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Abstract. An optimal stochastic control problem is considered for systems with unbounded
controls satisfying an integral constraint. It is shown that there exists an optimal control within the
class of generalized controls leading to impulse actions. Applying an approach of time transformation,
developed recently for deterministic systems, the original control problem is shown to be equivalent
to an optimal stopping problem. Moreover, the description of generalized solutions is given in terms
of stochastic differential equations governed by a measure.
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1. Introduction. In this paper, the existence of an optimal control is discussed
for the nonlinear stochastic system defined by the following equation:

xt
.
= ζ +

∫ t

0

A(s, xs)ds+

∫ t

0

B(s, xs)usds+

∫ t

0

D(s, xs)dWs,(1)

where the functions A, B, and D are deterministic, {Wt} is a Brownian motion, and
{ut} is the control. All the processes are assumed to be defined on a probability space
(Ω,F , P, {Ft}). Let K be a closed convex cone. The class of admissible controls,
labeled Ca, is defined by the class of K-valued, {Ft}-predictable processes subject to
the following constraint: ∫ T

0

|us|ds ≤M.(2)

For an admissible control u, the cost is given by

J [u] = E[g(xT )],(3)

where g is a deterministic function and T is the terminal time.
When the control satisfies condition (2), it is easy to see that the optimal solution

may not exist within the class of admissible control (see the example in section 3).
Indeed, this constraint (2) implies that the admissible control can be chosen as close
as desired to a control of impulsive type. An approach to solve this problem in
a deterministic context, based on a time transformation, was originally suggested by
Warga [21] and has been actively developed recently (see, for example, the survey [15]).
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In the stochastic context, this approach was introduced by Miller and Runggaldier in
[17] to solve a special case of the problem studied in the present work. In this context,
it appears necessary to introduce a new concept to describe the limit of a sequence of
control processes subject to the constraint (2); this is the so-called generalized control.
(For a more precise exposition, see Definition 3.1.) Similarly, the limit of a sequence
of solutions of (1) is defined as a generalized solution. These definitions of generalized
control and generalized solution are taken from the deterministic context (see, for
example, [1, 16, 18]).

Our aim is to characterize the value of infu∈Ca J [u]. By introducing the class of ad-
missible generalized controls, labeled C

a
, it is shown that infu∈Ca J [u] = infu∈C

a J [u].
The characterization of infu∈Ca J [u] will be completed when it is shown that the there
exists an optimal generalized control u∗ ∈ C

a
such that infu∈C

a J [u] = J [u∗]. It proves
that there exists an optimal generalized control for the original control problem, jus-
tifying, therefore, the introduction of this class of process, C

a
. This existence result

is obtained by using a time transformation to convert the original control problem
into an optimal stopping problem. Moreover, the representation of the generalized
solution is given in terms of a stochastic differential equation governed by a measure.
This important property enhances the link existing between this control problem and
the class of singular control problems.

Singular stochastic control problems have recently received considerable attention
in the literature (see [9, 10, 22] and the references therein). However, until now the
theoretical basis for this kind of stochastic control problem was restricted to the class
of systems where the gain of the singular control does not depend on the state process
(see, for example, [9, 10] and the references therein). Therefore, our work can be
considered as a first attempt to extend these results in the case where the gain of the
singular control may depend on the state process. Other extensions of our approach
are already planned, and in [4] it will be shown how this method can be applied
to re-examine the singular problem studied in [9]. It must be pointed out that the
control problem defined in (1)–(3) cannot be solved directly by using the results in
[8, Theorem 4.7]. Our work can be generalized in several directions by adding soft
constraints and considering the optimal stopping problem.

The paper is organized as follows. In section 2, we formulate the original control
problem. The concept of generalized control is introduced in section 3 by analogy with
the deterministic case. It is shown that the infimum of the expected cost over the
class of admissible controls and the infimum over the class of admissible generalized
controls are the same (see Proposition 3.2). Section 4 contains the description of
the time transformation and introduces an auxiliary control problem that will be
shown to be equivalent to the original one. On the basis of known results [8], the
existence theorem is proved for the auxiliary problem. A consequence of this result
is derived in section 5 and shows that there exists an optimal generalized control
for the original control problem. Its representation is given in terms of a stochastic
differential equation governed by a measure. In the appendix, some technical results
are derived.

We introduce the following notation and terminology.
Notation. NN is the set of the first N integers, that is, NN = {1, . . . , i, . . . , N}.

R+
.
= {x ∈ R : x ≥ 0}. The ith component of a vector M is denoted by M i. The

symbol |.| is used to denote the norm of vectors and matrices. If X is a normed space,
then for R > 0 the set BR(X) is defined by {x ∈ X : |x| < R} and BR(X)

.
= {x ∈

X : |x| ≤ R}. (′) denotes the transpose operation. 0n ∈ R
n is the zero vector. The

indicator function of a set A is defined as IA(x). On a probability space (Ω,F , P ),
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the mathematical expectation will be denoted by EP [.].
In order to define the state processes, let us introduce the following data:
• K is a subset of R

p.
• A : R+ × R

n → R
n.

• B : R+ × R
n → R

n×p.
• D : R+ × R

n → R
n×m.

• g : R
n → R+.

• ζ is a fixed vector in R
n.

• T and M are fixed real numbers.
• G : R+ → R+ such that G(T ) = 0 and G(t) =∞ for t �= T .

The following assumptions will be used in the paper.
(A.1) There are constants L1 and L2 such that for all t, s ∈ R+ and x, y ∈ R

n

|A(t, x)|+ |B(t, x)|+ |D(t, x)| ≤ L1(1 + |x|),
|A(t, x)−A(s, y)|+ |B(t, x)−B(s, y)|+ |D(t, x)−D(s, y)| ≤ L2(|x− y|+ |t− s|).

(A.2) The function g is continuous, and there exist a constant L3 and a positive
integer q such that

|g(x)|2 ≤ L3(1 + |x|q).

(A.3) K is a closed cone which is convex.
(A.4) For all (t, x) ∈ [0, T )× R

n, the set K(t, x) defined by

K(t, x)
.
=

{
((1− |θ|)A(t, x) +B(t, x)θ, (1− |θ|)D(t, x)D(t, x)′, |θ|) : θ ∈ B1(K)

}
is convex.

