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ON THE λ-EQUATIONS FOR MATCHING CONTROL LAWS ∗

DAVID AUCKLY † AND LEV KAPITANSKI ‡

Abstract. We discuss matching control laws for underactuated systems. We previously showed
that this class of matching control laws is completely charactarized by a linear system of first order
partial differential equations for one set of variables (λ) followed by a linear system of first order

PDEs for the second set of variables ( ĝ, V̂ ). Here we derive a new first order system of partial
differential equations that encodes all compatibility conditions for the λ-equations. We give four
examples illustrating different features of matching control laws. The last example is a system with
two unactuated degrees of freedom that admits only basic solutions to the matching equations. There
are systems with many matching control laws where only basic solutions are potentially useful. We
introduce a rank condition indicating when this is likely to be the case.

Key words. nonlinear control, matching control laws, λ-equations, stabilization

AMS subject classifications. 93C10, 93D15

1. Introduction . Effective procedures for designing control laws are very im-
portant in nonlinear control theory. Explicit analytic formulae for control laws play a
role similar to explicit solutions to differential equations. Such formulae exist in only
a few special cases, but those that exist serve as simple models to develop and test
more general techniques.

In this paper we discuss a class of full state feedback control laws for underactu-
ated systems. In [5] we showed that this class of matching control laws is completely
charactarized by a linear system of first order partial differential equations for one
set of variables (λ) followed by a linear system of first order PDEs for the second

set of variables ( ĝ, V̂ ). These equations always have a simple family of solutions
which we call basic solutions. The system of equations for the first set of variables
(λ-equations) is overdetermined. Here we derive a new first order system of partial
differential equations that encodes all compatibility conditions for the λ-equations
(we call these the ν-equations). If only one degree of freedom is unactuated, the solu-
tions to all these systems of PDEs can be completely analyzed. It is often possible to
get explicit formulae for the solutions to these equations. We also provide an example
of a system with two unactuated degrees of freedom that has only basic solutions.
There are systems with many matching control laws where only basic solutions are
potentially useful. We write down a rank condition indicating when this is likely to
be the case.

During the last few years several researchers have investigated control laws in
which the closed loop system assumes a certain structure. Numerous papers have
been written on this subject, see [1] - [13] and the references therein. The control
laws that form the subject of this present paper are described by equations (2.4) and
(2.6). These equations were independently derived in [10] and [5]. The λ-equations
were first introduced in paper [5]. Even though the initial matching equations of
[10] and [5] form a highly nonlinear system of PDEs, introduction of the λ variables
triangulates the system. The system is triangulated in the sense that all solutions are
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2 D. AUCKLY AND L. KAPITANSKI

obtained by first solving first order linear equations for λ and then solving first order
linear equations for the remaining variables.

This paper is organized as follows. Section 2 reviews matching control laws and
the λ-equations, and introduces the ν-equations. Section 3 specializes to systems with
one unactuated degree of freedom. Sections 4, 5 and 6 contain examples illustrating
three different features of matching control laws. The rank condition appears at the
end of Section 5. Later we apply it in Section 6. In Section 7 we describe the final
example of a system with two unactuated degrees of freedom. We show that this
system has only basic matching control laws.

2. Matching equations. We use the following notation.
• n is the number of the degrees of freedom of the mechanical system
• x = (x1, . . . , xn) are configuration variables denoting the position of the system,

and ẋ = (ẋ1, . . . , ẋn) are the corresponding velocities
• gij(x) is the mass matrix
• V (x) is the potential energy
• Ci(x, ẋ) are the dissipation terms
• ui(x, ẋ) are the control inputs
Let m ≤ n be the number of unactuated degrees of freedom. We will assume that
degrees of freedom numbered 1 through m are unactuated and use indices a, b, . . .
to indicate unactuated degrees of freedom. The indices i, j, . . . will run from 1 to n.
We adopt the convention of summation over the repeated indices .

