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EXISTENCE FOR SHAPE OPTIMIZATION PROBLEMS IN
ARBITRARY DIMENSION*

W. B. LIUT, P. NEITTAANMAKI!, AND D. TIBAS

Abstract. We discuss some existence results for optimal design problems governed by second
order elliptic equations with the homogeneous Neumann boundary conditions or with the interior
transmission conditions. We show that our continuity hypotheses for the unknown boundaries yield
the compactness of the associated characteristic functions, which, in turn, guarantees convergence
of any minimizing sequences for the first problem. In the second case, weaker assumptions of mea-
surability type are shown to be sufficient for the existence of the optimal material distribution. We
impose no restriction on the dimension of the underlying Euclidean space.
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1. Introduction. In this paper, we study existence for two shape optimization
problems. The first is the following optimal shape design problem:

. N2
(11) (SONB) g, [ (v —v0)*do
1o}
(1.2) Ay +y =/, %lan =0,

where O is a class of admissible open sets inside a fixed open set D in R™, and

.f yYd € L2(D )
The second problem is the following material distribution design problem:

(1.3) (SOTB) min / ly1 — 2q|® dz + / lya — 2q|* dz
€0 JEna EN(D\Q)

(1.4) —a1Ay; + by = f in Q,

(1.5) —agAys +boys = f in D\ Q,
oy Oy B .

(1.6) a1 an a2 i’ Y1 =7%Y2 In E)Q\ (6Q n 6D),
Oy; . . .

(1.7) aia—il1 =0 inlYy, ;=0 inly, i=1,2,

where E C D are two given bounded domains in R™, 'y UT'e = 8D with I'1 NI’y = 0,
zg € L*(E), and O is a class of admissible open sets inside D. The details of the
above two problems will be specified in sections 3 and 4.

It is well known that, in general, such shape optimization problems have no
solutions without assuming further regularity conditions on the boundaries of the
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domain classes; see Pironneau [20] for some counterexamples. Assuming the cone
property on O uniformly, for example, one can prove that the above optimal shape
design problem indeed has solutions; see Chenais 6] and Pironneau [20] for the details.
Furthermore, much effort has been devoted in the scientific literature to the relaxation
of the regularity conditions required for the boundaries of the unknown domains in
optimal design problems. This question is discussed in detail in the monographs
by Pironneau [20], Haslinger and Neittaanmiki [8], Sokolowski and Zolesio [21], and
Tiba [24], for instance. As the range of optimal design problems is very wide, including
as well control into coefficients problems, optimization of certain evolution systems,
some problems originating in mechanics, etc., there is a rich variety of existence results
of interest. We quote here just the recent papers by Sverak [23], Bucur and Zolesio
[4, 3, 5], and Henrot [9], where the question of the dependence of solutions of elliptic
equations on the underlying domain of definition is discussed in a general setting
and various sufficient compactness conditions are introduced. However, a complete
solution of the problem seems not to be known, to our knowledge.

In this work, we first prove existence for the above optimal shape design prob-
lem governed by the Neumann boundary value problems, under the mere assumption
that the unknown open sets are of class C (or, equivalently, they have the segment
property—see Maz'ja [17] and Adams [1]) with some uniformity with respect to the
parameters—see section 3 for the details. Our conditions allow cusps or certain oscil-
lations of the boundaries, but cracks or oscillations dense in a set of positive measure
(in the sense of Hausdorff-Pompeiu) are not permitted. Then, in section 4, it is shown
that, for the material distribution problem, i.e., in the transmission boundary value
problems, much weaker assumptions of measurability type are sufficient to obtain
existence of the optimal sets. Moreover, all of our results are valid in any space di-
mension. This is an advantage over much of the existing literature, where very often
the case of space dimension two is studied.

The approach that we are using is described in detail in section 2 and has its
origin in our previous works—Liu [13], Liu and Rubio [15], Mékinen, Neittaanmaki,
and Tiba [16], and Neittaanméiki and Tiba [19]. Roughly speaking, we replace the
extension technique for passing to the limit in the PDEs defined in a sequence of
open sets by a local convergence analysis (see Lemma 3.2 and its proof). For set
convergence, we introduce a concept of parametric convergence, which can be easily
adapted to various possible representations of open sets and preserves some needed
properties. As an example, the Hausdorff-Pompeiu convergence is a special case of the
parametric convergence, choosing a certain distance function as the parametric rep-
resentation. Notice that this is essentially different from the one used by Sverak [23];
see Proposition 2.5 and the subsequent remark.

It is recognized in the scientific literature that the a.e. convergence of the corre-
sponding characteristic functions is an essential step in any convergence result for the
PDEs defined in a sequence of open sets. Our treatment of this question, appearing
mainly in sections 2 and 4, is based on a new technique using the maximal monotone
extension of the Heaviside mapping in R x R and the closure properties of monotone
operators. We also propose, in this setting, a new approximation procedure for the
characteristic functions by means of the Yosida approximation and of the Friedrichs
mollifiers. In this respect, we point out the constructive character of our method.
Some numerical experiments together with an approximation result are reported in
Makinen, Neittaanméki, and Tiba [16].

