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TEMPORAL REASONING ABOUT TWO CONCURRENT
SEQUENCES OF EVENTS*
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Abstract. This paper discusses temporal reasoning with respect to constraints on two concur-
rent sequences of events. If two given sequences of events can be mapped into one sequence that
satisfies a given constraint, then the constraint is said to be consistent. First, we mention that the
consistency of such constraints is NP-complete. Then we introduce the notion of graph representa-
tions of constraints. If a graph representation of a given constraint ¢ can be constructed in polynomial
time, then the consistency of c is decidable in polynomial time. However, it is shown that the graph
representability of a given ¢ is coNP-complete. Next, we propose a subclass CDC7 of constraints
such that for each constraint ¢ in CDC#, a graph representation of ¢ can be constructed in polyno-
mial time. The expressive power of CDC¥ is incomparable to any other subclasses of constraints for
which the consistency problem is known to be tractable.
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1. Introduction. In many practical information systems, each fragment of data
has temporal information. For example, in relational databases, relations are often
augmented by temporal attributes (such databases are called temporal databases [1]).
It is often desirable for information systems to manage such temporal information in
an intelligent way. For example, suppose that a knowledge base system has the
following information:

e Last night, the people in the restaurant heard two shots.
e The electricity was off at least between the first and second shots.
e After the electric power resumed, the people found all the money in the
restaurant had been stolen.
We want the knowledge base system to infer that the people found all the money stolen
after the second shot. This is a trivial but typical example of temporal reasoning.

In this paper, temporal reasoning about two concurrent sequences of events is
considered. Two sets of time variables S = {sg,s1,...,8n} and T = {tg,t1,...,tn}
are used for describing temporal constraints, where sq, s1, . . ., S, represent time points
of one local clock and tg, t1, ..., t, represent time points of the other clock. A temporal
constraint consists of expressions of the forms s; < ¢, s; > t;, s; < tj, 5 > tj, 84 = ¢,
and s; # t;, and Boolean operators -, V, and A. One of the applications of temporal
reasoning about such constraints is belief revision [4] in a multiagent environment, as
shown in the next example. As far as we know, no paper has focused on the class of
constraints such that the number of local clocks is fixed.

Example 1.1. Consider the following multiagent environment: Each agent has
its own local clock and records its observations, each of which is a pair consisting
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Fic. 1. Ezample of temporal reasoning about two concurrent sequences of events.

of a proposition and an observation time. The agents sometimes meet together and
exchange their observations in order to revise and refine their information on the
observation times.

See Figure 1. sq, ..., s3 represent local time points of agent ag with so < --- < s3,
and tg, ..., 14 represent local time points of agent ap with tg < --- < t4. The agents
met together at sg = tg and s3 = t4. Suppose that ag observed that a proposition
p1 was true during its local time interval [s1, s2]. Also suppose that ar observed that
p1 was false during [to, t3]. Then the agents can conclude that intervals [s, s2] and
[t2, t3] are disjoint, i.e., (s1 > t3) V (s2 < t2). In this paper, a constraint of this form
is called a disjointness constraint and is denoted by [s1, $2] 7 [te, t3]. The agents also
obtain [sg, $1] 7 [t1,t3] from the observations of ps.

Now, several facts can be inferred from the obtained constraint ¢ = ([s1, s2] 7
[t2, t3]) A ([0, 1] 7 [t1,t3]). For example, s1 < ¢; can be concluded since c A (s1 > t1)
is inconsistent (i.e., unsatisfiable). On the other hand, the order between sy and ¢;
cannot be determined since all of ¢ A (s2 < t1), ¢ A (s2 = t1), and ¢ A (s2 > t1) are
consistent.

Another possible application is job scheduling for two processors, where each job
is denoted by a time interval and each pair of mutually exclusive jobs is specified by
a disjointness constraint.