Given this, the equations of motion of the system are

grjẍ
j + [j k, r] ẋj ẋk + Cr +

∂V

∂xr
= ur , r = 1, . . . , n, (2.1)

where [i j, k] is the Christoffel symbol of the first kind,

[i j, k] =
1

2

( ∂gjk
∂xi

+
∂gik
∂xj

−
∂gij
∂xk

)
(2.2)

Our assumtion that the first m degrees of freedom are not actuated means that

u1 = · · · = u
m

= 0. (2.3)

We are looking for control laws ui such that the closed loop system can be written in
the form

ĝrjẍ
j + ̂[j k, r] ẋj ẋk + Ĉr +

∂V̂

∂xr
= 0 , r = 1, . . . , n,

where [̂i j, k] is defined as in (2.2) with ĝ in place of g. Such a control law will be
given by

uℓ =
(
[j k, ℓ] − gℓi ĝ

ir ̂[j k, r]
)
ẋj ẋk +

(
Cℓ − gℓi ĝ

ij Ĉj

)

+
( ∂V
∂xℓ

− gℓi ĝ
ij ∂V̂

∂xj

)
, ℓ = 1, . . . , n, (2.4)

Condition (2.3) translates into

(
[j k, a] − gai ĝ

ir ̂[j k, r]
)
ẋj ẋk +

(
Ca − gai ĝ

ij Ĉj

)

+
( ∂V

∂xa
− gai ĝ

ij ∂V̂

∂xj

)
= 0 , a = 1, . . . ,m, (2.5)
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In order to satisfy these equations it is sufficient to have

gai ĝ
ir ̂[j k, r] = [j k, a]

gai ĝ
ir Ĉr = Ca (2.6)

gai ĝ
ir ∂V̂

∂xr
=

∂V

∂xa

These are the matching equations , see [5], [10]. Following [5], introduce variables λj
a

relating the unknown mass matrix ĝ to the original mass matrix g,

λr
a = gai ĝ

ir . (2.7)

Using λj
a, the matching equations take the form

λr
a

̂[j k, r] = [j k, a]

λj
a Ĉj = Ca (2.8)

λj
a

∂V̂

∂xj
=

∂V

∂xa

Theorem 2.1. The following equations are equivalent to the matching equations
.
λ-equations:

∂

∂xk
( gai λ

i
b) − [k a, i] λi

b − [k b, i] λi
a = 0 ,

k = 1, . . . , n
a, b = 1, . . . ,m

(2.9)

ĝ-equations:

λℓ
a

∂ĝij
∂xℓ

+
∂λℓ

a

∂xi
· ĝℓj +

∂λℓ
a

∂xj
· ĝℓi =

∂gij
∂xa

,
a = 1, . . . ,m
i, j = 1, . . . , n

(2.10)

V̂ -equations:

λj
a

∂V̂

∂xj
=

∂V

∂xa
(2.11)

Ĉ-equations:

λj
a Ĉj = Ca (2.12)

For the proof see [5], [4].
Remark 2.2. These equations always have a set of solutions of the form

λk
a = κ δka , ĝ =

1

κ
g + go, V̂ =

1

κ
V + V o, Ĉj =

1

κ
Cj

with κ 6= 0 any constant, V o arbitrary function of the variables xℓ, ℓ = m+1, . . . , n,
and go any symmetric matrix valued function of the variables xℓ such that goia = 0.
We will call these solutions basic.



4 D. AUCKLY AND L. KAPITANSKI

The λ-equations are a system of 1
2 m(m+1) ·n equations for n ·m unknowns. It is

not surprising that there are extra compatibility conditions. By viewing system (2.9)
in the correct way, we are able to write down the compatibility conditions. Denote

νab = gai λ
i
b . (2.13)

Because the matrix gij is assumed to be non-degenerate, the matrix comprised of its
m first rows has rank m. This implies that m2 out of m · n λ’s can be expressed as
linear combinations of ν’s, i.e.,

λβ
b = hβa νab .

Substituting this in the λ-equations, we obtain

∂k νab − [a k, β]hβd νdb − [b k, β]hβd νda = [a k, ρ]λρ
b + [b k, ρ]λρ

a , (2.14)

where index ρ varies over the remaining (n−m) indices. We will view system (2.14)
of 1

2 m(m+ 1) · n equations as a linear algebraic system for the m (n−m) variables
λρ
a ,

[
A(k,a,b)

]c
ρ
λρ
c = F(k,a,b) . (2.15)

We know that this system has at least one solution by Remark 2.2. Thus, the rank
of the matrix A is at most m · n. In order for system (2.15) to have a solution, the
vector F(k,a,b) must be perpendicular to the kernel of the transposed matrix, A⋆,

F ⊥ ker A⋆ . (2.16)

Let the kernel of the matrix A⋆ be generated by the vectors ξr . The orthogonality
condition (2.16) then takes the form of the following system of linear first order partial
differential equations for νab:

ξ(k,a,b)r (x)
[
∂k νab − [a k, β]hβd νdb − [b k, β]hβd νda

]
= 0 . (2.17)

Theorem 2.3. The general solution to the λ-equations is given by any set of λρ
a

solving the algebraic system (2.15), and λβ
b = hβa νab , where νab is any solution to

equations (2.17).
In general, if m > 1, system (2.16) may be quite complicated and we do not have

a satisfactory description of its solutions.

