied in a semi-synchronous model as well, in which thereare known minimum and maximum step times and there is a (not necessarily known) maximummessage delay. The upper bound in the message passing model shown by Attiya and Mavron-icolas [AM94] is (s � 1) � minf c22c1 c2; d2g. A nearly matching lower bound (within a factor of2 of the upper bound) also appears in [AM94]. These results imply that the e�ciency of thesemi-synchronous shared memory model lies between those of the synchronous and asynchronousmodels.In a periodic model where processes run at a �xed unknown periodic rate, nearly matchinglower and upper bounds shown by [RW92] indicate that at least one communication is requiredto solve the session problem. These bounds also indicate that the inherent cost of synchronizingperiodically running processes and the existence of time complexity gaps among the synchronous,periodic, and asynchronous timing models.1.4 Our ResultsOur complexity results are organized around \ways to count" s sessions in a computation. Theintuition is that processes must have some way to count the passage of other processes' steps inorder to \know" when a session has occurred.Note that s � c2 is an obvious lower bound for all models because each process has to take atleast s steps to solve the (s; n)-session problem and each step takes up to c2 time [AFL83]. Weomit from the discussion the obvious lower bound s � c2.1.4.1 Shared Memory ResultsIn order for our results to be comparable with prior work, we study shared memory systems witha constant parameter a, which is the maximum number of distinct processes that are ever allowedto access any given shared variable. When a is smaller than the total number of processes inthe system, it is not possible for all processes to exchange information in a single step. Instead,information must be propagated from process to process. Thus, as a gets smaller, the amountof propagation required increases. The motivation for this restriction on communication comes>from the fact that in a distributed shared memory system, some part of memory is local to aprocess and can be accessed quickly, while the rest is remote and requires more time for accesses.Table 1 summarizes our results on the time complexity of solving the (s; n)-session problemin shared memory models.Our results indicate that if either the minimum or maximum step time (or both) is unknown,then the running time for the (s; n)-session problem is (s � 1) � c2 � �(log n), i.e., roughly onecommunication cost (c2 � �(logn)) is required for each session. On the other hand, if bothstep times are known, then the running time is (s � 1) � c2 �minf c22c1 ;�(log n)g. In this model,4

c1 c2 Lower bound Upper boundunknown unknown (s� 1) � c2 � loga n (s� 1) � c2 ��(log n)unknown known (s� 1) � c2 � loga n (s� 1) � c2 ��(log n)known unknown (s� 1) � c2 � loga n (s� 1) � c2 ��(log n)known known (s� 1) � c2 �minf c22c1 ; loga ng (s� 1) � c2 �minf c22c1 ;�(log n)gTable 1: Time bounds for the (s; n)-session problem in shared memory models; a is the maximumnumber of processes that can access a shared variable, c1 and c2 are the minimum and maximumstep times.processes can use timing information about relative step times to count locally in order todetermine when enough sessions have elapsed. We call this counting technique the step timemethod (ST). It was �rst proposed in [AM94] for the semi-synchronous message passing model.However, if the gap between the minimum and maximum step times is su�ciently large, thenit is more cost-e�ective to use explicit communication. We call this counting technique theexplicit communication method (EC). It was �rst proposed in [AFL83] for the asynchronousshared memory model.These results are analogous to those of [AFL83]: intuitively, if either bound is unknown, thenthe system can be considered somewhat \asynchronous", otherwise the system behaves \moresynchronously". As we discussed in the introduction, the asynchronous lower bound of [AFL83]does not automatically imply any of the lower bounds in the unknown bound models; however,it is the case that the proof in [AFL83] also works in the case where both bounds are unknown.Mavronicolas [Ma93] independently [[and concurrently]] also developed the same bounds for themodel where both minimum and maximum step time are known.1.4.2 Message Passing ResultsIn the message-passing case, we discovered a pattern of upper bounds consisting of eight di�erentgroups of models. As in the shared memory case, the pattern is based on di�erent countingmethods. However, there are three additional counting methods available in message passing,so the relationships are more involved.In the following, we specify each model by a tuple (c1; c2; d1; d2). Each entry in a tuple isa real value if that parameter is known, and `?' if it is unknown. For example, we denote themodel in which only the maximum step time is known by (?; c2; ?; ?).In addition to the two counting methods available in the shared memory model (EC and ST),three other counting methods are used in the message passing model. (1) The message delaymethod (MD) uses the known di�erence between the minimum and maximum message delays;(2) combination method 1 (CB1) uses the known minimum step time in combination with thedi�erence between the minimum and maximum message delays; and (3) combination method 25

counting methods required approximateknowledge per-session costexplicit communication (EC) none d2step times (ST) c1, c2 c2c1 c2message delays (MD) d1; d2 d2d1ucombination 1 (CB1) c1; d1; d2 c2c1ucombination 2 (CB2) c2; d1 d2d1 c2Table 2: The approximate per-session cost of each counting method used to solve the sessionproblem when the required timing knowledge is available; c1 and c2 are the minimum andmaximum step times, d1 and d2 are the minimum and maximum message delays, and u = d2�d1is the uncertainty in message delay.(CB2) uses the known maximum message delay in combination with the known minimum steptime.Table 2 shows the approximate per-session cost for each counting method that is applicablewhen speci�c timing information about the system is available. The upper bound on the timecomplexity for a particular timing model is the minimum, over all applicable counting methods,of the time complexity of the counting methods.These counting methods divide the models into eight groups, as shown in Table 3. Figure1 shows a lattice of timing models based on the counting methods that a model can use. Theresults for group G4, when step time bounds are known, were previously shown by Attiya andMavronicolas [AM94].All the remaining results are new; as mentioned before, the asynchronous results in [AM94]do not automatically imply the same results in the unknown bound cases, although the prooftechniques are similar.We show that the upper bounds on the time complexity for the timing models are asymptot-ically optimal. Some of our lower bounds require certain relationships to hold between some ofthe parameters. For example, consider the model in which only c2 and d1 are known. The onlyapplicable counting methods are EC and CB2. Thus, the per-session cost is (approximately)minfd2; d2d1 � c2g. The lower bound we prove for this model gives a per-session cost of approxi-mately 2d23d1 � c2, assuming 2c2 � d1. Since 2c2 � d1, algebraic manipulation shows that this lowerbound is less than d2. Thus our upper and lower bounds are asymptotically tight, if 2c2 � d1.As in the case of the shared memory models, the general trend of these bounds is thatif a smaller number of the parameters in a model are known, the model behaves more like\`asynchronous", and otherwise, more like \synchronous".As the time complexity gaps (i.e., the di�erence between the upper bound in a model andthe lower bound in another model) among the models sometimes overlap, it is rather di�cult to6

group models usable counting method(s)G1 (?; ?; ?; ?); (?; ?; ?; d2); (?; ?; d1; ?); (?; c2; ?; ?), EC(?; c2; ?; d2); (c1; ?; ?; ?); (c1; ?; ?; d2); (c1; ?; d1; ?)G2 (?; ?; d1; d2) EC, MDG3 (?; c2; d1; ?) EC, CB2G4 (c1; c2; ?; ?); (c1; c2; ?; d2) EC, STG5 (c1; ?; d1; d2) EC, MD, CB1G6 (?; c2; d1; d2) EC, CB2, MDG7 (c1; c2; d1; ?) EC, CB2, STG8 (c1; c2; d1; d2) EC, CB2, CB1, ST, MDTable 3: Groups of models that can use the same counting methods.analyze the relative strength qualitatively without making assumptions on parameters. However,when speci�c values for each known parameters are given, the actual bounds can be used toanalyze the relative strength of the models quantitatively.As process step times become more synchronous (i.e., c1 ' c2) and message delays becomeerratic (i.e., c2 � d1 � d2), the general trend of the bounds is that fG1; G2; G5g > fG3; G4g >fG6; G7; G8g > S where S is the synchronous model and `>' denotes that it takes more timeto solve the session problem. As message delays become more synchronous and smaller (i.e.,d1 ' d2 and d2 � c22=2c1) and process step times become more erratic (i.e., c1 � c2), the trendis that fG1; G6g > fG2; G5; G3; G4; G7; G8g > S. These trends suggest that when process steptimes are fairly \synchronous", ST can be more cost-e�ective than MD, CB2 and CB1, whilewhen process step times are more \asynchronous" than message delays, the opposite is true.1.4.3 Proof TechniquesWe unify the lower bound proof techniques of [AFL83] in the shared memory model and [AM94]in the message passing model into one \modular" lower bound proof. Our technique is unique inthat, instead of obtaining a lower bound for each model independently, we develop one su�cientcondition for any given lower bound to hold in any given timing model. This su�cient conditionconsists of a set of algebraic relations involving (1) the timing parameters of the given model;(2) the given lower bound; and (3) some input parameters that need to be provided to provethe lower bound. Testing whether a lower bound holds in a timing model is a simple algebraicexercise of �nding those input parameters that satisfy the relations.The upper bounds are also obtained in a modular way. We �rst �nd algorithms (i.e., waysto count sessions) that work correctly when a certain set of timing parameters is known. Sinceseveral algorithms can be applicable to a model, we provide a scheme to combine these algorithmswithout increasing the time complexity of any of its applicable algorithms. The resulting upper7

G1

G3 G4

G7G6

G8

G2

(EC,CB1)

(EC,CB1,CB2,ST,MD)

(EC,CB1,ST)(EC,CB1,MD)(EC,CB2,MD)

G5

(EC,MD)

(EC)

(EC,ST)