The contribution of this paper is as follows. We first mention that the consis-
tency of constraints on two local clocks is NP-complete when both conjunction and
disjunction are freely used. Next, we introduce the notion of graph representations
of constraints. A graph representation of a constraint ¢ is a directed graph repre-
senting all the valuations that satisfy c. If ¢ has a graph representation G., and G,
can be constructed in polynomial time, then the consistency of ¢ is also decidable in
polynomial time. However, it is shown that the graph representability of a given ¢
is coNP-complete (and therefore constructing G. is coNP-hard). Next, we propose a
new tractable subclass CDC7 of constraints. CDC? stands for conjunctive disjoint-
ness constraints with inequalities, and it can express conjunctions of constraints in the
form of [s;, si] 7\ [t;,t;/] or s; ©t;, where © € {<,>, <, >, =,#}. All the constraints
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appearing in Example 1.1 are expressible in CDC7. We show that for each constraint
cin CDC7$, a graph representation of ¢ can be constructed in polynomial time. Let m
be the number of time variables of one of the two local clocks, and n the other clock.
The consistency of ¢ € CDC7 is decidable in O(|c|mn) time, where |¢| is the size of c.
Lastly, we show the intractability of constraints generated by disjointness constraints
and conjunction and disjunction operators. For such general disjointness constraints,
the consistency is NP-complete and the graph representability is coNP-complete.
The rest of the paper is organized as follows. Constraints on two clocks are
formulated in section 2. In section 3, graph representations are introduced. It is
also shown that the graph representability of a given constraint is coNP-complete.
In section 4, a tractable subclass CDC7 of constraints is proposed. In section 5, the
intractability of general disjointness constraints is shown. Section 6 compares the
expressive powers of the classes of constraints. Section 7 summarizes the paper.

2. Constraints on two clocks. Let R be an infinite set of global time points.
Suppose that a total order < is defined on R. r < 7’ means that point r precedes or
is equal to 7/. When r < 7' and r # r/, we write r < r'.

Let S = {s0,81,...,8m} and T = {to,t1,...,tn} (m, n > 1) be sets of variables.
We write s; <g s; and t; <r t; if + < j, and we write 5; <g s; and ¢; <p t; if i < j.
Intuitively, S and T are sets of local time points.

Let ¥ g7 be the family of all the valuations o : SUT — R satisfying the following
conditions:

e o(sg) = o(to);

o o(sm) =0o(tn);

o if s <g ¢, then o(s) < o(s');

o if t <p t', then o(t) < o(t').
The first two conditions are introduced merely for theoretical simplicity. Namely,
instead of the first condition, we can put dummy variables s_, and t_,, such that
S—oo <5 80, t—oo <7 to, and 0(S_s0) = 0(f—so). On the other hand, the last two
conditions are essential. ¢ must preserve the temporal orders of local time points.

Hereafter, we do not distinguish isomorphic valuations with respect to < and =.
In other words, we are interested in only the quotient sets of ¥ g under < and =.
Therefore, o will be regarded as a permutation of SUT which is consistent with both
<g and <7 (although it may hold that o(s) = o(t) for some s € S and t € T'), and
Yg1 will be regarded as the family of such permutations.

An atomic constraint is an expression with one of the following forms: s < t,
s>t s <t, s>t s=t and s # t. A constraint is generated from atomic
constraints and Boolean operators —, V, and A. For readability, we may use notation
such as t < s <t/ to mean (s > t) A (s < t’). The satisfaction relation is defined in an
ordinary way, and we write o |= ¢ (read as o satisfies c) if ¢ is true under valuation
o. If o |= ¢ for some o, then c is consistent (or satisfiable). By ¢ = ¢/, we mean that
every valuation o € Y g satisfying ¢ also satisfies ¢/. We say that c is equivalent to
¢, denoted ¢ = ¢, if both ¢ = ¢’ and ¢’ = ¢ hold.

The consistency problem is to determine whether, given sets S and T of variables
and constraint ¢, ¢ is consistent or not. The implication problem is to determine
whether ¢ |= ¢’ holds or not for given sets S and 7' of variables and constraints ¢ and
. Since ¢ |= ¢ if and only if =¢A ¢’ is inconsistent, we mainly focus on the consistency
problem in this paper.

Define the size of S and T as m and n, respectively. Also define the size of ¢ as
the number of atomic constraints in c.
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THEOREM 2.1. The consistency of an arbitrary constraint is in NP. The consis-
tency of a constraint in conjunctive normal form (CNF) is NP-hard.

Proof. The consistency problem is obviously in NP. The NP-hardness is shown
by reducing the satisfiability problem of CNF logical formulas to this problem. In the
reduction, each logical variable x; in a given logical formula is replaced with an atomic
constraint s; < t;. Whether s; < t; holds or not can be determined independently of
other atomic constraints s; < t;. Thus, the obtained constraint is consistent if and
only if the original logical formula is satisfiable. ]

3. Consistency and graph representability.

3.1. Graph representations of constraints. First, we define the graph Ggr.

DEFINITION 3.1. Let S = {sg,...,8m} and T = {to,...,tn}. Define Ggr as a
directed acyclic graph consisting of mn nodes arranged in m rows and n columns, with
each node having outgoing arcs to the right, lower, and lower-right nodes (if existing).
The node at the ith row of the jth column is denoted by (i, 7).