2. Problem statement. In this section, we formulate the stochastic control
problem presented in the introduction using the formulation described in Haussmann
and Lepeltier [8] and El Karoui, Nguyen, and Jeanblanc-Picqué [5].

Definition 2.1. A control is defined by the term

C
.
= (Ω,F , P, {Ft}, {ut}, {Wt}, {xt}),

where the following hold:
(i) (Ω,F , P ) is a complete probability space with a right continuous complete

filtration {Ft}.
(ii) {ut} is a K-valued, {Ft}-predictable process such that∫ T

0

|us|ds ≤M.(4)

(iii) {Wt} is an {Ft} standard m-dimensional Brownian motion.
(iv) {xt} is an R

n-valued, {Ft} progressively measurable process such that

(∀t ∈ [0, T ]), xt .= ζ +
∫ t

0

A(s, xs)ds+

∫ t

0

B(s, xs)usds

+

∫ t

0

D(s, xs)dWs.(5)
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We write C for the set of controls satisfying the previous conditions.
The cost is given by

J [C]
.
= EP [g(xT )].(6)

The set Ca of admissible controls is defined by

Ca .
= {C ∈ C : J [C] <∞}.(7)

We shall consider as a control objective the minimization of J [C] on Ca.
As already pointed out in the introduction, since we do not assume any conditions

such as the coercivity condition (see (3.5) in [8]), the existence of an optimal control for
the previous problem cannot be claimed using the approach described in [8]. Before
presenting the concept of generalized control, let us derive the following technical
lemma.

Lemma 2.2. The stochastic differential equation (5), where {ut} satisfies item
(ii) of Definition 2.1, has a unique solution such that

(∀q ∈ N) EP

[
sup

t∈[0,T ]

|xt|2q
]
< D,(8)

where D is a constant.
Proof. Using (A.1) and Theorem 7, page 197 in [19], the existence and the unique-

ness of the solution are straightforward. The proof of (8) is given in the appendix.
We cannot use standard arguments to derive it since the process {ut} may not be
bounded but satisfies the inequality (4).

3. Generalized controls. An optimal control may not exist within the class of
ordinary admissible controls Ca. An example is now presented in order to illustrate
this assertion. A deterministic problem is considered where T = 1,M = 1, the control
ut ∈ K .

= R+, and the state satisfies the following equation:

(∀t ∈ [0, 1]) xt
.
=

∫ t

0

(us − xs)ds.

The aim is to minimize the cost J [C] = (1 − x1)
2. It is easy to show that x1 =∫ 1

0
e(s−1)usds, and, by using the fact that

∫ 1

0
usds ≤ 1, it follows that for any admis-

sible control J [C] > 0.
Now let us introduce the sequence of admissible controls

unt =

{
0 for 0 ≤ t ≤ 1− 1

n ,
n for 1− 1

n < t ≤ 1.

Clearly,
∫ 1

0
uns ds = 1, and the cost J [C

n] associated to un is equal to [1−n(1−e− 1
n )]2.

Consequently, limn→∞ J [Cn] = 0, showing that an optimal control does not exist
within the class of ordinary admissible controls Ca. This is a consequence of the
discontinuous behavior of the minimizing sequence {unt } at t = 1.

In order to characterize infC∈Ca J [C], we introduce the concept of generalized
control, labeled Cg, and its associated class of admissible controls C

a
. Moreover, the

correspondence between infC∈Ca J [C] and infCg∈C
a J [Cg] is given in Proposition 3.2,

justifying the introduction of this new class of controls C
a
.
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Definition 3.1. A generalized control is defined by the term

Cg .
= (Ω,F , P, {Ft}, {Ut}, {Wt}, {Xt}),

where the following hold:
(i) (Ω,F , P ) is a complete probability space with a right continuous complete

filtration {Ft}.
(ii) {Ut} is a K-valued, corlol, {Ft} progressively measurable process satisfying

Var
[0,T ]

[Ut] ≤M, Ut − Us ∈ K for t ≥ s.(9)

(iii) {Wt} is an {Ft} standard m-dimensional Brownian motion.
(iv) {Xt} is an R

n-valued, corlol, {Ft} progressively measurable semimartingale
such that the continuous part of {Xt} satisfies

(∀t ∈ [0, T ]) Xc
t
.
= ζ +

∫ t

0

A(s,Xs)ds+

∫ t

0

B(s,Xs)dU
c
s

+

∫ t

0

D(s,Xs)dWs.(10)

(v) There exists a sequence {Cn}n∈N
defined by

Cn .
= (Ω,F , P, {Fn

t }, {unt }, {Wn
t }, {xnt })

such that

(∀n ∈ N) Cn ∈ Ca

and

(∀t ∈ [0, T )) Xt = lim sup
s→t
s>t

lim
n→∞x

n
s , P− a.s.,

and XT = lim
n→∞x

n
T , P− a.s.(11)

We write C for the set of controls satisfying the previous conditions.
The cost is given by

J [Cg]
.
= EP [g(XT )].(12)

The set C
a
of admissible controls is defined by

C
a .
= {Cg ∈ C : J [Cg] <∞}.(13)

Note that the discontinuous part of {Xt} is generated by the discontinuous part
of {Ut}.

The following result provides a correspondence between the sets of control Ca

and C
a
. Its proof is an immediate consequence of the definitions of Ca and C

a
and

assumption (A.2).
Proposition 3.2. The set of control Ca is a subset of C

a
, and

inf
C∈Ca

J [C] = inf
Cg∈C

a
J [Cg].(14)
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4. Time transformation and the auxiliary control problem. In this sec-
tion, we introduce an auxiliary control problem which is given in terms of an optimal
stopping problem (see Definition 4.1). It is shown in Corollary 4.16 that this problem
is equivalent to the initial one. A key property of the auxiliary control problem is
that the controls take their values in a compact set.