Figure 1: A lattice of model groups can be formed based on the counting methods (shown inparenthesis) and tight time complexity bounds of the timing models.bound of a model is simply the minimum of the time complexity of all the algorithms applicableto the model.1.5 OrganizationThe rest of this paper is organized as follows. Section 2 gives the de�nition of the systemmodel. Section 3 contains our modular lower bound result for the time complexity of the sessionproblem. Our algorithmic counting methods are presented in Section 4. Section 5 draws togetherthe results for shared memory and Section 6 does the same for message passing. We concludein Section 7.2 De�nitions2.1 SystemsThe system model de�nition is similar to that de�ned in [AFL83].There are �nite sets P of processes and V of shared variables. A process has a set of internalstates, including an initial state. Each shared variable has a set of values that it can contain,including an initial value. A global state is a tuple of internal states of each process, and valuesof each shared variable. The initial global state contains the initial state for each process andthe initial value for each shared variable.A process can both read and write a shared variable in a single atomic step (i.e., the variablesupports read-modify-write operations); we do not assume any upper bound on the size of thevariables. A step � consists of simultaneous changes to the state of some process p and the8

value of some set of variables x1; : : : xk (for some integer k), where p is allowed to accessed xi,1 � i � k, depending on the current state of that process and current values of the variables.More formally, we represent the step � with a tuple ((q; p; r); (u1; x1; v1); : : : (uk; xk; vk)), whereq and r are old and new states of a process p 2 P , and ui and vi are old and new values of ashared variable xi 2 V . We de�ne proc(�) = p and var(�) = fx1; : : : xkg. We say that step � isapplicable to a global state if p is in state q and xi has value ui for all i in the global state.An algorithm consists of P , V , and set � of possible steps. For all processes p 2 P and allglobal states g, there must exist some step in � involving process p that is applicable to globalstate g. This condition ensures that p never blocks. A computation of a system is a sequenceof steps �1; �2; : : : such that: (1) �1 is applicable to the initial global state, (2) each subsequentstep is applicable to the global state resulting >from the previous step, and (3) if the sequence isin�nite, then every process takes an in�nite number of steps. That is, there is no process failure.A timed computation (�; T) of a system is a computation � = �1; �2; : : : together with amapping T from positive integers to nonnegative real numbers that associates a real time witheach step in the computation. T must be nondecreasing, and if the computation is in�nite,increase without bound. This way of modeling processes assumes that the time taken for localcomputation at a step is negligible.2.1.1 Shared Memory (SM) ModelWe specialize the general system into the shared memory system in which processes communicatewith each other by means of shared variables. Each step � involves only one shared variable.Associated with each variable is a set of at most a processes that are allowed to access thatvariable.2.1.2 Message Passing (MP) ModelWe specialize the general system into the message passing system, in which processes commu-nicate with each other by exchanging messages. P consists of the regular processes, denotedby the set R, plus a distinguished process N , called the network. The network schedules thedelivery of messages sent among the regular processes. V , the set of shared variables, equalsfnetg [fbufp : p 2 Rg, where the values taken on by each variable are sets of messages. Thevariable net models the state of the network, i.e., the set of messages in transit. The variablebufp holds the set of messages that have been delivered to p by the network but not yet receivedby p.A step of a process p in R consists of p receiving the set M of messages in its bu�er bufp,and based solely on those messages and its current state, changing its local state and sendingout some message m to all the regular processes. More formally, the result of the step is to setbufp to empty (i.e., receive messages), to add (m; q) to net for all q in R (i.e., send a message),and to change state. So, the step involves two shared variables, bufp and net. A step of N is todeliver some message of the form (m; q) in net to q. More formally, the result of the step is to9

remove (m; q) from net and add m to bufq. We call this step the delivery step of m. Accordingly,the step also involves two shared variables, net and bufq. We de�ne msg(�) to be the messagethat is involved in a step � of a process in P .This de�nition of the MP model is an abstract model of a reliable strongly connected networkwith any topology (i.e., for every pair of processes, there exists a communication path betweenthe two processes).In a timed computation, each message has a delay, de�ned to be the di�erence between thetime of the step that adds it to net and the time of the step that removes it from net. If themessage is never removed, then it has in�nite delay. The delay only counts the time in transit inthe network and does not include the time that the recipient takes to receive the message. Notethat after a message is delivered to a destination process p, p has to take at least one step toreceive the message. That is, the time elapsed between the delivery step of a message m and thestep of the destination process which �nally removes m from the bu�er is not counted towardthe message delay.2.2 Timing ModelsFirst we consider shared memory models. Let v and w be two positive real numbers with v � w.M(v; w), called a submodel, is the set of all timed computations of a system in which all steptimes (the time between two consecutive steps by the same process) are within [v; w].A shared memory model is speci�ed by indicating whether the minimum and maximum steptimes are known; and if so, what their values are. Formally, a shared memory model is denotedM[c1; c2] where ci 2 f?g [R+ (R+ is the set of positive reals). If the minimum step time isknown, then c1 is some positive real; otherwise, c1 =?. If the maximum step time is known,then c2 is some positive real; otherwise c2 =?.We de�ne the four shared memory models of interest as follows.M[c1; c2] = fM(c1; c2)g if c1 2 R+ and c2 2 R+:M[c1; ?] = fM(c1; w) : w � c1g if c1 2 R+:M[?; c2] = fM(v; c2) : v � c2g if c2 2 R+:M[?; ?] = fM(v; w) : 0 < v � wg:We now consider message passing models. Let v, w, x and y be four positive real numberswith v � w and x � y. M(v; w; x; y), called a submodel, is the set of all timed computations inwhich all step times are within [v; w] and all message delays are within [x; y].The 16 message passing models are de�ned analogously to the four shared memory models.For example,M[?; c2; d1; ?] = fM(v; c2; d1; y) : 0 < v � c2 and y � d1g if c2 and d1 2 R+:10

We number the models 0 through 15 using the binary representation, assuming a parameterthat equals ? is replaced with 0 and otherwise with 1. For instance, M[?; c2; d1; ?] is numbered01102 = 6.We say that a timed computation � is admissible for a submodel M if � is in M , and isadmissible for a model M if � is admissible for some M in M.2.3 The (s; n)-Session ProblemWe now state the conditions that must be satis�ed for a system to solve the (s; n)-sessionproblem.There is a distinguished set Y of n shared variables called ports; Y is a subset of V in SM; andY is the set of buf variables in MP. There is a unique process in P (in R in MP) correspondingto each port, which is called a port process, and no two port processes can be assigned to thesame port. A port step is any step involving a port and its corresponding port process. A portcan be accessed by processes in addition to its corresponding port process, but such a step isnot a port step. There may be some processes which are not port processes, i.e., it is possiblefor jP j to be larger than n.1Each port process in P must have a subset of special states, called idle states. The set � ofsteps of the system must guarantee that once a process is in an idle state, it always remains inan idle state, and after a process enters an idle state, it does not access a port.A session is a minimal sequence of steps containing at least one port step for each port inY . A computation performs s sessions if it can be partitioned into s segments, each of which isone session. Every in�nite admissible timed computation must perform at least s sessions andeventually all port processes must be in idle states.2.4 Time ComplexityWe give the de�nitions for the shared memory models. The time complexity de�nitions formessage passing models are analogous to those for shared memory models.An algorithm A in a submodel M(x; y) has running time t if t is the maximal time, over alladmissible computations of A for M(x; y), until all port processes become idle.Let f be a function from R+ � R+ to R+. We abuse notation and say that an algorithmA in model M[c1; c2] has upper bound f(c1; c2) if A has running time at most f(x; y) in everysubmodel M(x; y) in M[c1; c2]. (This is an abuse of notation because c1 or c2 might equal ?instead of being a positive real constant.)M[c1; c2] has lower bound f(c1; c2) if for every algorithm A, there is a submodel M(x; y)such that A has running time at least f(x; y) in that submodel.1This possibility is implicitly contained in [AFL83], which refers to making the port processes the leaves of atree network. 11

3 Modular Lower BoundIn this section, we give a modular lower bound proof that holds for all the timing models, bothshared memory and message passing. Our lower bound proof is motivated by the proofs in[AFL83] and [AM94]. Our technique is unique in that, instead of obtaining a lower bound foreach model independently, we develop a su�cient condition for a lower bound to hold in anygiven timing model. This su�cient condition consists of a set of algebraic relations on (1) thetiming parameters of the given model; (2) the given lower bound; and (3) some other inputparameters (shown below). Thus, testing whether a lower bound holds in a timing model isa simple algebraic exercise of �nding those input parameters that satisfy the relations. Thetheorem below proves the su�cient condition; in its statement, c, c01, c02, d01, d02, and B are theinput parameters, and SC1 to SC3 and MC1 to MC5 are the algebraic relations. In the proof ofthe theorem, we present some intuitive ideas behind the theorem and then formalize the ideas.Theorem 3.1 Let M be a timing model that satis�es the following.If M = M[c1; c2] is a shared memory model, then there exist positive real numbers c, c01, c02and a function f with B = f(c01; c02) such that:SC1. (B � c02 � loga n) ^ (c01 � c02)SC2. (c01 � 12c) ^ ((c01 = c1) if c1 6=?)SC3. (c02 � B cc02) ^ ((c02 = c2) if c2 6=?)If M =M[c1; c2; d1; d2] is a message passing model, then there exist positive real numbers c,c01, c02, d01, d02 and a function f with B = f(c01; c02; d01; d02) such that:MC1. (B � d02) ^ (c01 � c02) ^ (d01 � d02)MC2. (c01 � 12c) ^ ((c01 = c1) if c1 6=?)MC3. (c02 � B cc02) ^ ((c02 = c2) if c2 6=?)MC4. (d01 � (d02 �B) cc02 + c) (^ (d01 = d1) if d1 6=?)MC5. (d02 � (d02 +B) cc02 � c) (^ (d02 = d2) if d2 6=?)Then a lower bound on the time complexity of the (s; n)-session problem for M is (s � 1) �f(c1; c2) if M is a shared memory model, and (s� 1) � f(c1; c2; d1; d2) if M is a message passingmodel. 12

Informal description By way of contradiction we assume that there exists such an algorithmA that solves the (s; n)-session problem in model M within time less than the stated lowerbound. We prove that there exists an in�nite timed computation of A that is admissible for Myet contains fewer than s sessions, contradicting the assumed correctness of A.More speci�cally, we �rst �x a submodel M 0 of M and pick an in�nite timed computation(�; T) of A that is admissible for M 0. Then we retime and reorder some steps in � to obtain anew in�nite timed computation (�0; T 0) that has only s� 1 sessions, yet is admissible for somesubmodel M 00 of M . (M 0 and M 00 are not necessarily the same.)Real numbers c01, c02, d01, and d02 are the minimum and maximum step times and messagedelays of submodel M 0 respectively for which (�; T) is admissible. Real numbers 12c, B cc02 ,(d02 � B) cc02 + c, and (d02 + B) cc02 � c are the minimum and maximum step times and messagedelays of M 00 for which (�0; T 0) is admissible.The conditions in the theorem statement are used to prove that M 0 and M 00 really aresubmodels of M . Below we provide some intuition for these conditions.1. B is roughly the time for a process to \recognize" one session in a computation. The �rstclause in Conditions SC1 and MC1 states that B does not take more than the lower boundon the maximum communication delay in the SM and MP models.2. Conditions SC1 and MC1 ensure that minimum and maximum step times and messagedelays (c01, c02, d01 and d02) in submodel M 0 satisfy the property that the minimum is notlarger than the maximum.3. Conditions SC2 and MC2 ensure that, if the minimum step time (c1) is known in M , thenin M 0 it is equal to that of M and in M 00 it is at least as large as that of M .4. Conditions SC3 and MC3 ensure that, if the maximum step time (c2) is known inM , thenin M 0 it is equal to that of M and in M 00 it is not larger than that of M .5. Condition MC4 ensures that, if the minimum message delay (d1) is known in M , then inM 0 it is equal to that of M and in M 00 it is at least as large as that of M .6. Condition MC5 ensures that, if the maximum step time (d2) is known in M , then in M 0it is equal to that of M and in M 00 it is not larger than that of M .Since B is roughly the time upper-bound to have one session, the time complexity lowerbound to solve the (s; n)-session problem cannot be less than (s� 1) multiple of the maximumB which is determined by the timing parameters of M .We now need to prove that satisfying the above conditions is su�cient to prove the timecomplexity lower bound for solving the (s; n)-session problem. This involves several procedures.1. We prove that (�; T) is admissible forM 0, andM 0 is a submodel ofM . In (�; T), processesenter an idle state before B � (s� 1). 13

