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EXISTENCE FOR SHAPE OPTIMIZATION PROBLEMS IN
ARBITRARY DIMENSION-

W. B, LIUf, P, NEITTAANMÄKII, AND D. TIBAS

Abstract. We discuss some existence results for optimal design problems governed by second

order elliptic equâtions with the homogeneous Neumann boundary conditions or with the interior
transmission conditions. \Me show that our continuity hypotheses for the unknown boundaries yield
the compactness of the associated characteristic functions, which, in turn, gua,rantees convergence

of any minimizing sequences for the first problem. In the second case, weaker assumptions of mea-

surability type are shown to be sufficient for the existence of the optimal material distribution. We

impose no restriction on th€ dimension of the underlying Euclidean space'

Key words. uniform segment property, compactness, existence of optimal shapers

AMS subject classiflcations. 49D37' 65Kl-0
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L. Introduction. In this paper, we study existence for two shape optimization
problems. The first is the following optimal shape design problem:

(1.1) (SONB) rnrq/@-aa)'d',aeo Ja

(1.2) -ay *a: f , ffilun:0,
where o is a class of admissible open sets inside a fixed open set D in R-, and

f ,a¿ e L2(D).
The second problem is the following material distribution design problem:
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where ,Ð c D a¡:e two given bounded domains in R-, f1 U12 : 0D with 11 l-ì12 : fl,

zd e L2(E), and O is a class of admissible open sets inside D. The details of the

above two problems will be specified in sections 3 and 4.

It is well known that, in general, such shape optimization problems have no

solutions without assuming further regularity conditions on the bounda¡ies of the
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domain classes; see Pironneau [20] for some counterexamples. Assuming the cone

property on (2 uniformly, for example, one can prove that the above optimal shape

design problem indeed has solutions; see Chenais [6] and Pironneau [20] for the details.
Furthermore, much effort has been devoted in the scientific literature to the relaxation
of the regula,rity conditions required for the boundaries of the unknown domains in
optimal design problems. This question is discussed in detail in the monographs

by Pironneau [20], Haslinger and Neittaanmäki [8], Sokolowski and Zolesio [21], and

Tiba [24], for instance. As the range of optimal design problems is very wide, including
as well control into coefficients problems, optimization of certain evolution systems,

some problems originating in mechanics, etc., there is a rich variety of existence results
of interest. We quote here just the recent papers by Sverak [23], Bucur and Zolesio

[4, 3, 5], and Henrot [9], where the question of the dependence of solutions of elliptic
equations on the underlying domain of definition is discussed in a general setting
and va¡ious sufficient compactness conditions a¡e introduced. However, a complete
solution of the problem seems not to be known, to our knowledge.

In this work, we first prove existence for the above optimal shape design prob-

lem governed by the Neumann boundary value problems, under the mere assumption
that the unknown open sets a¡e of class C (or, equivalently, they have the segment
property-see MazJa [17] and Adams [i]) with some uniformity with respect to the
parameters-see section 3 for the details. Our conditions allow cusps or certain oscil-

lations of the boundaries, but cracks or oscillations dense in a set of positive measure

(in the sense of Hausdorfi-Pompeiu) are not permitted. Then, in section 4, it is shown

that, for the material distribution problem, i.e., in the transmission boundary value

problems, much weaker assumptions of measurability type are sufficient to obtain
existence of the optimal sets. lvloreover, all of our results a¡e valid in any space di-

mension. This is an advantage over much of the existing literature, where very often

the case of space dimension two is studied.

The approach that we are using is described in detail in section 2 and has its
origin in our previous works-Liu [13], Liu and Rubio [15], Mäkinen, Neittaanmäki,
and Tiba [16], and Neittaanmäki and Tiba [19]. Roughly speaking, we replace the

extension technique for passing to the limit in the PDEs defined in a sequence of
open sets by a local convergence analysis (see Lemma 3.2 and its proof). For set

convergence, we introduce a concept of parametric convergence, which can be easily

adapted to various possible representations of open sets and preserves some needed

properties. As an example, the Hausdorff-Pompeiu convergence is a special case of the
parametric convergence, choosing a certain distance function as the pa,rametric rep-

resentation. Notice that this is essentially difierent from the one used by Sverak [23];
see Proposition 2.5 and the subsequent remark'

It is recognized in the scientific literature that the a.e. convergence of the corre-

sponding characteristic functions is an essential step in any convergence result for the

PDEs defined in a sequence of open sets. Our treatment of this question, appearing
mainly in sections 2 and 4, is based on a new technique using the maximal monotone

extension of the Heaviside mapping in R x R and the closure properties of monotone

operators. We also propose, in this setting, a new approximation procedure for the

characteristic functions by means of the Yosida approximation and of the Fliedrichs

mollifiers. In this respect, we point out the constructive characte¡ of our method.

Some numerical experiments together with an approximation result are reported in
Mäkinen, Neittaanmèiki, and Tiba [16].

Finally, we mention that, in the recent paper by Sprekels and Tiba [22], some
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design problems, which are formulated as control into coefficients problems, are dis-

cussed. It is shown (by different methods) that the boundedness of the coefficients

is sufficient to prove existence. An announcement of some of the results from the
present work was published in Liu, Neittaanmäki, and Tiba 114] without proofs.