Definition 4.1. An auxiliary control is defined by the term

Ψ
.
= (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt}, γ),

where the following hold:
(i) (Ω,F , P ) is a complete probability space with a right continuous complete

filtration {Gt}.
(ii) {θt} is a B1(K)-valued, {Gt}-predictable process.
(iii) {Vt} is a {Gt} standard m-dimensional Brownian motion.
(iv) γ is a {Gt} stopping time such that

γ ≤ T +M.(15)

(v) {Λt
.
= (ηt, ξ

′
t)

′} is an R
n+1-valued, {Gt} progressively measurable process such

that

ηt
.
= t−

∫ t

0

|θs|ds,(16)

ξt
.
= ζ +

∫ t

0

(1− |θs|)A(ηs, ξs)ds+
∫ t

0

B(ηs, ξs)θsds

+

∫ t

0

√
1− |θs|D(ηs, ξs)dVs(17)

for t ∈ [0, γ].
We write Υ for the set of controls satisfying the previous conditions.

The cost is given by

M[Ψ]
.
= EP [g(ξγ) +G(ηγ)].(18)

The set Υ
a
of admissible auxiliary controls is defined by

Υ
a .
= {Ψ ∈ Υ :M[Ψ] <∞}.(19)

Our aim is to show the equivalence between the auxiliary and the initial control
problems. However, we first show the existence of an optimal control for the auxiliary
problem.

Theorem 4.2. For the auxiliary control problem there exists an optimal control
Θ∗:

inf
Ψ∈Υ

a
M[Ψ] =M[Θ∗] and Θ∗ ∈ Υa

.(20)

Proof. Applying Corollary 4.8 in [8], it follows that there exist a probability space

(Ω, F̃ , P̃ ) and a filtration {G̃t} such that
• {θ̃t} is a B1(K)-valued, {G̃t} progressively measurable process,
• {Vt} is a {G̃t} standard m-dimensional Brownian motion,
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and

E
P̃
[g(ξγ)] ≤ inf

Ψ∈Υ
a
M[Ψ],(21)

where γ is a {G̃t} stopping time and

ηt = t−
∫ t

0

|θ̃s|ds,

ξt = ζ +

∫ t

0

(1− |θ̃s|)A(ηs, ξs)ds+
∫ t

0

B(ηs, ξs)θ̃sds+

∫ t

0

√
1− |θ̃s|D(ηs, ξs)dVs.

In (21), we do not have an equality because in the control problem studied by Hauss-
mann and Lepeltier [8] the set of admissible controls is defined on the set of progres-
sively measurable processes and for an arbitrary probability space. In our case, the
admissible controls are defined in the smaller set of predictable processes and on a
probability space that must satisfy the usual hypotheses (completion and right conti-
nuity). However, using Lemmas A.1 and A.2, it can be shown that there exists a new
probability space (Ω,F , P, {Gt}) satisfying the usual hypotheses based on a modifica-
tion of (Ω, F̃ , P̃ , {G̃t}). Moreover, the existence of a B1(K)-valued, {Gt}-predictable
process {θt} such that
Θ∗ .

= (Ω,F , P, {Gt}, {θt}, {Vt}, {(ηt, ξ′t)′}, γ) ∈ Υ
a

and M[Θ∗] ≤ inf
Ψ∈Υ

a
M[Ψ]

is guaranteed by Lemma A.3.
Consequently, we have M[Θ∗] = infΨ∈Υ

a M[Ψ], which gives the result.
In order to establish the correspondence between the auxiliary control problem

and the initial one, we need to introduce the following subset of Υ
a
, labeled Υa (see

Definition 4.3). We prove in Theorem 4.9 that

inf
Ψ∈Υa

M[Ψ] = min
Ψ∈Υ

a
M[Ψ]

=M[Θ∗].(22)

Then it is shown in Theorem 4.15 that

inf
C∈Ca

J [C] = inf
Ψ∈Υa

M[Ψ].(23)

Therefore, combining (22) and (23), the main result of this section (see Corollary
4.16) will follow; that is,

inf
C∈Ca

J [C] =M[Θ∗].

The rest of this section is devoted to the proofs of relations (22) and (23).
First, in order to show that (22) holds, we prove that for any control Ψ ∈ Υ

a

there exists a sequence of controls {Ψn} in Υa such that limn→∞ M[Ψn] = M[Ψ].
This is not a trivial consequence of the closure of Υa by Υ

a
since it is necessary to

approximate the stopping time γ. Now we need the following definitions and technical
results.

Definition 4.3. Let us introduce the set Υ ⊂ Υ:

Ψ
.
= (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt}, γ) ∈ Υ⇐⇒

 Ψ ∈ Υ
and
{θt} is a B1(K)-valued process
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and the corresponding set of admissible controls

Υa = Υ ∩Υa
.(24)

Definition 4.4. For Ψ
.
= (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt = (ηt, ξ

′
t)

′}, γ) ∈ Υ
a
,

define on (Ω,F , P )

νn
.
= inf

{
t ≥ 0 : t−

∫ t

0

n

n+ 1
|θs|ds ≥ nT

n+ 1

}
,(25)

ν
.
= inf{t ≥ 0 : ηt ≥ T},(26)

αn .
=
T +M − νn − T

n+1

T +M − νn .(27)

Lemma 4.5. If Ψ
.
= (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt = (ηt, ξ

′
t)

′}, γ) is an element of
Υ

a
, then ν and νn are {Gt} stopping times (for all n ∈ N) and

lim
n→∞ ν

n = ν, P− a.s.,(28)

and

0 ≤ αn < 1.(29)

Proof. See the appendix.
Using Lemma 4.5, we can now show that a sequence of control {Ψn} in Υa can

be constructed from any element Ψ in Υ
a
as described below.

Proposition 4.6. Assume that Ψ
.
= (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt = (ηt, ξ

′
t)

′}, γ)
is an element of Υ

a
. Define the sequence {Ψn}n∈N

by

Ψn .
=

(
Ω,F , P, {Gt}, {θnt }, {Vt}, {Λn

t = (η
n
t , ξ

n
t
′)′}, γn),(30)

where

θnt
.
=

n

n+ 1
θtI[[0,νn]] + α

ne1I]]νn,ν]] + α
nθtI]]ν,γ]] ( e1

.
= (1, 0, . . . , 0)′ ∈ R

p ),(31)

ηnt
.
= t−

∫ t

0

|θns |ds,(32)

ξnt
.
= ζ +

∫ t

0

(1− |θns |)A(ηns , ξns )I{s≤γn}ds+
∫ t

0

B(ηns , ξ
n
s )θ

n
s I{s≤γn}ds

+

∫ t

0

√
1− |θns |D(ηns , ξns )I{s≤γn}dVs,(33)

γn
.
= inf{t ≥ 0 : ηnt > T}.(34)

Then Ψn ∈ Υa for all n ∈ N.
Proof. From Lemma 4.5 and assumption (A.2), it follows that for all n ∈ N,

{θnt } is a B1(K)-valued process. Moreover, using the fact that α
n is measurable with

respect to Gνn , Gνn ⊂ Gν , and Corollary 6.34 in [6], it follows easily that for all n ∈ N,
the process {θnt } is {Gt}-predictable. From the definitions of {ηnt } and γn, we obtain
that ηnT+M ≥ ηnγn . Therefore, we have that

γn ≤ T +M(35)
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because {ηnt } is a strictly increasing process.
Now, applying Theorem 7, page 197 in [19], it is easy to see that (33) has a

unique solution. Therefore, for all n ∈ N the control Ψn satisfies all of the conditions
of Definition 4.3.