3. Systems with one unactuated degree of freedom. If only one degree of
freedom is unactuated, we do have a reasonable description of all solutions to system
(2.17). Assume, for simplicity, that g11(x) > 0. Then, after rescaling x1 if necessary,
we will have g11(x) = 1. More precisely, from the very beginning we could use,
instead of (x1, x2, . . . , xn), the coordinates (z1, z2, . . . , zn) which are related to x as
follows:

∂z1

∂x1
=
√
g11(x), z2 = x2, . . . , zn = xn

In z coordinates the mass matrix is g̃ij(z) = gkℓ(x)
∂xk

∂zi
∂xℓ

∂zj and, hence, g̃11(z) = 1.
On the other hand, the structure of the equations of motion (2.1) does not change
because of their tensorial form, and the condition u1 = 0 remains the same, again,
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because ũ1 = uk
∂xk

∂z1 = u1

√
g11(x). Thus, we assume that the coordinates are

chosen appropriately, and g11(x) = 1.
In the case of one unactuated degree of freedom one is solving for λi

1. The λ-
equation reads

∂ν

∂xk
= 2 [k 1, i]λi

1 , (3.1)

where ν = g1i λ
i
1. Notice that [k 1, 1] = 0. View the equations (3.1) as a system of

linear algebraic equations for the variables λρ
1, ρ = 2, . . . , n. In order for this system

of n equations in (n− 1) unknowns to have a solution, the vector

v =



∂1 ν
. . .
∂nν




must be perpendicular to the kernel of the matrix

A⋆ =




[1 1, 2] . . . [n 1, 2]
. . . . . . . . .

[1 1, n] . . . [n 1, n]


 .

Let the kernel of A⋆ be generated by the vectors ξr = (ξ1r , . . . , ξ
n
r ). The orthogo-

nality condition for v translates into the system of equations

Xr(ν) ≡ ξ1r (x)
∂ν

∂x1
+ . . . + ξnr (x)

∂ν

∂xn
= 0. (3.2)

The standard procedure to solve such a system of equations is to complete the system
into an involutive system by adding equations [Xr, Xs](ν) = 0, [[Xr, Xs], Xt](ν) =
0, . . . , where [ηi ∂i, ζ

j ∂j ] =
(
ηi∂i(ζ

k) − ζi ∂i(η
k)
)
∂k is the commutator of vector-

fields. Recall that a system of equations

Y1(ν) = 0, . . . , YK(ν) = 0

is involutive if [Yp, Yq] = f r
pq(x)Yr .

Thus we have proved the following result.
Theorem 3.1. With one unactuated degree of freedom there is a coordinate

system such that the ν-equations, (2.17), become a homogeneous linear system of
equations for one unknown function. This system, (3.2), can be completed into an
involutive system.

Remark 3.2. Note that we want to preserve the relationship (2.7), i.e.,

Ξi ≡ g1i − λj
1 ĝji = 0.

Using only the ĝ-equations, one computes

0 = λj
1 {λ

ℓ
1

∂ĝij
∂xℓ

+
∂λℓ

a

∂xi
· ĝℓj +

∂λℓ
a

∂xj
· ĝℓi −

∂gij
∂x1

}

= λℓ
1

∂ Ξi

∂xℓ
+

∂λℓ
1

∂xi
Ξℓ +

∂λℓ
1

∂xi
gℓ1 + λℓ

1

∂gi1
∂xℓ

− λj
1

∂gij
∂x1

= λℓ
1

∂ Ξi

∂xℓ
+

∂λℓ
1

∂xi
Ξℓ +

∂

∂xi

(
λℓ
1 gℓ1

)
− λℓ

1

(
∂gℓ1
∂xi

+
∂giℓ
∂x1

−
∂gi1
∂xℓ

)
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Now invoke the λ-equation to obtain

λℓ
1

∂ Ξi

∂xℓ
+

∂λℓ
1

∂xi
Ξℓ = 0.

