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Abstract. This paper studies the basis property and the stability of a distributed system
described by a nonuniform Euler–Bernoulli beam equation under linear boundary feedback control.
It is shown that there is a sequence of generalized eigenfunctions of the system, which forms a
Riesz basis for the state Hilbert space. The asymptotic distribution of eigenvalues, the spectrum-
determined growth condition, and the exponential stability are concluded. The results are applied
to a nonuniform beam equation with viscous damping of variable coefficient as a generalization of
existing results for the uniform beam.
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1. Introduction. The Riesz basis property, meaning that the generalized eigen-
vectors of the system form an unconditional basis for the state Hilbert space, is one
of the fundamental properties of a linear vibrating system. The establishment of
the basis property will naturally lead to solutions to such problems as the spectrum-
determined growth condition and the exponential stability for infinite dimensional
systems. Unfortunately, verification of the Riesz basis generation is challenging even
for extensively studied systems such as Euler–Bernoulli beam equations. Recently, a
new approach has been suggested [1] to obtain a complete solution to the basis prop-
erty of the following uniform Euler–Bernoulli beam equation under linear boundary
feedback control:⎧⎪⎪⎨

⎪⎪⎩
ytt(x, t) + yxxxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = 0,
yxx(1, t) = −k1yxt(1, t), k1 ≥ 0,
yxxx(1, t) = k2yt(1, t), k2 ≥ 0.

(1)

In this paper, we shall develop parallel results for the same system with variable
coefficients. What makes it unique compared to the case of constant coefficients
is that with variable coefficients both the characteristic equation and the analytic
expression of the eigenfunctions have no explicit formulae. The asymptotic technique
appears to be essential for the study.

There are two steps usually found in the study of linear systems with variable
coefficients. The first is to transform the “dominant term” of the system under study
into a uniform “dominant equation” by space scaling and state transformation where
no variable coefficient is involved any longer, while the second is to approximate the
eigenfunctions of the system by those of the uniform “dominant equation.” This
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fundamental idea comes essentially from Birkhoff’s works on asymptotic estimation
of the eigenpairs of the linear differential operators with generalized homogeneous
boundary conditions done in the beginning of the last century [5]. A comprehensive
review can be found in [4]. This approach has been used in dealing with the beam
equations with low order perturbation of variable coefficients (see [6], [7], and [8]). A
similar adoption can also be found in the study of the string equations with variable
coefficients, for which we refer to [9], [10], and [11] as well as the references therein.

By considering a sequence of eigenfunctions rather than whole sequences in the
state Hilbert space, the author recently presented a corollary of Bari’s theorem on the
Riesz basis property [1]. The result greatly simplifies the procedure in establishing
the Riesz basis property for systems described by discrete operators in a Hilbert space
since the result eliminates the requirement of estimation of low eigenfunctions, which
is rather difficult by other methods found in all previous papers [10], [11], [12].

Following the approach used in [1], together with the asymptotic analysis, this
paper presents the Riesz basis property for the Euler–Bernoulli beam equation with
variable coefficients. Other major contributions include the exponential stability and
asymptotic behavior of the systems under boundary feedback control.

In the next section, we shall present the main results of the paper. The proof of
the results and some remarks are given in section 3.

2. Main results. Consider the following nonuniform Euler–Bernoulli beam equa-
tion with linear boundary feedback control:⎧⎨

⎩
ρ(x)ytt(x, t) + (EI(x)yxx(x, t))xx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxx(1, t) = 0,
(EI(x)yxx)x(1, t) = kyt(1, t),

(2)

where x stands for the position and t the time. EI(x) is the flexural rigidity of the
beam, and ρ(x) is the mass density at x. k ≥ 0 is a constant feedback gain. Unlike
system (1), here we impose only one end feedback control for simplicity of computation
because, from Theorem 2.5 below, it is sufficient for the exponential stabilization of the
system. Moreover, it does not make much difference from the methodology point of
view. Actually, the analysis in this paper can be used to similarly treat the boundary
conditions of (1) along the same lines as the analysis in [1].

The total energy of system (2) is

E(t) =
1

2

∫ 1

0

[ρ(x)y2
t (x, t) + EI(x)y2

xx(x, t)]dx.

Formally,

dE(t)

dt
= −ky2

t (x, t) ≤ 0.

That is, system (2) is dissipative. Throughout this paper, we always assume that

ρ(x), EI(x) ∈ C4[0, 1], EI, ρ > 0.(3)

System (2) will be considered in the energy Hilbert space H = H2
E(0, 1) × L2(0, 1),

H2
E(0, 1) = {f ∈ H2(0, 1)|f(0) = f ′(0) = 0}, in which the inner product induced

norm is defined by

‖(f, g)‖2
H =

∫ 1

0

[ρ(x)|g(x)|2 + EI(x)|f ′′(x)|2]dx ∀(f, g) ∈ H.(4)
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Define operator A : D(A)(⊂ H) → H as{ A(f, g) = (g,− 1
ρ(x) (EI(x)f

′′(x))′′),
D(A) = {(f, g) ∈ (H2

E ∩H4) ×H2
E |f ′′(1) = 0, (EIf ′′)′(1) = kg(1)}.(5)

With the operator A at hand, we can write (2) into an evolutionary equation in H:

d

dt
Y (t) = AY (t), Y (t) = (y(·, t), yt(·, t)).(6)

When we talk about system (2) later, we mean its abstract formulation (6). We
are concerned with the Riesz basis property of (6) in H; that is, we want to know
whether the generalized eigenfunctions of A form an unconditional basis for H. To
do this, we need the following spectral property of A.

Lemma 2.1. Let A be defined by (5). Then A−1 exists and is compact on H.
Hence σ(A), the spectrum of A, consists only of isolated eigenvalues, which distribute
in conjugate pairs on the complex plane. Moreover, the eigenfunction corresponding
to λ ∈ σ(A) is of the form (λ−1φ, φ), where φ 	= 0 satisfies⎧⎨

⎩
λ2ρ(x)φ(x) + (EI(x)φ′′(x))′′ = 0, 0 < x < 1,
φ(0) = φ′(0) = φ′′(1) = 0,
(EI(x)φ′′)′(1) = λkφ(1).

(7)

To verify the basis property, we need the asymptotic properties of both eigenvalues
and eigenfunctions, which are stated as the following propositions.

Proposition 2.2. Let A be defined by (5). Then the eigenvalues {λn, λn} of A
have the following asymptotic property:

λn =
ρ2
n

h2
, h =

∫ 1

0

(
ρ(τ)

EI(τ)

)1/4

dτ, ρn =
1√
2

(
n+

1

2

)
π(1+ i)+O(n−1) as n→ ∞,

(8)
where n is a large positive integer and λn denotes the complex conjugate of λn. More-
over, λn is geometrically simple when n is large enough.