Finally, we mention that, in the recent paper by Sprekels and Tiba [22], some
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design problems, which are formulated as control into coefficients problems, are dis-
cussed. It is shown (by different methods) that the boundedness of the coefficients
is sufficient to prove existence. An announcement of some of the results from the
present work was published in Liu, Neittaanméki, and Tiba [14] without proofs.

2. Convergence of open sets and of mappings. Let A, B be two open sets
contained in the bounded domain D of R™, m € N. The distance § between A and B
is defined by

(2.1) p(A,B)= sup inf |z —ylr~,
zeDb-A yeD-B
(2.2) §(A, B) = max{p(4, B),p(B,A)},

and it is the Hausdorfl-Pompeiu distance between the closed sets D \ A and D \ B;
see Pironneau [20] and Kuratowski [11]. We shall denote by Hlim the limit in the
sense of Hausdorff-Pompeiu.

Another frequently used distance notion is

(2.3) (A, B) = meas((A\ B)U (B\ 4)],

defined by the Lebesgue measure of the symmetric set difference between A and B;
see Hewitt and Stromberg [10, p. 144]. It should be noted that u coincides with the
well-known Ekeland metric in L°(D) applied to characteristic functions:

(2:4) dg(xa,xp) = meas{z € D | xa(z) # xB(z)} = p(4, B).

Relations (2.3), (2.4) are defined up to sets of measure zero. Without supplementary
regularity assumptions on the boundaries of the sets, there is no connection between
6 and u. For instance, let 5(0,1) be the closed unit ball in R™. Add n (closed) rays
of length 2, starting from the origin, into the ball such that the union of the rays is
dense in S (0, 2) as n — 00, and denote the resulting (closed) sets by A,. Then

(2.5) Hlim(4,) = 5(0,2) for n — oo,
(2.6) w(An,S(0,1)) -0  for n — oo.

In Chenais [6], it was proved that, for uniformly Lipschitz domains, convergence in
the metric (2.2) yields convergence in the metric (2.4) with the same limit (up to a

set with zero measure). B
Let us now introduce the mappings dg : D — R, based on the Euclidean distance

functions associated with the domain €2 and its complementary:

dist(z, D \ Q) ifxeQ,
(2.7 dao(z) =<0 if x € 09,
— dist(z, Q) ifze€ D\Q.

The mapping dq is uniformly Lipschitzian in D for any open subset Q C D;
see Clarke [7]. Let €, C D be a sequence of open sets, not necessarily connected.
Let d, = dq, be the associated mappings via (2. 7) By the Ascoli theorem, on a
subsequence again denoted by n, we have d,, — d uniformly in D. However, d is
not necessarily a function of the same type since, in general, the Hlim’s of Q,, and
of D\ 2, may be not complementary to each other (see the above example with the

sets Ap). Let Q = {z € D | d(z) > 0} (possibly void).
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PROPOSITION 2.1.
Q =D\ Hlim(D \ Q).

Proof. Let z € D\Hlim(D\Q,) so that z ¢ Hlim(D\Q,). Then lim, o dist(z, D\
) > 0. Thus link,;_e0 dnlx) > 0; dies; T € Q.

Conversely, assume that z € Q and z ¢ D\ Hlim(D \ Q,). Then d(z) > 0,
and z € Hlim(D \ Q,). That is, d(z) > 0, and there are z, € D \ Q, such that
Tn — . This means that cZ(ac) > 0, dp(zr) < 0, and z, — z. By the uniform
convergence, we have d(z) > 0 and d(z) < 0, which lead to a contradiction. It follows
that = D \ Hlim(D \ Q,), which is the desired conclusion. [

Remark. The above proposition shows that the well-known compactness property
of the Hausdorff-Pompeiu distance is a direct consequence of the Ascoli compactness
criteria. A variant of the mapping dq (identically zero outside §2) was considered by
Sverak [23], who also proved a result similar to Proposition 2.1.

PROPOSITION 2.2. If Hlim(D\Q,) = D\, then, for any compact K C Q, there
is an nxe = n(K) € N such that K C Qn forn > ng.

Proof. We use the same notation as in Proposition 2.1. Since d is continuous
on D and strictly positive on K, there is a c¢x > 0 such that

~

d(z) > cx >0 Vrek.

By the uniform convergence, for n > nx, we obtain d,(z) > %c,c >0 for all z € K.
That is, K C Q, for n > nk, as required. O

Remark. This property is called the '-property by Liu [13] and Liu and Rubio [15],
and it plays an essential role in the local convergence theory for the solutions of
PDEs defined in sequences of bounded domains. The same property is also proved
in Pironneau [20], by different methods, together with other domain convergence
results.

DEFINITION 2.3. We say that the sequence of open sets Q. C D is parametrically
convergent to the open set Q0 C D if there is a sequence of continuous mappings
pn : D — R such that p, — p uniformly in D and

Q, = {z € D | pn(z) > 0},
D\ Q, = {z € D | pu(z) <0},
Q= {z € D|pz) >0},
D\Q = {z e D|p) < 0}.

