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Abstract. An adaptive servomechanism is developed in the context of the problem of approx-
imate or practical tracking (with prescribed asymptotic accuracy), by the system output, of any
admissible reference signal (absolutely continuous and bounded with essentially bounded derivative)
for every member of a class of controlled dynamical systems modelled by functional differential
equations.
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1. Introduction. A servomechanism problem is addressed in the context of a
class of controlled dynamical systems having the interconnected structure shown in
the dashed box in Figure 1. In particular, the aim is the development of an adaptive
servomechanism which, for every system of the underlying class, ensures practical
tracking (in the sense that prespecified asymptotic tracking accuracy, quantified by
λ > 0, is assured), by the system output, of an arbitrary reference signal assumed to be
locally absolutely continuous and bounded with essentially bounded derivative. (We
denote by R the class of such functions and remark that bounded globally Lipschitz
functions form an easily recognized subclass.) The system consists of the intercon-
nection of two blocks: The dynamic block Σ1, which can be influenced directly by the
system input/control u (an RM -valued function), is also driven by the output w from
the dynamic block Σ2. Viewed abstractly, the block Σ2 can be considered as a causal
operator which maps the system output y (an RM -valued function) to w (an internal
quantity, unavailable for feedback purposes).

In essence, the underlying system class S consists of infinite-dimensional nonlinear
M -input u,M -output y systems (p, f, g, T ), given by a controlled nonlinear functional
differential equation of the form
(1.1)

ẏ(t) = f(p(t), (Ty)(t))+g(p(t), (Ty)(t), u(t)), y|[−h,0] = y0 ∈ C([−h, 0];RM ),

where, loosely speaking, h ≥ 0 quantifies the “memory” of the system, p may be
thought of as a (bounded) disturbance term, and T is a nonlinear causal operator.
While a full description of the system class S is postponed to section 3, we remark
here that diverse phenomena are incorporated within the class including, for exam-
ple, diffusion processes, delays (both point and distributed), and hysteretic effects.
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Fig. 1. (R,S)-universal λ-servomechanism.

Furthermore, we remark that results pertaining to adaptive control of functional dif-
ferential equations are also contained in [3], wherein both the underlying class of
systems and the analytic framework differs in an essential manner from those of the
present paper; restricted to a problem of adaptive stabilization, related results are also
reported in [19], with the fundamental distinction that, in [19], discontinuous stabi-
lizing feedback strategies are developed within an analytic framework of differential
inclusions.

The control objective is to determine an (R,S)-universal λ-servomechanism: specif-
ically, to determine continuous functions φ : RM → RM and ψλ : R+ → R+ (param-
eterized by λ > 0) such that, for each system of class S and every reference signal
r ∈ R, the control

(1.2) u(t) = −k(t)φ(y(t)− r(t)), k̇(t) = ψλ(‖y(t)− r(t)‖), k|[−h,0] = k0

applied to (1.1) ensures (i) convergence of the controller gain, and (ii) tracking of r(·)
with asymptotic accuracy quantified by λ > 0, in the sense that max{‖y(t)− r(t)‖ −
λ, 0} → 0 as t→∞. See Figure 1.

Given λ > 0, r ∈ R and writing

(1.3) F : (t, w, y, k) 7→ (f(p(t), w) + g(p(t), w,−kφ(y − r(t))), ψλ(‖y − r(t)‖)),

we see that analysis of the behavior of a system (p, f, g, T ) ∈ S under control (1.2)
constitutes a study of an initial-value problem of the form

(1.4) ẋ(t) = F (t, (T̂ x)(t)), x|[−h,0] = x0 := (y0, k0) ∈ C([−h, 0];RN ),

where N =M+1, x(t) = (y(t), k(t)), and T̂ is an operator defined on C([−h,∞);RN )
by

(1.5) (T̂ x)(t) = (T̂ (y, k))(t) := ((Ty)(t), y(t), k(t)).

The contribution of this paper is threefold in theme: First, we provide an ex-
istence theory for initial-value problems of the general form (1.4) under relatively

mild hypotheses on F and T̂ ; second, and within the framework of the first theme,
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we develop a universal servomechanism1 for a class of nonlinear, infinite-dimensional
systems; third, we elucidate the hypotheses on the right-hand side ψλ of the gain
adaptation equation in (1.2) under which the tracking objective is achievable. In
the very specific context of the linear systems of section 2.2 below we will show that
ψλ : [0,∞) → [0,∞) may be chosen as any continuous function with the properties
ψ−1λ (0) = [0, λ] and lim infs→∞ ψλ(s) 6= 0. (In particular, ψλ may be chosen to be a
bounded function; one such choice is given by ψλ(s) = max{s−λ, 0}/s for s > 0 with
ψλ(0) := 0.) This ensures that the gain k can exhibit at most linear growth, a feature
with attendant practical advantages.

We close this section with some remarks on notation. For I ⊂ R an interval
C(I;RN ) (respectively, ACloc(I;RN )) denotes the set of continuous (respectively, lo-
cally absolutely continuous) functions I → RN ; L∞loc(I;RN ) denotes the space of
measurable locally essentially bounded functions I → RN . For x : I → RN , the
restriction of x to J ⊂ I is denoted by x|J . The open ball of radius r > 0, centered
at c ∈ RN , is written as Br(c). For λ > 0, dλ denotes the Euclidean distance function
for [−λ, λ] given by

(1.6) dλ(ξ) := max{0, |ξ| − λ}.

R denotes the space of bounded functions in ACloc(R;RM ) with essentially bounded
derivative; when equipped with the norm ‖ · ‖1,∞ given by ‖r‖1,∞ = supt∈R ‖r(t)‖+
ess-supt∈R‖ṙ(t)‖ , R can be identified as the Sobolev space W 1,∞(R;RM ). We write
R+ := [0,∞). K denotes the class of continuous, strictly increasing functions α :
R+ → R+ with α(0) = 0; the subclass of unbounded class K functions is denoted K∞.
KL is the class of functions γ : R2+ → R+ such that for each t ∈ R+, γ(·, t) is of class
K and for each s ∈ R+, γ(s, ·) is decreasing with γ(s, t)→ 0 as t→∞.

2. Functional differential equations. The focus of this section is the devel-
opment of an existence theory, for initial-value problems of the form (1.4), of sufficient
generality to accommodate the analysis of dynamic behavior of the adaptively con-
trolled systems of later sections. While the literature is rich in existence results for
functional differential equations (see, for example, [4]), we are unaware of a result
directly applicable to the particular class of equations which form the focus of the
present paper. For this reason, and to make the present paper self-contained, we pro-
vide an appropriate result in Theorem 2.3 below (with proof in the appendix). First,

we make precise the class of admissible operators T̂ in (1.4).

Definition 2.1 (the operator class T N,K
h ). For h ≥ 0 and N,K ∈ N, let T N,K

h

denote the space of operators T : C([−h,∞);RN )→ L∞loc(R+;RK) with the following
properties.