Proposition 2.3. Let λn be defined as in Proposition 2.2. Then there is a
solution φn to (7) corresponding to λn having the following asymptotic expansion:

−
√

2

4
(1 + i)e

1
4

∫ z

0
a(τ)dτ

φn(x) = sin(n+ π/2)z − cos(n+ π/2)z

+e−(n+1/2)πz + (−1)ne−(n+1/2)π(1−z) + O(n−1),
(9)

−
√

2

4
(1 + i)e

1
4

∫ z

0
a(τ)dτ

λ−1
n φ′′n(x) = i

(
ρ(x)

EI(x)

)1/2

[cos(n+ π/2)z − sin(n+ π/2)z

+e−(n+1/2)πz + (−1)ne−(n+1/2)π(1−z)] + O(n−1),

(10)
where z = z(x) and a(z) are defined by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
z = z(x) =

1

h

∫ x

0

(
ρ(τ)

EI(τ)

)1/4

dτ, h =

∫ 1

0

(
ρ(τ)

EI(τ)

)1/4

dτ,

a(z) =
3h

2

(
ρ(x)

EI(x)

)−5/4
d

dx

(
ρ(x)

EI(x)

)
+ h

2EI ′(x)
EI(x)

(
ρ(x)

EI(x)

)−1/4

.

(11)
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The main result is the following basis property for system (2).
Theorem 2.4. Let A be defined by (5). Then the following hold.
(i) There is a sequence of generalized eigenfunctions of A which forms a Riesz

basis for the state space H.
(ii) The eigenvalues {λn, λn} of A have the asymptotic expansion (8).
(iii) All λ ∈ σ(A) with sufficiently large modulus are algebraically simple.
Therefore, A generates a C0-group, and, for the semigroup eAt generated by

A, the spectrum-determined growth condition holds: ω(A) = S(A), where ω(A) =
limt→∞ 1

t ‖eAt‖ is the growth order of eAt and S(A) = sup{Reλ|λ ∈ σ(A)} is the
spectral bound of A.

Remark 1. From Theorem 2.4 (iii), (9) and (10) are asymptotic expansions for
all generalized eigenfunctions of A.

Theorem 2.4 is the fundamental property of system (2). Many other important
properties of system (2) can be concluded from Theorem 2.4. The exponential stability
stated below is one such important property that has been studied extensively in the
past two decades.

Theorem 2.5. System (2) is exponentially stable for any k > 0. That is, there
are constants M,ω > 0 such that the energy E(t) of system (2) satisfies

E(t) =
1

2

∫ 1

0

[ρ(x)y2
t (x, t) + EI(x)y2

xx(x, t)]dx ≤Me−ωtE(0) ∀t ≥ 0,

for any initial condition (y(x, 0), yt(x, 0)) ∈ H.
Theorem 2.4 will also be applied to the following beam equation with variable

viscous damping:⎧⎨
⎩

ρ(x)ytt(x, t) + b(x)yt(x, t) + (EI(x)yxx(x, t))xx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxx(1, t) = 0,
(EI(x)yxx)x(1, t) = kyt(1, t).

(12)

The uniform case of EI = ρ = const, b ∈ C[0, 1], k = 0 was discussed in [8]. System
(12) can be written as

d

dt
Y (t) = (A + B)Y (t), Y (t) = (y(·, t), yt(·, t)),(13)

where A is defined by (5) and B is a linear bounded operator on H:

B(f, g) = (0,−b · g).(14)

Equation (13) can be put into the generic framework of discrete-type operators per-
turbed by the linear bounded operator in the Hilbert spaces. First, we introduce the
following definition.

Definition 2.6. A linear operator A in a Hilbert space H is called discrete-type,
or [D]-class for short, if there are Riesz basis {φn}∞1 of H, complex series {λn}∞1 ,
and an integer N > 0 such that

(i) limn→∞ |λn| = ∞, λn 	= λm as n,m > N ;
(ii) Aφn = λnφn, n > N ;
(iii) A[φ1, φ2, . . . , φN ] ⊂ [φ1, φ2, . . . , φN ], and A has spectrum {λi}N1 in [φ1, φ2, . . . , φN ],

where [φ1, φ2, . . . , φN ] is the linear subspace spanned by {φi}N1 .
Remark 2. Theorem 2.4 shows that A is of [D]-class.
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It is known that any [D]-class operator A must be a discrete operator [14], and
for the C0-semigroup eAt generated by A, the spectrum-determined growth condition
holds. The following basic result can be concluded from the proof of a more general
result in [14] (see also [15], [16, section V.4]). A short proof will be given in the next
section.

Theorem 2.7. Suppose that A is of [D]-class satisfying conditions of Defini-
tion 2.6 in a Hilbert space H. Let dn = minn �=m |λn − λm|. If

∞∑
n>N

d−2
n <∞,(15)

then, for any linear bounded operator B on H, there are constants C,L > 0, an integer
M > 0, and eigenpairs {µn, ψn}∞M of A+B such that

(i) |µn − λn| ≤ C for all n ≥M .
(ii) ‖ψn − φn‖ ≤ Ld−1

n , n ≥M . Hence
∑∞

n=M ‖ψn − φn‖2 <∞.
We can now consider (12). By Remark 1, A is of [D]-class. And the spectral

separation of A satisfies d−1
n = O(n−1). In Remark 4 of the next section, we shall

show that dn is never vanishing. Hence Theorem 2.7 can be applied to (A,B) = (A,B)
to get the following parallel result of Theorem 2.4 for system (12).

Theorem 2.8. Suppose EI, ρ ∈ C4[0, 1], EI, ρ > 0, b ∈ C[0, 1]. Then the follow-
ing hold.

(i) A + B is of [D]-class.
(ii) The eigenvalues {µn, µn} of A + B have the asymptotic expansion

µn = λn + O(1) as n→ ∞,(16)

where λn is defined by (8).
(iii) The corresponding eigenfunctions {(µ−1

n ψn, ψn)}∪{ their conjugates } of A+
B have the asymptotic expansion

(µ−1
n ψn, ψn) = (λ−1

n φn, φn) + εn as n→ ∞,(17)

where φn is defined by (9) and

‖εn‖H = O(n−1).(18)

The following result can be viewed as a consequence of Theorem 2.8.
Corollary 2.9. Let {µn} be the eigenvalues of A+B determined in Theorem 2.8.

Then

lim
n→∞Reµn = −1

2

∫ 1

0
b(x)e

− 1
2

∫ z

0
a(τ)dτ

dx+ 4ke
− 1

2

∫ 1

0
a(τ)dτ

∫ 1

0
ρ(x)e

− 1
2

∫ z

0
a(τ)dτ

dx
,(19)

where z = z(x), a(z) are defined in (11).
Corollary 2.9 concludes some existing results for system (12). We give several

examples below.
Example 1. Suppose that ρ = 1, k = 0, and EI is a constant. Then a = 0.