2. We then reorder steps in � to obtain �0 without violating the causal dependency amongprocess steps. The causal dependency among two process steps happens, for example,because one step receives a message sent by the other step. Thus, for example, �0 shouldnot order the receive step before the send step. This procedure involves several other steps.(a) We �rst break � into two segments. The �rst segment, �, is up to the last step takenby any process before all processes enter the idle state. The second segment,
, is therest of �. It is clear that � should contain s sessions because � is a computation ofA that solves the (s; n)-session problem.(b) We then break � into s � 1 equal non-overlapping segments of time period B. Wereorder the process steps only within each segment without violating their causaldepedency so that each segment by itself does not contain one session. Since eachsegement contains less than one session, the reordered sequence �0 does not containmore than s�1 sessions. Since each segment does not violate the causal depedency, allthe port processes will be in the same state as they are in the corresponding segmentin �. Thus, in the end of �0, all the port processes are in the same state as in �, and�0 = �0
 is an admissible computation for M because � = �
 is.3. Reordering steps perturbs the timings of process steps. We show a timing mapping T 0 forin �0 whose minimum and maximum step times are c=2 and B cc02 , and whose minimumand maximum message delays are (d01 � (d02 � B) cc02 + c) and (d02 � (d02 + B) cc02 � c). Theconditions in the theorem is used to show that these retimed parameters are within theconstraints of a submodel M 00 of M .4. Since there is a timed computation (�0; T 0) that is admissible for a submodel of M whichcontains less than s� 1 sessions, this is a contradiction.Proof: We now formalize these ideas.Let M 0 be the submodel of M that has minimum and maximum step times and messagedelays equal to c01, c02, d01 and d02 respectively where the followings hold. (a) c01 � c02; (b) c01 = c1if the minimum step time of M (c1) is known; and (c) c02 = c2 if the maximum step time of M(c2) is known. Furthermore, if M is a message passing model, (d) d01 � d02; (e) d01 = d1 if theminimum message delay of M (d1) is known; and (f) d02 = d2 if the maximum message delay ofM (d2) is known.Since M 0 is a submodel of M , by the assumption that algorithm A is correct for M , A hasrunning time in M 0 less than (s� 1) � B, where B = f(c01; c02) if M is a shared memory model,and B = f(c01; c02; d01; d02) if M is a message passing model.Let (�; T) be the in�nite timed computation of A in which all the regular processes takesteps at the same speed in round robin order and each process' ith step occurs at time i � c02.Furthermore, if M is a message passing model, all the message delays in (�; T) are exactly d02.Note that (�; T) is admissible for M 0 (and thus for M).14

Let � = �
, where � contains all the steps that occur in (�; T) during time interval [0; (s�1) �B) and
 contains the rest of �. Note that all the states in
 are idle states because A solvesthe (s; n)-session problem in time less than (s� 1) � B.Case 1: If B � c02, then � contains only s� 1 sessions because each process takes only s� 1steps in �. This is a contradiction since all regular processes are in an idle state in
.Case 2: For the rest of the proof, assume that B > c02. For convenience of presentation, weassume that B is divisible by c02.2We will reorder and retime (i.e., assign new times to) steps in � to obtain (�0; T 0). To ensurethat the retimed computation leads to the same global state, this retiming should not violate thedependencies among process steps. Informally, a dependency arises between two steps if theyare steps of the same process; if one step reads a variable previously accessed by the other; or ifone step is the receipt of a message sent by the other. A more precise de�nition of dependencyis given below.We construct a partial order �� on the steps in �, representing dependency. Let � �� � forevery pair of steps � and � in �, and say that � depends on �, if:� � = � , or� T (�) < T (�) and proc(�) = proc(�) 6= N , or� T (�) < T (�) and msg(�) = msg(�) if M is a message passing model, or� T (�) < T (�) and var(�) = var(�) if M is a shared memory model.Close �� under transitivity.Let � = �1 : : : �s�1 such that each �k, which we call segment k, 1 � k � s� 1, consists of allthe steps in (�; T) during time interval [(k � 1)B; kB). Note that in a message passing model,no message sent in �k is received in �k since B � d02 by MC1 and d02 is the message delay in(�; T).Informally speaking, we will reorder steps in each segment �k without violating the depen-dencies as follows. We �rst pick one port variable for each segment in such a way that the sameport variable is not picked for two consecutive segments. Let yi be the port variable picked forsegment �i. Then, we reorder the steps of each segment, resulting in two \subsegments" suchthat the �rst subsegment does not contain any port event accessing yi and the second subseg-ment does not contain any port event accessing yi+1. The reordered sequence will contain onlys� 1 sessions. Figure 2 illustrates an example when s = 4.However, for the reordered computation to end in the same state as �, this reordering shouldnot violate relation �� within each segment (relation �� is not violated across segments by the2If B is not divisible by c02, the lower bound we obtain is (s� 1) � b f(c1;c2)c2 c � c2 instead of (s� 1) � f(c1; c2) inthe shared memory case, and similarly for the message passing case.15

reordering because steps are not reordered out of their own segments). Thus, we must choosethe port yk for each segment �k such that the �rst step in �k to access yk�1 does not depend onthe last step in �k to access yk. The following claim shows that this can be done.Claim 3.2 Let y0 be an arbitrary port in Y . For all k, 1 � k � s�1, there exists a port variableyk such that it is false that �k �� �k, where �k is the �rst step in �k that accesses yk�1 and �kis the last step in �k that accesses yk.Proof: If M is a message passing model, no message sent in �k is delivered in �k because thesize of each segment is less than d02, and d02 is the message delay. Because there is no �� relationbetween any two steps of di�erent processes in �k, any port variable except yk�1 can be chosenas yk.If M is a shared memory model, part of the proof of Theorem 2 of [AFL83] 3 proves thatthere exists such yk if each process takes fewer than loga n steps in a segment. Because in �k,each process takes fewer than loga n steps (cf. SC1), there exists such yk in �k.
β1Reordering of β2Reordering of β3Reordering of

No port event for y0 No port event for y1 No port event for y1 No port event for y2 No port event for y2 No port event for y3

 Three Sessions

Two Sessions

One Session

Figure 2: An example of reordering when s = 4.Claim 3.2 allows us to use the yk's to reorder � in order to obtain a new sequence with lessthan s sessions (shown in 3.4). However the steps in the sequence are not mapped to time. Thus,we need a scheme to assign new times to the reordered steps so that the new timed computationdoes not violate the timing constraints of M . This is the major di�erence between our lowerbound proof for unknown parameter models and that in [AFL83] for the asynchronous model;in the latter no timing scheme is necessary because the asynchronous model imposes no timingconstraints.3The statement of Theorem 2 in [AFL83] does not explicitly include this result. For conciseness, we do notinclude a copy of the relevant part of the proof (the middle of pp. 453{455).16

In the following, we de�ne a retiming scheme that also encompasses the reordering schemepresented above.Let us �rst assign a new mapping T 00 to every step � in �
, including all the steps of thenetwork N if M is a message passing model, such that T 00(�) = T (�) � cc02 . That is, every process(except N) takes a step at every time that is a multiple of c. Since in a message passing model,the delivery steps of N are retimed along with other steps, the message delay is now changedfrom d02 to d02 � cc02 . Note that the assignment of T 00 does not change the relative ordering of thesteps in � because it changes every step time by the same proportion (namely, cc02).We now reorder and assign new times (the mapping T 0) to every step in (�k; T 00). Intuitively,in order to obtain a timed computation as in Figure 2, �k and every step that �k depends onhave to move earlier in time into the �rst half of (�k; T 00), and �k and every step that depends on�k have to move later in time into the second half of (�k; T 00). As a result, �k will occur before�k. Let tk = k � Bcc02 , where 0 � k � s� 1. Thus, �k occurs during [tk�1; tk) under T 00. Note thattk � tk�1 = Bcc02 .1. (Earlier retiming) Let � be any step in �k by a process in P that �k depends on (in amessage passing model, this means proc(�) = proc(�k)). Retime � such that T 0(�) =tk�1+T 00(�)2 . The step is moved backward halfway to the beginning of �k.2. (Later retiming) Let � be any step in �k by a process in P that depends on �k (in a messagepassing model, this means proc(�) = proc(�k)). Retime � such that T 0(�) = T 00(�)+tk�c2 .The step is moved forward approximately halfway to the end of �k.3. (Stationary retiming) All other steps in �k and all steps in
 are assigned the same timesas in T 00.For all k, 1 � k � s� 1, let �00k be the result of reordering and retiming steps in �k accordingto T 0, and let �00 = �001�002 : : : �00s�1.If M is a message passing model, let �0 be the result of changing the states of the networkin �00 so that in each step of the network, the state of the network is consistent with all the sendsteps of regular processes and all the deliver steps of the network in �00 that have happened sofar ([[\consistent" means that]] a delivery step of a message happens after its send step). If Mis a shared memory model, let �0 = �00.In summary, (�; T) is now transformed to (�0; T 0) using (�00; T 00) as an intermediate compu-tation. To show the theorem, it su�ces to show that (1) �0 is a computation leading to the sameglobal state as � (Claim 3.3); (2) �0 contains less than s sessions (Claim 3.4); and (3) (�0
; T 0)is admissible for M (Claim 3.5).Claim 3.3 �0 is a computation that leaves the system in the same global state as � does.17

Proof: We �rst prove that �� holds in �0.For any k, 1 � k � s � 1, pick any two steps, � and �0 in �k such that � �� �0. ThusT (�) � T (�0) (recall that T is the original timing). We only need to prove that T 0(�) � T 0(�0)because � occurs earlier than �0 in T .Each of � and �0 was retimed by one of the earlier, later or stationary retiming methods.Clearly the desired ordering is preserved:(1) when � stays the same and �0 either stays the same or moves later in time, or(2) when �0 stays the same and � either stays the same or moves earlier in time, or(3) when � and �0 both move in the same direction.The other cases cannot occur, since if � moves later in time, then so does �0, and if �0 movesearlier in time then so does �.Since �0 does not violate �� in both SM and MP, and all the states of net in �0 are consistentwith the steps of �00 by the de�nition of �0 in MP, it follows that �0 is a computation resultingin the same global state as �.Claim 3.4 �0 contains at most s� 1 sessions.Proof: For all k, 1 � k � s�1, let hk = T 0(�k). We show, by induction on k, that time period[0; hk) in (�0; T 0) contains at most k � 1 sessions.For the basis, [0; h1) contains no session because it does not contain any port event for y0.Assume, by way of induction, that [0; hk�1) contains at most k � 2 sessions. We prove that[0; hk) contains at most k�1 sessions. It is clear from the construction that (hk�1; tk�1] containsno session because it does not contain any port event of yk�1 and similarly, [tk�1; hk) does notcontain any session because it contains no port event of yk�1. Since the port process of yk�1takes only one step at hk�1, it is clear that [hk�1; hk) contains at most one session. Therefore,[0; hk) contains at most k � 1 sessions.A similar argument shows that [hs�1; ts�1] contains at most one session. Since [0; hs�1)contains at most s� 2 sessions, it follows that there are at most s� 1 sessions in [0; ts�1].Claim 3.5 (�0
; T 0) is a timed computation that is admissible for M .Proof: By Claim 3.3, �0 is a computation that leads to the same global state as �. Therefore,�0
 is also a computation because �
 is a computation. Since
 is in�nite, so is �0
. It remainsto show that the timing T 0 conforms to the timing constraints of model M .
18