1. For every δ > 0 and every bounded interval I ⊂ R+, there exists ∆ > 0 such
that, for all x ∈ C([−h,∞);RN ),

sup
t∈[−h,∞)

‖x(t)‖ < δ =⇒ ‖(Tx)(t)‖ < ∆ for almost all (a.a.) t ∈ I .

2. For all t ∈ R+, the following hold:
(a) for all x, ξ ∈ C([−h,∞);RN ),

x(·) ≡ ξ(·) on [−h, t] =⇒ (Tx)(s) = (Tξ)(s) for a.a. s ∈ [0, t];

1The servomechanism can also tolerate disturbances on the output measurement in a sense to be
described in section 3.
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(b) for all continuous ζ : [−h, t] → RN , there exist τ, δ, c > 0 such that, for
all x, ξ ∈ C([−h,∞);RN ) with x|[−h,t] = ζ = ξ|[−h,t] and x(s), ξ(s) ∈
Bδ(ζ(t)) for all s ∈ [t, t+ τ ],

ess sup
s∈[t,t+τ ]

‖(Tx)(s)− (Tξ)(s)‖ ≤ c sup
s∈[t,t+τ ]

‖x(s)− ξ(s)‖ .

Remark 2.2. (i) The essence of property 1 of Definition 2.1 is a “bounded-input,
locally bounded-output” assumption.

(ii) Property 2(a) is an assumption of causality.
(iii) Property 2(b) is a technical assumption on T of a “locally Lipschitz” nature.

(iv) Let T ∈ T N,K
h and t ≥ 0. Given x ∈ C([−h, t);RN ), let xe denote an

arbitrary extension of x to C([−h,∞);RN ). By virtue of property 2(a), Txe|[0,t) is
uniquely determined by the function x, in the sense that the former is independent of
the extension xe chosen for the latter. Expanding on this observation, we will adopt
the following notational convention: For s ∈ [0, t), we simply write (Tx)(s) in place
of (Txe)(s), where xe ∈ C([−h,∞);RN ) is any continuous extension of x.

(v) For ω ∈ R, let Sω denote the shift operator on functions R → RM given by
(Sωx)(t) := x(t+ ω) for all t ∈ R. Then

(2.1) T ∈ T N,K
h =⇒ TS−ω ∈ T N,K

h+ω for all ω ≥ 0.

(vi) Let T1, T2 ∈ T N,K
h and τ1, τ2 ∈ R. Then the operator τ1T1+ τ2T2, defined by

(τ1T1 + τ2T2)(y)(t) := τ1(T1y)(t) + τ2(T2y)(t), is also of class T N,K
h .

(vii) The class T N,N
h differs from class T N

h of [19, Definition 4] only insofar as
operators of the former class have range C([−h,∞);RN ) while operators of the latter
class have domain L∞loc(R;RN ).

2.1. An existence theorem. Consider the initial-value problem

(2.2) ẋ(t) = F (t, (T̂ x)(t)), x|[−h,0] = x0 ∈ C([−h, 0];RN ),

where T̂ is a causal operator of class T N,K
h and F : [−h,∞) × RK → RN is a

Carathéodory function. (Specifically, (i) for almost all t ∈ R, F (t, ·) is continuous; (ii)
for each fixed w ∈ RK , F (·, w) is measurable; (iii) for each compact C ⊂ RK there
exists κ ∈ L1loc([−h,∞);R+) such that

‖F (t, w)‖ ≤ κ(t) for almost all t ∈ [−h,∞) and all w ∈ C.)

By a solution of (2.2) on [−h, ω), we mean a function x ∈ C([−h, ω);RN ), with
ω ∈ (0,∞] and x|[−h,0] = x0, such that x|[0,ω) is absolutely continuous and satisfies
the differential equation in (2.2) for almost all t ∈ [0, ω); x is maximal if it has no
right extension that is also a solution.

Theorem 2.3. Let N,K ∈ N, T̂ ∈ T N,K
h , and x0 ∈ C([−h, 0];RN ). Assume

F : [−h,∞)× RK → RN is a Carathéodory function.
There exists a solution x : [−h, ω) → RN of the initial-value problem (2.2), and

every solution can be extended to a maximal solution; moreover, if F ∈ L∞loc([−h,∞)×
RK ;RN ) and x : [−h, ω)→ RN is a bounded maximal solution, then ω =∞.

Proof. For proof, see the appendix.
Next, we show that the operators of the class T N,K

h encompass the input-output
behavior of a diverse range of subsystems Σ2 (see Figure 1).
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2.2. Linear systems. The finite-dimensional prototype. Consider the well-
studied class L of finite-dimensional, real, linear, minimum-phase, M -input (u(t)),
M -output (y(t)) systems having high-frequency gain B ∈ RM×M with spectrum in
the open right half complex plane. Under a suitable coordinate transformation (see,
for example, [5, Proposition 2.1.2]), every system in L can be expressed in the form
of two coupled subsystems

(2.3)
ẏ(t) = A1y(t) +A2z(t) +Bu(t), y(0) = y0

ż(t) = A3y(t) +A4z(t), z(0) = z0

}

with y(t), u(t) ∈ RM , z(t) ∈ RN−M , and where A4 has spectrum in the open left half
complex plane. Introducing the linear operator T given by

(2.4) (Ty)(t) := A1y(t) +A2

∫ t

0

exp(A4(t− s))A3y(s)ds

and the function p given by p(t) := A2 exp(A4t)z
0, then, with respect to an operator

theoretic viewpoint, system (2.3) can be interpreted as

(2.5) ẏ(t) = p(t) + (Ty)(t) +Bu(t), y(0) = y0.

With reference to Figure 1, (2.4) and (2.5) correspond to components Σ2 and Σ1 of
the interconnected system.

Regular linear systems with bounded observation operator. The following exam-
ple is adapted from [19] and extends the prototype linear class L to an infinite-
dimensional setting by replacing the second of the differential equations (2.3) by
an infinite-dimensional analogue on a Hilbert space X. Let G denote the transfer
function of a regular (in the sense of [22]) linear system with state space X, with
generating operators (A,B,C,D), and with RM -valued input and RQ-valued out-
put. This means, in particular, that (i) A generates a strongly continuous semigroup
S = (St)t≥0 of bounded linear operators onX, (ii) the control operator B is a bounded
linear operator from RM to X−1, (iii) the observation operator C is a bounded linear
operator from X1 to RQ, and (iv) the feedthrough operator D is a linear operator
from RM to RQ. Here X1 denotes the space dom(A) (the domain of A) endowed
with the graph norm, and X−1 denotes the completion of X with respect to the norm
‖z‖−1 = ‖(s0I−A)−1z‖, where s0 is any fixed element of the resolvent set of A and ‖·‖
denotes the norm on X. As a regular linear system, the transfer function G is holo-
morphic and bounded on every half-plane Cα with α > ω(S) := limt→∞ t−1 ln ‖St‖ .
Moreover,

lim
s→∞, s∈R

G(s) = D.