2. Convergence of open sets and of mappings. Let A,B be two open sets

contained in the bounded domain D of.R*, n'L e N. The distance ó between A and B
is defined by

(2.1)

(2.2)

p(A, B) : sup ilf 
" 

llr - slln*,
æeD-A g€D

6(A, B) : max{p(A, B), p(8, A)},

and it is the Hausdorff-Pompeiu distance between the closed sets D \ A and D \ g;

see Pironneau [20] and Kuratowski [11]. We shall denote by Hlim the limit in the

sense of Hausdorff-Pompeiu.
Another frequently used distance notion is

(2.3) P(A, B) : meas[(.4 \ B) u (B \ ,4)]'

defined by the Lebesgue measure of the symmetric set difference between A and' B;
see Hewitt and Stromberg [10, p. 144]. It should be noted that p' coincides with the

well-known Ekeland metric in I-(D) applied to cha¡acteristic functions:

(2.4) dn(x*xl) :meas{r e D lva(r) * xs(")} : p'(A,B)'

Relations (2.3), (2.4) a¡e defined up to sets of measure zero. Without supplementary

regularity assumptions on the bounda¡ies of the sets, there is no connection between

ó and ¡;. For instance, let ,5(0, i) be the closed unit ball in R-. Add r¿ (closed) rays

of length 2, starting from the origin, into the ball such that the union of the rays is

dense in 3(0-Ð as r¿ --+ oo, and denote the resulting (closed) sets by ,4',,. Then

(2.5) Hlim(Á,) : S(0Ð for n --+ oo,

(2.6) P1,4',,S10¡¡ -- o for r¿ --+ oo'

In Chenais [6], it was proved that, for uniformly Lipschitz domains, convergence in
the metric (2.2) yields convergence in the metric (2.4) with the same limit (up to a
set with zero measure).

Let us now introduce the mappings ds : D -'+ R, based on the Euclidean distance

functions associated with the domain O and its complementary:

(2,7) d'n(r) :
disr(r,D\CI) ifreQ,
0 ifre)Q,
-dist(r,O) ifreD\O

The mapping de is uniformly Lipschitzian in D for any open subset O c D;
see Clarke [7]. Let Qn c D be a sequence of open sets, not necessarily connected.

Let d,n : ddrn be the associated mappings via (2.7). By the Ascoli theorem, on a

subsequence again denoted by n, we have d'n -+ d, uniformly in D. Howevg, d is
not necessa¡ily a function of the same type since, in general, the Hlim's of Q,, and

of D \ o, may be not complementa,ry to each other (see the above example with the

sets ,4,,). Let íi : {r e D I d(") > 0} (possibly void).



EXISTENCE FOR SHAPE OPTIMIZATION PROBLEMS L443

PRoposrrrox 2.1.

õ.:D\HIim(D\CI").

Proof. Letr € D\HIim(D\Q") so that lc É Hlim(D\Q,). Then lim,-- dist(ø, D\
fl") > 0. Thus lim,.,-* d"(r) > 0; Le., 

r € Q.

Conversel¡ assumethat r e Íì and r ç D \Hlim(D\O"). Thend(z) > 0,

and ø € Hlim(D \ 0,). That is, â@) ,0, and there are rn e D \ O, such that
rn + fr. This means that d(r) > 0, dn(rn) ( 0, and nn + n. By the uniform

convergence, we have a@) , O and á(z) ( 0, which lead to a contradiction. It follows

that ô : D \ Hlim(D \ o,), which is the desired conclusion. E

Remarlc. The above proposition shov¡s that the well-known compactness property
of the Hausdorfi-Pompeiu distance is a direct consequence of the Ascoli compactness

6iteria. A variant of the mapping ds (identically zero outside O) was considered by

Sverak [23], who also proved a result similar to Proposition2'I.
PRoposluoN 2.2. If Hhm(D\o,) : D\CI, then, for any corngnctK cÔ', there

'is an n¡ç : n(K) € N such that K c dln for n ) n7ç.

Proof. We use the same notation as in Proposition 2.1. Since á is continuous
on D and strictly positive on K, there is a c6 > 0 such that

â,@)>cç)o VreK.

By the uniform convergence, for n) r¿rc, we obtain d'.(r) > h"* r 0 for all ï € K.
That is, K C Qn for n) nK, as required. n

Remark. This property is called thel-propertg by Liu [13] and Liu and Rubio [15],
and it plays an essential role in the local convergence theory for the solutions of
PDEs defined in sequences of bounded domains. The same property is also proved

in Pironneau 120], by different methods, together with other domain convelgence

results.
DeuNrrrow 2.3. We saythat the sequence of open sets {ln C D i,s parametrically

conuergent to the open set O c D i,f there 'is a sequence of cont'inuous rnapp'ings

pn : D --+ R. such that pn --+ þ uni,fonnly i,n D and

Q,,:{reDlp"(æ)>0},
D\O":{n€Dlp^(r)<0},

a:{"eDlþ(ø) >0},

D\O:{reDlp(")<o}.