Clearly, we have EP [G(η
n
γn)] = 0 and

EP

[
sup

s≤T+M

|ξns |p
]
≤ C(36)

for a constant C depending on p but independent of n.
Combining hypothesis (A.2), the previous inequalities, and (35), we obtain that

M[Ψn] = EP [g(ξ
n
γn)] < ∞,(37)

and so Ψn ∈ Υa for all n ∈ N.
In order to derive the convergence of M[Ψn] to the cost function M[Ψ], we need

the following technical lemma.
Lemma 4.7. Assume that Ψ

.
= (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt = (ηt, ξ

′
t)

′}, γ) is an
element of Υ

a
. Then

0 ≤ γn − γ ≤ T

n+ 1
(38)

and

EP

[∣∣∣∣∫ γ

0

|θs − θns |2ds
∣∣∣∣2 + ∫ γ

0

|ηs − ηns |2ds
]
≤ C

{
1

(n+ 1)2
+ EP [|ν − νn|2]

}
(39)

for a constant C independent of n.
Proof. See the appendix.
Finally, based on the previous lemma, we can prove that the sequence {Ψn}

satisfies the desired property.
Proposition 4.8. Assume that Ψ

.
= (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt = (ηt, ξ

′
t)

′}, γ)
is an element of Υ

a
. Then the sequence {Ψn} in Υa satisfies

lim
n→∞M[Ψn] =M[Ψ].(40)

Proof. Let us introduce the following equation:

χt = ζ +

∫ t

0

(1− |θs|)A(ηs, χs)I{s≤γ}ds+
∫ t

0

B(ηs, χs)θsI{s≤γ}ds

+

∫ t

0

√
1− |θs|D(ηs, χs)I{s≤γ}dVs.(41)

Applying Theorem 7, page 197 in [19], it is easy to see that this equation has a unique
solution.

By using Doob’s inequality and Gronwall’s lemma, it is easy to show that there
exists a constant C such that

(∀t ∈ [0, T +M ]) EP

[
sup
s≤t

|χs − ξns |2
]
≤ C

[
1

n+ 1
+

√
EP [|νn − ν|2]

]
.(42)



GENERALIZED STOCHASTIC CONTROL PROBLEMS 1733

Moreover, we clearly have χT+M = ξγ and ξ
n
T+M = ξnγn , and so

EP [|ξγ − ξnγn |2] ≤ C

[
1

n+ 1
+

√
EP [|νn − ν|2]

]
.(43)

The sequence νn is bounded by T +M , and so it is uniformly integrable. There-
fore, using Lemma 4.5, we have that limn→∞EP [|νn − ν|2]. With (43), we obtain
that g(ξnγn)−→P

n→∞ g(ξγ) since the function g is continuous. Clearly, the sequence{
g(ξnγn)

}
is uniformly integrable, and so

lim
n→∞EP [g(ξ

n
γn)] = EP [g(ξγ)],(44)

giving the result.
In conclusion, we obtain the following result.
Theorem 4.9. Let Θ∗ ∈ Υ

a
be the optimal control for the auxiliary control

problem. Then

inf
Ψ∈Υa

M[Ψ] =M[Θ∗].(45)

Proof. The existence of Θ∗ has been shown in Theorem 4.2. Since Υa ⊂ Υ
a
, we

clearly have

inf
Ψ∈Υa

M[Ψ] ≥ M[Θ∗].

However, using Proposition 4.8, the result follows.
Now let us show that (23) holds. Its proof is given in Theorem 4.15 and is based

on Propositions 4.12 and 4.14. Here we use two time transformations which establish
the correspondence between Ca and Υa.

Let us introduce the following time-change.
Lemma 4.10. Let (Ω,F , P, {Ft}, {ut}, {Wt}, {zt = (yt, x′t)′}) be an element of C,

and let {Γt} be the process defined by

Γt
.
= t+

∫ t

0

|us∧T |ds.(46)

Denote by {Φt} the right inverse of Γ:

Φt
.
= inf{s ≥ 0 : Γs > t}.(47)

Then {Φt} is a continuous time-change satisfying the following properties:
(i) (∀ t ∈ R+) ΦΓt = t and ΓΦt = t.

(ii) (∀ t ∈ R+) Φt =
∫ t

0
1

1+|uΦs∧T |ds.
Proof. Item (i) is obvious. Differentiating the second equality in (i) and using

(46), item (ii) follows easily.
Remark 4.11. An immediate consequence of the previous lemma is the following

assertion:

(∀t ∈ [0,ΓT ]) Φt =

∫ t

0

1

1 + |uΦs |
ds,(48)

which will be used repeatedly in what follows.
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The following proposition shows that for any control C ∈ Ca, there exists a control
Θ ∈ Υa having the same cost.

Proposition 4.12. Assume that C
.
= (Ω,F , P, {Ft}, {ut}, {Wt}, {xt}) is an

element of Ca. Write Θ for (Ω,F , P, {FΦt}, {θt}, {Vt}, {∆t},ΓT ), where

θt
.
=

uΦt

1 + |uΦt |
, Vt

.
=

∫ Φt

0

√
1 + |us|dWs, ∆t

.
=

(
Φt

xΦt

)
,(49)

and Φt (respectively, Γt) is defined by (47) (respectively, (46)). Then Θ belongs to Υa

and

M[Θ] = J [C].(50)

Proof. From Proposition 1.1 in [20, Chapter V], {FΦt
} defines an increasing and

right continuous filtration which is complete. Then assertion (i) of Definition 4.1 is
satisfied. Now, using Theorem 3.52 in [11], it follows that { uΦt

1+|uΦt |} is an {FΦt}-
predictable process. Moreover, for all t ∈ R+,

uΦt

1+|uΦt | ∈ B1(K).