We denote the limit by Q= p — lim §2,,.

Remark. The “parametrization” p, associated with the domain 2, is not unique,
and the distance mapping d,, is just one example. The p-limit and the convergence
properties depend on the parametrization. If it is different from the function dq, then
the convergence may differ from the Hausdorff-Pompeiu convergence. For instance,
we choose p: R — R by

—(z—1)2+ 1,
Blz) = { 2%,

~(z+1)%+3 =

= I&\%/
IN o
D=

IN
|
ok
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and we rotate its graph to define a continuous mapping p : R? — R.. Take p, : R? —
R, pn(z) = p(z) + % Then the corresponding domains are Q,, = {z € R? | |z|g2 <

14+4/%2} and Q = {z € R? | 0 < |z|gz < 1 —i—%} Notice that £ is nonsmooth,

Q =p—1imQ,, and Q # HlimQ,. If § is zero around = = 0 on some interval, then
p — lim Q,, will be a circular crown, etc. By taking sup(py, px) or inf(p,, px), one can
easily “parametrize” Q, U Qg or 2, N Q.

PROPOSITION 2.4. The parametric convergence has the T-property for any pa-
rametrization.

Proof. This is similar to the proof of Proposition 2.2. 0

Remark. It is possible to weaken the conditions in Definition 2.3 by replacing the
uniform convergence with other types of functional convergence for the mapping pi,.
This will be used in section 4 (see Theorem 4.1 and its subsequent remarks).

PROPOSITION 2.5. If Q =p—1limQ, and the closed set C = {z € D | p(z) = 0}
has zero measure, then xq, — Xq a.e. in D.

Proof. If z € Q, then p(z) > 0 so that p,(z) > 0 for n > n, (depending on z).
Thus xq, () = xa(z) =1 forn > n,. If z € D\ Q, then p(z) < 0 and p,(z) < 0 for
n > ng; ie., x € D\ Q, for n > n,. Consequently, xq, (z) = xa(z) =0 for n > ny,.

As the set C has zero measure, we get that xq, (z) — xa(z) a.e. in D. O

Remark. The family of distance-type mappings used by Sverak [23] does not
satisfy this property.

DEFINITION 2.6. Assume that Q = p—limQ,, and let y, € H(Q,) be such that
{lynlm1(0,)} is bounded. We say that {y,} is locally convergent to y € HY(Q), and
we write y = L — limy, if, for any G CC Q (open set compactly embedded in 1), we
have

(2.8) Ynla — yle  weakly in H(G).

Remark. This definition is motivated by Proposition 2.4. The limit mapping y is
uniquely determined. The convergence in (2.8) is also valid in L?(G) strongly for any
G cc .

THEOREM 2.7 (compactness). Assume Q = p — limQ,. Suppose that y, €
HY (%) and |yn|a1(,) is uniformly bounded. Then there are a y € H(Q) and a
subsequence still denoted by y, such that y = L — limy,.

Proof. Take a sequence G; CC € such that G; C G,41 and |JG; = Q. For each j,
we take subsequences (one after another and all denoted by n) such that y,|q, — Y
weakly in H'(G;). We define y on Q by y(z) = y’(z) a.e. z € G, which is possible by
the properties of {G,} jen Clearly, y € L2(9) since |yy| L2(@;) is uniformly bounded
with respect to n and j. Consider any ¢ € D(2). There is a jo such that ¢ € D(G;)
for all j > jo. Therefore,

/ Vy<p=/Vy<p=—/st0=—/
Gj Q Q G

This yields that Vy = Vy? in G, for all j > jo. As |y7] H1(q;) is bounded with
respect to j, we obtain that Vy € L2(Q)™; ie., y € HY(Q). Relation (2.8) then
follows, and the proof is completed. 0

THEOREM 2.8 (lower semicontinuity). Ifl: R™ x R x R™ — R is nonnegative
and measurable, l(z,-,) is continuous on R x R™, I(z,s,-) is conver on R™, and

YV = / Vil
Gj

J
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Q=p—1limQ,, then

(2.9) / l(z,y,Vy)dx < liminf/ Uz, Yn, Vin) dz
Q n—oo Jq
provided that y = L — limy,.
Proof. Let {G;} be selected as in the previous proof. Then we have x@; — xa
a.e. in D. For any fixed G, we have that y, — y weakly in H 1(Gj), and we obtain

/l(z,y,Vy)deliminf/ I(z,Yn, Vyn) dx
) n—oo Jaq,

Gj

since weak lower semicontinuity is a well-known property of the convex integrals in
the fixed domains. Next, Fatou’s lemma gives

/ 1), V) e = / lim xa, iz, y, Vy) de
Q QI

j—o0o

< liminf l(z,y,Vy) dz
Gj

< lim inf lim inf Iz, Yn, Vyn) dz

j—oo m—oo o

= 1iminf/ (%, Yn, Vyn) dz.
n—o0 Qn
The positivity of [ is essential in the above proof. 0
Remark. Theorems 2.7 and 2.8 are variants or results previously proved by Liu
and Rubio [15] and Liu [13]. It should be noted that it is enough to assume the
[-property for the open sets 2, and Q to prove Theorems 2.7 and 2.8.