Equation (19) becomes

lim
n→∞Reµn = −1

2

∫ 1

0

b(x)dx,(20)
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which is a strengthened conjecture

lim
n→∞

∑
j≤n Reµj

n
= −1

2

∫ 1

0

b(x)dx(21)

made in [13] for the same system with hinged boundary conditions and resolved later
in [6] under the assumption that b(x) ≥ 0. However, we do not impose any assumption
on the symbol of b.

Example 2. Suppose that ρ = EI = 1, k = 0. Then (12) becomes{
ytt(x, t) + b(x)yt(x, t) + yxxxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxx(1, t) = yxxx(1, t) = 0,

(22)

which is just the system studied in [8]. Equation (20) holds for this system. However,

our result shows that the main hypothesis (1.3) of [8] is nothing but
∫ 1

0
b(x)dx > 0.

Moreover, from our discussion, Theorem 2.8 is sufficient to derive (20). This is because
spectral analysis for system (22) with b = 0 is quite simple and does not necessarily
need to rely on Theorem 2.4 [1].

Example 3. Suppose that b(x) ≥ 0 for x ∈ [0, 1], and b(x) > b0 > 0 for all x in
some subset (a, b) ⊂ [0, 1] in (22). The system is then exponentially stable. When
k = 0, b(x) ≥ 0 for x ∈ [0, 1] and b(x) > b0 > 0 for all x in some subset (a, b) ⊂ [0, 1],
system (12) is also exponentially stable. However, the method used in [18] appears
to be unavailable for this case. We will give a short interpretation for Example 3 in
section 3.

Finally, we present a high order approximation of the eigenvalues of system (12).
Proposition 2.10. Suppose (3) and

b(x) ∈ C1[0, 1],

∫ 1

0

b(x)e
− 1

2

∫ z

0
a(τ)dτ

dx+ 4ke
− 1

2

∫ 1

0
a(τ)dτ

> 0.(23)

Then the eigenvalues {µn, µn} of A + B have the asymptotic expansion

µn = −2k̃

h2
+ i

[
(n+ 1/2)

π

h

]2

− i

2h2

∫ 1

0

a1(τ)dτ − 1

2h2

∫ 1

0

b̃(τ)dτ + O(n−1),(24)

where b̃(z), a1(z), and k̃ are given by

k̃ =
kh

EI(1)

(
ρ(1)

EI(1)

)−3/4

,(25)

b̃(z) =
b(x)

ρ(x)
, z =

1

h

∫ x

0

(
ρ(τ)

EI(τ)

)1/4

dτ,(26)

a1(z) = −3

2
a′(z) − 9

16
a2(z) − 1

4
a(z).(27)

3. Proof of main results.
Proof of Lemma 2.1. A direct calculation shows that

A−1(f, g) = (φ, ψ) for any (f, g) ∈ H,
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where⎧⎪⎨
⎪⎩

ψ = f,

φ(x) = kf(1)

∫ x

0

(x− τ)
τ − 1

EI(τ)
dτ +

∫ x

0

ρ(τ)g(τ)dτ

∫ x

τ

dϑ

∫ ϑ

τ

s− τ

EI(s)
ds.

The compactness follows from the Sobolev embedding theorem. Other conclusions
are obvious, and the details are omitted.

In order to study the asymptotic behavior of the solution of (7), we rewrite (7) in
a standard form of the eigenproblem of a linear differential operator with generalized
homogeneous boundary conditions:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
φ(4)(x) +

2EI ′(x)
EI(x)

φ′′′(x) +
EI ′′(x)
EI(x)

φ′′(x) + λ2 ρ(x)

EI(x)
φ(x) = 0,

φ(0) = φ′(0) = φ′′(1) = 0,

φ′′′(1) = λ
k

EI(1)
φ(1).

(28)

Two basic transformations are essential. First, the “dominant term,” φ(4)(x) +
λ2ρ(x)/EI(x)φ(x) of (28), is transformed to become a uniform form by space scaling.
In fact, set

φ(x) = f(z), z = z(x) =
1

h

∫ x

0

(
ρ(τ)

EI(τ)

)1/4

dτ, h =

∫ 1

0

(
ρ(τ)

EI(τ)

)1/4

dτ.(29)

Then f satisfies⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (4)(z) + a(z)f ′′′(z) + bf (z)f ′′(z) + c(z)f ′(z) + λ2h4f(z) = 0,
f(0) = f ′(0) = 0,
f ′′(1) + a0f

′(1) = 0,

f ′′′(1) = b0f
′(1) + λ

kh3

EI(1)

(
ρ(1)

EI(1)

)−3/4

f(1),

(30)

where a0 and b0 are constants depending on h, ρ(i)(1), EI(i)(1), i = 0, 1, 2, bf (z) and
c(z) are the smooth functions of h, ρ(i)(x), EI(i)(x), i = 0, 1, 2, 3 through z = z(x)
defined by (11), and a(z) is the function given by (11).

Second, in order to cancel the term a(z)f ′′′ in (30) as was done in [4], we make
the invertible state transformation

f(z) = e
− 1

4

∫ z

0
a(τ)dτ

g(z).(31)

Then g satisfies⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g(4)(z) + a1(z)g
′′(z) + a2(z)g

′(z) + a3(z)g(z) + λ2h4g(z) = 0,
g(0) = g′(0) = 0,
g′′(1) = a11g

′(1) + a12g(1),

g′′′(1) = a21g
′(1) +

[
λ
kh3

EI(1)

(
ρ(1)

EI(1)

)−3/4

+ a22

]
g(1),

(32)

where aij , i, j = 1, 2 are some real constants depending on h, ρ(i)(1), EI(i)(1), i =
0, 1, 2, a2(z) and a3(z) are the smooth functions of h, ρ(i)(x), EI(i)(x), i = 0, 1, 2, 3
through z = z(x) defined by (29), and a1(z) is given by (27).
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It can be seen that (7) and (32) are equivalent. Our next task is to use the eigen-
pairs of the uniform “dominant term,” g(4)(z)+λ2h4g(z) = 0 of (32), to approximate
those of the whole system. Note that when k = 0, (32) is in the standard form of a
linear differential operator with generalized homogeneous boundary conditions, which
was studied in [4] in greater detail.

Now we proceed as in section 4, Chapter 2 of [4] to estimate asymptotically the
solutions to (32). Since system (2) is dissipative, all eigenvalues are located on the
left half complex plane. Due to the conjugate property of the eigenvalues, we may
consider only those λ with π/2 ≤ arg λ ≤ π.