The process {Nt
.
=

∫ t

0

√
1 + |us|dWs} is an {Ft} continuous local martingale such

that

(∀t ∈ [0, T ], ∀(i, j) ∈ N
2
n) 〈N i, N i〉t = Γt, 〈N i, N j〉t = 0 (i �= j).(51)

Therefore, according to Theorem 4.13 in [12], {Vt = NΦt} is an {FΦt} standard
m-dimensional Brownian motion which gives item (iii) of Definition 4.1.

By Remark 2.9 and Theorem 2.33 in [6], the process {∆t} is adapted to {FΦt}.
Clearly, the process {∆t} is corlol. Consequently, {∆t} is progressively measurable
with respect to {FΦt

}.
Using Proposition 1.1 in [20, Chapter V], ΓT is an {FΦt} stopping time. With

(4), we have that ΓT = T +
∫ T

0
|us|ds ≤ T +M . Therefore, item (iv) of Definition 4.1

is satisfied.
Now let us show that the components of {∆t} satisfy (16) and (17) on [0,ΓT ].

Using (48) and the definition of {θ}, we have

(∀t ∈ [0,ΓT ]) Φt = t−
∫ t

0

|θs|ds.(52)

Therefore, the first component of the process {∆t} satisfies (16).
Now the process {xΦt} satisfies (for all t ∈ [0,ΓT ])

xΦt

.
= ζ +

∫ Φt

0

A(s, xs)ds+

∫ Φt

0

B(s, xs)usds+

∫ Φt

0

D(s, xs)dWs.(53)

Since {Γt} is continuous, we can use Proposition 1.4 in [20, Chapter V] and Lemma
4.10 in order to obtain that

(∀t ∈ [0,ΓT ])

∫ Φt

0

A(s, xs)ds =

∫ t

0

A(Φs, xΦs)dΦs

=

∫ t

0

A(Φs, xΦs)(1− |θs|)ds.(54)

We can repeat the same argument to show that

(∀t ∈ [0,ΓT ])

∫ Φt

0

B(s, xs)usds =

∫ t

0

B(Φs, xΦs)θsds.(55)
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Moreover,

(∀t ∈ [0,ΓT ])

∫ Φt

0

D(s, xs)dWs =

∫ Φt

0

D(s, xs)
1√

1 + |us|
dNs

=

∫ t

0

D(Φs, xΦs)
√
1− |θs|dVs,(56)

where the last equality is obtained by using Proposition 4.8 in [12].
Combining (53)–(56), we obtain that the process {xΦt} satisfies

(∀t ∈ [0,ΓT ]) xΦt
= ζ +

∫ t

0

(1− |θs|)A(Φs, xΦs
)ds+

∫ t

0

B(Φs, xΦs
)θsds

+

∫ t

0

√
1− |θs|D(Φs, xΦs

)dVs.(57)

Therefore, assertion (iv) of Definition 4.1 is satisfied for the process {∆t} (see (49)
for its definition). Finally, it follows that Θ ∈ Υ. However, we have shown that {θt}
is a B1(K)-valued process. Consequently, Θ ∈ Υ.

Now the cost corresponding to Θ is given by M(Θ) = EP [g(xΦΓT
) +G(ΦΓT

)].
However, ΦΓT

= T (see item (i) of Lemma 4.10). Therefore, we have M[Θ] =
EP [g(xT )] = J [C] <∞, implying that Θ ∈ Υa.

The proof of the following lemma is similar to that of Lemma 4.10. Therefore, it
is omitted.

Lemma 4.13. Let (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt = (ηt, ξ
′
t)

′}, γ) be an element of
Υ, and let {ψt} be the right inverse of η:

ψt
.
= inf{s ≥ 0 : ηs > t}.(58)

The process {ψt} is a continuous time-change satisfying the following properties:
(i) (∀ t ∈ R+) ψηt = t and ηψt = t.

(ii) (∀ t ∈ R+) ψt =
∫ t

0
1

1−|θψs |ds.
Conversely to Proposition 4.12, we show that, for any control Ψ ∈ Υa, there exists

a control S ∈ Ca having the same cost. The ideas to show this result are the same
as the one used in the proof of Proposition 4.12. Consequently, this result is quoted
without proof.

Proposition 4.14. Let Ψ
.
= (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt = (ηt, ξ

′
t)

′}, γ) be an
element of Υa. Write S for (Ω,F , P, {Gψt

}, {ut}, {Wt}, {ξψt
}), where

ut
.
=

θψt

1− |θψt
| , Wt

.
=

∫ ψt

0

√
1− |θs|dVs,(59)

and {Ψt} is defined in (58).
Then S belongs to Ca, and

J [S] =M[Ψ].(60)

Now we obtain the following result.
Theorem 4.15. The following property holds:

inf
C∈Ca

J [C] = inf
Ψ∈Υa

M[Ψ].(61)
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Proof. The result is an immediate consequence of Propositions 4.12 and 4.14.
Finally, we derive an important characterization of infC∈Ca J [C].
Corollary 4.16. Let Θ∗ ∈ Υ

a
be the optimal control for the auxiliary control

problem. Then

inf
C∈Ca

J [C] =M[Θ∗].(62)

Proof. It is a straightforward combination of Theorems 4.9 and 4.15.
Remark 4.17. Let us denote by Θ∗ .

= (Ω,F , P, {Gt}, {θt}, {Vt}, {(ηt, ξ′t)′}, γ) the
optimal control in Υ

a
. There is no loss of generality to assume that

inf{s : ηs > T} = γ.
Indeed, if this is not the case, let Θ̃ be the control defined by

Θ̃
.
= (Ω,F , P, {Gt}, {θ̃t}, {Vt}, {(η̃t, ξ̃′t)′}, γ),

θ̃t
.
= θtI[[0,γ]],

η̃t
.
= t−

∫ t

0

|θ̃s|ds,

ξ̃t
.
= ζ +

∫ t

0

(1− |θ̃s|)A(η̃s, ξ̃s)ds+
∫ t

0

B(η̃s, ξ̃s)θ̃sds

+

∫ t

0

√
1− |θ̃s|D(η̃s, ξ̃s)dVs.