3. Equicontinuity. We consider the model problem (SONB). The problem is
formulated as

(3.1) min /Q (¥ — ya)? de,

subject to the following variational equation with the homogeneous Neumann bound-
ary condition:

(3.2) /QVva—F/vaz/va Vv € HY(Q),

where € is a variable open set such that 2 C D with D being a fixed bounded open
set in R™, and yq € L?(D). For the admissible class of open sets denoted by O, we
require that they have the C-property (or, equivalently, the segment property) with
some uniform constants:
(H1) We consider a family F of equibounded and equiuniformly continuous func-
tions g : S(0,k) — R, with k > 0 fixed and S(0,k) C R™"! an open ball.
For any Q € O, there is a subset Fo C F, and, for any g € Fq, we associate
an orthogonal system of axes of center o, € 09, “vertical” vector l; € R™ of
unit length, and a rotation R4 in R™ such that [y = Ry(0,0,...,0, 1) and

U {Rq(5,0) + 05 + g(s)ly | 5 € S(0,k)} = 09
g€EFq
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(H2) There is an a > 0 such that, for any Q € O and any g € Fq, the uniform
segment property is valid:

Ry(s,0) + 04 + (g(s) +t)lg e R™\Q Vs € 5(0,k), Vt €]0,a],
Ry (8,0) + 04 + (g(s) — t)lg € Q2 Vs € S(0,k), Vt €10,af.

These two conditions represent the usual definition of boundaries of class C with
added uniformity assumptions. Notice that, due to the compactness of 0, it can be
covered by a finite number of local charts; therefore, both conditions are automatically
satisfied, and the only real requirement is the uniformity with respect to the whole
family O, which does not allow the local charts to shrink.

Our specific requirement is that there is a constant r € ]0, k[ such that

(H3) U {RB4(5,0) + 04 + g(s)lg | s € S(0,7)} = 092

geFa

for any Q € O. This is a uniform restriction (or extension) property for the whole
family F of the local charts. It avoids, for instance, clustering of singularities (like
cusps) near the boundary of any local chart. Notice that, due to the finite numbers
of the local charts, a positive number 0 < rg < k can be found in each Q with the
above property. We just assume that it can be chosen independent of 2.

Ezample. Take g(z) = 22, z € |—a, a], to be a local chart with Holder regularity
for some domain in R%2. In z = 0, we have a cusp, and the segment property is
fulfilled only by the vertical segments. Thus the segment choice for local charts with
cusps is unique, and only cusps with the same “axis” may belong to the same local
chart. Hypothesis (H3) requires, in particular, that cusps with different “axes” do
not cluster. In the common part (which cannot shrink) of neighboring local charts,
no cusp can occur.

Remark. In the counterexample of Pironneau [20], with infinitely many oscilla-
tions of the boundary in a rectangular region, all of the conditions in (H1)-(H3) are
fulfilled except the equicontinuity of the local charts. This shows the essential impor-
tance of this assumption, reflected by the title of the section. Examples of continuous
oscillating boundaries which are not even of class C may be found in the book by
Maz’ja [17]. It is also known that domains with cuts are not of class C. Notice, how-
ever, that our assumptions allow infinitely many oscillations with vanishing amplitude
(to preserve equicontinuity).

THEOREM 3.1 (compactness and existence). Let {Q,} be a minimizing sequence
of open sets for the problem (3.1) satisfying the assumptions (H1)-(H3). Then there
1s an open set Q of class C which is a solution of the problem (3.1) and which satisfies
(H1)-(H3). Furthermore, X, — Xq G-€

Proof. We may assume that D is large enough to include €2, and the seg-
ments defined in (H2). Denote by d,, the distance-type functions introduced in (2.7)
corresponding to €1, and by d their uniform limit, d € C(D). Let A = {z €
D | d(z) > 0} be a closed set, which is clearly nonvoid. Take £ € A such that
(i(w) = 0. Then d,(Z ) — 0, by the definition of d. By the definition of d,, there
are T, € 0y, Tn — 2 (and dn(z,) = 0). By (H3), there are g, € Fq, such that

= Ry, (5n,0) + 0g, + gn(sn)lg,, dn(0g,) =0, and s, € S(0,7). Under our condi-
tlons, we may assume that s, — § € S(0, 5(0,7) and gn — g uniformly in S(0, k), with
§ being continuous in D, Ry, — R 04, — 0 with d( 6) =0, lg, — [ as matrices or
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vectors (since all are bounded) with R(0,0,...,0,1) =1, and |[| = 1. We have

(3.3) % = limz,, = lim(Ry, (S5, 0) + 0g, + gn(Sn)lg,) = ﬁ( 0)+06+ Q(é)i,
dn(R

(3.4) 0.(8,0) + 0g, + gn(5)lg,.) — d(R(5,0) + 6+ §(s)l) =0 Vs € S(0,k).