Let λ = ρ2/h2. Then, as π/2 ≤ arg λ ≤ π,

π/4 ≤ arg ρ ≤ π/2.(33)

Now set {
ω1 = e3/4πi, ω2 = eπ/4i, ω3 = −ω2, ω4 = −ω1,

S =
{
ρ|π

4
≤ arg ρ ≤ π

2

}
.

(34)

In what follows, ρ is always assumed to be in S. Note that

Re(ρω1) ≤ Re(ρω2) ≤ Re(ρω3) ≤ Re(ρω4) ∀ρ ∈ S.(35)

The following important facts are used frequently in what follows.{
Re(ρω1) = −|ρ| sin(arg ρ+ π

4 ) ≤ −√
2/2|ρ| < 0,

Re(ρω2) = |ρ| cos(arg ρ+ π
4 ) ≤ 0.

(36)

Lemma 3.1 comes from Theorem 2.4 in section 4, Chapter 2 of [4].
Lemma 3.1. For |ρ| large enough, ρ ∈ S, there are four linearly independent

solutions gk(z), k = 1, 2, 3, 4 to

g(4)(z) + a1(z)g
′′(z) + a2(z)g

′(z) + a3(z)g(z) + ρ4g(z) = 0,

such that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gk(z) = eρωkz[1 + O( 1
ρ )],

g′k(z) = ρωke
ρωkz[1 + O( 1

ρ )],

g′′k (z) = (ρωk)
2eρωkz[1 + O( 1

ρ )],

g′′′k (z) = (ρωk)
3eρωkz[1 + O( 1

ρ )].

(37)

With these preparations, we come to the proof of Proposition 2.2.
Proof of Proposition 2.2. Let g(z) be a solution of (32). There are constants

ci, i = 1, 2, 3, 4, such that

g(z) = c1g1(z) + c2g2(z) + c3g3(z) + c4g4(z),(38)

where gk(z), k = 1, 2, 3, 4 are defined by (37). By boundary conditions, ci, i = 1, 2, 3, 4
are solutions to the following system of linear algebraic equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1g1(0) + c2g2(0) + c3g3(0) + c4g4(0) = 0,
c1g′1(0) + c2g′2(0) + c3g′3(0) + c4g′4(0) = 0,[
g′′1 (1) − a11g′1(1) − a12g1(1)]c1 + [g′′2 (1) − a11g′2(1) − a12g2(1)

]
c2

+[g′′3 (1) − a11g′3(1) − a12g3(1)]c3 + [g′′4 (1) − a11g′4(1) − a12g4(1)]c4 = 0,[
g′′′1 (1) − a21g′1(1) − a22g1(1) − k̃ρ2g1(1)

]
c1 + [g′′′2 (1) − a21g′2(1) − a22g2(1) − k̃ρ2g2(1)]c2

+[g′′′3 (1) − a21g′3(1) − a22g3(1) − k̃ρ2g3(1)]c3 + [g′′′4 (1) − a21g′4(1) − a22g4(1) − k̃ρ2g4(1)]c4 = 0,

(39)
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where k̃ is defined by (25).
From (36) and (37), for any k, 1 ≤ k ≤ 4,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
gk(0) = 1 + O( 1

ρ ), g′k(0) = ρωk[1 + O( 1
ρ )],

[g′′k (1) − a11g
′
k(1) − a12gk(1)] = (ρωk)

2eρωk [1 + O( 1
ρ )],

g′′′k (1) − a21g
′
k(1) − a22gk(1) − k̃ρ2gk(1)

= (ρωk)
3eρωk [1 + O( 1

ρ )] − k̃ρ2eρωk [1 + O( 1
ρ )],

(40)

and

|eρω2 | ≤ 1, |eρω1 | = O(e−c|ρ|) as |ρ| → ∞,(41)

for some constant c > 0. Then we know that g(z) is nonzero if and only if ρ satisfies
the characteristic equation

det

⎛
⎜⎝

[1] [1] [1] [1]
ρω1[1] ρω2[1] ρω3[1] ρω4[1]

(ρω1)
2eρω1 [1] (ρω2)

2eρω2 [1] (ρω3)
2eρω3 [1] (ρω4)

2eρω4 [1]
(ρω1)

3eρω1 [1] (ρω2)
3eρω2 [1] (ρω3)

3eρω3 [1] (ρω4)
3eρω4 [1]

⎞
⎟⎠ = 0,

where [1] = 1+O( 1
ρ ). Since ω4 = −ω1, ω3 = −ω2, the above equation is equivalent to

det

⎛
⎜⎝

[1] [1] eρω2 [1] eρω1 [1]
ω1[1] ω2[1] −ω2e

ρω2 [1] −ω1e
ρω1 [1]

ω2
1e

ρω1 [1] ω2
2e

ρω2 [1] ω2
2 [1] ω2

1 [1]
ω3

1e
ρω1 [1] ω3

2e
ρω2 [1] −ω3

2 [1] −ω3
1 [1]

⎞
⎟⎠ = 0.(42)

Noting that each element of the matrix in (42) is bounded, we may rewrite (42) as

det

⎛
⎜⎝

1 1 eρω2 0
ω1 ω2 −ω2e

ρω2 0
0 ω2

2e
ρω2 ω2

2 ω2
1

0 ω3
2e

ρω2 −ω3
2 −ω3

1

⎞
⎟⎠ + O

(
1

ρ

)
= 0,(43)

which results in

e2ρω2 =

(
ω2 − ω1

ω2 + ω1

)2

+ O
(

1

ρ

)
= −1 + O

(
1

ρ

)
.(44)

By solving (44), we obtain (8) by the same arguments as those of section 4, Chapter
2 of [4]. Since the matrix in (43) has rank 3 for each sufficiently large ρn, there is only
one linearly independent solution g to (32) for ρ = ρn. Hence each λn is geometrically
simple for n sufficiently large.