Clearly, Θ̃ ∈ Υa and inf{s : η̃s > T} = γ. Moreover, it is easy to check that

(for all t ∈ [0, γ]) θ̃t = θt, η̃t = ηt, and ξ̃t = ξt. Therefore,
M(Θ̃) =M(Θ∗) = min

Ψ∈Υ
a
M[Ψ].

5. Existence of an optimal generalized control. In this section, we obtain
the last characterization of infC∈Ca J [C] in terms of an optimal generalized control.

Theorem 5.1. There exists a generalized control Cg∗ ∈ C
a
such that

inf
C∈Ca

J [C] = J [Cg∗]

= min
Cg∈C

a
J [Cg].

Proof. Let us denote by

Θ∗ .
= (Ω,F , P, {Gt}, {θt}, {Vt}, {(ηt, ξ′t)′}, γ)

the optimal control in Υ
a
.

Define

ψt
.
= inf{s : ηs > t},(63)

Xt
.
= ξψt

,(64)

Ut
.
=

∫ ψt

0

θsds,(65)

Wt
.
=

∫ ψt

0

√
1− |θs|dVs.(66)
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On the probability space (Ω,F , P ), {ψt} is a time-change (see Proposition 1.1 in [20,
Chapter V]). Moreover, {Gψt} defines a right continuous complete filtration. There-
fore, the processes {Xt}, {Yt}, and {Ut} are {Gψt} progressively measurable (see
Theorem T57, page 105 in [14]). Since {ξt} is a continuous process, {Xt}, {Yt}, and
{Ut} are corlol. Moreover, since K is a separable metric space satisfying assumption
(A.3), it is easy to obtain that {Ut} is a K-valued process and Ut −Us ∈ K for t ≥ s.

According to Theorem 4.13 in [12], {Wt} is a {Gψt} standard m-dimensional
Brownian motion.

Now, using Theorem 6.46 in [6], there exists a sequence {τn} of stopping times
which exhausts the jumps of {ψt}. Clearly, we have

∞∪
n=1

[[ψτn−, ψτn ]] ⊂ {(t, ω) ∈ R+ × Ω : |θt| = 1}.

Define

D .
= {(t, ω) ∈ R+ × Ω : |θt| = 1} −

∞∪
n=1

[[ψτn−, ψτn ]].

Consequently,

(∀t ∈ [0, T ]) Ut =

∫ ψt

0

I{|θs|<1}θsds+
∫ ψt

0

I{|θs|=1}θsds

=

∫ ψt

0

[I{|θs|<1} + ID]θsds+
∑
n∈N

∫ ψτn

ψτn−
θsds I[[τn,∞[[.

For (t, ω) ∈ ∪∞
n=1[[ψτn−, ψτn ]], we have I{|θt|<1}(ω) + ID(t, ω) = 0.

Therefore, {∫ t

0
[I{|θs|<1} + ID]θsds} is a {ψt} continuous process. Consequently,

the decomposition of the process {Ut} is given by

U c
t =

∫ ψt

0

[I{|θs|<1} + ID]θsds,

Ud
t =

∑
n∈N

∫ ψτn

ψτn−
θsds I[[τn,∞[[.

From Lemma 1.37 in [11], we have

(∀t ∈ R+) ηψt = t.(67)

Moreover, using Proposition 4.8 in [12], it follows that

(∀t ∈ [0, T ])
∫ ψt

0

√
1− |θs|D(ηs, ξs)dVs =

∫ t

0

D(s, ξψs)dWs.

Note that {ηt} is a {ψt} continuous process. Moreover, {ηt} is a process of finite
variation because it is absolutely continuous. Therefore, using Proposition 1.4 in [20,
Chapter V] and (67), we obtain that

(∀t ∈ [0, T ))
∫ ψt

0

(1− |θs|)A(ηs, ξs)ds =
∫ ψt

0

A(ηs, ξs)dηs

=

∫ t

0

A(s, ξψs)ds.
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Again, using the fact that {∫ t

0
[I{|θs|<1} + ID]θsds} is a {ψt} continuous process and

Proposition 1.4 in [20, Chapter V], we have∫ ψt

0

B(ηs, ξs)θsds =

∫ ψt

0

B(ηs, ξs)
[
I{|θs|<1} + ID

]
θsds

+
∑
n∈N

∫ ψτn

ψτn−
B(ηs, ξs)θsds I[[τn,∞[[

=

∫ t

0

B(s, ξψs
)dU c

s +
∑
n∈N

∫ ψτn

ψτn−
B(ηs, ξs)θsds I[[τn,∞[[.

It follows that the process {Xt} satisfies the following equation:

(∀t ∈ [0, T ]) Xt = ζ +

∫ t

0

A(s,Xs)ds+

∫ t

0

B(s,Xs)dU
c
s +

∫ t

0

D(s,Xs)dWs

+
∑
n∈N

∆Xτn I[[τn,∞[[,(68)

where

∆Xτn
.
=

∫ ψτn

ψτn−
B(ηs, ξs)θsds.(69)

According to Proposition 4.8, there exists a sequence {Ψn} such that Ψn ∈ Υa

for all n ∈ N. Write

ψn
t
.
= inf{s : ηns > t}.

From Proposition 4.6, it follows that {ψn
t } is a continuous, strictly increasing process

and such that (
∀t ∈

[
0,

nT

n+ 1

))
ψn
t ≤ ψn+1

t ≤ ψt.(70)

Therefore, for t in [0, T )), ψt
.
= limn→∞ ψn

t exists. Again, using (70), this limit is
lower semicontinuous and increasing on [0, T ).

Using similar arguments as in the proof of Lemma 4.5, it can be shown easily that

(∀t ∈ [0, T )) ηψt
= t.(71)

Combining (67) with (71), we obtain that

(∀t ∈ R+)
∑
n

I]]τn∧T,τn+1∧T [[ψt =
∑
n

I]]τn∧T,τn+1∧T [[ψt.