We show the segment property. .

Take any ¢ € ]0,a[, and consider the point R(s 0) + 6+ (g(s) —e)l € R™.
We have that Ry, (s,0) + 0g, + (gn(s) — €)lg, — R(5,0) + 06+ (4(s) — €)l; that is,
R(s,0) 40+ (§(s) —e)i € D for s € S(0,k). As Ry, (s,0)+ og, + (gn(s) — &)l gn € Qy
by (H2), we have dn(Ry, (5,0) + og, + (gn(s) —€)lg,) > 0 for s € S(0,k), € € 10,al,
n > 1. Tt follows that d(R(s,0) + 6 + (§(s) — €)l) > 0 for s € S(0,k), € € |0,a]; ie.,
(R(s,0) 4 6 + (§(s) — €)I) € A for such values of the parameters s, &.

For the outside segment property, a sharper estimate is needed. By the equicon-
tinuity of g, there is an § > 0 (depending only on ¢ and independent of s € S(0, k)
or n € N) such that

(3.5) 9n(8) = gn(s)| < 5 Vm, ¥t € S(5,8) N S(0,).

Then, for ¢ < %a, we get
(3.6) dist[Ry, (s,0) + og, + (gn(s) +€)lg,, 0]
> min {g, 6,a — gs, dist(s, 85(0, k)} :

Here we use the uniform outside segment property for Q,, i.e., Ry, (5,0) + og, +
(gn(8) +€)lg, € D\ Qy, for all s € S(0,k) and for all € € ]0,al. The 1nequal1ty (3.6)
comes from (3.5), which simply says that the cylinder [S(0,k) N S(s,6)] x [gn(s) +
£,9n(8) + a — £] after translation oy, and rotation Ry, cannot intersect 9, for
any n. And the right-hand side in (3.6) estimates from below the distance between
(3, gn(s) +€) and the boundary of this cylinder. (This point is inside the cylinder for
e < 2a.)
Then it yields

(3.7) dn(Rq,.(5,0) + 04, + (gn(s) +€)lg,) < —min {g, 8,a— gs, dist(s, 85(0, k))} :

Inequality (3.7) is independent of n, and we can take the limit, by the uniform con-
vergence, to obtain

N

(3.8) d(R(s,0) + 6+ (§(s) + €)l) < —min {%, 8,a — —g—e, dist(s, 8S(0, k))} :

that is, d(R(s,0) + 6 + (§(s) + €)I) < 0 for all s € S(0,k) and for all ¢ € 0, 2a],
and, consequently, (R(s,0) 4+ 6+ (4(s) + €)I) ¢ A for these values of the parameters
s, €. By choosing a smaller § > 0, if necessary, we can replace s by $,l€N, and 2 g€
by “le in inequalities (3.5)—(3.8). Finally, we have that R(5,0)+6+ (4(s) +e)i ¢ A
for s € 5(0,k) and € € ]0,al.

Notice that estimates like (3.8) can also be obtained for d(R(s,0)+6+(3(s)—e)l),
s € 5(0,k), € €]0,a[, with the reversed sign. Then

(3.9) Q={zeD|dz)>0}=intA
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is a nonvoid open subset of D. The above argument shows that 8¢ = {xeD|dx) =
0} is of class C and satisfies (H1)-(H3) with the same constants a, r, k and the same
modulus of continuity.

By Proposition 2.1, we see that O = D\ Hlim(D \ €,) (and Q = p — lim,,),
which proves the compactness of the family O.

Let us also remark that, by Proposition 2.5, we have xq, — xgq a.e. in D, and,
by the Lebesgue theorem, this convergence is valid in any L9(D), ¢ > 1. Here we also
use the fact that Q = {z € D | d(z) = 0} has zero measure in R™ since it can be
represented as a finite union of graphs of continuous functions.

The fact that  is a solution of the problem (3.1) follows from the subsequent
lemma and Theorem 2.8. a

LEMMA 3.2. Letyy, § denote the unique solutions of (3.2) associated with Q,, Q.
Then § = L — limy, on a subsequence.

Proof. Clearly, y, € HY(), § € HY(Q), and {lynla1(0,)} is bounded. By
Proposition 2.4, for any open set G CC Q, there are ng such that G C Q,, n > ng.
We have

(3.10) / (T T ) = / X1 ST = / (VynVo + v) Vo € CY(D).
G D Q. \G

We can estimate

IS

(3.11) (Vyn Vv + ynv)

< vl oy [Ynl 1 (@a) (0 — G) 2.
Qn\C

Taking the limit n — oo in (3.11), we have that (3.10) yields

/GV§VD+/G371)—/§J”U

(due to the convergence of the characteristic functions of €2,,), where § denotes the
L-limit of y, given by Theorem 2.7. We can take an increasing sequence of open sets
Gj cc Q such that UG, = =) and (3.12) gives

(3.12) < Mv|oapyn(@ - G)*

(3.13) /ﬁVﬂVU-}—/ﬂﬂvz/ﬁfv Vv € C1(D).