We denote the limit by O : p - IimO,.
Remark. The "parametrization" p' associated with the domain f)r, is not unique,

and the distance mapping d' is just one example. The plimit and the convergence

properties depend on the pa,rametrization. If it is different from the function de, then

the convergence may differ from the Hausdorff-Pompeiu convergence. For instance,

we choose B: R ---+ R by

-(r-t)'+T,
fi2,

-(r*t)'+I,

,> t,
l*l ! T,
,<-1,

p(*) :
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and we rotate its graph to define a continuous mapping p : H2 --+ R. Take pn :R2 --
R, pn(r) : p(r) + fi. Then the corresponding domains are {ln: {r € Il' I l"l*, <

t+rÆI andQ :lr.R'l_0 < l"l*, < 1+;þÌ. Noti""thatoisnonsmooth,
{l: p - lim0rr, and O I Hlim0r. If B is zero a¡ound r : 0 on some interval, then
p - limO, will be a circula^r crorvn, etc. By taking sup(?,",pr) or inf.(pn,p¡r), one can
easily "parametrizet' O, U O¿ or Cl, n f)¿.

PnoposltloN 2.4. The parametric conuergence has the l-proper"ty for any pa-
rametri,zation,

Proof. This is similar to the proof of Proposition 2.2. Il
Remark. It is possible to weaken the conditions in Definition 2.3 by replacing the

uniform convergence with other types of functional convergence for the mapping pr.
This will be used in section 4 (see Theorem 4.1- and its subsequent rema,rks).

PRoposlrtorv 2.5. IÍ A:p-limQ,, øndthe closed setC:{" eDle@):O}
has zero nlnzßure, then yç¿-'-+ Xa a.e. 'in D.

Proof. If. r € dl, then þ(ø) ) 0 so that p"(n) ) 0 for n ) n, (depending on r).
Thus Xe.(ø) : Xa(n) : 1 for n ) næ. If r e D\0, then ñ(") <0 and p",(r) ( 0 for
n) næi i.e., r € D\O" for n ) nr. Consequentl¡ ¡9,(r) : xn(r):0 for n) nr.

As the set C has zero measure, we get that Xe-(r) --+ Xo(r) a.e. in D. I
Remørlc. The family of distance-type mappings used by Sverak 123] does not

satisSr this ProPertY.
Dorrr,¡rrroN 2.6. Assume that Q: pr - IimO, , and let yn e HL(Q') be such that

1¡y"l¡¡r1o.)Ì i,s bounded. We søy thøt {y*} i,s locally conuergent to y € Ht(Q), and
we write A : L -limyn i,f, for any G cc O (open set compactly embed,d,ed, in Q), we
haue

(2.8) a,lc - alc wealcly in H|(G)

Remarlc. This definition is motivated by Proposition 2.4. The limit mapping y is
uniquely determined. The convergence in (2.8) is also valid ïn L2(G) strongly for any
Gcc0.

THpoRrv 2.7 (compactness). Assume {l : p - limO,. Suppose that yn €.

f/t(Q") and, lynl¡¡'1e.¡ 'i,s un'iformly bounded. Then there a,re a, y e Hr(Q) and a
subsequence still d,enoted, by yn such that g : L - limyn.

Proof. Take a sequence G¡ CC Cl such that G¡ C G¡4 and ! Gi : Q. For each j,
we take subsequences (one after another and all denoted by n) such that ynlç, ----- yi
weakly in I/l(G¡). We define y on O by y(r) : yi (r) a.e. tr € G¡, which is poésible by
the properties of {G¡}r.n¡. Clea.rly, y € L2(A) since lgr,.,l¿z1cr¡ is uniformly bounded
with respect to n and j. Consider any (p eD(O). There is a 7¡ such that g €D(Gj)
for all j > jo. Therefore,

l. orr: lnrrr: - lryYp: - l" atvv: l. rr,r.

This yields that Vy :VAi in G¡ 
-for 

all j > jo. As lyilu,@,) is bounded with
respect to j, we obtain that Vy e L2(Q)*; i.e., y € IJ1(C¿). Relation (2.8) then
follows, and the proof is completed. E

TIrpoRelr¡ 2.8 (lowersernicontinuity). f I:R* xRx R- --+ F.'is nonnegatiue
and meøsurable, I(r,.,.) is cont'inuous on R x Rm, l(r,s,') 'is conaer on F.-", and,
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Çl:p-Iim{ln, then

prouided that y: L -limY"'
Proof. Let {G¡} be selected as in the previous proof. Then we have XGi --+ Xn

a.e. in D. For any fixed G¡twe have that An + U weakly in f/1(G¡), and we obtain

of [ 4r,yn,Vyn) d,r
Jct o JG¡

since weak lower semicontinuity is a well-known property of the convex integrals in
the fixed domains. Next, Fatou's lemma gives

/ lt* Xcol(r,y,Yy) d,r
JnJ'æ

liminf /J-æ JG¡

< Iiminf liminf / l(*,yn,Vy^)d,r
J+æ n-* JÇln

(2.e)

t,
I(n,y,Yy) d,r

l,^
: liminf

¿+æ
l(r,yn,Vg") dr

The positivity of I is essential in the above proof. u

Remark. Theorems 2.7 and 2.8 are variants or results previously proved by Liu
and Rubio [15] and Liu [13]. It should be noted that it is enough to assume the

l-property for the open sets O, and O to prove Theorems 2.7 and 2.8'

3. Equicontinuity. we consider the model problem (soNB). The problem is
formulated as

(8.1) rr5" f t, - aa)z d,r,

subject to the following va¡iational equation with the homogeneous Neumann bound-

ary condition:

(s.2) lnvrv, * In o: Irro vu € ã1(o),

where 0 is a va¡iable open set such that 0 C D with D being a fixed bounded open

set in Rm, and.y¿e L2(D). For the admissible class of open sets denoted by (9,we

require that they have the C-property (or, equivalently, the segment property) with
some uniform constants:

(H1) We consider a family .F of equibounded and equiuniformly continuous func-

tions 9 : ,9(0,k) + R, with k > 0 fixed and ^9(0,,t) c R--1 an open ball.