Ggr for S = {sg,...,s5} and T = {to,...,tr} is shown in Figure 2. The m + 1
dotted horizontal lines (labeled sq, ..., sm,) and n + 1 dotted vertical lines (labeled
to,...,t,) are auxiliary lines explained below.

A complete path on Ggr is a path from (1,1) to (m,n). Let Wgr denote the set
of all the complete paths on Ggr. There is a one-to-one correspondence between Wgr
and Y gr. To see this, define a mapping p : Wgr — X g as follows. Let w € Wgrp.

o p(w)(s0) = p(w)(to) and p(w)(sm) = p(w)(tn).

e If w crosses line s; before line t;, then p(w)(s;) < p(w)(t;).

e If w crosses line ¢; before line s;, then p(w)(s;) > p(w)(t;).

o If w crosses lines s; and t; at the same time, then p(w)(s;) = p(w)(¢;).
It can be shown that p is a bijection. Let p~! denote the inverse of p.

If G is a subgraph of G', we write G C G’. The union U (resp., intersection N) of
subgraphs of Ggr is defined as the least upper bound (resp., greatest lower bound)
of the subgraphs with respect to C.

The notion of complete paths is extended to subgraphs of Ggp. That is, for a
subgraph G of Ggr, if there is a path from (1,1) to (m,n) on G, then the path is
called a complete path on G.

DEFINITION 3.2. Let ¢ be a constraint and let G be a subgraph of Ggr. If the
following two conditions hold, then G is a graph representation of c:

e p(w) = ¢ for every complete path w on G; and
e p~ (o) is a complete path on G for every valuation o such that o = c.
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Fic. 4. Another graph representation of sa < t4.

If ¢ has a graph representation, then c is graph representable.

Some constraints have more than one graph representation, while some constraints
have no graph representation. For example, both Figures 3 and 4 are graph represen-
tations of so < t4. On the other hand, as will be shown later, (s < t4)V (s4 < tg) has
no graph representation. Note that false has a graph representation (e.g., the empty
graph).

For a graph-representable constraint ¢, let G. denote an arbitrary graph repre-
sentation of c.

LEMMA 3.3. Let ¢ and ¢ be graph-representable constraints. Then G.N G is a
graph representation of ¢ A c.

Proof. Any complete path w on G. N G is contained in both G. and G..
Therefore p(w) | ¢ A ¢/. Conversely, consider any valuation o such that o = ¢ A ¢
Then p~!(o) must be contained in both G, and G.. Therefore, p~!(0) is contained
in GeNGe. 0

Suppose that ¢ has a graph representation G.. By Definition 3.2, ¢ is consistent
if and only if (m, n) is reachable from (1,1) on G.. Since the reachability is decidable
in O(mn) time, we obtain the following lemma.

LEMMA 3.4. Let c = c1V-- -V be a disjunction of graph-representable constraints
€1,y ..., 0. Suppose that each G, can be constructed in O(f(c;,m,n)) time. Then the
consistency of ¢ is decidable in O(f(c1,m,n)+ -+ f(¢;,m,n) + lmn) time.

Proof. cis consistent if and only if some ¢; is consistent. For each 7, the consistency
of ¢; is decidable in O(f(c¢;,m,n) + mn) time. Therefore, the consistency of ¢ is
decidable in O(f(cy,m,n)+ -+ f(c;,m,n) + Imn) time. O
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3.2. Minimum graph representations. A graph representation may contain
redundant nodes and arcs. The following lemma states the existence of the simplest
graph representation.

LEMMA 3.5. Among all the graph representations of ¢, there is a unique minimum
graph representation G with respect to C.

Proof. The number of all the graph representations of c is finite since Ggr is a
finite graph. Therefore, the intersection of all the graph representations of ¢ can be
defined. We show that the intersection G7 is the unique minimum graph representa-
tion of ¢. By Lemma 3.3, G is a graph representation of ¢ (= ¢cAcA---Ac). Clearly,
G C G, for any graph representation G of c¢. Hence, G} satisfies the lemma. ]

LEMMA 3.6. Let ¢ be a graph-representable constraint. The minimum graph
representation G of ¢ can be constructed in O(f(c, m,n)+mn) time, where f(c, m,n)
is the time complexity of constructing some graph representation of c.