Since € has the segment property, C'(D) is dense in H 1(&/’\2) (see Adams [1]) and
(3.13) shows that § = ¢. This ends the proof.

The semicontinuity result from Theorem 2.8 ensures that Q is the desired mini-
mizer for (3.1). O

Remark. The above proof does not use the uniform extension property for func-
tions in H'(2). We replace it by a density property, which is, in fact, an approximate
extension result. This is one of the reasons that we can renounce the cone property
for 00 and use the segment property instead. A more general cost functional, as
n (2.9), may be considered in the problem (3.1).

Remark. If we impose uniform Holder conditions for the family O, the limit do-
main will satisfy a similar Holder property. In this case, trace theorems are known
(see, e.g., Ladyzenskaya and Uraltseva [12], Pironneau [20]), and the result of Theo-
rem 3.1 can be then extended to Dirichlet boundary value problems.
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Ezample. A special simple case of the family O is obtained when global represen-
tations are given by

01:{9‘(]'96?1}’
Qy={(s;) €D A<g(s)}

where D = U x]0,b[, U C R™~! open domain, and 71 = {g: U — R+ [0<e<g<b
in U}.

By Theorem 3.1, one can immediately prove the following corollary.

COROLLARY 3.3. Assume that the family Fy is equicontinuous. Then the asso-
ciated problem (3.1) has at least one solution in O1.

Proof. We indicate a direct argument. The family 7 is equibounded by definition.
We take a minimizing sequence of domains 2, associated with gn. We may assume
that g, — ¢ uniformly in U and, clearly, § € F;. Here it is possible to define the
continuous mappings on D, pn(s,A) = gn(s) — A, B(s,A) = §(s) — A, and pp, — P
uniformly; Qn = {(s,A) € D | pu(s,A) > 0), @ = {(s,A) € D | f(s,) > 0}. Finally,
Q= p — limQ,, and the results of section 2 may be used directly to end the proof
without using the distance functions. O

Remark. Another family of domains of interest may be obtained by considering
a domain D C R™ such that D D B(0,1) (the unit ball) and then defining

0, ={QCc D|Q=h(B(0,1)},

where h : D — D is any homeomorphism, i.e., h and h~1 are continuous. This
would be a generalization of the mapping method of Murat and Simon [18], where
the mappings h were assumed diffeomorphisms.

If Q; = ho(B) and h, — h, ;' — h™! uniformly in D, and Q = h(B), then
it is easy to see that these domains have the I'-property, and simple representation
formulae are valid for Q = hh;1(Qy), 0Q = hh;1(8Qy). However, examples from
Maz’ja [17] show that, conceptually, 92 may not be of class C even when 99, satisfies
this assumption. Also, the compactness of Oz is not clear.

Remark. The examples of the families O and Oz also indicate that the con-
cept of parametric convergence has enough flexibility to take into account various
representation methods of open sets.

4. Measurability. We consider the material distribution problem (SOTB). In
this case, it makes sense and is of interest to consider the case where the sets occupied
by each material are merely measurable.

We fix E C D to be two given bounded domains in R™ and Q2 C D to be a variable
measurable subset in some prescribed class O, occupied by one material, while D\ Q
is occupied by another material. Then the physical properties of the two regions are
different, and this is expressed by the fact that different coefficients appear in the
elliptic equations describing the problem, which (formally) read as

(4.1) —a1Ay1 +biy1 = f in,
(4.2) —asAys +boyz = f in D\,
0 0 .
(4.3) al—é% = aggynz, =y in 0\ (8QNID),
(4.4) aiayi =0 inT;, 1%=0 inly, i=12,

on
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where I'; UT'y = 0D is assumed Lipschitz, 'y N T2 = 0, a;,b; > 0, 4 = 1,2, are some
constants, and f € L%(D).
Let yq be defined by

_Jyi(=z) in Q,
#5) ya(e) = {yg(x) in D\ Q.

Then the weak formulation of the transmission problem (4.1)—(4.4) reads
/ {la1xa + a2(1 — x@)|Vya - Vw + [bixa + b2(1 — xa)lyew} dz
D

(4.6) — / fwdzr YweV,
D
(4.7) V={weHD)|w=0 inTs}.

For any measurable subset © C D, the bilinear form governing (4.6) is bounded
and coercive in V, and there exists a unique solution yo € V, which formally satisfies
relations (4.1)—(4.5).

In Pironneau [20], by directly interpreting the characteristic function xq as a
control parameter, the following optimization problem is discussed:

- |2
(4.8) KI{IEI(I%/EkyQ zq|* dz,

subject to (4.6) and with some prescribed zq4 € L?(E). However, it is very difficult
to impose the constraint that the control should take only the values 0 and 1 in the
whole D.

Our approach is to specify the set O of admissible by requiring that xgq is of
the form H(pq), where po € U,q (some admissible set of mappings will be defined
later), and H C R x R is the maximal monotone extension of the Heaviside function:

1, p>0,
(4'9) H(p) = [Oa l]a p=0,
0, p<O0

Notice that by taking, for instance, po = Xq, we have representations via H for any
measurable Q. If meas(0Q) = 0, then we may take pg = dq, which is even Lipschitzian
in D.