The system is said to be exponentially stable if the semigroup S is exponentially
stable—that is, if ω(S) < 0. Henceforth, we assume that the system is exponentially
stable and, moreover, we assume that the observation operator C can be extended to
a bounded linear operator from X to RQ; this extended operator is again denoted by
C.

In terms of the generating operators (A,B,C,D), the transfer function G is given
by

G(s) = C(sI −A)−1B +D.



CONTROLLED FDEs AND ADAPTIVE TRACKING 1751

For any z0 ∈ X and input y ∈ L∞loc(R+;RM ), the state z(·) and the output w(·) of
the regular system (with bounded observation operator) satisfy the equations

ż(t) = Az(t) +By(t) , z(0) = z0,(2.6)

w(t) = Cz(t) +Dy(t)(2.7)

for almost all t ≥ 0. The derivative on the left-hand side of (2.6) has, of course, to be
understood in X−1. In other words, if we consider the initial-value problem (2.6) in
the space X−1, then for any z0 ∈ X and y ∈ L∞loc(R+;RM ), (2.6) has a unique strong
solution given by the variation of parameters formula (see [16, Chapter 4, Theorem
2.9])

(2.8) z(t) = Stz
0 +

∫ t

0

St−sBy(s) ds.

Restricting to continuous inputs, define the operator T : C(R+;RM )→ L∞loc(R+;RQ)
by

(2.9) (Ty)(t) := C

∫ t

0

St−sBy(s) ds+Dy(t), t ≥ 0.

(We remark that the above operator is the infinite-dimensional counterpart of the op-
erator (2.4) in the case of the finite-dimensional prototype.) By exponential stability
of the semigroup S, there then exist constants c1 > 0 such that
(2.10)
‖z‖L∞(R+;X) ≤ c1

[
‖z0‖+ ‖y‖L∞(R +;RM )

]
for all (z0, y) ∈ X × L∞(R+;RM ).

Setting h = 0, we see that property 2(a) of Definition 2.1 holds and property 2(b) is a
consequence of the linearity of T and (2.10), in view of (2.10), and causality property

1 of Definition 2.1 also holds. Therefore, the operator T is of class T M,Q
0 .

2.3. Nonlinear systems. Input-to-state stable (ISS) systems. Let Z : RL ×
RM → RL be locally Lipschitz with Z(0, 0) = 0. For y ∈ L∞loc(R+;RM ), let z(·, z0, y)
denote the maximal solution of the initial-value problem

(2.11) ż(t) = Z(z(t), y(t)), z(0) = z0 ∈ RL.

Assume that the system is input-to-state stable (ISS) [20]; that is, there exist functions
θ ∈ KL and γ ∈ K such that, for all (z0, y) ∈ RL × L∞loc(R+;RM ),

(2.12) ‖z(t, z0, y)‖ ≤ θ(‖z0‖, t) + ess sup
s∈[0,t]

γ(‖y(s)‖) for all t ≥ 0.

Let W : RL → RQ be locally Lipschitz and such that there exists c > 0 such that
‖W (z)‖ ≤ c‖z‖ for all z ∈ RL. Now consider system (2.11) with output w given by

w(t) =W (z(t, z0, y)).

Fix z0 ∈ RL arbitrarily. Again, restricting to continuous inputs, define the operator
T : C(R+;RM )→ L∞loc(R+;RQ) by

(2.13) (Ty)(t) :=W (z(t, z0, y)), t ≥ 0.

In view of (2.12), property 1 of Definition 2.1 evidently holds; setting h = 0, we see
that property 2(a) also holds. Arguing as in [19, section 3.2.3], via an application of
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Gronwall’s lemma, it can be shown that property 2(b) holds. Therefore, the operator

T is of class T M,Q
0 . We note that, strictly speaking, the above construction yields a

family of operators Tz0 parameterized by the initial data z0.
Systems in input affine form. A particular generalization of the prototype class L

of linear, finite-dimensional, minimum-phase systems is the class of nonlinear systems
in input affine form

(2.14)
ẏ(t) = a(t, y(t), z(t)) + b(t, y(t), z(t))u(t), y(0) = y0

ż(t) = c(t, y(t), z(t)), z(0) = z0

}

where a : R+×RM×RL → RM , b : R+×RM×RL → RM×M , and c : R+×RM×RL →
RL are Carathéodory functions and (ye, ze, ue) is an equilibrium ((ye, ze, ue) = (0, 0, 0)
in the linear prototype) in the sense that

a(t, ye, ze) = 0, b(t, ye, ze)ue = 0, c(t, ye, ze) = 0 for all t ≥ 0.

The problem of construction of a λ-servomechanism for such systems has been in-
vestigated in [1, 6]. There, the minimum-phase property of the linear prototype in
(2.3) is replaced by the assumptions that ze is a global, uniformly exponentially stable
equilibrium of

(2.15) η̇(t) = c(t, ye, η(t)).

We assume that (i) for each compact set C ⊂ RM × RL, there exists κ ∈ L1loc(R+)
such that ‖c(t, y, z) − c(t, ξ, ζ)‖ ≤ κ(t)‖(y, z) − (ξ, ζ)‖ for almost all t ∈ R+ and all
(y, z), (ξ, ζ) ∈ C, and (ii) for some constant c0 > 0,

‖c(t, y, z)− c(t, ye, z)‖ ≤ c0 [1 + ‖y − ye‖] for all (t, y, z) ∈ R+ × RM × RL.

Considering the second equations of (2.14) in isolation, for y ∈ L∞loc(R+,RM ) we
denote by z(·, z0, y) the unique solution of

ż(t) = c(t, y(t), z(t)) = c(t, ye, z(t)) + [c(t, y(t), z(t))− c(t, ye, z(t))], z(0) = z0.

Invoking exponential stability of the equilibrium of (2.15) in conjunction with converse
Lyapunov theory (details omitted here), we may conclude the existence of a constant
c1 > 0 such that, for each (z0, y) ∈ RL × L∞loc(R+;RM ),

(2.16) ‖z(t, z0, y)‖ ≤ c1[‖z0‖+ 1 + ess sup
s∈[0,t]

‖y(s)‖] for all t ≥ 0.

Fix z0 ∈ RL arbitrarily. Define the operator T : C(R+;RM )→ L∞loc(R+;RL) by

(2.17) (Ty)(t) := z(t, z0, y), t ≥ 0.

In view of (2.16), property 1 of Definition 2.1 evidently holds; setting h = 0, we
see that property 2(a) also holds. An application of Gronwall’s lemma (analogous
to that adopted in [19, section 3.2.3] in the context of ISS systems) yields property

2(b). Therefore, the operator T is of class T M,L
0 . As in the case of ISS systems, we

remark that, strictly speaking, the above construction yields a family of operators Tz0

parameterized by the initial data z0.
The general case. Elaborating on the above two cases, consider the system

(2.18) ż(t) = Z(t, z(t), y(t)), z(0) = z0 ∈ RL ,
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with input y ∈ L∞loc(R+;RM ) and output

w(t) =W (t, z(t)) ∈ RQ.