Proof. Suppose that a graph representation G, of c is obtained. Then G can be
constructed by the following algorithm:

1. Mark all the nodes and arcs that are reachable from (1,1) in G.. This can
be done in O(mn) time by performing depth first search from (1,1).

2. Mark all the nodes and arcs from which (m, n) is reachable in G.. This can be
done in O(mn) time by performing depth first search from (m,n), exploring
the arcs in the opposite direction.

3. Excepting the nodes and arcs which are marked both in steps 1 and 2 above,
remove the other nodes and arcs.

This algorithm is correct since the resultant graph contains only the nodes and arcs
that are contained by a complete path on G.. O

By Lemma 3.3, G. N G is a graph representation of ¢ A ¢/. However, G: N G
is not necessarily the minimum graph representation of ¢ A ¢/. For example, consider
G} and G}, which have no common complete paths. Then G}, is the empty graph,
but G N G}, is not necessarily empty.

3.3. Complexity of deciding graph representability. We are interested in
the complexity f(c,m,n) of constructing G.. Unfortunately, the graph representabil-
ity of a given ¢ with disjunction is coNP-complete (and therefore constructing G. is
coNP-hard), even if ¢ is in disjunctive normal form (DNF). First, we characterize the
graph representability.

LEMMA 3.7. The following properties are equivalent:

1. ¢ has no graph representation.
2. There is a complete path w on Ggr such that
e p(w) fE ¢, and
e for every arc a contained in w, there is another complete path w, on
Ggr containing the arc a such that p(w,) = c.

Proof. Suppose that ¢ has no graph representation. Let G be the minimum graph
that contains all the complete paths satisfying c. Since ¢ has no graph representation,
there is a complete path w on G such that p(w) & ¢. By the definition of G, for every
arc a contained in w, there is another complete path w, containing the arc a such
that p(w,) = ¢. Thus the second property holds.

Conversely, suppose that the second property holds. Also assume that ¢ has a
graph representation G.. Then G, does not contain w of the second property, since
G. contains only the complete paths w’ such that p(w’) = ¢. However, by the second
property, for every arc a in w, there is w, containing the arc a such that p(w,) = c.
By definition, G, contains w,. This implies that all the arcs in w must be contained
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FI1G. 6. A complete path not satisfying (s2 < ta) V (sa < te).

in G, and contradicts the assumption that w is not a complete path on G.. Thus,
the second property implies the first one. 0

We show that ¢ = (s2 < t4)V(s4 < tg) has no graph representation. The minimum
graph representation of s4 < tg is shown in Figure 5. Consider the complete path w
shown in Figure 6. w does not satisfy ¢ since w crosses line t4 before line s, and
crosses line tg before line s4. However, for each arc a in w, there is another complete
path w, containing a such that p(w,) = ¢ (see Figures 3 and 5). By Lemma 3.7, ¢
has no graph representation.

Before showing the coNP-completeness of the graph representability, we introduce
a coNP-complete problem. Let F' be a logical formula in DNF such that both v, and
Vtalse Satisfy F'; where Vyye (T€SD., Vialse) 1S the interpretation that maps every logical
variable to true (resp., false). The modified tautology problem is to decide whether such
a given logical formula F is a tautology (i.e., F' is satisfied by all the interpretations).
It is easily shown that the modified tautology problem is coNP-complete.

THEOREM 3.8. The graph representability of an arbitrary constraint is in coNP.
The graph representability of a constraint ¢ with disjunction is coNP-hard, even if ¢
is in DNF.

Proof. The second property of Lemma 3.7 is decidable by an NP algorithm as
follows. First, guess a complete path w and verify that p(w) [~ ¢. Then, for every arc
a contained in w, guess a complete path w, containing a and verify that p(w,) [ c.

To see the coNP-hardness, we reduce the modified tautology problem to the graph
representability problem. Let F' = F} V ---V Fj be a DNF formula with n variables
T1,...,T, such that both vye and veaee satisfy F. Let

52{807...,Sn+1}7 T:{t07...,tn+1}.
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F1G. 7. Graph representation of ¢’ (n =6).