For any Q e O, there is a subset Fa C F, and, for a,ny g €. fe, we associate

an orthogonal system of axes of center on € 0{l, "verticaltt vector ln eRf" of.

unit length, and a rotation -R, in R- such that ln: Ãs(0,0, .' . ,0, 1) and

U {ar(",0) *o, + s(s)t, I s e,5(o,k)} : ôo.
9ÇFa

' ,r* [ l(*,yn,Yyn) d,r
J rr@, 

y,V y) ¿r 3 tip-* 
L a^

l(r,y,Yy) d,r :



L446 W, B. LIU, P. NEITTAANMÄKI, AND D. TIBA

(H2) There is an ¿ ) 0 such that, for any Ct e O and, ar|y g e.Fe, the uniform
segment property is valid:

,Rn(s,0) *osl (s(")+t)ln e R- \O Vs e S(0, k), Vt e 10,ø[,

iBn(s,0) i on* (s(") - t)In eQ Vs e ,S(0, k), Vt e ]0'a['

These two conditions represent the usual definition of boundaries of class C with
added uniformity assumptions. Notice that, due to the compactness of ôO, it can be

covered by a finite number of local charts; therefore, both conditions a,re automatically
satisfied, and the only real requirement is the uniformity with respect to the whole

family (?, which does not allow the local cha¡ts to shrink.

Our specific requirement is that there is a constant r € ]0, k[ such that

(H3) U {nr(",O)*on +sþ)t' lse s1o¿1 :¿9
9€.Fa

for any Q e O. This is a uniform restriction (or extension) property for the whole

family .F of the local cha¡ts. It avoids, for instance, clustering of singularities (like

cusps) nea¡ the boundary of any local cha¡t. Notice that, due to the finite numbers

of the local charts, a positive number 0 ( ro ( ,k can be found in each f) with the
above property. We just assume that it can be chosen independent of O.

Erample. Take 9(r) - rt, r €l-oja[, to be a local chart with Hölder regularity
for some domain in R2. In r : 0, we have a cusp, and the segment property is
fulfilled only by the vertical segments. Thus the segment choice for local charts with
cusps is unique, and only cusps with the same "axis" may belong to the same local

chart. Hypothesis (H3) requires, in particular, that cusps with different "axes" do

not cluster. In the common part (which cannot shrink) of neighboring local cha,rts,

no cusp can occur.
Remark. In the counterexample of Pironneau [20], with infinitely many oscilla-

tions of the boundary in a rectangular region, all of the conditions in (H1)-(H3) a're

fulfilled except the equicontinuity of the local cha¡ts. This shows the essential impor-
tance of this assumption, reflected by the title of the section. Examples of continuous

oscillating boundaries which are not even of class C may be found in the book by

Maz'ja [17]. It is also known that domains with cuts are not of class C. Notice, how-

ever, that our assumptions allow infinitely ma,ny oscillations with vanishing amplitude
(to presewe equicontinuity).

Tnnonnu 3.1 (compactness and existence). Let {Q*} be a m'ín'im'i,z'ing sequence

of open sets for the problem (3.L) satisfyi,ng the assumptions (H1)-(H3). Then there

is an open set Q of class C whi,ch i,s a solut'ion of the problern (3.1) and whi'ch sati,sfi,es

(H1)-(H3). Furtherrnoret Xçtn'--+ Xe _a.e.
Proof. We may assume that D is la^rge enough to include O, and the seg-

ments defined in (H2). Denote by dn the distance-type functions introduced in (2.7)

corresponding to Or., and by á th"it uniform limit, á € C@). Let l' : {r €

D | â,@) > 0] be a closed set, which is clea,rly nonvoid. Take ô e Â such that

â1*¡ :0. Then d,*(û) --- 0, by the definition of d. By the definition of d,, there

a,!e ïn G Açln, nn + à (and d,"(ø') : 0). By (H3), there are g,', e Fa* such that
xn: Rn*(sn,O) I on* I gn(sn)ln*, d"!n)_Í 0, and s?, € S(0,r). Under our condi-

tions, wemay assume that s,., -* 1€ S(0,r) and g,"n-r i uniformlyin S(O,k), with

f being continuous in D, Rn^ -+ R, og^ ---+ ô with d(ô) : 0, In* -'+ J as matrices or
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vectors (since all are bounded) with ,Ê10, o, . . . , 0, 1) : i, and lÎl : r. We have

(3.3) û, : limrn: Iim(As. (s,,,0) * on* I gn(sn)tn) : ÊG,0) + ô + 9(3)i,

(3.4) d,,(Rn^þ,o) *on*+s*(s)tr*) -' á1â1",0)+ô+rÇ(s)i) :0 vs e ^9(0,k).

We show the segment property.
Take any e e ]0,ø[, and consider the point .R(s,0) + ô + (0(s) - e)l e R-.