Assume that W : R+ × RL → RQ and Z : R+ × RL × RM → RL are Carathéodory
functions and such that the following hold: (i) for some constant c > 0, ‖W (t, z)‖ ≤
c‖z‖ for almost all t ≥ 0 and all z ∈ RL; (ii) for each compact set C ⊂ RL×RM , there
exists κ ∈ L1loc(R+) such that ‖Z(t, z, y)−Z(t, ζ, ξ)‖ ≤ κ(t)‖(z, y)− (ζ, ξ)‖ for almost
all t ∈ R+ and all (z, y), (ζ, ξ) ∈ C; and (iii) for each (z0, y) ∈ RL × L∞loc(R+;RM ),
the unique maximal solution of initial-value problem (2.18) has interval of existence
R+. (We denote the solution by z(·, z0, y).) Furthermore, we assume the existence of
a function γ ∈ K such that, for each z0 ∈ RL, there exists a constant c > 0 such that,
for all y ∈ L∞loc(R+;RM ),

(2.19) ‖z(t, z0, y)‖ ≤ c[1 + ess-sups∈[0,t]γ(‖y(s)‖)] for all t ≥ 0

(a weaker condition than the ISS inequality (2.12)). Fix z0 ∈ RL arbitrarily. Define
the operator T : C(R+;RM )→ L∞loc(R+;RQ) by

(Ty)(t) =W (t, z(t, z0, y)), t ≥ 0.

Then this construction yields a family (parameterized by the initial data z0) of oper-

ators T of class T M,Q
0 : This family subsumes the operators discussed in sections 2.2

and 2.3 above.

2.4. Nonlinear delay elements. Let DM,Q denote the class of functions R ×
RM → RQ : (t, y) 7→ Ψ(t, y) that are measurable in t and locally Lipschitz in y
uniformly with respect to t. Precisely, (i) for each fixed y, Ψ(·, y) is measurable, and
(ii) for every compact C ⊂ RM there exists a constant c such that

for a.a. t, ‖Ψ(t, y)−Ψ(t, z)‖ ≤ c‖y − z‖ for all y, z ∈ C.

For i = 0, . . . , n, let Ψi ∈ DM,Q and hi ∈ R+. Define h := maxi hi. For y ∈
C([−h,∞);RM ), let

(2.20) (Ty)(t) :=

∫ 0

−h0

Ψ0(s, y(t+ s)) ds+

n∑

i=1

Ψi(t, y(t− hi)), t ≥ 0.

The operator T , so defined, is of class T M,Q
h ; for details, see [19].

2.5. Hysteresis. A general class of nonlinear operators C(R+;R)→ C(R+;R),
which includes many physically motivated hysteretic effects, is defined via assumptions
(N1)–(N8) of [11, section 3]. Assumption (N1) implies that property 2(a) of Definition
2.1 holds with h = 0. Assumption (N5) implies that property 2(b) of Definition 2.1
holds. Finally, (N8) implies that property 1 of Definition 2.1 holds. Therefore, the
nonlinear operators considered in [11] are of class T 1,10 . Examples of such operators,
including relay hysteresis, backlash hysteresis, elastic-plastic hysteresis, and Preisach
operators, are detailed in [11, section 5]. By way of illustration, we briefly describe
the first two of these examples.

Relay hysteresis. Let a1 < a2 and let ρ1 : [a1,∞) → R, ρ2 : (−∞, a2] → R be
continuous, globally Lipschitz, and satisfying ρ1(a1) = ρ2(a1) and ρ1(a2) = ρ2(a2).
For a given input y ∈ C(R+;R) to the hysteresis element, the output w is such that
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Fig. 3. Backlash hysteresis.

(y(t), w(t)) ∈ graph(ρ1) ∪ graph(ρ2) for all t ∈ R+: The value w(t) of the output at
t ∈ R+ is either ρ1(y(t)) or ρ2(y(t)), depending on which of the threshold values a2
or a1 was “last” attained by the input y. This situation is illustrated by Figure 2.

When suitably initialized, such a hysteresis element has the property that, to
each input y ∈ C(R+;R) there corresponds a unique output w = Ty ∈ C(R+;R);
the operator T , so defined, is of class T 1,10 . Full details may be found in [11, section
5]. (See also [12, 10].)

Backlash hysteresis. Next consider a one-dimensional mechanical link consisting
of the two solid parts I and II, as shown in Figure 3(a), the displacements of which
(with respect to some fixed datum) at time t ≥ 0 are given by y(t) and w(t) with
|y(t)− w(t)| ≤ a for all t, and w(0) := y(0) + ξ for some prespecified −a ≤ ξ ≤ a.

Within the link there is mechanical play; that is to say, the position w(t) of II
remains constant as long as the position y(t) of I remains within the interior of II.
Thus, assuming the continuity of y, we have ẇ(t) = 0 whenever |y(t) − w(t)| < a.
Given a continuous input y ∈ C(R+;R), describing the evolution of the position of
I, denote the corresponding position of II by w = Ty. The operator T so defined (in
effect we define a family Tξ of operators parameterized by the initial offset ξ) is known

as backlash or play and is of class T 1,10 . Full details may be found in [11, section 5].

3. Adaptive control. We now focus on the adaptive control problem. The
following subclass J of K functions will play an important role:

J := {α ∈ K| for each δ ∈ R+ there exists ∆ ∈ R+ : α(δτ) ≤ ∆α(τ) for all τ ≥ 0}.
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Furthermore, we define J∞ := J ∩K∞. For example, (a) for each s > 0, the function
τ 7→ τ s is of class J∞, and (b) the function τ 7→ ln(1 + τ) is of class J∞; its inverse
τ 7→ exp(τ) − 1 is of class K∞ but is not of class J . In addition to their defining
property, the ensuing properties of class J functions are readily established and will
be freely invoked later in the analysis:

1. α, β ∈ J =⇒ α ◦ β ∈ J and α+ β ∈ J ;
2. α ∈ J =⇒ ∃∆ > 0 : α(a+ b) ≤ ∆[α(a) + α(b)] for all a, b ∈ R+.