Let F} be the constraint obtained by replacing x; in F; by s; > t;, and —z; by s; < t,.
Define ¢; = F] A ¢/, where

d = /\((t,;_l < sp <tigr) A(si # ty)).
=1

The minimum graph representation G}, of ¢’ is shown in Figure 7. Lastly, define
c=c1 V---Vcg. Note that only the complete paths on G%, can satisty c.

First, we show that F' is a tautology if and only if all the complete paths on G,
satisfy c¢. With each interpretation v of F', associate the following complete path w,
on G}, (see Figure 7 again):

e w, contains ((4,7), (i,7 4+ 1)) if v(x;) = true;

e w, contains ((i,7), (i + 1,4)) if v(z;) = false.
It is not difficult to see that v satisfies F' if and only if p(w,) = c¢. Note that
p(Wy,...) E c and p(wy,,..) = ¢ since both vyye and vese satisfy F.

To complete the proof, we show that all the complete paths on G7, satisfy c if
and only if ¢ has a graph representation. For the only if part, suppose that all the
complete paths on G, satisfy c. Then, immediately from Definition 3.2, G%, is a graph
representation of ¢. For the if part, suppose that p(w) £ ¢, where w is a complete
path on GZ,. Then, for every arc a contained in w, there is another complete path w,
(namely, wy,,,, O Wy,,,.; see Figure 8) that contains a and p(w,) = c¢. Therefore, by
Lemma 3.7, ¢ has no graph representation. O

4. A tractable subclass of graph-representable constraints. We define
a subclass CDC? of constraints such that for each constraint ¢ in CDCi, a graph
representation of ¢ can be constructed in O(|c|mn) time.

DEFINITION 4.1. A constraint in CDC” is a conjunction such that each conjunct
is in the form of either s #t or (s > ')V (s’ <t), where s <g s' and t < t'.

CDC7 can express any constraints in the form of s; © ¢;, where © € {<,>, <, >,
=,#}. For example,

(56 <t;) = (s0 >tn) V (si < ),
(8i <tj) = ((s0 = tn) V (si <t5)) A (si # b))
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FIG. 8. Wy, (thick arcs) and wyg,,, (thin arcs) in Theorem 3.8 (n = 6).
Also, constraints in the form of (s > t')V(s' <), (s > t')V(s' < t),or (s > t')V(s' < t)
are expressible in CDC?. For example,

s>tV <t)=((s=>t)V (s <t)A(s# ).

As stated in section 1, constraint (s > t')V(s' <t) (s <g ¢ and ¢t <r t') represents
that time intervals [s, s’] and [t,t'] are disjoint. Therefore, we call the constraint a
disjointness constraint, and we write [s, s’] 7 [¢,1'] to mean (s > t') V (s’ < t). The
class of conjunctive disjointness constraints is denoted by CDC.

Now we show that constructing a graph representation of every constraint in
CDC7 is tractable. By Lemma 3.3, it suffices to show that each of the two forms in
Definition 4.1 has a graph representation.

LEMMA 4.2. The following two properties hold:

1. Let ¢ = (s; # t;). A graph representation of c is obtained by removing the
arc ((4,7), (i + 1,5+ 1)) from Ggr. See Figure 9, for example.

2. Let ¢ = ([si,s0] 1 [tj,ty]). Let N = {(@",5") | 1+1 < i < i and
J+1<4"<j'}. A graph representation of ¢ is obtained by removing N and
the adjacent arcs from Ggp. See Figure 10, for example.

Proof. Since the first property is obvious, we consider only the case that ¢ =
([si, si] 7 [t;,t5:]). Let G be the graph obtained by this lemma. We show that G is
a graph representation of c. That is, o |= c if and only if p~!(o) is a complete path
on G.

Suppose that o [~ c¢. Then o = (s; < tj) A (sy > t;). This means that p~'(0)
contains some (i, j") such that i+ 1 <" <4 and j+1 < j” < j'. Since G does not
contain (i”, j") by definition, p~1() is not a complete path on G.

Conversely, consider a complete path p~!(o) on G which is not contained in G.
Then there is a node (i, ") (i +1 <" <i and j+ 1 < j” < j') in p~(o) which is
contained in Ggr but not in G. Therefore, we conclude that o = (s; < t;/)A(sy > &;).
That is, o }~ c. a

THEOREM 4.3. Let ¢ € CDC?. A graph representation of ¢ can be constructed
in O(|cjmn) time. The minimum graph representation can also be constructed in
O(|elmn) time.