In Remark 4, we will indicate that each eigenvalue of A must be geometrically
simple. Noting (37), (38), and (42), we can write g, g′′ as

g(z) = det

⎛
⎜⎝

[1] [1] eρω2 [1] eρω1 [1]
eρω1z[1] eρω2z[1] eρω2(1−z)[1] eρω1(1−z)[1]
ω2

1e
ρω1 [1] ω2

2e
ρω2 [1] ω2

2 [1] ω2
1 [1]

ω3
1e

ρω1 [1] ω3
2e

ρω2 [1] −ω3
2 [1] −ω3

1 [1]

⎞
⎟⎠ ,(45)

g′′(z) = ρ2 det

⎛
⎜⎝

[1] [1] eρω2 [1] eρω1 [1]
ω2

1e
ρω1z[1] ω2

2e
ρω2z[1] ω2

2e
ρω2(1−z)[1] ω2

1e
ρω1(1−z)[1]

ω2
1e

ρω1 [1] ω2
2e

ρω2 [1] ω2
2 [1] ω2

1 [1]
ω3

1e
ρω1 [1] ω3

2e
ρω2 [1]] −ω3

2 [1] −ω3
1 [1]

⎞
⎟⎠ .(46)
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Lemma 3.2. Let λn, ρn be defined as in Proposition 2.2. Then the unique (up to
a scalar) associated solution gn to (32) has the following asymptotic expansion:

−
√

2

4
(1 + i)gn(z) = sin(n+ π/2)z − cos(n+ π/2)z + e−(n+1/2)πz

+(−1)ne−(n+1/2)π(1−z) + O(n−1),
(47)

−
√

2

4
(1 + i)ρ−2

n g′′n(z) = i[cos(n+ π/2)z − sin(n+ π/2)z

+e−(n+1/2)πz + (−1)ne−(n+1/2)π(1−z)] + O(n−1).
(48)

Moreover, it follows directly from (37) and (45) that

ρ−2
n g′n(z) = O(n−1).(49)

Proof. It follows from (45) that

gn(z) = det

⎛
⎜⎝

1 1 eρnω2 0
eρnω1z eρnω2z eρnω2(1−z) eρnω1(1−z)

0 ω2
2e

ρnω2 ω2
2 ω2

1

0 ω3
2e

ρnω2 −ω3
2 −ω3

1

⎞
⎟⎠ + O

(
1

ρn

)
.

After a simple calculation, we find that

gn(z) = ω2
1ω

2
2 [2ω1e

ρnω1z + 2ω2e
ρnω2eρnω1(1−z)

+(ω2 + ω1)e
ρnω2eρnω2(1−z) + (ω2 − ω1)e

ρnω2z] + O( 1
ρn

)

=
√

2(i− 1)[sin(n+ π/2)z − cos(n+ π/2)z
+e−(n+1/2)πz + (−1)ne−(n+1/2)π(1−z)] + O( 1

n ).

This is (47). Equation (48) can be proved similarly.
Note that the asymptotic expansions (47) and (48) are exactly the same as those

obtained in [1] for the eigenfunctions of system (2) with constant coefficients; i.e.,
EI = ρ = const. However, it should be pointed out that the estimates in [1] and [2]
rely on the analytic expression of the eigenfunctions.

Proof of Proposition 2.3. The result follows directly from the following facts that
are deduced from transformations (29), (31), and (49):⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−
√

2

4
(1 + i)e

1
4

∫ z

0
a(τ)dτ

fn(z) = −
√

2

4
(1 + i)gn(z),

−
√

2

4
(1 + i)e

1
4

∫ z

0
a(τ)dτ

ρ−2
n f ′′n (z) = −

√
2

4
(1 + i)ρ−2

n g′′n(z) + O
(

1

n

)
,

φn(x) = fn(z), ρ−2
n φ′′n(x) =

1

h2

(
ρ(x)

EI(x)

)1/2

ρ−2
n f ′′n (z) + O

(
1

n

)
.

(50)

Before proving Theorem 2.4, let us recall that for a closed linear operator A
in a Hilbert space H, a nonzero x ∈ H is called a generalized eigenvector of A,
corresponding to an eigenvalue λ of A which has finite algebraic multiplicity, if there
is a positive integer n such that (λ − A)nx = 0. A sequence {xn}∞1 in H is called a
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Riesz basis for H if there is an orthonormal basis {en}∞1 in H and a linear bounded
invertible operator T such that

Ten = xn, n = 1, 2, . . . .

It is seen that each Riesz basis sequence must be approximately normalized:

C1 ≤ ‖xn‖ ≤ C2, C1, C2 > 0, n = 1, 2, . . . .

Suppose that {λn}∞1 ⊂ σ(A) and lie in some left half complex plane. If each λn
has finite algebraic multiplicity mn and mn = 1 as n > N for some integer N > 1,
then there is a sequence of linearly independent generalized eigenvectors {xni}mn

i=1

corresponding to λn. If {{xni
}mn
i=1}∞n=1 forms a Riesz basis for H, then A generates a

C0-semigroup eAt which can be represented as

eAtx =

∞∑
n=1

eλnt
mn∑
i=1

ani

mn∑
j=1

fnj(t)xnj
for any x =

∞∑
n=1

mn∑
i=1

anixni ∈ H,

where fnj(t) is a polynomial of t with order less thanmn. In particular, if a < Reλ < b
for some real numbers a and b, then A generates a C0-group on H. Moreover, the
spectrum-determined growth condition holds for eAt.

In order to remove the requirement of the estimation of the low eigenpairs of the
system, a corollary of Bari’s theorem is recently reported in [1] (a simplified proof
can be found in [2]), which provides a much less demanding approach in generating
a Riesz basis for general discrete operators in the Hilbert spaces. The result is cited
here.

Theorem 3.3. Let A be a densely defined discrete operator (that is, (λ−A)−1 is
compact for some λ) in a Hilbert space H. Let {zn}∞1 be a Riesz basis for H. If there
are an N ≥ 0 and a sequence of generalized eigenvectors {xn}∞N+1 of A such that

∞∑
N+1

‖xn − zn‖2 <∞,

then

(i) There are an M > N and generalized eigenvectors {xn0}M1 of A such that
{xn0}M1 ∪ {xn}∞M+1 forms a Riesz basis for H.

(ii) Consequently, let {xn0}M1 ∪ {xn}∞M+1 correspond to eigenvalues {σn}∞1 of A.
Then σ(A) = {σn}∞1 , where σn is counted according to its algebraic multiplicity.

(iii) If there is an M0 > 0 such that σn 	= σm for all m,n > M0, then there is an
N0 > M0 such that all σn, n > N0 are algebraically simple.

Remark 3. It follows from Theorem 3.3 that when A and B satisfy the conditions
(i) and (ii) of Theorem 2.7, A+B is of [D]-class.

In order to apply Theorem 3.3 to the operator A when we consider {xn} in
Theorem 3.3 as the eigenfunctions of A, we need a referring Riesz basis {zn}∞1 as well.
For the system (2), this is accomplished by collecting (approximately) normalized
eigenfunctions of the following free conservative system:{

ρ(x)ytt(x, t) + (EI(x)yxx(x, t))xx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxx(1, t) = (EIyxx)x(1, t) = 0.

(51)
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The system operator A0 : D(A0)(⊂ H) → H associated with (51) is nothing but the
operator A with k = 0:{ A0(f, g) = (g,− 1

ρ(x) (EI(x)f
′′(x))′′),

D(A0) = {(f, g) ∈ (H2
E ∩H4) ×H2

E |f ′′(0) = f ′′′(1) = 0}.(52)

A0 is skew-adjoint with compact resolvent in H. Since Propositions 2.2 and 2.3 still
keep valid when k = 0, we have the following counterpart for the operator A0.