We also record a property of K functions (and, a fortiori, a property of J functions):
3. Let t > 0, I = [0, t], ξ ∈ C(I;R+), and α ∈ K; then α(maxs∈I ξ(s)) =

maxs∈I α(ξ(s)).
Definition 3.1 (the system class). Let αf , αT ∈ J ; then S = S(αf , αT ) denotes

the class of M -input, M -output systems of the form (1.1) with the following properties
(wherein P,Q ∈ N are arbitrary):

1. p ∈ L∞([−h,∞);RP );
2. f : RP × RQ → RM is continuous and, for every compact set C ⊂ RP , there

exists a constant cf ≥ 0 such that

‖f(p, w)‖ ≤ cf [1 + αf (‖w‖)] for all (p, w) ∈ C × RQ ;

3. g : RP ×RQ ×RM → RM is continuous and, for every compact set C ⊂ RP ,
there exists a positive definite, symmetric G ∈ RM×M such that

〈Gu, g(p, w, u)〉 ≥ ‖u‖2 for all (p, w, u) ∈ C × RQ × RM ;

4. T : C([−h,∞);RM )→ L∞loc(R+;RQ) is of class T M,Q
h , and there exist αT ∈

J and constant cT ≥ 0 such that, for all y ∈ C([−h,∞);RM ),

(3.1) ‖(Ty)(t)‖ ≤ cT

[
1 + max

s∈[0,t]
αT (‖y(s)‖)

]
for almost all t ∈ R+ .

For convenience, we denote a system of class S(αf , αT ) by (p, f, g, T ) ∈ S(αf , αT )
and, whenever the functions αf and αT are contextually evident, we simply write S
in place of S(αf , αT ). We emphasize that, in the construction of an (R,S)-universal
control strategy, only the (instantaneous) tracking error e(t) = y(t)− r(t) is assumed
to be available for feedback, and the only a priori structural information assumed is
knowledge of the functions αf , αT ∈ J . Some examples follow.

Assume f has the polynomial form given by f(p, w) :=
∑l

i=0 piw
i . Then prop-

erty 2 of Definition 3.1 holds with αf : s 7→ sm for m ≥ l; if an upper bound for the
degree l of the polynomial is unknown, then the map αf : s 7→ exp(s)− 1 suffices.

If g(p, w, u) = Bu, as in the linear prototype (2.3), and B ∈ RM×M has spectrum
in the open right half complex plane, then there exists a positive definite G ∈ RM×M

satisfying GB +BTG = 2I, whence property 3 of Definition 3.1.
Consider again the examples of operators in sections 2.2–2.5.
Let T ∈ T M,Q

h , given by (2.9), be the input-output operator of an exponentially
stable regular linear system with RM -valued input and RQ-valued output. Then (2.10)
and causality imply that (3.1) holds with the αT ∈ J given by αT (s) = s.

Let T ∈ T M,Q
h , given by (2.13), be the input-output operator of an ISS system

with RM -valued input and RQ-valued output. If (2.12) holds for some function γ of
class J , then (3.1) holds with αT := γ.

Let β ∈ J , h ∈ R+, and Ψ ∈ DM,Q (recall section 2.4), and assume that

‖Ψ(t, y)‖ < µ [1 + β(‖y‖)] for all (t, y) ∈ R+ × RM
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for some µ ∈ R+. Both the point delay given by (Ty)(t) = Ψ(t, y(t − h)) and the

distributed delay given by (Ty)(t) =
∫ 0
−h

Ψ(s, y(t+s)) ds are of class T M,Q
h , and (3.1)

holds with αT := β.
Last, for the nonlinear operators of section 2.5, assumption (N8) of [11, section

3] asserts that such operators satisfy (3.1) with the αT ∈ J given by αT (s) = s.

3.1. The servomechanism. The servomechanism is designed as follows. Let
αf , αT ∈ J . Choose α ∈ J∞ with the property

(3.2) lim inf
s→∞

α(s)

s+ αf (αT (s))
6= 0.

For example, the choice α : s 7→ s+αf (αT (s)) suffices. For λ > 0, choose ψλ : R+ →
R+ to be a continuous function with the properties

(3.3) (i) lim inf
s→∞

sψλ(s)

α(s)
6= 0 and (ii) ψ−1λ (0) := {s | ψλ(s) = 0} = [0, λ].

For example, the choice ψλ given by ψλ(s) := dα(λ)(α(s))/s for s > 0, with ψλ(0) := 0,
suffices.

Define the continuous function

(3.4) φ : RM → RM , e 7→
{

α(‖e‖)‖e‖−1e, e 6= 0,

0, e = 0.

Writing S = S(αf , αT ), the next objective is to show that the strategy

(3.5) u(t) = −k(t)φ(e(t)), k̇(t) = ψλ(‖e(t)‖), e(t) := y(t)− r(t)

is an (R,S)-universal λ-servomechanism.
Theorem 3.2. Let αf , αT ∈ J . Choose α ∈ J∞ so that (3.2) holds and define

the continuous φ : RM → RM by (3.4). Let λ > 0 and let ψλ : R+ → R+ be
continuous with properties (3.3). Then feedback strategy (3.5) is an (R,S)-universal λ-
servomechanism in the sense that for all (p, f, g, T ) ∈ S(αf , αT ), r ∈ R, and (y0, k0) ∈
C([−h, 0];RM+1) the feedback controlled initial-value problem

(3.6)

ẏ(t) = f(p(t), (Ty)(t)) + g(p(t), (Ty)(t),−k(t)φ(y(t)− r(t)))
k̇(t) = ψλ(‖y(t)− r(t)‖)
(y, k)|[−h,0] = (y0, k0)





has a solution. Every solution can be extended to a maximal solution and every
maximal solution (y, k) : [0, ω)→ RM+1 has the following properties:

(i) (y, k) is bounded;
(ii) ω =∞ ;
(iii) limt→∞ k(t) exists and is finite;
(iv) limt→∞ dλ(‖y(t)− r(t)‖) = 0, with dλ as in (1.6).
We preface the proof of Theorem 3.2 by a proposition. (Proof of the latter is

straightforward and omitted here.)
Proposition 3.3. Let ξ ∈ ACloc(R+;R+), k ∈ C(R+;R+), β ∈ K, and c ≥ 0.

If k is monotonically nondecreasing and unbounded, and ξ̇(t) ≤ c − k(t)β(ξ(t)) for
almost all t ∈ R+, then ξ(t)→ 0 as t→∞.
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Proof of Theorem 3.2. Write N := M + 1 and K := Q +M + 1. Define F :
[−h,∞) × RK → RN by (1.3) and define T̂ : C([−h,∞);RN ) → L∞loc(R+;RK) by
(1.5). Thus, the initial-value problem (3.6) is equivalent to (2.2). By the continuity
of f , g, φ, ψλ and (essential) boundedness of p, it follows that F is a Carathéodory
function with the property that, for each w ∈ RK , F (·, w) ∈ L∞loc([−h,∞);RN ). By

assumption, T ∈ T M,Q
h and so T̂ ∈ T N,K

h . Therefore, by Theorem 2.3, (3.6) has
a solution and every solution can be maximally extended. Moreover, every bounded
maximal solution has interval of existence [−h,∞).

Let (y, k) : [−h, ω)→ RN be a maximal solution of (3.6). Writing e := y − r, we
have
(3.7)
ė(t) = f(p(t), (T (e+ r))(t))

+ g(p(t), (T (e+ r))(t)),−k(t)φ(e(t)))− ṙ(t)
k̇(t) = ψλ(‖e(t)‖)



 for a.a. t ∈ [0, ω).