We see that equality (2.7) holds locally provided it holds on a hypersurface transverse
to λi

1. See also [5, Proposition 1.4]
Given any non-zero solution of the λ-equations, there is a local coordinate system

y1, . . . , yn such that

λi
1(x)

∂yj

∂xi
= δj1. (3.3)

Let G and Ĝ represent g and ĝ in the y-coordinates. The equation (2.7) then reads

Gij(y)
∂yi

∂x1

∂yj

∂xr
= Ĝ1k

∂yk

∂xr
. (3.4)

The ĝ-equations read

∂Ĝij

∂y1
=

∂gkℓ
∂x1

∂xk

∂yi
∂xℓ

∂yj
, (3.5)

and the V̂ -equations become

∂V̂

∂y1
=

∂V

∂x1
.

It is easy to see that the following result holds.
Theorem 3.3. Given any non-zero solution to the λ-equation, there is a unique

solution to the ĝ- and V̂ -equations with initial data prescribed at y1 = 0.
Remark 3.4. Note that equation(3.4) gives directly

Ĝk1 = Gki

∂yi

∂x1
,

and so one only needs to solve (3.5) for n (n− 1)/2 quantities Ĝij, 2 ≤ i, j ≤ n.

4. Example 1: Inverted pendulum in a vertical plane. As the first exam-
ple we consider the inverted pendulum restricted to a vertical plane with horizontal
and vertical actuation of the base, see Figure 1.

x

x

x

O

1

2

3

Figure 1
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After rescaling units, the mass matrix and potential energy are given by

g =




1 −a cos(x1) −a sin(x1)
−a cos(x1) 1 0
−a sin(x1) 0 1




V = b x3 + cos(x1)

Since only x1 is unactuated, we will simplify notation and use λi to denote λi
1. The

λ-equations (2.9) are

∂1 ν = 2a sin(x1)λ2
1 − 2a cos(x1)λ3

1, ∂2 ν = 0, ∂3 ν = 0

with ν = λ1 − a cos(x1)λ2 − a sin(x1)λ3. It is not difficult to see that the general
solution to these equations is

λ1 = ν(x1) +
1

2
cot(x1) ∂1ν(x

1) + a
λ3(x1, x2, x3)

sin(x1)

λ2 =
1

2a sin(x1)
∂1ν(x

1) + cot(x1)λ3(x1, x2, x3)

λ3 = λ3(x1, x2, x3) ,

where ν(x1), λ3(x1, x2, x3) are arbitrary. In order to obtain a managable explicit
solution to the matching equations, we will choose

ν(x1) = a µ0 sin2(x1) + σ0 − a µ0, λ3 = 0

with free parameters σ0 and µ0. Then

λ1 = σ0 , λ2 = µ0 cos(x1).

The coordinates

y1 =
1

σ0
x1 , y2 = x2 − µ0 sin(x1) , y3 = x3

satisfy (3.3). Following Remark 3.4, we need to solve the ĝ-equations only for ĝ22,
ĝ23, and ĝ33. These equations are

∂

∂y1
ĝ22 =

∂

∂y1
ĝ23 =

∂

∂y1
ĝ33 = 0.

Clearly,

ĝ22 = ĝ22(y
2, y3) = ĝ22(x

2 − µ0 sin(x1), x3)

ĝ23 = ĝ23(x
2 − µ0 sin(x1), x3)

ĝ33 = ĝ33(x
2 − µ0 sin(x1), x3)

From g = ĝ λ, we obtain the rest of ĝij as:

ĝ11 =
1

σ0
+

aµ0

σ2
0

cos2(x1) +
µ2
0

σ2
0

cos2(x1) ĝ22

ĝ12 = −
a

σ0
−

µ0

σ0
cos(x1) ĝ22

ĝ13 = −
a

σ0
sin(x1) −

µ0

σ0
cos(x1) ĝ23
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The V̂ -equation yields

V̂ =
1

σ0
cos(x1) + w(y2, y3) .

The Ĉ-equation reads λj Ĉj = 0. One solution is

Ĉ = − σ0 R(x)




µ2

0

σ2

0

cos2(x1) − µ0

σ0

cos(x1) − µ0

σ0

cos(x1)

− µ0

σ0

cos(x1) 1 1

− µ0

σ0
cos(x1) 1 1


 ·



ẋ1

ẋ2

ẋ3




The resulting control law can be obtained explicitly from equation (2.4). The expres-
sion is too long to be included in this paper.