Lemma 3.4. Each µ ∈ σ(A0), with sufficiently large modulus, is geometrically
simple and hence algebraically simple. The eigenvalues {λn0, λn0} and the corre-
sponding eigenfunctions {(λ−1

n0 φn0, φn0)}∪{their conjugates} of A0 have the following
asymptotic expressions:

λn0 =
ρ2
n

h2
, h =

∫ 1

0

(
ρ(τ)

EI(τ)

)1/4

dτ, ρn =
1√
2

(
n+

1

2

)
π(1 + i) + O(n−1) as n→ ∞,

(53)

where n is a large positive integer, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
√

2

4
(1 + i)e

1
4

∫ z

0
a(τ)dτ

φn0(x) = sin(n+ π/2)z − cos(n+ π/2)z

+e−(n+1/2)πz + (−1)ne−(n+1/2)π(1−z) + O(n−1),

−
√

2

4
(1 + i)e

1
4

∫ z

0
a(τ)dτ

λ−1
n0 φ

′′
n0(x) = i

(
ρ(x)

EI(x)

)1/2

[cos(n+ π/2)z − sin(n+ π/2)z

+e−(n+1/2)πz + (−1)ne−(n+1/2)π(1−z)] + O(n−1).

(54)
Proof of Theorem 2.4. Since A0 is a skew-adjoint discrete operator in H, from a

well-known result in functional analysis, the set of all ω-linearly independent
eigenfunctions of A0 forms an orthogonal basis for H. Since (φn0, λn0φn0) defined
by (54) are approximately normalized, {(φn0, λn0φn0)} ∪ {their conjugates} form a
(orthogonal) Riesz basis for H. Combining (9), (10), (53), and (54), we see that there
is an N > 0 such that

∞∑
n>N

‖(λ−1
n φn, φn) − (λ−1

n0 φn0, φn0)‖2
H =

∞∑
n>N

O(n−2) <∞.(55)

The same is true for their conjugates. Hence the conditions of Theorem 2.5 are
satisfied with correspondence A = A, xn = (λ−1

n φn, φn), zn = (λ−1
n0 φn0, φn0). The

proof is complete.
Now we are in a position to show the exponential stability confirmed by Theo-

rem 2.7. Since the spectrum-determined growth condition holds, which is claimed by
Theorem 2.4, system (2) is exponentially stable if and only if there is an ω > 0 such
that

Reλ < −ω ∀ λ ∈ σ(A).

Lemma 3.5. Let λn be defined by (8). Then there is an ω0 > 0 such that

lim
n→∞Reλn = −ω0 < 0.(56)
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Proof. Let (λ, φ) = (λn, φn) in (7), where φn is defined by (9). Multiplying φn on
both sides of the first equation in (7) and integrating from 0 to 1 with respect to x,
we obtain

λ2
n

∫ 1

0

ρ(x)|φn(x)|2dx+

∫ 1

0

EI(x)|φ′′n(x)|2dx+ kλn|φn(1)|2 = 0.

Since Imλn 	= 0 for sufficiently large n, we have, from the above equation, that

2Reλn

∫ 1

0

ρ(x)|φn(x)|2dx = −k|φn(1)|2 as n→ ∞.

Then by (9) and the Riemann–Lebesgue lemma, we have

lim
n→∞ |φn(1)|2 = 16e

− 1
2

∫ 1

0
a(τ)dτ

, lim
n→∞

∫ 1

0

ρ(x)|φn(x)|2dx = 4

∫ 1

0

ρ(x)e
− 1

2

∫ z

0
a(τ)dτ

dx,

where z = z(x) is specified by (29). Hence

lim
n→∞Reλn = −2k

e
− 1

2

∫ 1

0
a(τ)dτ

∫ 1

0
ρ(x)e

− 1
2

∫ z

0
a(τ)dτ

dx
< 0.

The result follows.
Proof of Theorem 2.5. By Lemma 3.5 and the spectrum-determined growth con-

dition, we need only show that

Reλ < 0 for any λ ∈ σ(A).(57)

Since the system is dissipative, Reλ ≤ 0 for any λ ∈ σ(A). Suppose that Reλ = 0.
Then from Re〈AY, Y 〉 = −k|φ(1)|2 for each Y = (φ, λφ), we have φ(1) = 0. In this
case, (7) becomes{

λ2ρ(x)φ(x) + (EI(x)φ′′(x))′′ = 0, 0 < x < 1,
φ(0) = φ′(0) = φ′′(1) = φ′′′(1) = φ(1) = 0.

(58)

The proof is complete if we can show that there is only zero solution to (58). To this
end, we follow the idea used in [17].

First, we claim that there is at least one zero of φ in (0,1). In fact, by φ(0) =
φ(1) = 0, it follows from Rolle’s theorem that there is a ξ1 ∈ (0, 1) such that φ′(ξ1) = 0,
which, together with φ′(0) = 0, claims that (EIφ′′)(ξ2) = 0 for some ξ2 ∈ (0, ξ1), and
so (EIφ′′)′(ξ3) = 0 for some ξ3 ∈ (ξ2, 1) by the condition (EIφ′′)(1) = 0. Hence there
is a ξ4 ∈ (ξ3, 1) such that (EIφ′′)′′(ξ4) = 0 by the condition (EIφ′′)′(1) = 0. However,
(EIφ′′)′′(ξ4) = −λ2ρ(ξ)φ(ξ4); we conclude that φ(ξ4) = 0.

Next, we show that if there are n different zeros of φ in (0,1), then there are at
least n+ 1 number of different zeros of φ in (0,1).

Indeed, suppose that

0 < ξ1 < ξ2 < · · · < ξn < 1, φ(ξi) = 0, i = 1, 2, . . . , n.

Since φ(0) = φ(1) = 0, it follows from Rolle’s theorem that there are ηi, i = 1, 2, . . . , n+
1,

0 < η1 < ξ1 < η2 < ξ2 < · · · < ξn < ηn+1 < 1
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such that φ′(ηi) = 0. Noting that φ′(0) = 0, there are αi, i = 1, 2, . . . , n+ 1,

0 < α1 < η1 < α2 < η2 < · · · < αn+1 < ηn+1 < 1

such that (EIφ′′)(αi) = 0. Since (EIφ′′)(1) = 0, using Rolle’s theorem again, we have
βi, i = 1, 2, . . . , n+ 1,

0 < α1 < β1 < α2 < · · · < αn+1 < βn+1 < 1

such that (EIφ′′)′(βi) = 0. Finally, by the condition (EIφ′′)′(1) = 0, we have ϑi, i =
1, 2, . . . , n+ 1,

0 < β1 < ϑ1 < β2 < · · · < βn+1 < ϑn+1 < 1

such that (EIφ′′)′′(ϑi) = 0. Therefore,

φ(ϑi) = 0, i = 1, 2, . . . , n+ 1.