By (essential) boundedness of p and property 3 of Definition 3.1 of g, there exists a
positive definite, symmetric G such that
(3.8)
〈Ge(t), g(p(t), (T (e+r))(t)),−k(t)φ(e(t)))〉 ≤ −k(t)α(‖e(t)‖)‖e(t)‖ for a.a. t ∈ [0, ω).

Define c0 :=
√

2‖G−1‖ and c1 :=
√

2/‖G‖. For notational convenience, we introduce
functions V,W ∈ ACloc([0, ω);R+) given by

V (t) :=
1

2
〈Ge(t), e(t)〉 and W (t) :=

√
V (t)

with

(3.9) c−10 ‖e(t)‖ ≤W (t) ≤ c−11 ‖e(t)‖ for all t ∈ [0, ω).

By (3.7), (3.8) and properties of f , g, and T , together with (essential) boundedness
of p, r, and ṙ, there exist constants cf , cT > 0 such that

(3.10)

V̇ (t) = 〈Ge(t), ė(t)〉 ≤ cf‖G‖
[
1 + αf

(
cT + cT max

s∈[0,t]
αT (‖e(s) + r(s)‖)

)]
‖e(t)‖

− k(t)α(‖e(t)‖)‖e(t)‖+ ‖G‖‖r‖1,∞‖e(t)‖ for a.a. t ∈ [0, ω).

Invoking properties of J functions, we may conclude that, for some constant c2 > 0,
(3.11)

V̇ (t) ≤ c2

[
1 + max

s∈[0,t]
αf (αT (‖e(s)‖))

]
‖e(t)‖ − k(t)α(‖e(t)‖)‖e(t)‖ a.a. t ∈ [0, ω).

By (3.2) and the first of properties (3.3), there exist constants γ > ‖e(0)‖, cγ , c̃γ > 0
such that
(3.12)

αf (αT (s)) ≤ cγα(s) for all s ≥ γ and ψλ(s) ≥
cγα(s)

c̃γs
for all s ≥ γ.

With a view to proving Theorem 3.2(i), we first show that e is bounded. Seeking
a contradiction, suppose that e (equivalently, W ) is unbounded. For each n ∈ N,
define

τn := inf{t ∈ [0, ω) | c1W (t) = n+1+ γ}, σn := sup{t ∈ [0, τn] | c1W (t) = n+ γ}.
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Recalling that γ > ‖e(0)‖ ≥ c1W (0), this construction yields a sequence of disjoint
intervals (σn, τn) such that

max
t∈[0,τn]

c1W (t) = c1W (τn) = n+ 1 + γ

c1W (σn) = n+ γ

c1W (t) ∈ (n+ γ, n+ 1 + γ) for all t ∈ (σn, τn)





for all n ∈ N.

Moreover, for all n ∈ N,

max
s∈[0,t]

c1W (s) = max
s∈[σn,t]

c1W (s) ≤ n+1+γ < 2n+2γ ≤ 2c1W (t) for all t ∈ [σn, τn],

which, together with (3.9) and properties of J functions, implies the existence of
constants c3, c4 > 0 such that

(3.13) max
s∈[0,t]

α(‖e(s)‖) ≤ max
s∈[0,t]

α(c0W (s)) ≤ α(2c0W (t)) ≤ α(2c0c
−1‖e(t)‖)

≤ c3α(‖e(t)‖) ≤ c3α(c0W (t)) ≤ c4α(c1W (t)) for all t ∈ ∪n∈N[σn, τn].

Noting that, for all n ∈ N, α(‖e(t)‖) ≥ α(γ) for all t ∈ [σn, τn] and invoking (3.13)
together with (3.9), (3.11), and (3.12), we may conclude the existence of constants
c5, c6 > 0 such that
(3.14)
V̇ (t) ≤ [c5 − k(t)]α(‖e(t)‖)‖e(t)‖ ≤ c6α(c1W (t))W (t) for all t ∈ ∪n∈N[σn, τn].

Our next task is to show that supposition of the unboundedness of e implies the
unboundedness of k. Invoking (3.12), (3.14), and (3.9) yields

2 ln

(
n+ 1 + γ

1 + γ

)
= lnV (τn)− lnV (σ1) =

n∑

j=1

[lnV (τj)− lnV (σj)] =

n∑

j=1

∫ τj

σj

V̇ (t)

V (t)
dt

≤ c6

n∑

j=1

∫ τj

σj

α(c1W (t))

W (t)
dt ≤ c6c0

n∑

j=1

∫ τj

σj

α(‖e(t)‖)
‖e(t)‖ dt.(3.15)

By construction of (σn, τn) we have

γ < ‖e(t)‖ if t ∈ (σj , τj).

Hence substituting the second inequality of (3.12) into (3.15) yields

2 ln

(
n+ 1 + γ

1 + γ

)
≤ c6c0

c̃γ
cγ

n∑

j=1

∫ τj

σj

ψλ(‖e(t)‖) dt ≤ c6c0
c̃γ
cγ
k(τn) for all n ∈ N,

and so k(t) → ∞ as t ↑ ω. Let n∗ ∈ N be such that k(σn∗) ≥ 2c5. By the first
inequality in (3.14),

V̇ (t) ≤ −c5α(‖e(t)‖)‖e(t)‖ < 0 for a.a. t ∈ [σn∗ , τn∗ ] ,

which contradicts the fact that V (τn∗) = W 2(τn∗) > W 2(σn∗) = V (σn∗). Therefore,
e is bounded.

By the boundedness of e and continuity of ψλ, it follows that k̇ is bounded, and
so k is bounded on every compact subinterval of [0, ω). Therefore ω =∞.
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Next, we prove the boundedness of k. By the boundedness of e and (3.11), there
exists a constant c9 > 0 such that

V̇ (t) ≤ c9 − k(t)β(V (t)) for a.a. t ∈ [0,∞),

where β ∈ K is given by β(s) = α (c1
√
s) c1

√
s. Seeking a contradiction, suppose k

is unbounded. Then k(t) ↑ ∞ as t → ∞ and so, by Proposition 3.3, V (t) → 0 as
t → ∞. Therefore, there exists τ ∈ [0,∞) such that ‖e(t)‖ < λ for all t ∈ [τ,∞)
and so k̇(t) = 0 for all t ∈ [τ,∞), which again contradicts the supposition of the
unboundedness of k.

We have now established Theorem 3.2(i) and (ii). Assertion (iii) follows by the
boundedness and monotonicity of k. By the boundedness of e and ė (see (3.6)), it
follows that t 7→ e(t) is uniformly continuous. By the continuity of ψλ(‖·‖), we see that
ψλ(‖e(·)‖) is also uniformly continuous. By the boundedness of k,

∫∞
0
ψλ(‖e(t)‖)dt <

∞. By Barbălat’s lemma [2], we conclude that ψλ(‖e(t)‖) → 0 as t → ∞, whence,
recalling that ψ−1λ (0) = [0, λ], we have assertion (iv).