We have that,Rn,(s, 0) -f on-+ (9'(s) - €)ts* -- Ê1s,0) + ô + (S(s) - e)l; that is,

,Ê1",0¡ +ô+ (0(s) -e)i e D for s €,S(0,k). As Rn-(t,0) I on^+ (s'(.s) - e)In* e Qn

by (H2), we have d,n(Rn*þ,O) *or. + (9'(s) - e)ln) ) 0 for s e ^9(0,k), e e ]0,ø[,
n ) L. It follows that á(.â(s,0) + ô+ 0(s) - €)i) > 0 for s e,9(0, k), e el0,ø[; i.e',

1.Ê1s, o¡ + ô + (f (s) - e)Î) e À for such values of the pa,rametets s, €.

For the outside segment property, a sharper estimate is needed. By the equicon-

tinuity of g,, there is an ó > 0 (depending only on e and independent of s e ,9(0' k)

ot n e N) such that

(3.5) ls*ft) - s*þ)l . ; Vn, Yt € 5(s, ó) n s(0, k).

Then, for , a ?o, we get

(3.6) dist[,Rn. (s,0) * on* * (9"þ) * e)\n.,ÔQn]
(e ^ 3 .ì) min \;,u,"- fe,dist(s,ôS(o,k)l '

Here we use the uniform outside segment property for f)r, i.e., Ãn.(s,0) * or. *
(s,(")+ e)tn^ e D\0,,, for all s €,S(0,k) and for all s € ]0,ø[' The inequality (3.6)

comes from (3.5), which simply says that the cylinder [S(0,k) ñ5(s,ó)] x 19"(s) +
E,S'G) i a - f] after translation on* and rotation Ãn. cannot intersect ðQ,, for
any rz. And the right-hand side in (3.6) estimates from below the distance between
(", g",(") * e) and the bounda,ry of this cylinder. (This point is inside the cylinder for
, < ?".)

Then it yields

(3.7) d,(Rs*(s,0) * on- * (s,(s) + e)tn) ( - min 
{;,u,"- }e, 

dist(s, as(0, /c))} .

Inequality (3.7) is independent of rz, and we can take the limit, by the uniform con-

vergence, to obtain

(3.8) á1.Ê1",0) +ô+(s(s) +e)Î) 5 -*i"{ z,u,o-f,e,dist(s,as(o,r))} ;

that is, á1.Ê1r,0) +ô+ (0(s) +e)Î) < 0 for all s e S(O,k) and for all e e ]0,tø[,
and, consequently, (-Ê(s,0) + ô + (0(s) + )fi ç À for these values of the parameters

s, e. By choosing a smaller ó > 0, if necessary' we can replace u, bV î ,l € N, and te
¡v fu in inequalities (3.5)-(3.8). Finally, we have that -R(s,0) + ô + (,û(") + e)I f Ìr
for s € ,S(0, k) and e e ]0, ø[.

Notice that estimates like (3.8) can also be obtained for d(-rB(s,0) +ô+ (râ(s)-6)¿)'
s € S(0, k), e e ]0, ø[, with the reversed sign. Then

(3.9) O:{" eDld(r) >0}:intl"
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is a nonvoid open subset of D. The above a,rgument shows that ôO : {r € O | â1r) :
0] is of class C and satisfies (H1)-(Hg) with the same constants ø, r, k and the same
modulus of continuity.

By Proposition 2.L,we see that Ô : D \ Hlim(D \ f),) (and ñ : p- IimO,,),
which proves the compactness of the family (?.

Let us also remark that, by Proposition 2.5, we have Xe. --r Xô a.e. in D, and,
by the Lebesgue theorem, this convergence is valid in any Lo(D), q ) 1. Here we also
use the fact that ðA : {r e D I d,(n): 0} has zero measure in Rm since it can be
represented as a finite union of graphs of continuous functions.

The fact that O is a solution of the problem (3.1) follows from the subsequent
lemma and Theorem 2.8. I

Lpvtue 3.2. Letyn, fi d,enotetheun'ique solut'ions of (3.2) assoc'io,ted,wi,thQn,ñ,.
Then ! - L - limyn on a subsequence.

Proof. Clearly, an €. HL(Q'), û e ¡It(O), and {ly,,l¡1,(o,)} is bounded. By
Proposition 2.4,for any open set G CC ñ, th"r" atenG such that G c{ln,n} nç.
We have

(3.10)

We can estimate

[ (va.v, -r y.u) - [ ,n-¡, : IJG J D Jo.\c
(YynVu * ynu) Va e CI(o)

(3.11) < lu|1-6¡)la^ln,@^tp(Cl, - C¡å.

Since O has the segment property, Ct(D) is d.ense in ø1(Ô) (see Adams [1]) and
(3.13) shows that fi: f. This ends the proof.

The semicontinuity result from Theorem 2.8 ensures that ô i. th" desired mini-
mizer for (3.1). u

Remarlc. The above proof does not use the uniform extension property for func-
tions in ¡It(O). We replace it by a density property, which is, in fact, an approximate
extension result. This is one of the reasons that we can renounce the cone property
for ôO and use the segment property instead. A more general cost functional, as

in (2.9), may be considered in the problem (3.1).

Remarlc. If we impose uniform Hölder conditions for the family O, the limit do-
main will satisfy a similar Hölder property. In this case, trace theorems are known
(see, e.g., Ladyzenskaya and Uraltseva 112], Pironneau [20]), and the result of Theo.
rem 3.1 can be then extended to Dirichlet boundary value problems.