Third, by mathematical induction, there is an infinite number of different zeros {xi}∞1
of φ in (0,1). Let x0 ∈ [0, 1] be an accumulation point of {xi}∞1 . It is obvious that

φ(i)(x0) = 0, i = 0, 1, 2, 3.

Note that φ satisfies the linear differential equation (EI(x)φ′′(x))′′ + λ2ρ(x)φ(x) =
0. Therefore, φ ≡ 0 by the uniqueness of the solution of linear ordinary different
equations.

Remark 4. The proof of Theorem 2.5 shows that each eigenvalue of A must be
geometrically simple. In fact, suppose that (φ1, λφ1), (φ2, λφ2) are any two eigenfunc-
tions of A corresponding to λ. Then one can choose constants c1, c2 not identical to
zero simultaneously such that φ = c1φ1 +c2φ2 satisfies φ(1) = 0. Now φ satisfies (58),
and so φ ≡ 0. Hence φ1 and φ2 are linearly independent.

From previous discussions, we see that our method can be easily used to get
the Riesz basis property for the following beam equation under boundary moment
feedback control:⎧⎨

⎩
ρ(x)ytt(x, t) + (EI(x)yxx(x, t))xx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxxx(1, t) = 0,
yxx(1, t) = −kyxt(1, t), k > 0.

(59)

It should be noted that the referring Riesz basis applied with Theorem 3.3 is accom-
plished by collecting all eigenfunctions of the following conservative free system:{

ρ(x)ytt(x, t) + (EI(x)yxx(x, t))xx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxxx(1, t) = yxt(1, t) = 0.

(60)

This is the same as that of the uniform case [1]. Moreover, the analysis in this paper
shows that the low order perturbations do not affect the basis property. For example,
if we assume b(x) ∈ C3[0, 1], then Theorem 2.7 is still valid for the following system:{

ρ(x)ytt(x, t) + b(x)yxxx(x, t) + (EI(x)yxx(x, t))xx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxx(1, t) = 0, (EI(x)yxx)x(1, t) = kyt(1, t).

(61)
Let us turn to system (12). First, we give a short proof of Theorem 2.7 by virtue

of Theorem 3.3.
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Proof of Theorem 2.7. Obviously, A + B is a discrete operator in H. Write
A+B = As+T , where Asφn = λnφn for all n ≥ 1 and T is a linear bounded operator
on H. We may assume without loss of generality that ‖φn‖ = 1 for all n ≥ 1. Since
{φn}∞1 is a Riesz basis, there is a K > 0 such that for any φ =

∑∞
n=1 anφn and any

complex series {βn}, |βn| ≤ 1, ∥∥∥∥∥
∞∑

n=1

βnanφn

∥∥∥∥∥ ≤ K‖φ‖.(62)

By (15), we have dn → ∞ as n → ∞. Hence for any C > K‖T‖, there is an integer
M > N such that 2‖T‖K/dn < 1 for all n ≥M and

|λ− λm| ≥ C for any λ satisfying |λ− λn| = C, n ≥M.

First, for any φ =
∑∞

n=1 anφn and λ satisfying |λ− λn| = C, n ≥M ,

‖CR(λ,As)φ‖ =

∥∥∥∥∥
∞∑

n=1

C

λ− λn
anφn

∥∥∥∥∥ ≤ K‖φ‖,

and so ‖R(λ,As)‖ ≤ K/C. Hence ‖R(λ,As)T‖ ≤ K‖T‖/C < 1. This shows that
{λ||λ − λn| = C, n ≥ M} ⊂ ρ(As + T ) since λ ∈ σ(As + T ) if and only if 1 ∈
ρ(R(λ,As)T ). Let Γn = {λ||λ− λn| = C}, n ≥M. Consider eigenprojectors

Qn − Pn =
1

2πi

∫
Γn

R(λ,As + T )dλ− 1

2πi

∫
Γn

R(λ,As)dλ

=
1

2πi

∞∑
m=1

∫
Γn

[R(λ,As)T ]mR(λ,As)dλ.

One can choose C > 0 large enough such that

‖Qn − Pn‖ ≤ C

∞∑
m=1

(K‖T‖/C)mK/C = K
K‖T‖/C

1 −K‖T‖/C < 1.(63)

Therefore, dim(Qn) = dim(Pn). Hence there exists a unique µn, |µn − λn| < C such
that µn ∈ σ(As + T ) = σ(A + B). This is (i). Moreover, since ‖Pnφn‖ = ‖φn‖ = 1,
we see that Qnφn 	= 0 and

Qnφn = φn +
1

2πi

∞∑
m=1

∫
Γn

[R(λ,As)T ]mR(λ,As)dλdλφn.(64)

Next, take Λn = {λ||λ − λn| = dn/2}, n ≥ M . Then for any φ =
∑∞

n=1 anφn and
λ ∈ Λn, ‖dn/2R(λ,As)φ‖ = ‖∑∞

m=1
dn

2
1

λ−λm
amφm‖ ≤ K‖φ‖, and thus ‖R(λ,As)‖ ≤

2
dn
K. Since ‖R(λ,As)T‖ ≤ 2

dn
‖T‖K < 1, we see that {Λn, n ≥ M} ⊂ ρ(As + T ) =

ρ(A+B). Now consider

Q̃n − Pn =
1

2πi

∫
Λn

R(λ,As + T )dλ− 1

2πi

∫
Λn

R(λ,As)dλ

=
1

2πi

∞∑
m=1

∫
Λn

[R(λ,As)T ]mR(λ,As)dλ.
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We have

‖Q̃n − Pn‖ ≤
2
dn

‖T‖K
1 − 2

dn
‖T‖K ‖T‖K ≤ L

dn
, n ≥M,

for some constant L > 0. We may consider

‖Q̃n − Pn‖ ≤ L

dn
< 1, n ≥M.(65)

Hence dim(Q̃n) = dim(Pn) = 1, and Qn = Q̃n as n ≥ M . Therefore, ψn = Qnφn
satisfies

‖ψn − φn‖2 ≤ L2d−2
n as n ≥M,(66)

proving the theorem.
Note that the eigenproblem of (12) is to find the nonzero solution ψ such that⎧⎨

⎩
µ2ρ(x)ψ(x) + µb(x)ψ(x) + (EI(x)ψ′′(x))′′ = 0, 0 < x < 1,
ψ(0) = ψ′(0) = ψ′′(1) = 0,
(EI(x)ψ′′)′(1) = µkψ(1),

(67)

and the eigenfunction of A + B is of the form (ψ, µψ).
Proof of Corollary 2.9. Let (µ, ψ) = (µn, ψn) in (67), where ψn is determined by

(17). Multiplying ψn on both sides of the first equation in (67) and integrating from
0 to 1 with respect to x, we obtain

µ2
n

∫ 1

0

ρ(x)|ψn(x)|2dx+µn

∫ 1

0

b(x)|ψn(x)|2dx+

∫ 1

0

EI(x)|ψ′′
n(x)|2dx+kλn|ψn(1)|2 = 0.