For the optimization problem (4.8), we define the class of admissible sets {2 by
xa = H(pq), where pg € Ugq C Hib (D), and p € U,g iff

(4.10) |p|H1+91C(IC) < Mg VK cC D, 0 >0,
(4.11) lp(z)| + |Vp(z)|lgm > v >0 ae. in D.

If meas(8Q) = 0, the mappings dq satisfy (4.11) (see Clarke [7, p. 66]) but do not
satisfy (4.10) in general.
Conversely, the condition (4.11) ensures that the set

(4.12) {z € D|p(z) =0}

has zero measure for p € H\ (D); see Brezis [2, p. 195].
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Remark. Under some stronger smoothness assumptions, condition (4.11) ensures
the application of the implicit function theorem and a characterization of the “bound-
ary” given by {z € D | p(z) = 0}. However, our regularity hypotheses are so weak
that even the implicit theorem in Clarke (7, p. 255] for Lipschitzian mappings cannot
be applied. The only properties that we have are (4.12) and the measurability of s,
which are, in fact, defined up to sets of zero measure. Notice, as well, that the local
character of (4.10) allows oscillations of 82, even under the smoothness assumptions.

We reformulate the problem (4.6)-(4.8) as follows:

4.13 i — 24%d
(4.13) prgg:d/Ekyp zql|* dz,

[ {01 H0) + ax(1 - HO)VipT -+ a5
(4.14) +b2(1 — H(p))]ypw} dz = / fwdz YweV.
D

THEOREM 4.1. Under the hypotheses (4.10)—(4.11), the problem (4.13)-(4.14)
has at least one optimal pair [§,p] € V X Uqq.

Proof. Obviously, U,q # 0 (as constant functions are in Uqd), and we may consider
a minimizing sequence [yn,pn] C V X Uaq. By taking an increasing sequence of open
sets K; C D such that UK; = D, and by the compactness of {pnlx,} in HY(K,), we
may define p € Uyq such that p, — p strongly in H*(K;) for all l € N, pn — p, and
Vpn, — Vp ae. in D.

Since a1 H(pn) + ag(1 — H(py)) > ct > 0 and by H (ps) +b2(1—H(pp)) 2 ct > 0, it
is easy to infer that {y,} is bounded in V C H'(D), and we may assume that yn, — y
weakly in H'(D) on a subsequence.

Obviously, H(p,) is bounded in L*(D); therefore, we may also assume that
H(pn) — H(p) weakly star in L°°(D). The identification of the limit is a consequence
of the demiclosedness of the maximal monotone operator H, applied in L(K) x L*(K)
for any K cC D. Notice that, by p € Uag and by (4.12), it follows that H(p) is a
characteristic function in D.

We also have that H(p,) — H(p) a.e. in D. We know that p,(z) — p(z) # 0
a.e. in D. If p(z) > 0, then p,(z) > 0 for n > n, and H(pn(z)) = H(p(z)) =
for n > ng. If p(z) < 0, similarly, we obtain H(pn(z)) = H(p(z)) = 0 for n > n,.
Consequently, we get that H(p,) — H(p) strongly in L*(D) for all s > 1 by the
Lebesgue dominated convergence theorem.

AS [yn,pn| satisfies (4.14), the above convergence allows to take the limit and
to see that [y,p] also satisfies (4.14) and p € Usqg; i.e., the pair ly,p] is admissible.
Moreover, for the minimizing sequence, we have

lim [ |yn —zdl*dz = / ly — zal? da,
n—oo Jp E

which shows that the pair [y,p] is optimal for the problem (4.13), (4.14), and we
redenote it by [, D]. O

Remark. The above argument remains valid for any weakly lower semicontinu-
ous cost functional on H'(D)—for instance, for boundary cost functionals. Other
boundary conditions may be imposed on 0D as well.

Tt is possible to impose (4.10) only for K cC D\ C, where C' C D is a given
closed set of zero measure. This allows cracks in the corresponding 0Q’s; see Bucur
and Zolesio [3].



1452 W. B. LIU, P. NEITTAANMAKI, AND D. TIBA

Remark. Considering the measurable sets Q, = {z € D | pn(z) > 0}, the
proof of Theorem 4.1 uses a property of parametric convergence for €, based on
a.e. convergence in D of p, and Vp,, and a variant of Definition 2.3.

We continue by describing an approximation procedure which is suggested by our
approach to characteristic functions. We denote by H. the Yosida approximation
of H, given in this case by

> D>¢,
3 pe[076]’
, p <0.

(4.15) H.(p) =

O o —

Notice that H. is Lipschitzian with Lipschitz constant % The approximation of the
optimization problem (4.13), (4.14) is obtained by replacing (4.14) with

(@14) [ {{01Hep) + 01~ Ho)IV4V0+ [ Help) + b1~ Hep)lgfu} do

=/fwdx Yw e V.
D

By a variant of Theorem 4.1, we have existence of at least one optimal pair [y, pe] €
HY(D) x Uyq for the problem (4.13), (4.14’).