However, recalling that {ψt} is a lower semicontinuous, increasing process and {ψt}
is corlol, it follows that {ψt} is collor and

(∀t ∈ [0, T )) ψt = ψt+.(72)

There is no loss of generality to assume that limt→0t<0 ψt = 0, and so

(∀t ∈ [0, T )) ψt = ψt−.(73)
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Moreover, since ψn ∈ Υa, we have that ηnγn = T . Recalling that {ηnt } is strictly
increasing and continuous, we obtain that ψn

T = γn. Note that ψT = γ (see Remark
4.17). Using Lemma 4.7, it follows that

ψT
.
= lim

n→∞ψ
n
T = ψT = γ, P− a.s.(74)

Using (73) and the fact that {ψt} is an increasing process, we have that, for all
t ∈ [0, T ), ψt ≤ ψT− ≤ ψT = ψT . Consequently, {ψt} is increasing.

However, using similar arguments as in the proof of Proposition 4.8 (see (42)),
it can be shown easily that there exists a subsequence, still denoted by n, such that
(for all t ∈ [0, T ])

lim
n→∞ ξ

n
ψn

t
= ξψt

, P− a.s., and lim
n→∞

∫ ψn
t

0

|θns |ds =
∫ ψt

0

|θs|ds, P− a.s.(75)

Define

Cn =

(
Ω,F , P, {Gψn

t
},
{

θnψn
t

1− |θnψn
t
|

}
,

{∫ ψn
t

0

√
1− |θns |dVs

}
, {(ψn

t − t, ξnψn
t

′)′}
)
.

Since Ψn ∈ Υa for all n ∈ N and using Proposition 4.14, it follows that Cn ∈ Ca for
all n ∈ N.

Using the fact that {ξt} is continuous, (72), and (75), we obtain that
(∀t ∈ [0, T )) Xt = lim

s→t
s>t

lim
n→∞ ξ

n
ψn

s
, P− a.s.

Moreover, using (74) and (75),

XT = ξψT
= ξψT

= lim
n→∞ ξ

n
ψn

T
, P− a.s.(76)

From the definition of {ψn
t } and since Ψn ∈ Υa, we can use Lemma 4.13 in order to

obtain

(∀t ∈ [0, T ]) ψn
t − t =

∫ t

0

|θnψn
s
|

1− |θnψn
s
|ds

=

∫ t

0

|θnψn
s
|dψn

s .

Using Proposition 1.4 in [20, Chapter V] and the fact that {ψn
t } is a continuous

process, we have

(∀t ∈ [0, T ]) ψn
t − t =

∫ ψn
t

0

|θns |ds.(77)

Therefore, combining (74), (75), and (77) yields∫ ψT

0

|θs|ds = γ − T.

However,

Var
[0,T ]

[Ut] ≤ Var
[0,T ]

[∫ ψt

0

|θs|ds
]
=

∫ ψT

0

|θs|ds.
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Consequently, using (15), it follows that

Var
[0,T ]

[Ut] ≤M.

Finally, the generalized control Cg∗ defined by

Cg∗ .
= (Ω,F , P, {Ft}, {Ut}, {Wt}, {Xt})

is an element of C
a
.

However, by hypothesis, infC∈Ca J [C] = EP [g(ξγ)], and so we obtain with (76)

inf
C∈Ca

J [C] = EP [g(XT )] = J [C
g∗].

Now, using Proposition 3.2, we obtain the result.

Appendix. In this section, we prove some technical results.
Proof of Lemma 2.2. Let us consider R > |ζ| and define τR .

= inf{t : |xt| ≥ R}.
Clearly, the process {xt∧τR} is solution of the following equation:

xt∧τR
.
= ζ +

∫ t

0

A(s, xs∧τR)I{s≤τR}ds+
∫ t

0

B(s, xs∧τR)usI{s≤τR}ds

+

∫ t

0

D(s, xs∧τR)I{s≤τR}dWs.

Using (A.1) and (4), it follows that

|xt∧τR | ≤ |ζ|+ L1(T +M) +

∣∣∣∣∫ t

0

D(s, xs∧τR)I{s≤τR}dWs

∣∣∣∣
+

∫ t

0

|xs∧τR |L1(1 + |ut|)ds.

Using Gronwall’s lemma, we obtain that

|xt∧τR | ≤M1 +M2 sup
s≤t

∣∣∣∣∫ s

0

D(s, xs∧τR)I{s≤τR}dWs

∣∣∣∣,
where M1 and M2 are two constants. Using Theorem 6.5, page 87 in [7], assumption
(A.1), and Gronwall’s lemma, we finally have that

EP

[
sup
t≤T

|xt∧τR |2q
]
≤M

for a constant M .
Due to the continuity of {xt}, τR → ∞ as R → ∞. Therefore, using Fatou’s

lemma and the previous equation, the result follows.
Lemma A.1. Suppose (Ω,F , P ) is a probability space with a filtration {Gt} and

{Vt} is a {Gt} standard Brownian motion. Then {Vt} is a {Gq
t } standard Brownian

motion on the probability space
(
Ω,Fq, P

)
, where

Fq .= {A ⊂ Ω : (∃B ∈ F) such that A�B ∈ N},
Gq
t
.
= {A ⊂ Ω : (∃B ∈ Gt) such that A�B ∈ N},

N .
= {A ⊂ Ω : (∃B ∈ F) such that A ⊂ B and P (B) = 0},
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and the probability P is defined by (for all A ∈ Fq) P (A) = P (B), where B ∈ F and
A�B ∈ N .

Proof. From the definition of Gq
s and N , it follows that

(∀s > 0, ∀A ∈ Gq
s ) (∃(B,N) ∈ Gs ×N ) such that A = B +N.

Therefore, for all t > s ≥ 0 and for all A ∈ Gq
s we have∫

A

exp[iu′(Vt − Vs)] dP = exp−|u|2(t− s)
2

P (B).(78)

Moreover, P (B) = P (A), and, using (78), we obtain

EP [ exp[iu
′(Vt − Vs)] |Gq

s ] = exp−
|u|2(t− s)

2
,

which gives the result.
Lemma A.2. Suppose (Ω,F , P ) is a complete probability space with a complete

filtration {Gt} and {Vt} is a {Gt} standard Brownian motion. Then {Vt} is a {Gt+}
standard Brownian motion.

Proof. For all t > s ≥ 0 and 0 < ε < t− s we have

EP [ exp[iu
′(Vt − Vs+ε)] |Gs+ε] = exp−|u|2(t− s− ε)

2
.