I t (Yynvu*anu)
lJo.\c

Taking the limit r¿ -+ oo in (3.11), we have that (3.10) yields

(8.12) 
ll"oøo" 

* I"ú, - Ior,l< Mþlç,p)t @, - q+

(due to the convergence of the characteristic functions of f,),r), where ! denotes the
-L-limit gf y,, given by Theorgm 2.7. We can take an increasing sequence of open sets
G¡ cc 0 such that UG¡ : Q and (3.12) gives

(3.13) 
fovøv, 

* loúr: loru vu € ct(Ð).



EXISTENCE FOR SHAPE OPTIMIZATION PROBLEMS L449

Erample. A special simple case of the family (2 is obtained rvhen global represen-

tations are given by

Or:{QslseFt},
0g:{(s,À) eDl}<s(t)}'

whereD: [/x]0, bl,U l_R--l opendomain, andFt: {g:U - R+ l0 <c< g <b
in t/).

Éy Theorem 8.1, one can immediately prove the following corollary.

coRol,leRy 3.3. Assume that the fami,ly Ff is equ'i,cont'i,nuous. Then the asso-

ci,øted, problern (3.1) has at least one solut'ion i'n Ot'
pioof. Weindicate a direct argument. The family .F1 is equibounded by definition.

we take a minimizing sequence of domains o¿ associated with 9r¿. we may assume

that gn --+ 9 uniformly in û and, clearly, 0 e h. Here it is possible to define the

continuous mappings on D, p",(s,À) : 9,"(s) - ), É(s,À) : 9(s) - À, and Pn + þ

uniformly; fl': {(s,À) e D lpn(",À) > 0), ô: {(t,À) e D lf(",À) > 0}' Finall¡

ñ, : p - limg,.,, and the results of section 2 may be used directly to end the proof

without using the distance functions. u

Remarlc. Another family of domains of interest may be obtained by considering

a domain D cP¿* such that D ) B(0,1) (the unit ball) and then defining

O2 : {Qc D I f¿ : h(B(0' 1))}'

where h t D --+ D is any homeomorphism, i'e., h, and h-r arc continuous' This

would be a generalization of the mapping method of Murat and Simon [18], where

the mappings å. were assumed diffeomorphisms'
If O; : h^(B) and. hn '-+ h, hnL --, h-r uniformly in D, and 0 : i¿(B), then

it is easy to see that these domains have the l-propert¡ and simple representation

formulae are valid for f) : hh;L(Q^), ÔQ : hhrr(ôO,r)' However, examples from

Maz, ja 117] show that, conceptually, ôCI may not be of class C even when ôO," satisfies

this assumption. Also, the compactness of (?z is not clea'r'

Remarlc. The examples of the families Ot and Oz also indicate that the con-

cept of parametric convergence has enough flexibility to take into account va¡ious

representation methods of open sets.

4. Measurability. We consider the material distribution problem (SOTB). In

this case, it makes sense and is of interest to consider the case where the sets occupied

by each material a,re merely measurable.

We frx E C D to be two given bounded domains in Rm and O C D to be avariable

measurable subset in some prescribed class (?, occupied by one material, while D \ cl

is occupied by another material. Then the physical properties of the two regions are

different, and this is expressed by the fact that difierent coefficients appear in the

elliptic equations describing the problem, which (formally) read as

-at\Yt *bg1: f in O,

-øzLAz*b2Y2: f in D\O,
ôat }azo,r-;- : o,2-,-¡ gr : A2 in âf) \ (ôCI n ôD)'
ctn, on

o"H :0 in 11, U¿:0 in 12, i: L,2,

(4.1)

(4.2)

(4.3)

(4.4)



1450 w. B. LIU, P. NEITTAANMAKI, AND D. TIBA

where 11 U 12 : ôD is assumed Lipschitz, fr l-'ìfz : Ø, ai,b¿ ) 0,'i : I,2, are some

constants, and / € L'(D).
Let ye be defined by

aa(ï):

H(p):

a'@) in f),
inD\O.(4.5)

(4.e)

Then the weak formulation of the transmission problem (4.1)-(4.4) reads

I
I {l"txn + a2(L - xo)lvvo ' VT.u * lb:.xn +bz(L - ve)lvew} d,r

JD

(4.6) :[¡.a*YweV,
Jn

(4.7) V:{weHI(D)ltl:0 inf2}.

For any measurable subset Q c D, the bilinea¡ form governing (a.6) is bounded
and coercive in V, and there exists a unique solution An € V, which formally satisfies

relations (4.1)-(4.5).
In Pironneau [20], by directly interpreting the cha¡acteristic function Xcl as a

control parameter, the following optimization problem is discussed:

(4.8) *$ Irlye - 
z¿12 d,r,

subject to (a.6) and with some prescribed z¿ e L2(E), However, it is very difficult
to impose the constraint that the control should take only the values 0 and 1 in the
whole D.

our approach is to specify the set (J of admissible f) by requiring that xe is of
the form H(pn), where pe € I/o¿ (some admissible set of mappings will be defined

later), and H C R x R is the maximal monotone extension of the Heaviside function:

az(r)

1, P)0,
[0, 1], P:0,
o, p<0.

Notice that by taking, for instance, Pçt: Xe, we have representations via f/ for any

measurable O. If meas(ôQ) : 0, then we may take pe : do, which is even Lipschitzian
in D.