3.2. Discussion. Theorem 3.2 also holds in the situation wherein the output
measurement is subject to an additive disturbance term η, in which case the control
and gain adaptation become

u(t) = −k(t)φ(y(t)− r(t) + η(t)), k̇(t) = ψλ(‖y(t)− r(t) + η(t)‖), k|[−h,0] = k0.

If the disturbance η is of class R, then, by Theorem 3.2, limt→∞ dλ(‖y(t) + η(t) −
r(t)‖) = 0. Thus, from a strictly analytical viewpoint, in the presence of output
disturbances of class R, the disturbance-free analysis is immediately applicable to
replacing the reference signal r by the signal r − η =: r̂ ∈ R. Even though the
reference signal r and disturbance signal η are assumed to be of the same class R, in
practice these signals might be distinguished by their respective spectra (η typically
having “high-frequency” content). Moreover, from a practical viewpoint, one might
reasonably expect that the disturbance η is “small”; if an a priori bound on the
magnitude of the disturbance is available, then λ should be chosen to be commensurate
with such a bound.

We remark on the flexibility of choice in the controller functions α ∈ J∞ and
ψλ (continuous), which are required only to satisfy (3.2) and (3.3). In essence, (3.2)
reflects the reasonable requirement that the “strength” of the controller nonlinear-
ity α should be capable of counteracting the potentially destabilizing effects of the
(unknown) system nonlinearities; condition (3.3)(i) translates to a requirement that
the gain adaptation function ψλ should be commensurate (in the sense of (3.3)(i))
with the strength of the function α. Next, we illustrate by example that the latter
condition is also reasonable.

Consider the scalar nonlinear system

(3.16) ẏ(t) = a|y(t)|εy(t) + u(t), y(0) = y0 ∈ R,

with a ∈ R and ε > 0. The choice α : s 7→ s1+ε implies that (3.2) holds. For λ > 0,
the choice

(3.17) ψλ : s 7→ sεmin{dλ(s), 1}

implies that (3.3) holds. Therefore, by Theorem 3.2, the control

u(t) = −k(t)|y(t)− r(t)|ε(y(t)− r(t)),
k̇(t) = |y(t)− r(t)|ε min{dλ(|y(t)− r(t)|), 1}, k(0) = k0,
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ensures that, for every r ∈ R, the tracking objective is achieved with asymptotic
accuracy quantified by λ > 0.

Now assume that ε > 0 is “small.” We will investigate the consequences of re-
placing the above choice of ψλ (for which (3.3)(i) holds) by the simpler function
s 7→ min{dλ(s), 1} (equivalent to setting ε = 0 in (3.17) and for which (3.3)(i) fails
to hold). Taking r = 0, a = 1, y0 > 0, and (for simplicity) k0 = 0, a straightforward
calculation reveals that the control objective is not achievable by the control

u(t) = −k(t)|y(t)|εy(t), k̇(t) = min{dλ(s), 1}, k(0) = 0.

In particular, the feedback-controlled initial-value problem can exhibit finite-time
“blow-up” of its solution: Specifically, for each y0 > (2/ε)1/ε, the solution of the
feedback-controlled system is such that y(t) ↑ ∞ as t ↑ T with T ∈ (0, T ∗), where
T ∗ := 1−

√
1− (2/ε)(y0)−ε < 1.

Now consider again linear systems, such as the motivating class L of finite-
dimensional, linear, minimum-phase systems described in section 2.2, and letR be the
space of bounded absolutely continuous functions R → RM with essentially bounded
derivative. As is well known (see, for example, [7]), the following output feedback
strategy (a variant of the seminal results in [23, 15, 13, 14]) is an (R,L)-universal
λ-servomechanism in the sense that, for each system of class L and reference signal
r ∈ R, the strategy ensures (i) boundedness of the state, (ii) convergence of the con-
troller gain, and (iii) output tracking with prescribed accuracy λ (in the sense that
dλ(‖e(t)‖)→ 0 as t→∞, where e(t) := y(t)− r(t) is the tracking error):

(3.18) u(t) = −k(t)e(t), k̇(t) = d2λ(‖e(t)‖), k(0) = k0.

Generalizations of this strategy to nonlinear finite-dimensional settings are reported
in, for example, [7, 17, 6, 18, 24]; applications to biotechnological processes are con-
tained in [8, 9].

Each of αf and αT can be taken to be the identity map id : s 7→ s, and so
L ⊂ S(id, id). In this context, α : s 7→ s and ψλ : s 7→ d2λ(s) are allowable choices,
in which case we recover (3.18). Note that the latter choice for ψλ, being quadratic
in nature, implies that the controller gain k(·) can exhibit rapid growth whenever the
tracking error is large. Such behavior may be undesirable from a practical viewpoint.

A very simple but admissible alternative choice of a bounded function ψλ is s 7→
min{dλ(s), 1}. This choice ensures that k exhibits at most linear growth and the
overall control strategy (3.5) reduces to
(3.19)
u(t) = −k(t)(y(t)− r(t)), k̇(t) = min{dλ(‖y(t)− r(t)‖), 1}, k|[−h,0] = k0.

Theorem 3.2 ensures that this control achieves the tracking objective, with prespec-
ified asymptotic error bound λ > 0, not only for the motivating finite-dimensional
class L, but also for general interconnections of linear systems of the form in Figure 1,
encompassing those cases where Σ2 corresponds to linear delay elements (both point-
wise and distributed) or to an exponentially stable infinite-dimensional regular linear
system (such as a diffusion process), or linear combinations of these.

Appendix. Proof of Theorem 2.3. (i) By property 2(b) of Definition 2.1
there exist τ > 0, δ > 0, and c > 0 such that, for all x, ξ ∈ C([−h,∞);RN ) with
x|[−h,0] = x0 = ξ|[−h,0] and x(t), ξ(t) ∈ Bδ(x

0(0)) for all t ∈ [0, τ ],

ess sup
t∈[0,τ ]

‖(T̂ x)(t)− (T̂ ξ)(t)‖ ≤ c sup
t∈[0,τ ]

‖x(t)− ξ(t)‖.



CONTROLLED FDEs AND ADAPTIVE TRACKING 1761

By property 1 of Definition 2.1 of T̂ , there exists ∆ > 0 such that for all x ∈
C([−h,∞);RN ),

sup
t∈[−h,∞)

‖x(t)‖ < δ∗ := δ+ ‖x0‖∞ =⇒ ‖(T̂ x)(t)‖ < ∆ for almost all t ∈ [0, τ ].

Since F is a Carathéodory function, there exists integrable γ : [0, τ ]→ R such that

(A.1) ‖F (t, w)‖ ≤ γ(t) for all (t, w) ∈ [0, τ ]× B∆(0).