Proposition 4.1. If the functions ĝ22(y
2, y3), ĝ23(y

2, y3), ĝ33(y
2, y3), w(y2, y3),

and R(x), and the parameters µ0 and σ0 are chosen so that

ĝ22(0) > 0 , ĝ23(0) = 0 , ĝ33(0) = 1,

∂2
y2w(0) > 0, ∂y2∂y3w(0) = 0, ∂2

y3w(0) > 0, R(0) > 0,

σ0 < 0, ĝ22(0)µ
2
0 + a µ0 + σ0 > 0 , ĝ22(0) (a µ0 − σ0) + a2 < 0 ,

then x = ẋ = 0 is a locally asymptoitcally stable equilibrium of the closed loop
system.

5. Example 2: Inverted pendulum cart on a seesaw . In the previous
example the kernel of the matrix A⋆ , (2.15), was two-dimensional. Generically, for
systems with one unactuated degree of freedom the dimension of the kernel will be
1. The following example illustrates this situation. The inverted pendulum cart on a
seesaw is shown in Figure 2. There are several interesting ways to actuate this system.
We will consider the case with actuated cart and pendulum, and unactuated seesaw.

x

x

0 1

2

x3

Figure 2

The rescaled mass matrix and potential energy of the system are given by

g =




b + (x3)2 a x3 sin(x1 − x2) 0
a x3 sin(x1 − x2) 1 − a cos(x1 − x2)

0 − a cos(x1 − x2) 1




and

V = x3 sin(x2) + a cos(x1) .
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The theory in section 3 was presented with special coordinates so that g11 = 1.
However, in practice this is not necessary.

As before, we write λi for λi
1 and ν for g1j λ

j . The λ-equations are

∂1 ν = 2a x3 cos(x1 − x2)λ2 − 2 x3 λ3

∂2 ν = 0

∂3 ν = 2a sin(x1 − x2)λ2 + 2 x3 λ1

Hence, ν = ν(x1, x3). Plug in λ1 = (ν − g12 λ
2 − g13 λ

3)/g11 and solve for λ2 and
λ3:

λ1 =
1

2b

(
2ν − x3∂3 ν )

λ2 =
1

2ab sin(x1 − x2)

(
− 2 x3 ν + (b + (x3)2) ∂3 ν

)

λ3 =
1

2b x3 sin(x1 − x2)

(
− 2(x3)2 cos(x1 − x2) ν

+ x3 (b+ (x3)2) cos(x1 − x2) ∂3ν − b sin(x1 − x2) ∂2ν

)

Notice, that λ2 and λ3 blow up as x approaches 0 unless ν = κ (b + (x3)2).
Since g = ĝ λ, one must have det ĝ → 0 as x → 0, i.e., ĝ degenerates at x = 0. This
means that Ĥ(x, ẋ) = 1

2 ĝij ẋ
i ẋj + V̂ cannot serve as a Lyapunov function unless

ν = κ (b + (x3)2). This ν corresponds exactly to the basic solutions of the matching
equations from Remark 2.2. This illustrates the following general principle.

Remark 5.1. If (x0, 0) is the desired equilibrium of a system and

rankA⋆(x0) < lim sup
x→x0

rankA⋆(x) , (5.1)

then only basic solutions of the matching equations should be tested to produce a
stabilizing control law from (2.4).

6. Example 3: inverted pendulum cart on a roller coaster. Consider a
cart with inverted pendulum on a roller coaster. Special cases of this mechanical
system include the inverted pendulum on a rotor arm, the inverted pendulum on a
verticle disk, and the inverted pendulum cart on an incline. By assuming that the
size of the base of the cart is relatively small we may neglect the inertia of the base of
the cart. It is therefore sufficient to model the cart with one point mass for the base,
and one point mass a fixed distance away for the pendulum. The pendulum joint will
be unactuated.

The configuration of the system may be described by a position and an angle. As-
sume that the shape of the roller coaster is given as a curve x(s) in R3 parametrized
by arc length, s, from a fixed point. Assume that the pendulum is always in the
plane containing the tangent vector, τ(s), and the vertical direction, e3. Let φ be
the angle between the pendulum and e3. By rescaling mass, length, and time, we will
write

g =

(
1 b sin(α− φ)

b sin(α − φ)
(
1 + k(s)2 sin2 φ

( sin2 α−n2

3

sin4 α

))
)

V = a x3 + cosφ,
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where a and b are positive parameters, 0 < b < 1, and x3 is the vertical component

of x(s) . The (unit) tangent vector to the curve is τ(s) = x′(s)
|x′(s)| , where

′ stands

for the derivative with respect to s. The curvature of the curve is k(s) = |τ ′(s)|.
Denote by n(s) the principal normal to the curve. Recall that τ ′(s) = k(s)n(s).
In the formula above n3 is the vertical component of the principal normal, and α is
the angle between τ and the vertical direction. Index 1 corresponds to φ, index 2
corresponds to s. The unactuated degree of freedom corresponds to the φ variable.
The λ-equations (3.1) then read as follows:

∂1 ν = − 2 b cos(α− φ) λ2
1

∂2 ν = k(s)2 sin(2φ)
( sin2 α− n2

3

sin4 α

)
λ2
1 .