Proof. The proof is immediate from Lemmas 3.3, 3.6, and 4.2. 0
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F1G. 10. Minimum graph representation of [s2,s4] 7 [ta, te]-

THEOREM 4.4. Let ¢ be a disjunction of constraints in CDC?. The consistency
of ¢ is decidable in O(|c|mn) time.
Proof. The proof is immediate from Theorem 4.3 and Lemma 3.4. O

5. Intractability of general disjointness constraints. Recall the explana-
tion of disjointness constraints in Example 1.1. Now we consider the case in which
observations may contain uncertainty. For example, suppose that ag observed that
p or p' was true during time interval [s,s’]. Also suppose that ar observed that
p was false during [t,t'], and p’ was false during [u,u’]. Then we obtain ([s,s’] 7
(£ ]) v (s, ') 7 [, ).

As stated above, observations with uncertainty bring disjunction into disjoint-
ness constraints. In this section, we show that both the consistency and the graph
representability for disjointness constraints with disjunction are intractable.

5.1. Consistency of general disjointness constraints. We show that the
consistency of general disjointness constraints is NP-complete.

THEOREM 5.1. Let d be a constraint in CNF with respect to disjointness con-
straints; i.e., d is in the form of di A --- A d,, where each d; is a disjunction of
disjointness constraints. Then the consistency of d is NP-complete.

Proof. By Theorem 2.1, the problem is in NP. To see the NP-hardness, we reduce
the satisfiability of CNF logical formulas to the consistency problem.

Let F be a CNF formula with n variables x1,...,x,. Let

S:{SO7"'3827L+1}7 T:{t07'-';t2n+1}7

and let F” be the constraint obtained by replacing z; in F by [s2;, s2i+1] 7 [t2i—1, t2i],
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Fi1G. 11. Graph representation of d’ (n = 3).

and —x; by [Sgi_l, 821‘] m [t2i7t2i+1]. Also define

d = N\ ([s2i-1,525] 7 [t2i-1,t2i])
Z:;n—l
A /\ ([5-1585] A ltjr1,tiral))
QJ_—l
A\ (85415 8542] 7 [Ej-1,t5])-

=

3

.
Il
_

The minimum graph representation G%, of d’ is shown in Figure 11. Last, define
d = F' ANd'. Note that only the complete paths on G, can satisfy d.

We show that d is consistent if and only if F is satisfiable. With each interpreta-
tion v of F, associate a complete path w, on G}, satisfying the following conditions
(see Figure 11 again):

e w, contains ((2¢ — 1,21),(2¢,2i 4+ 1)) if v(z;) = true; and

e w, contains ((2,2i — 1), (2¢ 4+ 1,2¢)) if v(x;) = false.
Such w, always exists. On the other hand, for every complete path w on G3,, there
is v such that w = w,.

Suppose that v(z;) = true. Then w, contains ((2¢ — 1,2i), (24,2 + 1)), and
therefore p(w,)(s2i—1) = p(w,)(t2;). This means that p(w,) satisfies [sq;, s2;41] 7
[t2i—1, t2;] but not [s2;—1, S2;] 7 [t2s, t2i+1]. Similarly, suppose that v(z;) = false. Then
w, contains ((2,2i — 1), (2¢ + 1,2i)), and therefore p(w,)(s2;) = p(w,)(t2;—1). This
means that p(wy) satisfies [827;_1,521'] m [t2i7t2i+1] but not [521‘7521‘4’_1] m [tQi_l,tQi].
Thus v satisfies F' if and only if p(w,) = d. d

5.2. Graph representability of general disjointness constraints. We show
that the graph representability of general disjointness constraints is coNP-complete.

THEOREM 5.2. Let d be a constraint in DNF with respect to disjointness con-
straints; i.e., d is in the form of di V ---V d,, where each d; is a conjunction of
disjointness constraints. Then the graph representability of d is coNP-complete.

Proof. By Theorem 3.8, the problem is in coNP. To see the coNP-hardness, we
reduce the modified tautology problem to the graph representability problem.
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F1G. 12. Wy, (thick arcs) and wy,,,, (thin arcs) in Theorem 5.2 (n =3).

Let FF = Fy V ---V Fj be a DNF formula with n variables x1,...,x, such that
both vipye and veyse satisfy F. Let

S:{So,...,82n+1}7 T:{to,...,t2n+1}.