For the optimization problem (4.8), we define the class of admissible sets O by

xa : H(pn), where pn € (Ja¿ c f/å"(D), and p € Uo¿ iff

(4.10) lpl¡7'+'*1¡ç1 1 Mrc VK cc D, 07ç ) 0,

(4.11) Ip(")l+ lvp(")ln- ) u ) 0 a.e. in D.

If meas(ôO) : 0, the mappings do satisfy (a.11) (see Clarke [7, p. 66]) but do not
satisfy (4.10) in general.

Conversely, the condition (4.11) ensures that the set

(4.12) {r e D lP(") :0}

has zero measure forp € ¡frt"(p); see Brezis [2' p. 195].
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Rema¡c. Under some stronger smoothness assumptions, condition (4.1"1) ensures

the application of the implicit function theorem and a characterization of the "bound-

a,ry" girren by {r € D I p@): 0}. However, our regula^rity hypotheses are so weak

that even the implicit theorem in Cla,rke 17, p. 2551 for Lipschitzian mappings cannot

be applied. The ãnly properties that we have are (4.12) and the measurability of O's,

which are, in fact, defineá up to sets of zero meâsure. Notice, as well, that the local

character of (4.10) allows oscillations of ôf), even undet the smoothness assumptions'

\Me reformulate the problem (4.6)-(4.8) as follows:

(4.13) I w" - z¿12 d,r,
Jø

min
pÇu"a

f
J o{|"'n @) + o,2(1 - H (p))lv voY w + ltuH (p)

(4.L4) * bz(t - H (p))lar.j d'r : [ ¡. a* Vw e V'
Jn"

Tuponpu 4.1. Und,er the hypotheses @.tQ-/4.'l"I), the problem (4.13)-(4.14)

has at leo,st one optimøl pai'r fg,p] € V x Uo¿.

Proof. obviously,(Jo¿ I Ø @s constant functions are in Lro¿), and we may consider

a minimizing sequence lAn,pnl C V x U oa. BY taking an increasing sequence of open

sets K¿ C Dsuch tnat Ürci: D, urrd by the compactness of {prlrc,} in 'Ill(K¿), we

may define p Ç(Jo¿ such that Pn + P strongly in HI(K¿) for all I e N, pn '--+ p, aîd
YPn'VP a.e. in D'

Sincearff(p*)+az(t-H(p"))> ct> 0 and b1fl(pò+Az(t-H(p")) ) cú ) 0, it
is easy to infer that {yr} is bounded in I/ c H'(D), and we may assume that y" --+ y

weakly in H1(D) on a subsequence.

Oîviously, H(p.) is bounded in I-(D); therefore, we may also assume that

H(p,) -- H(p) weakly star in L* (D). The identification of the limit is a consequence

of the demiclosedness of the maximal monotone operator ff, applied in L2(K)xL2(K)
for any K cc D. Notice that, by p €(Joa and by (4.L2), it follows that f/(p) is a

characteristic function in D'
'We also have that H(p*) -- H(p) a.e. in D. \Me know that p*(r) ' p(r) I 0

a.e. in D. If. p(r) > 0, then p.(r) > 0 for r¿ ) n, and H(p"(r)) : l{(p(r)) : 7

for r¿ ) n*. Ilp(n) < 0, similarly, we obtain H(p"(")): H(p(r)):0 for n2n,'
consequently, we get that H(p,) -- H(p) strongly in I"(D) for all s à 1 by the

Lebesgue dominated convergence theorem.
ÃÁ ly*,p^] satisfies (4.L4), the above convergence allows to take the limit and

to see täui ty,e] also satisfies (4.14) and P € Uaai i.e., the pa.g' ly,p] is admissible'

Moreover, for the minimizing sequence' we have

f1

]x lrlv. - "¿l' 
o" : 

J ulY 
- z¿12 dt'

which shows that the pair [y,p] ir optimal for the problem (4.13)' (4'I4), and we

redenote it by [t,p]. 0
Remarlc. The above a,rgument remains valid for any weakly lower semicontinu-

ous cost functional on ãl(O)-for instance, for bounda,ry cost functionals' Other

boundary conditions may be imposed on 0D as well.
It is possible to impose (4.10) only for K cc D \ C, where c c D is a given

closed set of zero measure. This allows cracks in the corresponding ôQ's; see Bucur

and Zolesio [3].
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Remark. Considering the measurable sets {ln : {r € D I p"@) > 0}, the
proof of Theorem 4.1 uses a property of parametric convergence for f)r., based on
a.e. convergence in D of pn and Vp,r, and a variant of Definition 2.3.

We continue by describing an approximation procedure which is suggested by our
approach to cha^racteristic functions. We denote by H" the Yosida approximation
of ff, given in this case by

(4.15) H"(p):

Notice that H, is Lipschitzian with Lipschitz constant ]. fne approximation of the
optimization problem (4.13), (4.14) is obtained by replacing (4.1a) with

r
(4.14') I {l"tH,(p) + a2(I - H"(pDlVaiYw i lbtH,(p) + az(t - H"(fl)lyfiw} dr

JD
I': I fwd,r VweV.

Jn

By a variant of Theorem 4.1, we have existence of at least one optimal pair [gr'p"] e
H'(D) x (Jo¿ for the problem (4.13), (4.14').