(6.1)

The orthogonality equation (3.2) then, obviously, is

k(s)2 sin(2φ)
( sin2 α− n2

3

sin4 α

) ∂ν

∂φ
+ 2 b cos(α− φ)

∂ν

∂s
= 0 . (6.2)

It is not clear if all solutions to this equation can be written explicitly for a general
curve. We consider here two particular cases when this is possible. The first case
is when sin2 α = n2

3. This occurs exactly when the roller coaster lies in one vertical
plane. The second case is when α(s) is constant. This occurs when the track is
constantly inclined.

6.1. Case 1: sin2 α = n2
3. Note that this case includes the interesting examples

of an inverted pendulum on a vertical disk and an inverted pendulum cart on an
incline.

As is readily seen from (6.2), the general solution of (6.2) in this case is ν = ν(φ),
an arbitrary function. Then

λ2
1 = −

1

2 b cos(α− φ)

∂ν

∂φ

and

λ1
1 = ν(φ) +

1

2
tan(α− φ)

∂ν

∂φ
.

This is a general solution of the λ-equation. From here one must solve the ĝ- and
V̂ -equations. For special choices of α(s) and/or ν(φ) these equations have explicit
closed form solutions.

6.2. Case 2: α(s) = α0. Examples with α(s) constant include an inverted
pendulum cart traveling on any path in a horizontal plane, a cart on a vertically
oriented circular helix, or any constantly inclined track.

Since dα
ds

= −k(s) n3(s)
sin(α) , if α(s) = α0, then we have k(s)n3(s) = 0. To solve

equation (6.2), we introduce new coordinates

z1 = β(s)

z2 = β(s) + cos(α0) ln | cscφ+ cotφ| − sin(α0) ln | secφ+ tanφ|,

where

β(s) =

∫ s

0

k2(p)

b sin2(α0)
dp .
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Equation (6.2) is equivalent to the fact that ν is an arbitrary function of z2. Thus,
from (6.1) and the definition of ν we find

λ1
1 = ν(z2)−

sin(α0 − φ)

sin(2φ)

d ν

d z2
; λ2

1 =
1

b sin(2φ)

d ν

d z2
.

6.3. End of the roller coaster example. From the computations in case 1
and case 2 one can see that the general solution to the matching equations for the
cart on a roller coaster will be fairly complicated. However, we can show that any
linear control law is the first order germ (linearization) of some matching control law.
In fact, the only requirement for this is that there is no rank drop at the equilibrium,
i.e.,

rankA⋆(x0) = lim sup
x→x0

rankA⋆(x) . (6.3)

We assume that the dissipative term at the equilibrium satisfies the following natural
assumptions:

Cℓ(x0, 0) = 0,
∂

∂xi

∣∣∣∣
(x0,0)

Cℓ = 0 .

Lemma 6.1. If condition (6.3) is satisfied for a two degree of freedom system,
then the first order germs of matching control laws at (x0, 0) exhaust all linear control
laws for which the closed loop system has an equilibrium at (x0, 0) . Proof. Given a
linear control input

ulinj = vj + aij (x
i − xi

0) + bij ẋ
i

with ulin1 = 0, we will find a matching control law with the same germ. From the
general expression (2.4) for the matching control law, we see that the first order germ
is

u
germ
j = (Vj − gjℓ ĝ

ℓr V̂r) +
(
Vjr − gjℓ ĝ

ℓi V̂ir

)
(xr − xr

0) +
(
Cji − gjℓ ĝ

ℓr Ĉri

)
ẋi,

where

Vj =
∂V

∂xj

∣∣∣∣
x0

, Vjr =
∂2V

∂xj∂xr

∣∣∣∣
x0

, Cji =
∂Cj

∂ẋi

∣∣∣∣
(x0,0)

,

and V̂j , V̂jr , and Ĉji are defined similarly. Equating like terms gives

V̂ℓj = ĝℓi g
ir (Vrj − arj) , Ĉℓj = ĝℓi g

ir (Crj − brj) , V̂ℓ = ĝℓi g
ir (Vr − vr) = 0 .