Constraints on step time:Let �i and �i+1 be consecutive steps of a single process in �k for some k. Then, for some � � 0,it is true that T 00(�i) = tk�1 +� and T 00(�i+1) = tk�1 +�+ c.The distance between the two steps is minimized when both steps are retimed by the sameretiming method because it is not possible that �i is retimed by the later retiming while �i+1 isretimed by the earlier retiming. If both �i and �i+1 are retimed by the same retiming method(either later or earlier) retiming, T 0(�i+1)� T 0(�i) is equal to c=2.None of the retiming methods retimes a step outside its original segment: If a step is insegment �k, after the retiming, it is still in segment �0k. Thus, neither �i nor �i+1 is retimedoutside the segment. Since the maximum time elapsed between �i and �i+1 in �k is B, and inT 00, all times are shrunk in proportion to cc02]], the distance between the two steps can never belarger than tk � tk�1 � B cc02 .For the timing of steps in di�erent segments, let �j and �j+1 be the consecutive steps ofa process, each of which are in the di�erent segments, say �k and �k+1 respectively. Then,T 00(�j) = tk and T 00(�j+1) = tk + c (this is because B is divisible by c02). Since the twosteps are in di�erent segments, the distance between the two steps is minimized when �j isretimed by the later retiming while �j+1 is retimed by the earlier retiming. However, neither ofthese retimings results in a change, i.e., T 0(�j) = T 00(�j) and T 0(�j+1) = T 00(�j+1). Therefore,T 0(�i+1)�T 0(�i) = c. Since the two steps are in di�erent segments, the distance between the twosteps is maximized when �j is retimed by the earlier retiming while �j+1 is retimed by the laterretiming. In this case, �j moves to (tk�1+tk�c)=2 and �j+1 moves to (tk+tk+1�c)=2. Therefore,the distance between the two steps cannot be larger than B cc02 because T 0(�i+1) � T 0(�i) =tk+1�tk�12 � B cc02 .We �rst check the minimum step time.� If c1 is unknown, then there exists a positive constant (namely c=2) which is the minimumstep time in (�0; T 0).� If c1 is known, by condition SC2 (or MC2), the minimum step (c=2) in (�0; T 0) is biggerthan or equal to the minimum step time of M .� If c2 is known, the minimum step (c=2) is less than or equal to c2 because (1) by SC3(MC3), c02 = c2 and B cc2 � c2, and (2) by the assumption for Case 2 of the main proof,B > c2.Now we check the maximum step time.� If c2 is unknown, then there exists a positive constant (namely B cc02) which is the maximumstep time in (�0; T 0). 19

� If c2 is known, the maximum step time (B cc02) in (�0; T 0) is less than or equal to c2 becauseof SC3 and MC3.� If c1 is known, the maximum step time (B cc02) in (�0; T 0) is bigger than or equal to c1because (1) by the assumption for Case 2, B > c02 and thus B cc02 > c, and (2) by SC2 andMC2, c � c1.Constraints on message delay:The steps that move the farthest due to the earlier retiming >from T 00 to T 0 are those at the endof each segment because they do not move outside their segments. Let �last be the step at the endof �k. T 00(�last) = tk�c. By the earlier retiming, T 0(�last) = (tk�1+ tk�c)=2 = tk� 12B cc02 �c=2.The steps that move the farthest due to the later retiming from T 00 to T 0 are those at thestart of each segment because they do not move outside their segments. Let �start be the stepat the start of �k. T 00(�start) = tk�1. By the later retiming, T 0(�start) = (tk�1 + tk � c)=2 =tk � 12B cc02 � c=2. Therefore, the maximum distance that a step can move >from T 00 to T 0 isbounded by 12B cc02 � c=2.Let �s and �r be the send and receive steps of any message in �. Recall that under T 00, allthe message delays are d02 cc02 . Thus, T 00(�r) � T 00(�s) = d02 cc02 . Let d0 = d02 cc02 . Because both �rand �s can move 12 (B cc02 � c) time from T 0 to T 00, each in opposite directions, d0 � B cc2 + c �T 0(�r)� T 0(�s) � d0 +B cc2 � c.We �rst check the minimum message delay.� If d1 is unknown, then there exists a positive constant that is the minimum message delayin (�0; T 0) because (1) T 0(�r)�T 0(�s) � d0�B cc2+c, (2) by MC1, d0�B cc02 = (d02�B) cc02 � 0,and (3) c is a positive real.� If d1 is known, the minimum message delay (d0 � B cc02 + c) in (�0; T 0) is bigger than orequal to d1 because of MC4.We now check the maximum message delay.� If d2 is unknown, then there exists a positive constant (namely d0 + B cc02 � c) that is themaximum message delay in (�0; T 0) because d0 +B cc02 � c � T 0(�r)� T 0(�s) > 0.� If d2 is known, the maximum message delay (d0 + B cc02 � c) is less than or equal to d2because of MC5.
20

Technique Timing Information Running TimeExplicit Communication (EC) None (s� 1) � d2 + c2 or (s� 1) � c2�(logn) + c2Step Time (ST) c1, c2 (s� 1) � c2c1 � c2 + c2Combination 2 (CB1) c1, d1, d2 (s� 2) � (c2c1 � u+ u+ 2c2) + d2 + 3c2Message Delay (MD) d1, d2 (s� 2)(d2d1 � u+ u+ 2c2) + d2 + 2c2Combination 1 (CB2) c2, d1 (s� 1) � c2 � d2+c2d1 + c2Table 4: Counting methodsTo �nish the proof of the main theorem, (�0
; T 0) is an in�nite timed computation admissiblefor M but with fewer than s sessions, by Claims 3.4 and 3.5. This contradicts the assumedcorrectness of A.4 Algorithmic Counting MethodsWe develop �ve methods to count the number of sessions during a computation (cf. Table 4).These method di�er in the ways they use the known timing information of a model to countsessions. An (s; n)-session algorithm can be obtained for a model simply by combining all theapplicable methods to the model without increasing the asymptotic time complexity of any ofthose methods. This can be done by running each method \side by side", halting when the �rstof them �nishes [AM94]. Since there are only a constant number of methods running at thesame time, the combination does not a�ect the asymptotic time complexity of the algorithm.The resulting upper bound on the time needed to solve the session problem in a model is theminimum of the time complexity of all the methods applicable to the model.We now describe each of the counting methods. A message is denoted m(i; j; k), where i isthe identi�er of the sending process pi, j is an integer in [0; s� 1] and k is an integer. We let �be a don't care value. The port for a port process i is denoted yi. In a message passing model,yi denotes process i's bu�er of incoming messages.In describing the methods, we use a subroutine called broadcast as a generic operator forcommunication. In MP models, broadcast is accomplished by having each process send a messageto all the processes, including itself.We now explain how to achieve a broadcast in an SM model. Recall that at most a processescan access any speci�c shared variable. We conceptually organize the processes and sharedvariables into a tree with �(logn) levels. In order for a port process to broadcast informationto all other port processes, the information travels up the tree to the root and then down fromthe root to all the leaves. See Appendix A for more details.
21

4.1 Explicit Communication (EC)The explicit communication method (see Figure 3), originally presented and analyzed in [AFL83]for the asynchronous SM model, and in [AM94] for the asynchronous MP model, does not requireany timing information to solve the (s; n)-session problem. It can be used in any timing modelbecause the correctness of the method does not depend on speci�c step time or message delay.session := 0; msgs := ;;while (session < s� 1)msgs := msgs [yi; =� port event; recall yi = bufi in MP �=if for all j 2 f1; : : : ; ng;m(j; session; �) is in msgsthensession := session+ 1;end if;broadcast m(i; session; �); =� port event �=end while;Enter an idle state. Figure 3: Technique EC for process iTheorem 4.1 EC solves the (s; n)-session problem in time (s�1) � c2 ��(log n)+ c2 in a sharedmemory model and in time (s� 1) � d2 + c2 in a message passing model.The basic intuition for the method is that since it does not use any timing information, aprocess relies only on communication with other processes at every session to recognize there isone session. Each process executes one port event, broadcasts the fact to every process at eachstep and repeats this step until it hears that every process has executed another port event.Then it increments session. It performs these steps s � 1 times. Then, after it executes oneadditional port event, it enters an idle state.4.2 Step Time (ST)The Step Time method (see Figure 4), originally presented and analyzed in [AM94] for thesemi-synchronous model, requires information about the maximum and minimum step times (c2and c1). For convenience of presentation, we assume that c2 is divisible by c1. This method canalso be used for both a shared memory model and a message passing model.In this method, processes use timing information about relative step times to determine whena session occurs. Each process executes c2c1 port events. During this interval, at least c2c1 � c1 = c2time elapses, since c1 is the minimum step time. Since every process performs at least one portevent within time c2 (since c2 is the maximum step time), at least one session has occurred by22

B := c2c1 ;count := session := 0;while (session < s� 1)if (count � B)thencount := 0;session := session+ 1;end if;count := count+ 1;access yi; =� port event; recall yi = bufi in MP */end while;Enter an idle state.Figure 4: Technique ST for process ithe time that the process �nishes c2c1 port events. Each process repeats the above procedure s�1times. After it executes one additional port event, it enters an idle state.Theorem 4.2 ST solves the (s; n)-session problem in time (s � 1) � c2c1 c2 + c2 in both a sharedmemory model and a message passing model.4.3 Combination 1 (CB1)CB1 (see Figure 5) requires information about the minimum step time (c1), the minimumand maximum message delays (d1 and d2). For convenience of presentation, we assume thatu = d2 � d1 is divisible by c1.The correctness of this method relies on the following observation. If a process pi receivesa message m from a process pj at time t, then the message must have been sent no later thant� d1, because it takes at least d1 time for a message to be delivered. All the messages receivedby pi after t+ d2 � d1 must have been sent after m was, because it takes at most d2 time for amessage to be delivered. Based on this idea, each process broadcasts a message at every step.(1) When a process initially receives one message from every process, it recognizes there is onesession because each process must have taken one step to send the message. (2) Then, when itreceives another set of messages from every process after time u = d2�d1, there must have beenanother session after the initial session because the second set of messages must have been sentafter the �rst session occurred. Time u can be measured by counting steps, using the knownminimum step time (c1) (i.e., when a process takes uc1 local steps, at least u time is guaranteedto be elapsed.) 23