Define Γ : [−h, τ ]→ R+ by

Γ(t) :=

{
0, t ∈ [−h, 0),
∫ t

0
γ(s)ds, t ∈ [0, τ ],

and let 0 < β < τ be such that Γ(β) < δ.
Next, we construct a sequence {xn}n∈N of continuous functions [−h, β]→ RN as

follows. Let n ∈ N. For i = 1, . . . , n, define xin : [−h, iβ/n] → RN by the recursive
formula:

i = 1 : x1n(t) :=

{
x0(t), t ∈ [−h, 0],
x0(0), t ∈ (0, β/n],

i > 1 : xin(t) :=

{
xi−1n (t), t ∈ [−h, (i− 1)β/n],

x0(0) +
∫ t−(β/n)

0
F (s, (T̂ xi−1n )(s))ds, t ∈ ((i− 1)β/n, iβ/n] .

Observe that if i ∈ {1, . . . , n − 1} and ‖xin(t)‖ < δ∗ for all t ∈ [−h, (iβ)/n], then (a)

‖xi+1n (t)‖ < δ∗ for all t ∈ [−h, (iβ)/n], and (b) ‖(T̂ xin)(t)‖ < ∆ for all t ∈ [0, (iβ)/n],
which, in turn, implies for all t ∈ (iβ/n, (i+ 1)β/n]

‖xi+1n (t)− x0(0)‖ ≤
∫ t−β/n

0

‖F (s, (T̂ xin)(s))‖ds ≤
∫ t−β/n

0

γ(s)ds = Γ(t− β/n) < δ.

Noting that ‖x1n(t)‖ ≤ ‖x0‖∞ < δ∗ for all t ∈ [−h, β/n], we may now infer (by
induction on i) that

‖xin(t)‖ < δ∗ for all i ∈ {1, . . . , n}, t ∈ [−h, iβ/n].

For notational convenience, we write xn := xnn. By causality of T̂ , the sequence
{xn}n∈N so constructed has the property that, for each n ∈ N,

(A.2) xn(t) =





x0(t), t ∈ [−h, 0],
x0(0), t ∈ (0, β/n],

x0(0) +
∫ t−(β/n)

0
F (s, (T̂ xn)(s))ds, t ∈ (β/n, β].

Moreover, for all n ∈ N, ‖xn(t)‖ < δ∗ for all t ∈ [−h, β], and so the sequence {xn}n∈N
is uniformly bounded.

Next we prove that the sequence {xn}n∈N is equicontinuous. Let ε > 0. On the
closed interval [0, β], Γ is uniformly continuous, and so there exists some δ̄ > 0 such
that

(A.3) t, s ∈ [0, β] with |t− s| < δ̄ =⇒ |Γ(t)− Γ(s)| < ε.
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Let n ∈ N, s, t ∈ [0, β] with |t − s| < δ̄. Without loss of generality, we assume that
s ≤ t. We consider three exhaustive cases.

First, if 0 ≤ s ≤ t ≤ β/n, then ‖xn(t) − xn(s)‖ = 0. Second, if 0 < s ≤ β/n ≤
t ≤ β, then t− β/n < δ̄, and so

‖xn(t)− xn(s)‖ = ‖xn(t)− x0(0)‖ ≤ Γ(t− β/n) < ε.

Third, if β/n ≤ s ≤ t ≤ β, then

‖xn(t)− xn(s)‖ ≤ |Γ(t− β/n)− Γ(s− β/n)| < ε.

Recalling that xn|[−h,0] = x0 for all n, we conclude that the sequence {xn}n∈N is
equicontinuous. By the Arzelà–Ascoli theorem and extracting a subsequence if nec-
essary, we may assume that the sequence {xn}n∈N converges uniformly on [−h, β] to
a continuous limit which we denote by x. Clearly x|[−h,0] = x0.

By property 2(b) of Definition 2.1, limn→∞(T̂ xn)(t) = (T̂ x)(t) for almost all
t ∈ [0, β] and so, by the continuity of the function F (t, ·),

lim
n→∞

F (t, (T̂ xn)(t)) = F (t, (T̂ x)(t)) for a.a. t ∈ [0, β].

Noting that ‖(T̂ xn)(s)‖ < ∆ for all s ∈ [0, β], and also invoking (A.1), we next have

‖F (s, (T̂ x)(s))‖ ≤ γ(s) for all s ∈ [0, β] and all n ∈ N. Therefore,

(A.4) lim
n→∞

∫ t

t−β/n

F (s, (T̂ xn)(s))ds = 0 for all t ∈ (0, β]

and, by the Lebesgue dominated convergence theorem,

(A.5) lim
n→∞

∫ t

0

F (s, (T̂ xn)(s))ds =

∫ t

0

F (s, (T̂ x)(s))ds for all t ∈ [0, β].

By (A.2), (A.4), and (A.5), it follows that

x(t) =

{
x0(t), t ∈ [−h, 0],
x0(0) +

∫ t

0
F (s, (T̂ x)(s))ds, t ∈ (0, β],

and so x is a solution of the initial-value problem.
(ii) Let x : [−h, ω)→ RN be a solution of (2.2). Define

A :=
{
(ρ, ξ)| ω ≤ ρ ≤ ∞, ξ : [−h, ρ)→ RN is a solution of (2.2) with ξ|[−h,ω) = x

}
.

On this nonempty set define a partial order ¹ by

(ρ1, ξ1) ¹ (ρ2, ξ2) ⇐⇒ ρ1 ≤ ρ2 and ξ1(t) = ξ2(t) for all t ∈ [−h, ρ1).

Let O be a totally ordered subset of A. Let P := sup{ρ|(ρ, ξ) ∈ O} and let Ξ :
[−h, P ) → RM be defined by the property that, for every (ρ, ξ) ∈ O, Ξ|[0,ρ) = ξ.
Then (P,Ξ) is in A and is an upper bound for O. By Zorn’s lemma, it follows that
A contains at least one maximal element.

(iii) Assume that x ∈ C([−h, ω);RN ) is a bounded maximal solution of (2.2) and
that F ∈ L∞loc([−h,∞) × RK ;RN ). Seeking a contradiction, suppose ω < ∞. By

the boundedness of x, together with property 1 of Definition 2.1 of T̂ , it follows that
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ẋ(·) is essentially bounded. Therefore, x is uniformly continuous and so extends to a
continuous function x : [−h, ω]→ RN . Now consider the initial-value problem

(A.6) v̇(t) = Sω F
(
t, (T̂ S−ωv)(t)

)
, v|[−(h+ω),0] = Sωx.

By (2.1) and the above existence result, the initial-value problem (A.6) has a solution
ṽ : [−(h + ω), τ) → RN , τ > 0. It follows that x̃ = S−ω ṽ : [−h, ω + τ) → RN is a
solution of the original initial-value problem (2.2) and is a proper right extension of
the solution x. This contradicts the maximality of x. Therefore, ω =∞.
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