(6.4)

One can see that V̂j , V̂jr , and Ĉji are specified once ĝij(x0) is known. Moreover,

there exists a non-degenerate symmetric ĝij(x0) such that the resulting V̂ℓj will be
symmetric, see [1, Lemma 1]. To conclude the argument, we now show that any non-
degenerate symmetric ĝij(x0) arises as a zero order germ of a solution to ĝ-equation.

Also, any V̂ℓ , V̂ℓj satisfying V̂ℓ = ĝℓi g
ir (Vr − vr) and V̂ℓj = ĝℓi g

ir (Vrj − arj)

arises as a solution to the V̂ -equation.
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Given a non-degenerate ĝij(x0), define the non-degenerate λj
i (x0) = gik(x0) ĝ

kj(x0).
Set ν0 = g11(x0)λ

1
1(x0) + g12(x0)λ

2
1(x0). The λ-equations in this case are

∂1ν − 2 [1 1, 2]
1

g11
ν = 2 [1 1, 2]λ2

1

∂2ν − 2 [1 2, 1]
1

g11
ν = 2 [2 1, 2]λ2

1

(6.5)

By the rank condition, we know that the rank of A⋆ in the neighborhood of x0 is either
identically 0 or identically 1. If this rank is 0, then ν can be any constant times g11.
We simply choose ν(x) = (ν0/g11(x0)) g11(x). Any solution to the algebraic equation
ν(x) = g11(x)λ

1
1(x) + g12(x)λ

2
1(x) is a solution to the λ-equation. If the rank of A⋆

is 1, then the orthogonality condition, (2.16), is

[2 1, 2] ∂1ν − [1 1, 2] ∂2ν + 2 ([1 1, 2] [1 2, 1] − [2 1, 2] [1 1, 2] )
1

g11
ν = 0 . (6.6)

At x = x0, either ∂1 or ∂2 is not parallel to the vector [2 1, 2] ∂1 − [1 1, 2] ∂2 .
Assume it is ∂1 . Then initial conditions to equation (6.6) can be specified along the
line x2 = x2

0. In particular, we can choose the initial values so that

(
∂1ν − 2 [1 1, 2]

1

g11
ν

) ∣∣∣∣
x=x0

= 2 [1 1, 2]

∣∣∣∣
x=x0

λ2
1(x0) , ν(x0) = ν0 . (6.7)

The second equation in (6.5),

(
∂2ν − 2 [1 2, 1]

1

g11
ν

) ∣∣∣∣
x=x0

= 2 [2 1, 2]

∣∣∣∣
x=x0

λ2
1(x0) ,

will be satisfied automatically since the rank of A⋆ is 1. Let ν(x) be a solution of
(6.6) with initial condition, ν(x1, 0) , satisfying (6.7). Now, one solves (6.5) for λ2

1(x)
and then ν(x) = g11(x)λ

1
1(x) + g12(x)λ

2
1(x) for λ1

1(x).

Now that the λ-equations are solved, we turn to ĝ-equations. These equations
take the form

∂

∂y1
ĝ + R ĝ = S ,

where ∂
∂y1 = λ1

1 ∂1 + λ2
1 ∂2. The initial conditions can be set on any line transverse

to ∂
∂y1 , in particular, along the line λ1

1(x0) (x
1 − x1

0) + λ2
1(x0) (x

2 − x2
0) = 0. On

this line set λi
2(x) = λi

2(x0), and ĝ(x) = g(x) · (λ(x0))
−1. The solution to equation

(2.10) with this initial data then has the desired value at x = x0.

It remains to show that the V̂ -equation has a solution such that V̂ℓ = 0 and

λℓ
r(x0) V̂ℓj = Vrj − arj , (6.8)

where λℓ
r(x0) = grk(x0) ĝ

kℓ(x0). Since λℓ
r(x0) is non-degenerate, either λ1

1(x0) 6= 0
or λ2

1(x0) 6= 0. Consider the case with λ2
1(x0) 6= 0. In this case the line x2 = x2

0 is

non-characteristic for the V̂ -equation

λ1
1 ∂1 V̂ + λ2

1 ∂2 V̂ = ∂1V . (6.9)
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Pick the initial value, V̂
∣∣
x2=x2

0

, so that

V̂1 = 0, V̂11 =
λ2
2 V11 − λ2

1 (V12 − a12)

λ1
1 λ

2
2 − λ1

2 λ
2
1

∣∣∣∣
x=x0

and solve equation (6.9). Since x = x0 is an equilibrium, V1 = 0 and (V2 − v2) = 0.