Since Gs+ =
⋂

ε>0 Gs+ε, we obtain that

(∀A ∈ Gs+) lim
ε→0
ε>0

∫
A

exp[iu′(Vt − Vs+ε)] dP = exp−|u|2(t− s)
2

P (A).

By using the bounded convergence theorem and the fact that the {Vt} is a continuous
process, we have

EP [ exp[iu
′(Vt − Vs)] |Gs+] = exp−|u|2(t− s)

2
,

and the result follows.
Lemma A.3. Assume that {θt} is a B1(K)-valued, {Gt} progressively measurable

process. Then (16) and (17) have a unique solution such that

(∀q ∈ N) EP

[
sup

t∈[0,γ]

|ξt|2q
]
<∞.(79)

Moreover, there exist a B1(K)-valued, {Gt}-predictable process {θt} such that
θ = θ, λ⊗ P − a.e.,(80)

and the process {ξt} solution of the following stochastic differential equation:

ξt
.
= ζ +

∫ t

0

(1− |θs|)A(ηs, ξs)ds+
∫ t

0

B(ηs, ξs)θsds+

∫ t

0

√
1− |θs|D(ηs, ξs)dVs,

where ηt = t−
∫ t

0
|θs|ds is indistinguishable from {ξt}.
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Proof. Using (A.1) and Theorem 7, page 197 in [19], the existence and the unique-
ness of the solution are straightforward. The conditions of Corollary 10, page 85 in
[13] are satisfied, and the inequality (79) follows.

By hypothesis, the process θ is progressively measurable with respect to {Gt}.
Using Theorem 3.7 in [3], it follows that the function θ : R+×Ω→ K is P∗ measurable,
where

P∗ .
= {A ∈ B(R+)⊗F : A�B ∈ N for some B ∈ P},

P denoting the predictable σ-field and N .
= {N ∈ B(R+)⊗F : λ⊗ P (N) = 0}. Since

B1(K) is a locally compact separable metric space, we can use the lemma and its
associated remark [2, pp. 59–60] to obtain the existence of a B1(K)-valued, {Gt}-
predictable process {θt} satisfying (80).

Consequently,

ηt = t−
∫ t

0

|θs|ds.(81)

Moreover, since {ηt} and {ηt} are continuous, they are indistinguishable processes.
Combining (81), (8), and (A.1), we obtain that

∫
[0,T+M ]×Ω

|B(., x.)u.| λ⊗ P <∞, so

(∀t ∈ [0, γ])
∫ t

0

B(ηs, ξs)θsds =

∫ t

0

B(ηs, ξs)θsds

by using Fubini’s theorem.
Similarly, we have that

(∀t ∈ [0, γ])
∫ t

0

(1− |θs|)A(ηs, ξs)ds =
∫ t

0

(1− |θs|)A(ηs, ξs)ds

and

(∀t ∈ [0, γ])
∫ t

0

(1− |θs|)|D(ηs, ξs)|2ds =
∫ t

0

(1− |θs|)|D(ηs, ξs)|2ds.

Consequently, we obtain that

(∀t ∈ [0, γ])
∫ t

0

√
1− |θsD(ηs, ξs)ds =

∫ t

0

√
1− |θs|D(ηs, ξs)ds,

which implies that {ξt} satisfies (17).
By the uniqueness of the solution of (17), ξt = ξt, P − a.s., for all t in [0, γ].

However, {ξt} and {ξt} are continuous processes, so they are indistinguishable.
Proof of Lemma 4.5. Clearly, ν and νn are {Gt} stopping times (for all n ∈ N).

Since Ψ ∈ Υa
, we have that EP [G(ηγ)] < ∞, implying that ηγ = T . With (15) and

the definition of ν, we obtain that

ν ≤ γ ≤ T +M.(82)

Note that

νn ≤ inf

{
t ≥ 0 : t−

∫ t

0

n+ 1

n+ 2
|θs|ds ≥ nT

n+ 1

}
.
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Since the process {t − ∫ t

0
n

n+1 |θs|ds} is continuous and strictly increasing, we have
νn < νn+1. Similarly, it can be shown that

νn < ν.(83)

Therefore, the sequence {νn} converges almost surely to a limit labeled ν such that
ν ≤ ν.(84)

By definition of νn, we have

νn −
∫ νn

0

n

n+ 1
|θs|ds = nT

n+ 1
,(85)

and letting n→ ∞, we obtain
ην = T.

From the definition of ν, we have ν ≥ ν. However, with (84) we obtain that ν = ν,
and so limn→∞ νn = ν.

From the definition of ν and (85), we obtain that

ν − νn − T

n+ 1
≥ 0.

With (84), we have T +M − νn − T
n+1 ≥ 0. Moreover, using (82) and (83), we obtain

that T +M − νn > 0. Finally, 0 ≤ αn < 1, which gives the result.
Proof of Lemma 4.7. Since the process {ηnt } is strictly increasing, it follows that

γn is the unique solution of the following equation:

ηnγn = T.(86)

However,

ηnγ = η
n
νn + γ − νn −

∫ γ

νn

|θns |ds

=
nT

n+ 1
+

T (γ − νn)
(n+ 1)(T +M − νn) .(87)

Using (15), it follows that

ηnγ ≤ T.(88)

From (86), we have

ηnγ + γ
n − γ = T.(89)

Combining (87)–(89), we obtain (38).
By using the definition of {θnt }, (15), and the fact that |θt| ≤ 1, we have∫ γ

0

|θs − θns |2ds ≤ 2

[∫ νn

0

|θs − θns |ds+
∫ ν

νn

|θs − θns |ds+
∫ γ

ν

|θs − θns |ds
]

≤ 2

[
T +M

n+ 1
+ ν − νn + T

n+ 1

γ − ν
T +M − νn

]
.
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From (15), (82), and (83), it follows that

γ − ν
T +M − νn ≤ T +M − ν

T +M − νn ≤ 1.

Consequently, there exists a constant C1 such that

EP

[∣∣∣∣∫ γ

0

|θs − θns |2ds
∣∣∣∣2
]
≤ C1

{
1

(n+ 1)2
+ EP [|ν − νn|2]

}
.

Similarly, it is easy to deduce the same bound for EP [
∫ γ

0
|ηs−ηns |2ds], which gives the

result.
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