THEOREM 4.2. For any open set K CC D, we have [ye, pe] — [§, D] in the weak-
strong topology of H'(D) x H(K) on a subsequence, and [§, ] is an optimal pair for
the problem (4.13), (4.14).

Proof. By (4.10), we have p. — p strongly in H'(K) on a subsequence, and
pe — P, Vpe — VP a.e. in D for some p € Uyg. As 1 > H.(p) > 0 ae. in D, we
also obtain that {y.} is bounded in H!(D) by fixing w = y. in (4.14’). We may
assume that y. — ¢ weakly in H(D) on a subsequence. Moreover, it is known from
the theory of maximal monotone operators that H(p.) — H(p) weakly in L%(K) for
any K CC D since {H.(p.)} is bounded in L*°(D) and p. — p strongly in L?(K),
for instance. By the fact that p € U,y and by (4.12), (4.9), we know that H(p) is a
characteristic function in D. We can also prove the pointwise convergence of He(pe)
a.e. in D. If p(z) > 0, then p.(z) > 3p(z) for € < &g; that is, pe(z) > € for € < &5
and H.(pe(z)) = H(H(z)) = 1 by (4.15). If p(z) < 0, then p.(z) < 0 for ¢ < g,
and Hc(pe(z)) = H(H(z)) = 0 for € < 5. These two situations are valid a.e. in D
by p € Uyq and (4.12). Combining these with the Lebesgue theorem, we obtain that
H.(pe) — H(p) strongly in L*(D) for all s > 1. Then we can take the limit in (4.14’)
and infer that the pair [§, p] is admissible for the problem (4.13), (4.14). To show that
it is optimal, we note that

(4.16) / |ye — 24l dz < / lyg — za|* dz,
E E

where y; denotes the solution of (4.14°) corresponding to some p € U,q. By an
argument of the same type as above, we can prove that y, — y, weakly in H (D) on
a subsequence, where y, is the solution of (4.14) associated with p. Taking the limit
in (4.16) yields the optimality of [g, ] in the problem (4.13)—(4.14) and completes the
proof. |

COROLLARY 4.3. On a subsequence, we have

(4.17) ye — 9 strongly in H*(D),
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where { is some optimal state for the problem (4.13)-(4.14).
Proof. There is a constant ¢ > 0 such that

¢ lye — Z?@II(D) < /D[alHE(ps) +az(1 - HE(ps))”V(ys - ﬁ)‘QRm dz
4 /D (b0 H () + ba(1 — He(p:)))(ve — §)? do

= [ (laHutpe) + aa(1 = Holp) 17069 3~ )
+ [b1He(pe) + ba(1l — He(Pe))]Ye(Ye — )} do
(4.18) - [ s Btp0) + as(1 = Help)I 99V e = 9)
+ [b1He (pe) + b2 (1 — He(pe))]i(ye — 9)} de
- [ =iyt — [ (mH0)

+ 02(1 - Hs(pa))]v?jv(ye - g))
+ [b1He(pe) + b2 (1 — H.(pe))]i(ve — 9)} dz
=1 + L.

By Theorem 4.2, we may assume that Iy — 0 on a sequence as € — 0. For I, we first
estimate the term

(4.19) /D (01 He (pe) + a2(1 — He(pe))] V9V (e — 9) de,

which is the most difficult. We know that V§V(y. — §) is weakly convergent in
LY(D) and the coefficients aiH.(pe) + a2(1l — He(pe)) are bounded in L>®(D) and
strongly convergent in L®(D) for all s > 1. On a subsequence, we may assume that
[a1H.(pe) +a2(1 — He(pe))|V(ye — §) — u weakly in L?(D)™. Egorov’s theorem gives
that a1 He(pe) + aa(1 — He(pe)) — a1 H(p) + az(1 — H(p)) uniformly in Ds for any
§ > 0 and some measurable subset Ds C D with meas(D — Ds) < 8. Combining this
with V(y. — ) — 0 weakly in L*(D), we have that u = 0 a.e. in D. Then the limit of
the integral (4.19) is zero, and the same is true, by a similar reasoning, for 2. Finally,
(4.18) has limit zero, and this achieves the proof. o

Remark. 1t is possible to further smooth H, by means of a Friedrichs mollifier
and to compute the gradient of the smoothed cost functional (4.13) with respect to
p € Uyy. This shows the constructive character of our approach presented in this
paper. Numerical tests for the problem in this section were reported in Maékinen,
Neittaanméki, and Tiba [16] together with an approximation result.

Remark. In Pironneau [20, p. 134], it is mentioned that, by taking az — 0, bo — 0
in (4.14), the Neumann boundary value is approximated. Therefore, the results of this
section may open a way to relax the continuity assumptions from section 3. A similar
idea is possible for Dirichlet boundary value problems, which could be obtained by
taking ag — 00, by — 0o. The hypotheses under which such passages to the limit can
be performed are not clear yet.
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