Let F} be the constraint obtained by replacing z; in Fj by [s2;, s2i11] A [t2i—1,t2i],
and —z; by [S2i—1,52;] 7 [t2i, t2i+1]. Then define d; = F) Ad’, where d’ is the same as
the proof of Theorem 5.1. Last, defined =dy V- -+ V dj.

In the same way as Theorem 5.1, associate a complete path w, on G}, with each
interpretation v of F'. Then v satisfies F' if and only if p(w,) |= d. Therefore, F' is a
tautology if and only if all the complete paths on G}, satisfy d. Note that p(w,,,..) = d
and p(w,,,,..) = d since both vy and vese satisty F.

To complete the proof, we show that all the complete paths on G}, satisfy d if
and only if d has a graph representation. For the only if part, suppose that all the
complete paths on G}, satisfy d. Then, immediately from Definition 3.2, G7, is a graph
representation of d. For the if part, suppose that p(w) F~ d, where w is a complete
path on G7,. Then, for every arc a contained in w, there is another complete path w,
(namely, wy,,,, or wy,,.; see Figure 12) that contains a and p(w,) = d. Therefore,
by Lemma 3.7, d has no graph representation. 1]

6. Comparison to the related works.

6.1. Related works. Temporal reasoning has been extensively studied mainly
in the field of artificial intelligence. Allen [2] proposed the interval algebra, which
can express the conjunction of any relation between two time intervals. Table 1
shows the 13 basic operators of the interval algebra. Every relation between two
time intervals is represented by a disjunctive combination of some of these basic
operators. For example, the disjointness of two intervals I and J is represented
by I(pp~'*mm~1)J, i.e., either I precedes J, I is preceded by J, I meets J, or I
is met by J. Unfortunately, many of the basic problems including the consistency
(i.e., satisfiability) for the interval algebra are NP-hard [12]. Therefore, most of the
researches aim to find tractable classes of temporal constraints.

One of the research directions is to weaken the expressive power of the interval
algebra. Vilain and Kautz [12] proposed the point algebra, which can express the
conjunction of any relationship between two time points. The point algebra is strictly
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TABLE 1
Basic interval-interval operators.

I precedes J p III

J preceded by I p— ! JJJ

I meets J m IIII

J met by I m~1 JJiJ

I overlaps J o IIII

J overlapped by I o~! JJiJ

I during J d I1I

J includes by I d=t 3333333

I starts J s III

J started by I s~ JJJI333

I finishes J f III

J finished by I f~1 3333333

I equals J = IIII
JJiJ

less expressive than the interval algebra, and the consistency of a given constraint
c is decidable in O(Jc|?) time [13]. Golumbic and Shamir [3] investigated several
subalgebras of the interval algebra for which the consistency is decidable in polynomial
time. Nebel and Biirckert [9] proposed a subalgebra of the interval algebra called
ORD-Horn, which contains the point algebra. They showed that ORD-Horn is a
maximal tractable subalgebra. More precisely, the consistency of a given ORD-Horn
constraint ¢ is decidable in O(|c|?) time, while the consistency for any subalgebra of
the interval algebra which strictly contains ORD-Horn is NP-complete. Recently, all
the tractable subalgebras of the interval algebra were discovered by Krokhin, Jeavons,
and Jonsson [6].

On the other hand, some researches focus on classes incomparable to the interval
algebra. Jonsson and Bickstrom [5] proposed a class of temporal constraints called
Horn DLRs. The class of Horn DLRs is a superclass of ORD-Horn and includes
quantitative constraints (and therefore Horn DLRs are incomparable to the interval
algebra). The consistency of Horn DLRs is decidable in polynomial time using a fast
algorithm for the linear programming problem. Van der Meyden [11] studied the
complexity of determining whether a conjunction of given constraints in the form of
s <tors <timplies a given negation-free existentially quantified constraint.

6.2. Comparison of the expressive power. The relationship among classes
of constraints is shown in Figure 13.

First of all, note that ORD-Horn and CDC” are incomparable. In a constraint
of ORD-Horn, every relation between intervals must be expressed by a conjunction
of ORD-Horn clauses. An ORD-Horn clause is a disjunction of at most one positive
atomic constraint (i.e., s <t or s = t) and an arbitrary number of negative atomic
constraints (i.e., s # t). Since a disjointness constraint ¢; = [s1, S2] 7 [t1,t2] is a
disjunction of two positive atomic constraints, it is not in ORD-Horn. Also, ¢ =
(51 # t1) A ([s1, 2] 7 [t1,12]) is in CDC?, but in neither CDC nor ORD-Horn. On
the other hand, ORD-Horn includes constraints that are not in CDC?. For example,
c3 = (81 # t1) V (s2 # t2) is in ORD-Horn but not in CDC”. Also, ORD-Horn
includes some of the constraints on more than two clocks, but CDC7 never includes
them.