B := uc1 ; /* u = d2 � d1 */count := session := 0;msgs := ;;while (session < s� 1)msgs := msgs [bufi; /* port event */if (session = 0) or (count � B)thenif for all j 2 f1; : : : ; ng, m(j; �; �) is in msgsthen =� condition 1 �=count := 0;session := session+ 1;msgs := ;;end if;end if;broadcast m(i; �; �); /* port event */count := count+ 1;end while;Enter an idle state.Figure 5: Technique CB1 for process iEach process performs the second procedure s� 2 times. Then it enters an idle state aftertaking an additional step. The running time of CB1 is (c2c1u + u + 2c2)(s � 2) + d2 + 3c2. (1)It takes at most uc1 � c2 time to count uc1 steps; (2) at most u+ 2c2 time for a process to receiveanother set of message after it recognizes there was a session; (3) d2 + 2c2 time to receive theinitial set of messages; and �nally (4) one more step to accomplish the last session. The detailedproof of the following theorem can be found in Appendix A.Theorem 4.3 CB1 solves the (s; n)-session problem within time (s�2)�(c2c1u+u+2c2)+d2+3c2if c1, d1 and d2 are known.4.4 Message DelayMessage Delay (MD) (see Figure 6) requires information about the lower bound d1 and upperbound d2 on message delay. MD di�ers from CB1 only in one way: a process recognizes thattime u has elapsed by counting the number of times that a certain message is being passedbetween two processes, using the known minimum message delay. For example, when a processpi broadcasts a message at time t, the message is received by pj no earlier than time t+ d1. Soif the message is passed between them (or any process because of the minimum message delay)24

B := ud1 ;count := session := 0;msgs := ;;while(session < s� 1)msgs := msgs [bufi;if (session = 0) or (count � B)thenif for all j 2 [n], m(j; �; �) is in msgsthen =� condition 1 �=count := 0;session := session+ 1;msgs := ;;end if;end if;if there is any m(�; session; �) in msgsthen count := maxfcount; k : m(�; session; k) 2msgs g;broadcast m(i; session; count+ 1);end while;Enter an idle state.Figure 6: Technique MD for process imore than u=d1 times, then we know at least u time has elapsed. The running time of MD isequal to that of CB1 with c2c1 factor replaced by d2d1 .The detailed proof of the following theorem can be found in Appendix A.Theorem 4.4 MD solves the (s; n)-session problem within time (s�2)�(d2d1u+u+2c2)+d2+3c2if d1 and d2 are known.4.5 Combination 2Combination 2 (CB2) (see Figure 7) can be used if the maximum step time c2 and the minimummessage delay d1 are known. The known minimum message delay (d1) can be used to measurethe elapsed time between the send time of a message and the receive time of the same message;We know at least d1 time has passed between the send and receive. In addition, because of theknown maximum step time, it is possible to estimate how many steps a process takes withintime d1 (at least d1c2 steps). Therefore, a process can deduce that if it receives a message sentafter the last session, there have been at least d1c2 sessions after that last session.We can inductively apply the above argument starting from session 0. Initially, a processstarts by sending a message to all, and as soon as it receives a message from all other processes,25

count := 0;msgs := ;;while(count < s� 1)msgs := msgs [bufi;count := maxfk; count : m(�; �; k) 2 msgs g;broadcast m(i; �; count+ c2d1);end while;Enter an idle state.Figure 7: Technique CB2 for process iit knows that there are at least d1c2 sessions in the computation. It increments its counter byd1c2 , and sends another message piggybacking the value of that counter. If it receives a messagewith a counter x, it knows that there are at least x+ d1c2 sessions. Then it updates its counter tox+ d1c2 , and sends another message with the value of that counter. It continues the above untilits counter is larger than s� 1. Then, it makes one more step and enters an idle state.The detailed proof of the following theorem can be found in Appendix A.Theorem 4.5 Technique CB2 solves the (s; n)-session problem in time (s� 1) � d2+c2d1 c2 + c2 ifc2 and d1 are known.5 Shared Memory ResultsIn this section, we show that the upper bounds we presented in Section 4 for the shared memorymodels are asymptotically tight by obtaining the matching lower bounds. We use Theorem 3.1to obtain the lower bounds. To prove a given lower bound for a shared memory model, wesimply check whether there exist c, c01 and c02 that satisfy SC1, SC2 and SC3.5.1 Counting with Explicit CommunicationSuppose that only EC is used. The resulting upper bound is (s� 1) � c2 ��(logn).We now show that this bound is asymptotically tight. In particular, we show that if eitherc1 or c2 (or both) is unknown, then the lower bound is (s� 1) � c2 � loga n.Corollary 5.1 Let c2 2 R+. For M[?; c2], there exists no algorithm that solves the (s; n)-session problem within time less than (s� 1) � c2 � loga n.26

Proof: Let c = c2= loga n. Let c01 be some constant less than or equal to c2. Let c02 = c2. Letf(x; y) = y � loga n.As c01 � c2 and B = f(c01; c02) = c02 � loga n, SC1 is satis�ed. As B cc02 = c02, SC3 is satis�ed. Asc1 is unknown, we do not consider SC2.Corollary 5.2 Let c1 2 R+. For M[c1; ?], there exists no algorithm that solves the (s; n)-session problem within time less than (s� 1) � c2 � loga n.Proof: Let c = 2 � c1. Let c01 = c1. Let c02 be some constant greater than or equal to c1. Letf(x; y) = y � loga n.As B = f(c01; c02) = c02 � loga n, SC1 is satis�ed. As 12c = c1 and c01 = c1, SC2 is satis�ed. Asc2 is unknown, we do not consider SC3.Each of Corollaries 5.1 and 5.2 separately implies that a lower bound for M[?; ?] is (s� 1) �c2 � loga n.5.2 Counting with Explicit Communication and Step Time BoundsIf processes know c1 and c2, then they can use both methods ST and EC in order to count. Thisresults in an algorithm with running time (s� 1) � c2 �minf c22c1 ;�(log n)g+ c2.We now show that this bound is asymptotically tight.Corollary 5.3 Let c1; c2 2 R+. For M[c1; c2], there exists no algorithm that solves the (s; n)-session problem within time less than (s� 1) � c2 �minf c22c1 ; loga ng.Proof: Let c = 2c1. Let c01 = c1. Let c02 = c2. Let f(x; y) = y �minf yx ; loga ng.SC1 holds because B = f(c01; c02) = c02 � minf c022c01 ; loga ng � c02 � loga n: SC2 holds becausec01 = c1 � c2 : SC3 holds because B cc02 = f(c01; c02) � cc02 = c02 �minf c022c01 ; loga ng2c1c02 � c02:6 Message Passing ResultsIn this section, we show that the upper bounds we presented in Section 4 for the message passingmodels are asymptotically tight by obtaining the matching lower bounds. We use Theorem 3.1to obtain the lower bounds. To prove a given lower bound for a message passing model, wesimply check whether there exist c, c01, c02, d01, and d02 that satisfy MC1 through MC5.
27

6.1 Counting with Explicit CommunicationThe use of EC alone in a message passing model gives an upper bound of (s� 1) � d2 + c2.We show that if no other method can be used, then this bound is asymptotically tight. Themodels that allow the use of EC only are models 0, 1, 2, 4, 5, 8, 9, and 10. Using corollaries toTheorem 3.1, we show that the lower bounds for models 5, 9 and 10 are (s� 1) � d2. The resultfor model 5 implies the same lower bound for models 1 and 4 (since 1 and 4 have less timinginformation than does 5). The result for model 10 implies the same lower bound for models 2and 8. The result for model 1 implies the same lower bound for model 0.First, we give the corollary for model 5.Corollary 6.1 Let c2 and d2 be positive reals. For M[?; c2; ?; d2], there exists no algorithm thatsolves the (s; n)-session problem within time less than (s� 1) � d2.Proof: Let c = minf c22d2 ; c22 g. Let c01 be some constant less than or equal to c2. Let c02 = c2.Let d01 be some constant less than or equal to d2. Let d02 = d2. Let f(w; x; y; z) = z.MC1 is satis�ed by the choice of c01, c02, d01 and d02, and because B = f(c01; c02; d01; d02) = d02 = d2.MC3 is satis�ed because B � cc02 � d2 � c22=d2c02 � c2.MC5 is satis�ed because (d02 +B) cc02 � c � 2d2 � c2=2c2 � c < d2:MC2 and MC4 are not considered because c1 and d1 are unknown.Next we give the corollary for model 9.Corollary 6.2 Let c1 and d2 be positive reals. For M[c1; ?; ?; d2], there exists no algorithm thatsolves the (s; n)-session problem within time less than (s� 1)d2.Proof: Let c = 2c1. Let c01 = c1. Let c02 = 4c1. Let d01 be some constant less than or equal tod2. Let d02 = d2. Let f(w; x; y; z) = z.MC1 is satis�ed because B = f(c01; c02; d01; d02) = d02 = d2.MC2 is satis�ed because c2 = c1.MC5 is satis�ed because (d02 +B) cc02 � c � 2d2 2c14c1 = d2.MC3 and MC4 are not considered because c2 and d1 are unknown.Finally, we give the corollary for model 10.Corollary 6.3 Let c1 and d1 be positive reals. For M[c1; ?; d1; ?], there exists no algorithm thatsolves the (s; n)-session problem within time less than (s� 1) � d2.28

Proof: Let c = maxf2c1; d1g. Let c01 = c1. Let c02 be some constant bigger than or equal toc1. Let d01 = d1. Let d02 be some constant bigger than or equal to d1. Let f(w; x; y; z) = z.MC1 is satis�ed because B = f(c01; c02; d01; d02) = d02.MC2 is satis�ed because c2 � 2c12 = c1.MC4 is satis�ed because (d02 �B) cc02 + c = c � d1 = d01.MC3 and MC5 are not considered because c2 and d2 are unknown.6.2 Counting with Explicit Communication and Step Time BoundsIf both methods EC and ST can be used, the resulting algorithm gives an upper bound of(s� 1) �minfd2; c2c1 � c2g+ c2.We show that this bound is asymptotically tight if no other methods can be used and thefollowing is true:� c2 � d2.The models that allow the use of EC and ST alone are models 12 and 13. We prove acorollary to Theorem 3.1 for model 13, which implies the same lower bound for model 12.Corollary 6.4 Let c1; c2, and d2 be positive reals such that c2 � d2. For M[c1; c2; ?; d2],there exists no algorithm that solves the (s; n)-session problem within time less than (s � 1) �minf c22c1 c2; d2g.Proof: Let c = 2c1. Let c01 = c1. Let c02 = c2. Let d01 be some constant less than or equal tod2. Let d02 = d2. Let f(w; x; y; z) = minf x2wx; zg.MC1 is satis�ed because B = f(c01; c02; d01; d02) = minf c222c1 ; d2g � d2.MC2 is satis�ed because c2 = c1 = c01.MC3 is satis�ed because B � cc02 = minf c222c1 ; d2g � 2c1c2 � c2.For MC5, we need to show that (d02 + B) cc02 � c � d2. Then, it su�ces to prove that(d2 � ((d02 +B) cc02 � c)) � 0.d2� ((d02+B) cc02 � c) � d2� ((d2+ c222c1)2c1c2 � 2c1) = d2(1� 2c1c2)� (c2� 2c1) � 0 since c2 � d2.MC4 is not considered because d1 is unknown.
29