TunoRnu 4.2. For any open set K CC D, we haue ly",prl -- lû,þl 'ùn the wealc-

strong topology of Hr(D) x Ht(rc) on a subsequence, and ly,pl it an opt'imal pai,r for
the problem (4.13), (4.L4).

Proof. By (4.10), we have p, + þ strongly in ,F/1(rc) on a subsequence, and
p, +þ,Ypr - Vpa.e. inD forsomep e Uo¿'As 1) Hr(p)2 0 a.e. in D, we
also obtain that {g,} is bounded in Hr(D) by fixing u : y" in (4.14'). We may
a"ssume that y" --+ g weakly in ¡11(D) on a subsequence. Moreover, it is known from
the theory of maximal monotone operators that Hr(pr) -- H(p) weakly in L2(K) for
any K cc D since {fI"(p,)} is bounded in .L-(D) and pu --+ þ strongly in L2(K),
for instance. By the fact that þ € Uo¿ and by (4.72), (4.9), we know that I/(p) is a
cha¡acteristic function in D. We can also prove the pointwise convergence of. Hr(p")
a.e. in D. If þ@) ) 0, then p"(n) > *p(") t"t e 1 enithat is, p"(r) > e for e < e*
and, H"(p,(r)): H(p(")) - r bv (a.15). rf þ(r) ( 0, then p,(r) < 0 fore < e'
and H"(p"(r)) : H(p(")) : 0 for € 1 €n. These two situations are valid a.e. in D
by p eU6¿ and (4.I2). Combining these with the Lebesgue theorem, we obtain that
H,(p") -- H(p) strongly in L"(D) for all s ) 1. Then we can take the limit in (4.14')
and infer that the pair [y,p] is admissible for the problem (4.13), (4.L4). To show that
it is optimal, we note that

(4.16)

where yfi denotes the solution of (4.14') corresponding to some p € Ua¿.. By an
argument of the same type as above, we can prove that U'o - an weakly in f11(D) on
a subsequence, where yo is the solution of @.IQ associated with p. Taking the limit
in (a.16) yields the optimality of ly,p] in the problem (4.13)-(4.14) and completes the
proof. I

CoRolr,¡.Rv 4.3. On a subsequence, we haue

(4.17) Uu + û strongly in H|(D),

1,
p
e,
0,

P)€,
p € [0, €],

p <0.

I

l"t . z¿12 d,r s lr$', - z¿12 d,r,
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where f is some opti,rnal state for the problem (4'13)-(4.14)'

Proof. There is a constant c ) 0 such that

c la" - yl2u,(o) s lobrn"ln") 
+ az(t- ¡/"(p.))llv (v" - v)ll^ d*

* 
lo[uru,{r") 

+ ur(t - H"(p"))](v" - û)' d*

{lotil,(p") + 0.2(r - H 
"(p "))lV 

a "Y 
(a 

" - a)

* lfuH"(p") +b2(1- H"(p)\a,(a, - ù)I dr

: 
T,

(4.18) _L {lafi "(p,) 
+ o'2('J' - f/" (p'))l V ÛV (y 

" - ù))

t l\H"(p,) + b2(r - H"(p"))lû(a, - a)j d*
f

f (y" - û) d" - Jo{\afl"(n,)
+ o'2(L - fr.þ"))IVYV(Y, - Y))

* ltr'H"(p") + b2(1' - H"(p,Ðla(v" - v)I dr

:lo

:ItlIz.

By Theorem 4.2, we may assume that /r --+ 0 on a sequence as 6 -+ 0' For 12' we first

estimate the term

r(4.1e) I lorn"@,) + o'2(1- f/"(p"))lvûY(v" - v) d*'
JD

which is the most difficult. we know that vliv(y" - t) it weakly convergent in

Lt(D) and the coefficients atu"(p") + o,2(l - H"(p")) are bounded in 'L-(D) and

strànlty convergent in I"(D) for all s ) 1. On a subsequence' we may assume that

l"rn"@,)+az(L- H"(p"))lY(a,-û) -+ u weakly i\ Lz(D)*. Egorov's theorem gives

tn"t 
"rn"@") 

+ øz(t - a"@")) -- atí(p) + 0,2(L - H(p)) uniformly in D6 for any

ó > 0 and some measurable subset Do C D with meas(D - Oo) < ó. combining this

with V(y, -û) - 0 weakly h L2(D), v¡e have that u :0 a'e. in D. Then the limit of

the integral 1a.fO¡ is zeto, and the same is true, by a similar reasoning, for 12. Finall¡
(4.18) has limit zero, and this achieves the proof. Il

Remark. It is possible to further smooth H. by means of a Fïiedrichs mollifier

and to compute the gradient of the smoothed cost functional (a'13) with respect to

p € (Joa. ihis shows the constructive character of our approach presented in this

þ.p"t. Numerical tests for the problem in this section were reported in Mäkinen,

Ñeittaanmäki, and Tiba [16] together with an approximation result.

Remarlc. In Pironneau [20, p. 134], it is mentioned that, by taking a2 --+ 0, b2 -'+ 0

in (4.14), the Neumann boundary value is approximated. Therefore, the results of this

section may open a way to relax the continuity assumptions from section 3' A simila¡

idea is porritri" for Dirichlet boundary value problems, which could be obtained by

taking ã2 --+ æ, ð2 --+ oo. The hypotheses under which such passages to the limit can

be performed are not clear Yet.
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