Next, note that CDC” N “ORD-Horn” = CDC? N “point algebra”. Any clause
of a constraint in CDC7? consists of one atomic constraint or two positive atomic
constraints. Therefore, any clause of a constraint in CDC” N “ORD-Horn” consists
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————Horn DLRs [5]———
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Fic. 13. Comparison of the expressive power of the classes of constraints.

of one atomic constraint, and hence is expressible in the point algebra.

Class CDC and the point algebra have a nonempty intersection since it contains
ca = ([s0,s:) A [tj,tn]) = (s;i < t;) as stated in section 4. On the other hand,
¢s = (s # t4) is not in CDC because the minimum graph representation of ¢5 (Fig-
ure 9) cannot be a subgraph of an intersection of graph representations of disjointness
constraints (Figure 10).

Let ¢cg = ([50,82] 7 [t4,t5D V ([80784} 7 [tﬁ,t7]). Then

Ce = (50 Z t5) \ (82 S t4) vV (So Z t7) V (54 S tG)
= (82 < t4) V (84 < tﬁ).

This is not in CDC” because ¢g has no graph representation as shown in section 3. On
the other hand, ¢ is in the interval algebra, i.e., cg = [s2, s4](pmodd ~*ss~ff1=)[ty, t6].

Last, ¢z = ([s1,82] 7 [t1,t2]) V ([s3,84] 7 [t3,t4]) is & constraint on two clocks but
not in the interval algebra, because in the interval algebra, disjunction of relations of
distinct pairs of intervals is not expressible.

After the first submission of this paper, all the maximal tractable subalgebras
of the interval algebra were identified by Krokhin, Jeavons, and Jonsson [6]. CDC”
is incomparable to any of the tractable subalgebras. The outline of the proof is
as follows. Let A be a subalgebra of the interval algebra that can express all the
constraints in CDC”. A must contain (pp~tmm~1) in order to express fi. Also A
must contain (m) or (m~!) in order to express adjacency of intervals (e.g., [so,s1]
and [s1, s2] in Example 1.1). Then, from the definitions of the discovered tractable
subalgebras (Table 3 of [6]), it is immediate that A is not contained in any of the
tractable subalgebras.

Recently, Krokhin and Jonsson [7] also found maximal tractable subclasses of
Meiri’s qualitative algebra [8]. The qualitative algebra contains all the relational
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TABLE 2
Basic point-interval operators.

p before I b p

III

p starts I s P
III

p during I d P
III

p finishes I £ P
III

p after I a P
III

operators between points, between intervals, and between a point and an interval (see
Table 2). CDC7 is also incomparable with any of the known tractable subclasses of
the qualitative algebra. The outline of the proof is as follows. Let A’ be a subclass
of the qualitative algebra that can express all the constraints in CDC”. First, it
can be shown that { is not expressible by using only point-point and point-interval
operators. Therefore, A’ must contain (pp~*mm~1). Next, we can conclude that in
order to express adjacency of intervals, either (1) A’ must contain either (m) or (m~1);
or (2) A’ must contain both (s) and (£). Then it is not difficult to see that A’ is not
contained in any of the known tractable subclasses.

7. Conclusions. In this paper, we have studied temporal reasoning with respect
to constraints on two concurrent sequences of events. We have introduced the notion
of graph representations of constraints. If a graph representation of a given constraint
¢ can be constructed in polynomial time, then the consistency of ¢ is also decidable
in polynomial time. We have proposed a subclass CDC7 of constraints such that a
graph representation of a constraint in CDC7 can be constructed in polynomial time.

We have considered only the case in which the number of local clocks is two.
However, this assumption is for simplicity. If the number of local clocks is an arbitrary
constant, then the idea of graph representability is applicable and the consistency is
decidable in polynomial time.

As future work, constraints on durations [10] and/or quantitative constraints on
two concurrent sequences of events should be studied. First-order constraints on two
concurrent sequences of events also remain to be investigated.
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