6.3 Counting with Explicit Communication and Message DelaySuppose methods EC and MD are used. The only model that can use these two methods aloneis model 3 (M[?; ?; d1; d2]). The resulting asymptotic upper bound on the per session cost isminfd2; d2d1u+ 2c2g, where u = d2 � d1.We now argue that this bound is asymptotically tight if no other method can be used. Firstnote that if the 2c2 term in the MD cost dominates the d2d1u term, then the upper bound is �(c2)per session, which is obviously tight. Thus we ignore the 2c2 term.Corollary 6.8 in Section 6.7 below shows that the lower bound for model 11 (M[c1; ?; d1; d2])is (s�1) � d2d2+d1u. Since model 3 is weaker than model 11, the same lower bound holds for model3. (Case 1) Suppose d2 � d2d1u. Then d2d2+d1u � d23 . Thus the asymptotic per session upperbound for model 3 is d2 and the lower bound is d23 .(Case 2) Suppose d2d1u < d2. Then d2d2+d1u � d23d1u. Thus the asymptotic per session upperbound for model 3 is d2d1u and the lower bound is d23d1u.6.4 Counting with Explicit Communication and Combination 2If methods EC and CB2 are used, the resulting asymptotic upper bound on the per sessioncost is minfd2; d2+c2d1 � c2g. The only model that can use these two methods alone is model 6(M[?; c2; d1; ?]).We now show this bound is asymptotically tight if 2c2 � 3d1.Under this assumption, the CB2 term, d2+c2d1 � c2, is at most 5d22d1 � c2, which is at most 154 d2.Corollary 6.5 Let c2 and d1 be positive reals such that c2 � 32d1. For M[?; c2; d1; ?], thereexists no algorithm that solves the (s; n)-session problem within time less than (s� 1) � 2d23d1 � c2.Proof: Let c01 be some constant less than or equal to c2. Let c02 equal c2. Let d01 equal d1. Letd02 be some constant bigger than d1. Let c = 3d12d02 � c2. Let f(w; x; y; z) = 2z3y � x.MC1 holds because B = f(c01; c02; d01; d02) = 2d023d01 � c02. By the assumption that c2 � 32d1, B isless than or equal to d02.MC3 holds because B � cc02 = c02.MC4 holds because c2 � 32d1, and (d02�B) � cc02 +c = 3d1�c2+c � 3d1�3=2d1+c > d1 = d01.MC2 and MC5 are not considered because c1 and d2 are unknown.30

6.5 Counting with Explicit Communication, Step Time Bounds, and Com-bination 2If methods EC, ST, and CB2 are used, the resulting asymptotic upper bound on the per sessioncost is minfd2; c2c1 � c2; d2+c2d1 � c2g. The only model in which exactly these methods can be usedis model 14 (M[c1; c2; d1; ?]).We now argue that this bound is asymptotically tight if no other method can be used,assuming 2c2 � d1.Corollary 6.6 below shows that the lower bound for model 14 is (s� 1) �minf c22c1 c2; 2d23d1 c2g,assuming 2c2 � d1. We show that this bound is asymptotically tight.Because 2c2 � d1, 2d23d1 c2 � d2, and d2+c2d1 � 3d22d1 . Thus the per session lower bound isminf c22c1 c2; 2d23d1 c2g, and the per session upper bound is minfd2; c2c1 c2; 3d22d1 c2g.Corollary 6.6 Let c2 and d1 be positive reals such that 2c2 � d1. For M[c1; c2; d1; ?], thereexists no algorithm that solves the (s; n)-session problem within time less than(s� 1) �minf c22c1 c2; 2d23d1 c2g.Proof: By the hypothesis of the corollary,d1 � 2c2: (1)Let c01 = c1. Let c02 = c2. Let d01 = d1. Let d02 be some real number bigger than c22c1 c2. Letc = maxf2c1; 3d12d02 c2g.Let f(w; x; y; z) = minf x2wx; 2z3yxg.We show they satisfy the hypothesis of Theorem 3.1. MC5 is not considered since d2 isunknown.Note that B = f(c01; c02; d01; d02) = minf c22c1 c2; 2d023d1 c2g.Case 1 Suppose c22c1 c2 < 2d23d1 c2. Then2c1c2 > 3d12d02 : (2)and thus c = 2c1. For MC1, clearly B = c22c1 c2 < d02 by the de�nition of d02For MC2, c2 = c1.For MC3, B cc02 = c2.For MC4, (d02 �B) cc02 + c = d02 2c1c2 � c2 + 2c1� d02 3d12d02 � c2 because of Eq. 2� 3d12 � d12 because of Eq. 1= d1: 31

Case 2 Suppose c22c1 c2 � 2d023d1 c2. Then2c1c2 � 3d12d02 : (3)and thus c = 3d12d02 � c2. For MC1, B = 2d023d1 d12 < d02 because of Eq. 1.For MC2, c2 = 12 3d12d02 c2 � c1 because of Eq. 3.For MC3, B cc02 � 2d023d1 c2 3d12d02 c2c2 = c2.For MC4, (d02 �B) cc02 + c = (d02 � 2d023d1 c2) cc02 + c= 3d12 � c2 + c> 3d12 � c2� 3d12 � d12 because of Eq. 1= d1:6.6 Counting with Explicit Communication, Message Delay, and Combina-tion 2If methods EC, MD, and CB2 are used, the resulting asymptotic upper bound on the per sessioncost is minfd2; d2d1 � u + 2c2; d2+c2d1 � c2g. The only model in which exactly these methods can beused is model 7 (M[?; c2; d1; d2]).We now show this upper bound is asymptotically tight if� 2c2 � d1 and� d2 � 32d1 or 32d1 + c2 � d2.As in Section 6.3, we ignore the 2c2 term in the MD expression.Corollary 6.7 below proves that the per session lower bound is (s � 1)minf2d23d1 c2; d2d2+d1ug.We show that this bound is asymptotically tight.(Case 1) If d2d1u � minfd2; d2+c2d1 c2g, then the upper bound is �(d2d1u). The lower bound is d13d2ubecause d2d2+d1u � maxfd23 ; d13d2ug (cf. Section 6.3); and since c2 � 12d1, d2d1u � d2+c2d1 c2 � 3d22d1 c2and thus, d23d1u < 2d23d1 c2.(Case 2) If d2+c2d1 c2 � minfd2; d2d1ug, then d2+c2d1 c2 � 3d22d1 c2 because c2 � 12d1. Thus the per-session upper bound is �(d2d1 c2). The lower bound is d13d2 c2 because d2d2+d1u � maxfd23 ; d13d2ug,and because d2d1u � d2+c2d1 c2 > d2d1 c2, d23d1u > d23d1 c2.32

(Case 3) If d2 � minfd2d1u; d2+c2d1 c2g, then the upper bound is �(d2). The lower bound is13d2 because d2d2+d1u � maxfd23 ; d13d2ug, and since c2 � 12d1, d2 � d2+c2d1 c2 � 3d22d1 c2, and thus,13d2 < 2d23d1 c2.Corollary 6.7 Let c2; d1, and d2 be positive reals such that 2c2 � d1 and either d2 � 32d1 or32d1+c2 � d2. For M[?; c2; d1; d2], there exists no algorithm that solves the (s; n)-session problemwithin time less than (s� 1)minf2d23d1 c2; d2d2+d1ug,Proof: Case 1: d2 � 32d1.Then minf2d23d1 c2; d2d2+d1ug � 2d23d1 c2 = c2. The lower bound holds because a process has totake at least s steps to solve the (s; n) session problem.Case 2: d2 � 32 � d1 + c2 and c2 � 32d1.Let c = 3d12d2 c2. Let c01 be some constant less than or equal to c2. Let c02 equal c2. Let d01equal d1. Let d02 equal d2. Let f(w; x; y; z) = minf 2z3yx; zz+y (z � y)g.Note that B = f(c01; c02; d01; d02) = minf2d23d1 c2; d2d2+d1ug.MC1 holds because B � 2d23d1 c2 < d2, since 2c2 � d1.MC3 holds because B � cc2 � 2d23d1 � c2 � cc2 � c2.MC4 holds because (d02 � B) cc2 + c > (d02 � 2d23d1 c2)3d12d2 c2c2 = 32d1 � c2. This quantity is graterthan or equal to 32d1 � 12d1 since d1 � 2c2. Thus the expression is greater than or equal to d1.MC5 holds because (d02 +B) cc2 � c < (d2 + 2d23d1 c2)3d12d2 c2c2 = 32d1 + c2 � d2 since 32d1 + c2 � d2.MC2 is not considered because c1 is unknown.6.7 Counting with Explicit Communication, Message Delay, and Combina-tion 1Suppose methods EC, MD, and CB1 are used. The resulting asymptotic upper bound on theper session cost is minfd2; d2d1 � u + 2c2; c2c1 � u + 2c2g. The only model in which exactly thesemethods can be used is model 11 (M[c1; ?; d1; d2]).Corollary 6.8 below proves that the lower bound for model 11 is (s � 1) � d2d2+d1u. We nowshow this bound is asymptotically tight. As in Section 6.3, we ignore the 2c2 term in the MDand CB1 expressions.(Case 1) If c2c1u � d2d1u � d2, the upper bound is �(c2c1u). Because d2d1u � d2, then d2 � 2d1.Also d2d1+d2u � d23d1u � c23c1u. Thus, the lower bound is c23c1u.33