From the differential equation, (6.9), we see that V̂2 = 0. Differentiating equation

(6.9) with respect to x1 and x2, we see that Wij = V̂ij satisfies

λ1
1(x0)W11 + λ2

1(x0)W12 = V11

λ1
1(x0)W12 + λ2

1(x0)W22 = V12 .
(6.10)

By construction,

λ1
2(x0)W11 + λ2

2(x0)W12 = V12 − a12 . (6.11)

Notice that (6.4) implies that Wℓj = ĝℓi g
ir (Vrj − arj) also satisfy equations (6.10)

and (6.11). Since the solution to the algebraic system (6.10), (6.11) is unique, we
conclude that equation (6.8) is valid, as required.

7. Example 4: A double pendulum on a wheel. Our next example is the
system with two unactuated degrees of freedom depicted in Figure 3. Only joint A is
actuated.

After rescaling, the entries gij of the mass matrix are

gij = mij cos(xi − xj)

and the potential energy is

V = a1 cos(x1) + a2 cos(x2) + a3 cos(x3) .

The parameters mij = mji and aj are positive.

x

x

x

1

2

3

A

B

C

Figure 3
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There are six unknown λi
a. Define νab = gai λ

i
b. Note that we must have ν12 = ν21.

The computations in this section were performed using Maple. The λ-equations (2.9)
are

∂1 ν11 = − 2m12 sin(x1 − x2)λ
2
1 − 2m13 sin(x1 − x2)λ

3
1

∂2 ν11 = 0

∂3 ν11 = 0

∂1 ν22 = 0

∂2 ν22 = +2m12 sin(x1 − x2)λ
1
2 − 2m23 sin(x2 − x3)λ

3
2

∂3 ν22 = 0

∂1 ν12 = −m12 sin(x1 − x2)λ
2
2 − m13 sin(x1 − x3)λ

3
2

∂2 ν12 = +m12 sin(x1 − x2)λ
1
1 − m23 sin(x2 − x3)λ

3
1

∂3 ν12 = 0

The second step is to express λ1
1, λ

1
2, λ

2
1, and λ2

2, in terms of ν11, ν12, and ν22,
After substitution into the above equations we obtain

∂1 ν11 = D1
1, 1 ν11 + D2

1, 1 ν12 + B1
1, 1 λ

3
1

∂2 ν11 = 0

∂3 ν11 = 0

∂1 ν22 = 0

∂2 ν22 = D2
3, 2 ν12 + D3

3, 2 ν22 + B2
3, 2 λ

3
2

∂3 ν22 = 0

∂1 ν12 = D2
2, 1 ν12 + D3

2, 1 ν22 + B2
2,1 λ

3
2

∂2 ν12 = D1
2,2 ν11 + D2

2,2 ν12 + B1
2,2 λ

3
1

∂3 ν12 = 0

(7.1)

Here the Dk
i, j and Bk

i, j are explicit expressions involving x. In Section 2 we de-
scribed a general procedure to obtain compatibility conditions for this system. In
this particular case, however, we use a different tactic: we compute and compare the
mixed derivatives of νab. The first set of equations we obtain is

∂3∂1 ν12 = K11 ∂3λ
3
2 + K12 λ

3
2 = 0

∂3∂2 ν22 = K21 ∂3λ
3
2 + K22 λ

3
2 = 0

Direct computation shows that det(Kij) 6= 0. Hence, λ3
2 = 0. Similarly,

∂3∂1 ν11 = L11 ∂3λ
3
1 + L12 λ

3
1 = 0

∂3∂2 ν12 = L21 ∂3λ
3
1 + L22 λ

3
1 = 0

and det(Lij) 6= 0. Hence, λ3
1 = 0.

Next, we substitute λ3
1 = λ3

2 = 0 into (7.1) and solve for ν11, ν12, ν22. This
gives

ν11 = const, ν22 =
m22

m11
ν11 , ν12 =

m12

m11
cos(x2 − x1) ν11
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Returning to λ-equations we see that

λ1
1 = λ2

2 =
1

m11
ν11 , λ1

2 = λ2
1 = 0 .

Our computation shows that the only solutions of the matching equations are the
basic solutions defined in Remark 2.2.
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