Since Im µn 	= 0 for sufficiently large n, we have, from the above equation, the
following:

Reµn = −1

2

∫ 1

0
b(x)|ψn(x)|2dx+ k|ψn(1)|2∫ 1

0
ρ(x)|ψn(x)|2dx

as n→ ∞.(68)

It follows from (17) and (18) that ‖ψn − φn‖L2(0,1) → 0, ‖ψ′
n − φ′n‖L2(0,1) → 0 as

n→ ∞. By the trace theorem |ψn(1) − φn(1)| → 0. Therefore,

Reµn → −1

2

∫ 1

0
b(x)|φn(x)|2dx+ k|φn(1)|2∫ 1

0
ρ(x)|φn(x)|2dx

as n→ ∞.(69)

Similar to the proof of Lemma 3.5, we obtain (19).
Proof of Example 3. It follows from the proof of Corollary 2.9 that for any

eigenfunction (ψ, µψ) of A + B

µ2

∫ 1

0

|ψ(x)|2dx+ µ

∫ 1

0

b(x)|ψ(x)|2dx+

∫ 1

0

|ψ′′(x)|2dx = 0.

If Im µ = 0, then from the above equation

(Reµ)2
∫ 1

0

|ψ(x)|2dx+ Reµ

∫ 1

0

b(x)|ψ(x)|2dx+

∫ 1

0

|ψ′′(x)|2dx = 0.
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Hence Reµ < 0. If Im µ 	= 0,

Reµ = −1

2

∫ 1

0
b(x)|ψ(x)|2dx∫ 1

0
|ψ(x)|2dx

≤ −1

2

b0
∫ b

a
|ψ(x)|2dx∫ 1

0
|ψ(x)|2dx

< 0.

Therefore, for any µ ∈ σ(A + B), Reµ < 0. This, together with (20), gives the
exponential stability of system (22), which is indicated in [18]. By similar reasoning,
when k = 0, b(x) ≥ 0 for x ∈ [0, 1] and b(x) > b0 > 0 for all x in some subset
(a, b) ⊂ [0, 1], system (12) is also exponential stable.

Finally, we give the proof of Proposition 2.10. The validity of Proposition 2.10
deduces Lemma 3.5 automatically.

Proof of Proposition 2.10. Like the transformation from (7) to (32), (67) can be
transformed into⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g(4)(z) + a1(z)g
′′(z) + a2(z)g

′(z) + a3(z)g(z) + λh4b̃(z)g(z) + λ2h4g(z) = 0,
g(0) = g′(0) = 0,
g′′(1) = a11g

′(1) + a12g(1),

g′′′(1) = a21g
′(1) +

[
λ
kh3

EI(1)

(
ρ(1)

EI(1)

)−3/4

+ a22

]
g(1),

(70)
where the functions are the same as those in (32). By Theorem 2.8 and Corollary 2.9,
all eigenvalues of A + B with sufficiently large modulus must be located on the left
complex plane under the assumption (23). Following [4], by noticing the smooth
assumption (3) and (23), we know that for λ = ρ2/h2, |ρ| sufficiently large,

g(4)(z) + a1(z)g
′′(z) + a2(z)g

′(z) + a3(z)g(z) + λh4b̃(z) + λ2h4g(z) = 0

admits four linearly independent solutions gk, k = 1, 2, 3, 4 for any ρ ∈ S, which satisfy⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gk(z) = eρωkz[1 + Lk(z)
ρ + O( 1

ρ2 )],

g′k(z) = ρωke
ρωkz[1 + Lk(z)

ρ + O( 1
ρ2 )],

g′′k (z) = (ρωk)
2eρωkz[1 + Lk(z)

ρ + O( 1
ρ2 )],

g′′′k (z) = (ρωk)
3eρωkz[1 + Lk(z)

ρ + O( 1
ρ2 )], k = 1, 2, 3, 4,

(71)

where

Lk(z) = − 1

4ωk

∫ z

0

a1(τ)dτ +
h2

4
ωk

∫ z

0

b̃(τ)dτ.(72)

Similar to (37)–(40), by noting (71), we can write the characteristic equation (42)
as

det

⎛
⎜⎜⎜⎜⎜⎝

1 1 eρω2 0
ω1 ω2 −ω2e

ρω2 0

0 ω2
2e

ρω2

[
1 +

�2
ρ

]
ω2

2

[
1 +

�3
ρ

]
ω2

1

[
1 +

�4
ρ

]

0 ω3
2e

ρω2

[
1 +

�2
ρ

]
− k̃

ρ
eρω2 −ω3

2

[
1 +

�3
ρ

]
− k̃

ρ
−ω3

1

[
1 +

�4
ρ

]
− k̃

ρ

⎞
⎟⎟⎟⎟⎟⎠ = O

(
1

ρ2

)
,

(73)
where �k = Lk(1). A direct computation yields

e2ρω2 = −1 + 2
k̃

ρ
ω2 +

2�2
ρ

+ O
(

1

ρ2

)
.(74)
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Substituting ρ = −(n+ 1/2)πω2 + O(n−1) into (74), the term O(n−1) satisfies

−2ω2O(n−1) =
2k̃

(n+ 1/2)π
− 2�2

(n+ 1/2)πω2
+ O(n−2);

hence

O(n−1) =
k̃

(n+ 1/2)πω2
− 2�2

(n+ 1/2)πω2

1

2ω2
+ O(n−2).

Therefore,

ρ = −(n+ 1/2)πω2 +
2k̃

2(n+ 1/2)πω2
+

2�2
(n+ 1/2)πω2

1

2ω2
+ O(n−2),

which produces

λh2 = ρ2 = −2k̃ + i[(n+ 1/2)π]2 − 2�2
ω2

+ O(n−1).

The required result then follows.
It is seen that Proposition 2.10 coincides with the estimates in [1] for the uniform

system (1) with k1 = 0, b = 0.
Thus, from (24), condition (23) can be replaced by

∫ 1

0

b̃(z)dz =
1

h

∫ 1

0

b(x)

ρ(x)

(
ρ(x)

EI(x)

)1/4

dx > 0.(75)

For the case of EI = ρ = 1, the result can be found in [6].
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