(Case 2) If c2c1u � d2 < d2d1u, the upper bound is �(c2c1u). Because d2d1u > d2, then d2 > 2d1.Also d2d1+d2u � c2c1u � d2�d1d2+d1 , which is greater than and equal to d23c1u because d2�d1d2+d1 � 13 . Thus,the lower bound is c23c1u.(Case 3) If d2d1u � minfd2; c2c1ug, then the upper bound is �(d2d1u). The lower bound is d23d1ubecause d2d2+d1u � maxfd23 ; d13d2ug.(Case 4) If d2 < minfd2d1u; c2c1ug, the upper bound is �(d2). The lower bound is d23 becaused2d2+d1u � maxfd23 ; d13d2ug, and d23 � 2d23d1 c2.Corollary 6.8 Let c1, d1, and d2 be positive reals. For M[c1; ?; d1; d2], there exists no algorithmthat solves the (s; n)-session problem within time less than (s� 1) � d2d2+d1u.Proof: Let c = 2c1. Let c01 = c1. Let c02 = 4d2c1d2+d1 . Let d01 = d1. Let d02 = d2. Letf(w; x; y; z) = zz+y � (z � y).MC1 is satis�ed because B = f(c01; c02; d01; d02) = d02d02+d01 � (d02 � d01) = d2d2+d1 � (d2 � d1) < d2.MC2 is satis�ed because c2 = c1.MC4 is satis�ed because (d02 �B) cc02 + c = (d2 � d2ud2+d1) 2c14d2c1d2+d1 + c = d1 + c > d1.MC5 is satis�ed because (d02 +B) cc02 � c = (d2 + d2ud2+d1) 2c14d2c1d2+d1 � c = d2 � c < d2.MC3 is not considered because c2 is not known.6.8 Counting with All MethodsSuppose all �ve methods (EC, ST, MD, CB1 and CB2) are used. The resulting asymptoticupper bound on the per session cost is minfd2; c2c1 � c2; d2d1 � u+ 2c2; d2+c2d1 � c2; c2c1 � u + 2c2g. Theonly model in which all these methods can be used is model 15 (M[c1; c2; d1; d2]).We now show this upper bound is asymptotically tight if� 2c2 � d1 and� d2 � 32d1 or 32d1 + c2 � d2.Corollary 6.9 below shows the per session lower bound for model 15 isminf c22c1 c2; 2d23d1 c2; d2d2+d1ug. As in Section 6.3, we ignore the 2c2 term in the MD and CB1 expres-sions.(Case 1) If c2c1 c2 � minfd2; d2d1u; d2+c2d1 c2; c2c1 � ug, then the upper bound is �(c2c1 c2). The lowerbound is c23c1 c2 because (1) c22c1 c2 � c23c1 c2; (2) 3d22d1 c2 � d2+c2d1 c2 � c2c1 c2, and thus 2d23d1 c2 > c23c1 c2;and (3) d2d2+d1u � maxfd23 ; d23d1ug, and d23d1u � c23c1 c2.34

(Case 2) If d2d1u � minfd2; c2c1 c2; d2+c2d1 c2; c2c1ug, then the upper bound is �(d2d1u). The lowerbound is d23d1u because (1) c2c1 c2 � d2d1u, and thus, c22c1 c2 � d23d1u; (2) 3d22d1 c2 � d2+c2d1 c2 � d2d1u, andthus, 2d23d1 c2 > d23d1u; and (3) d2d2+d1u � maxfd23 ; d23d1ug and d23d1u.(Case 3) If c2c1u � minfd2; c2c1 c2; d2+c2d1 c2; d2d1ug, then the upper bound is �(c2c1u). The lowerbound is 4c215c1u because (1) c22c1 c2 � c22c1u � c23c1u; (2) 3d22d1 c2 � d2+c2d1 c2 � c2c1u, and thus, 2d23d1 c2 >fracc23c1u; and (3) d2d2+d1u � maxfd23 ; d23d1ug, and d23d1u � c23c1u.(Case 4) d2+c2d1 c2 � minfd2; c2c1 c2; c2c1u; d2d1ug, then d2+c2d1 c2 � d2d1 c2, and the upper bound is�(d2d1 c2). The lower bound is d23d1 c2 because (1) c22c1 c2 � d22d1 c2 � d23d1 c2; and (2) d2d2+d1u �maxfd23 ; d23d1ug, and d23d1u � d2+c23d1 c2 > d23d1 c2; and (3) d2+c2d1 c2 � d2d1 c2 � d23d1 c2.(Case 5) If d2 � minf c2c1 c2; c2c1u; d2+c2d1 c2; d2d1ug, then the upper bound is �(d2). The lowerbound is d23 because (1) c22c1 c2 � d23 ; (2) d2d2+d1u � maxfd23 ; d23d1ug; and (3) 3d22d1 c2 � d2+c2d1 c2 � d2,and 3d23d1 c2 > d23 .Corollary 6.9 Let c1, c2, d1, and d2 be positive reals such that 2c2 � d1 and either d2 � 32d1or 32d1 + c2 � d2. For M[c1; c2; d1; d2], there exists no algorithm that solves the (s; n)-sessionproblem within time less than minf c22c1 c2; 2d23d1 c2; d2d2+d1ug(s� 1).Proof: Case 1: c2 � minf c22c1 c2; 2d23d1 c2; d2d2+d1ug.The lower bound clearly holds because all processes have to take at least s steps to solve the(s; n)-session problem and c2 is the upper bound on step time.Case 2: c2 < minf c22c1 c2; 2d23d1 c2; d2d2+d1ug.Note that in this case, by the hypothesis of the corollary, the following are true:d1 � 2c2: (4)d2 � 3d12 + c2: (5)Let c = maxf2c1; 3d12d2 c2g. Let c01 = c1. Let c02 = c2. Let d01 = d1. Let d02 = d2. Letf(w; x; y; z) = minf x2wx; 2z3yx; zz+y (z � y)g.We show they satisfy the hypothesis of Theorem 3.1.Note that B = f(c01; c02; d01; d02) = minf c22c1 c2; 2d23d1 c2; d2d2+d1ug.Case 2.A Suppose c22c1 c2 < minf2d23d1 c2; d2d2+d1ug. Then B = c22c1 c2 and c = 2c1. Furthermore,c22c1 � 2d23d1 : (6)For MC1, clearly B = c22c1 c2 � d2d2+d1u < d2.For MC2, c2 = c1. 35

For MC3, B cc02 = c2.For MC4, (d02 �B) cc02 + c = d2 2c1c2 � c2 + 2c1� d2 3d12d2 � c2 because of Eq. 6� 3d12 � d12 because of Eq. 4= d1:For MC5, it su�ces to prove that (d2 � ((d02 +B) cc02 � c)) � 0.d2 � ((d02 +B) cc02 � c) � d2 � ((d2 + c222c1)2c1c2 � 2c1)= d2(1� 2c1c2)� (c2 � 2c1)� 0 because of Eq. 4Case 2.B Suppose c22c1 c2 � minf2d23d1 c2; d2d2+d1ug. Then B = minf2d23d1 c2; d2d2+d1ug and c = 3d12d2 c2.Furthermore, c22c1 > 2d23d1 : (7)For MC1, B � d2d2+d1u < d2.For MC2, c2 = 12 3d12d2 c2 � c1 because of Eq. 7.For MC3, B cc02 � 2d23d1 c2 3d12d2 c2c2 = c2.For MC4, (d02 �B) cc02 + c � (d02 � 2d23d1 c2) cc02 + c= 3d12 � c2 + c> 3d12 � c2� 3d12 � d12 because of Eq. 4= d1:For MC5, (d02 +B) cc02 � c � (d02 + 2d23d1 c2) cc02 � c= 3d12 + c2 � c< 3d12 + c2� d2 because of Eq. 5:7 Conclusion and DiscussionThis paper concerns timing models in distributed systems that lie between the synchronous andasynchronous models. Four timing parameters are considered: the maximum and minimum pro-cess step times and message delays. Timing models are obtained by considering independently36

whether each parameter is known (i.e., is hard-wired into processes' code) or unknown, givingrise to four shared memory models and 16 message passing models.The session problem is an abstraction of synchronization problems in distributed systems. Ithas been used as a test-case to demonstrate the di�erences in the time needed to solve problemsin various timing models, for both shared memory systems and message passing systems. Inthis paper, the session problem is continued to be used to compare quantitatively a family ofmodels in which various parameters are either known or unknown.For each unknown parameter model, we obtain an asymptotically tight time complexitybound on the session problem. Two of the algorithms were previously known, while the otherthree are new. We categorize the algorithms in terms of \ways to count". The intuition isthat processes must have some way to count the passage of other processes' steps in order to\know" when a session has occurred. Our matching lower and upper bounds indicate[[that thealgorithms are the optimal]] ways to count, and allow us to construct a lattice of timing modelsin terms of the counting algorithms that are applicable to a model (cf. Figure 1). This hierarchycon�rms the common belief that as a model has more timing knowledge, it behaves more likethe synchronous model.All but one of our lower bound results are new and all of them are obtained by one modularlower bound proof. The lower bound technique combines those of [AFL83] for the asynchronousmodel in the shared memory system and [AM94] for the asynchronous and semi-synchronousmodels in the message passing systems. Our technique identi�es one su�cient condition for alower bound in a timing model to hold in solving the (s; n)-session problem, and is applicableto every unknown parameter model as well as to those models previously studied for the sessionproblem.For several unknown parameter models, we are not able to show the lower bound withoutmaking some assumptions about the timing parameters. It will be interesting to develop a newlower bound technique that can show either the same or tighter lower bounds without suchassumptions.It will be also interesting to see whether our modular lower bound proof technique can beapplied to show lower bounds for other distributed computing problems, such as the mutualexclusion problem and the dining philosophers problem in many di�erent timing models.References[AAT94] R. Alur, H. Attiya and G. Taubenfeld, \Time-Adaptive Algorithms for Synchroniza-tion," SIAM Journal on Computing, vol. 26, no. 2, 1997, pp. 539{556.[ADLS94] H. Attiya, C. Dwork, N. A. Lynch and L. J. Stockmeyer, \Bounds on the Time toReach Agreement in the Presence of Timing Uncertainty," Journal of the ACM, vol.41, no. 1 (January 1994), pp. 122{152.37

[AFL83] E. Arjomandi, M. Fischer and N. A. Lynch, \E�ciency of Synchronous versus Asyn-chronous Distributed Systems," Journal of the ACM, vol. 30, no. 3, 1983, pp. 449{456.[AL89] H. Attiya and N. A. Lynch, \Time Bounds for Real-Time Process Control in thePresence of Timing Uncertainty," Information and Computation, vol. 110, no. 1 (April1994), pp. 183{232.[AM94] H. Attiya and M. Mavronicolas, \E�ciency of Semi-Synchronous versus AsynchronousNetworks," Mathematical Systems Theory, vol. 27, 1994, pp. 547{571.[AT92] Rajeev Alur and Gadi Taubenfeld, \Fast Timing-Based Algorithms," DistributedComputing, vol. 10, no. 1, 1996, pp. 1-10.[Ba78] G. Baudet, \Asynchronous Interactive Methods for Multi-Processors," Journal of theACM, vol. 32, no. 4, 1978, pp. 226{244.[CT90] B. A. Coan and G. Thomas, \Agreeing on a Leader in Real-Time," Proceedings ofthe IEEE 11th Real-Time Systems Symposium, Lake Buena Vista, FL, Dec. 1990, pp.1{7.[CW90] B. A. Coan and J. L. Welch, \Transaction Commit in a Realistic Timing Model,"Distributed Computing, vol. 4, 1990, pp. 87{103.[DDS87] D. Dolev, C. Dwork and L. Stockmeyer, \On the Minimal Synchronism Needed forDistributed Consensus," Journal of the ACM, vol. 34, no. 1, Jan. 1987, pp. 77{97.[DLS88] C. Dwork, N. Lynch and L. Stockmeyer, \Consensus in the Presence of Partial Syn-chrony," Journal of the ACM, vol. 35, no. 2, 1988, pp. 288-323.[FLP85] M. Fischer, N. Lynch, and M. Paterson, \Impossibility of Distributed Consensus withOne Faulty Process," Journal of the ACM, vol. 32, no. 2, 1985, pp. 374-382.[GVW89] J. Goodman, M. Vernon, and P. Woest, \E�cient Synchronization Primitives forLarge-Scale Cache Coherent Multiprocessors," Proc. of the 3rd International Con-ference on Architectural Support for Programming Languages and Operating Systems1989, pp. 64{75.[Ly96] N. Lynch, Distributed Algorithms, Morgan-Kaufman Publishers, Inc., San Francisco,CA, 1996.[LS92] Nancy Lynch and Nir Shavit, \Timing-Based Mutual Exclusion," Proceedings of theIEEE 13th Real-Time Systems Symposium, San Antonio, TX, December, 1992, pp.2{11.[Ma93] M. Mavronicolas, \E�ciency of Semi-Synchronous versus Asynchronous Systems:Atomic Shared Memory," Computers and Mathematics with Applications, vol. 25,no. 2, Jan. 1993, pp. 81{91. 38

[Po91] S. Ponzio, \Consensus in the Presence of Timing Uncertainty: Omission and Byzan-tine Failures," Proc. ACM Symposium on Principles of Distributed Computing, Oct.1991, pp. 125{137.[RW92] I. Rhee and J. Welch, \The Impact of Time on the Session Problem," Proc. of 11thACM Symposimum on Principles of Distributed Computing, Vancouver, Canada, Au-gust 1992, pp. 191{201.A Communication in SMConsider an (a�1)-ary tree with n leaves in which each level, except possibly the lowest, has themaximum number of nodes. The number of levels in the tree is dloga�1 ne+1. Associated witheach node in the tree are a process and a shared variable. Each port process and its port variableare associated with a leaf node; the processes and variables associated with internal nodes arecalled relay processes and variables. The relay variable associated with a node is accessed bythe process associated with the node and the processes associated with that node's children inthe tree. Figure 8 illustrates a tree with a = 4 and n = 7.
p
1

p
2

p
3

p

p
10

p p
7

p
4

p
5

p
6

9 8

Figure 8: A tree network with a = 4 and n = 7 where circles represent processes, empty squaresrelay variables, dark squares port variables, solid lines memory access patterns of processes.Port processes are p1 through p7.Each relay variable has two �elds, up and down. Each process has two local variables, lupand ldown; initially they are empty except that lup at a port process holds the information tobe propagated.Each relay process p other than the root repeats the following two steps. First, p accessesits own shared variable, saving the contents of the up �eld in lup and appending the contents ofldown to the down �eld. Second, p accesses its parent's variable, appending lup to the up �eldand saving the down �eld in ldown.The root continuously accesses its own variable; at each access it copies the up �eld to thedown �eld. 39

In the example of Figure 8, a piece of information m is transferred from p2 to p6 as follows:p2 appends m to v9:up; p9 obtains the contents of v9:up and appends them to v10:up; p10 copiesthe contents of v10:up to v10:down; p8 obtains the contents of v10:down and appends them tov8:down; p6 obtains the contents of v8:down and gets m.It takes at most cmax �dloga�1 ne time for a piece of information (or a \message") to be relayedup to the root for the following reason. In each time interval of length cmax, every process takesat least one step, and thus every relay process other than the root passes the message up toits parent. Likewise, it takes additional cmax � (dloga�1 ne+ 1) time for the message at the rootto be relayed down to a leaf node in the tree (the one additional cmax is for the root to movethe message from its up to its down). Thus, the broadcast is accomplished in cmax ��(loga�1 n)time. A similar tree network is mentioned in [AFL83].When we say broadcast in the SM model, it implies all the interaction of processes in thetree network to accomplish the broadcasting. We only describe the role of port processes in analgorithm and assume that broadcast encapsulates the interactions among port processes andother processes which participate in the tree-network communication. In addition, we use theterm \step" interchangeably with \port step"; when necessary, we make the proper distinction.B Correctness proofs of counting methodsB.1 Correctness proof of CB1Theorem B.1 CB1 solves the (s; n)-session problem within time (s�2)�(c2c1u+u+2c2)+d2+3c2if c1, d1 and d2 are known.Proof: Consider an arbitrary admissible timed computation C of Technique CB1.For each k, 0 � k � s � 1, let pik be the �rst process that sets its session variable to k inC. To increment session, a process must receive a set of messages that satisfy condition 1 inFigure 5. Let Mk be the set of messages received by pik that cause pik to set sessionik to k (M0is the empty set); let mk be the message which is sent last among Mk (if there is a tie, choosean arbitrary message among them).Lemma B.2 Let � be the step which sends mk. There are at least k sessions by the time that� occurs in C.Proof: We proceed by induction on k. For the basis, when k = 0, it is always true that thereare at least 0 sessions in C.Inductively when k > 0, assuming the lemma is true for k� 1, we show that when � occurs,there are at least k sessions. 40

Let � be the step that sends mk�1 and � be the step in which pik�1 sets sessionik�1 tok� 1. Such a step exists because sessionik�1 is always incremented by one. For pik�1 to updatesessionik�1 , condition 1 in Figure 5 must hold.Let t be the time when � occurs and t0 be the time when � occurs.The messagemk�1 must arrive at bufik�1 at time between [t+d1; t+d2] because of the boundson message delays. Thus, t0�t � d1 because � occurs after pik�1 receives mk�1. Note that countin the algorithm is reset whenever session is updated. Let t00 be the time that pik sets sessionikto k. From the code, because condition 1 should be true before session is updated, countik mustequal to B at time t00. Thus, when countik is equal to B, at least B � c1 time has elapsed sincetime t0 because t0 is the time that session is updated to k � 1 for the �rst time in computationC and countik must be reinitialized after time t. Thus, t00 � t0 + Bc1 = t0 + d2 � d1 � t + d2because t0 � t � d1.Therefore, the di�erence between times t and t00 is bigger than d2. Thus, all messages receivedat time t00 or later must be sent after time t, at which time there were k � 1 sessions by theinductive assumption. Since at least one message is sent by each process after time t, there mustbe at least one additional step by all processes between time t and the time � occurs. Therefore,there are at least k sessions by the time � occurs.From Lemma B.2, it follows that there are at least s � 1 sessions at the time that ms�1 issent. All processes will eventually set their session's to s�1. Since all processes take additionalsteps after there are at least s� 1 sessions (to receive a message), there are at least s sessionsin C. Thus the algorithm is correct.We now calculate the running time of the algorithm. We de�ne for each k, 2 � k � s� 1,Tk = maxft : pi sets sessioni to k at time t in C for all pi 2 Rg. Tk is the latest time that aprocess sets session to k.Lemma B.3 For each k, 2 � k � s� 1, Tk+1 � Tk + c2c1u+ u+ 2c2.Proof: After a process pi sets sessioni to k, it takes at most uc1 c2 time for count to be biggerthan B. Then, it takes at most � time additionally for condition 1 to be true (i.e., for at leastone message >from every process to be received after count becomes bigger than B). We provethat � � u+ 2c2.Let m1 be the message that is received from process pj by pi just before condition 1 becomestrue in pi (i.e., pi has waited uc1 c2 time). Message m1 exists because condition 1 becomes trueonly if there are enough messages in msgs which is emptied only after condition 1 becomes true.Let t be the time that m1 is sent. pj must broadcast another message m2 within t+c2 to processi because according to the code, all processes broadcast a message at every step. m2 will bedelivered to bufi by time t+ c2 + d2 (because it takes at most d2 delay for a message to arriveat a bu�er) and be received by time t+ 2c2 + d2 (because it takes at most c2 time for a processto take a step). 41

Process pi will receive m1 at time bigger than or equal to t+ d1 because it is sent at time tand it takes at least d1 time delay for a message to arrive at a bu�er. Since process i receives m2by time t+ 2c2 + d2, the maximum time di�erence between the time that process i receives m1and the time that it receives m2 is (t+2c2+ d2)� (t+ d1) = d2� d1+2c1 = u+2c2. Therefore,� = u+ 2c2.By the algorithm, initially it takes at most d2 + 2c2 time to receive at least one messagefrom all processes in order to accomplish the �rst session. Therefore T1 = d2 + 2c1. UsingLemma B.3, Ts�1, which is the latest time that a process sets session to s � 1, is at most(s � 2) � (c2c1u + u + 2c2) + T1. After Ts�1, a process takes one step to complete s sessions.Therefore, a process enters the idle state by time (s� 2) � (c2c1u+ u+ 2c2) + d2 + 2c2 + c2.B.2 Correctness proof of MDTheorem B.4 MD solves the (s; n)-session problem within time (s�2)�(d2d1u+u+2c2)+d2+2c2if d1 and d2 are known.Proof: MD di�ers from CB1 only in the way that count is incremented and in that B is set tou=d1. The rest of the code is same. The correctness proof is similar to that of Technique CB1.Since count and B a�ect condition (count � B) in the code, we only need to prove that whenB < count, at least time u has passed since the last time session was incremented. count isincremented to k only when a process receives m(j; session; k� 1) for any j and for some valueof session. When we apply this argument inductively, we prove that there must be a chain ofprocesses pi1 ; pi2 ; : : : ; pik where pir receives m(ir�1; session; r�1) from pir�1 . Thus, when countis B, at least time Bd1 = d2� d1 = u has passed after pi1 sent m(i1; session; 1) because it takesat least d1 message delay for a message to be received after it is sent.For time complexity, it takes at most time d2 + c2 for pik to receive m(ik�1; session; k � 1)after pik�1 receives m(ik�2; session; k�2). Therefore, for count to be bigger than or equal to B,it takes at most B(d2 + c2). After that, for condition 1 in the code to be true it takes at most(u + 2c2) as it is proved in the proof of Lemma B.3. Therefore, the running time of TechniqueMD is (s� 2) � (d2+c2d1 u+ u+ 2c2) + d2 + 2c2.B.3 Correctness proof of CB2Theorem B.5 Technique CB2 solves the (s; n)-session problem in time (s� 1) � d2+c2d1 c2 + c2 ifc2 and d1 are known.Proof: count is incremented to k only when a process receivesm(j; �; k�1) for any j. When weapply this argument inductively, we prove that there must be a chain of processes pi1 ; pi2 ; : : : ; pikwhere pir receives m(ir�1; �; r � 1) from pir�1 . Thus, when count is B, at least time Bd1 =42

c2d1 (s� 1)d1 has passed after pi1 sent m(i1; �; 1) because it takes at least d1 message delay for amessage to be received after it is sent. Thus, when count > B, at least time c2(s�1) has passedsince the start of the computation. The theorem follows.

43

