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Noise Assisted High-gain Stabilization:
Almost Surely or in Second Mean

Hans Crauel* Takovos Matsikis'™ Stuart Townley'

Abstract

For a linear control system with multiplicative white noise, we develop (asymp-
totic) formulas for the dependence of almost sure and second mean exponential
growth rates on a high gain parameter k. We show that if the diffusion matrix is
skew-symmetric so that the noise enters in a purely skew-symmetric way then the
function g, where g(p)/p denotes the exponential growth rate of the p'" mean,
converges to a straight line, uniformly for p € [0,2], as k — oo. We use these
formulas to show that the feedback control system in Stratonovich form is high-
gain stabilizable even if the zero dynamics are unstable, provided that the noise
is strong enough. This contrasts with the noise free case where we need the zero
dynamics to be exponentially stable.

We then consider a class of systems where the diffusion matrix is not skew-
symmetric, and show that almost sure and p'" mean growth rates have different
limiting behaviour as & — oo.

2000 Mathematics Subject Classification Primary 93E15 Secondary 37H15 60H10
93D15 93D21

1 Introduction

The dependence of dynamical properties of systems on parameters is central to many
problems in control theory and in dynamical systems. For example, consider a linear
single-input single-output control system of the form

z = Ax+ Bu

(1)
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where # € R%, A is a real d x d-matrix, and B,CT € R A basic control design
technique is to study the root locus for (1), i.e., the eigenvalues of A—kBC' as k varies.
The root locus technique is used, for example, to show that if CB > 0 and if (A4, B, C)
is minimum phase, then high gain feedback control u = —ky is stabilizing in the sense
that the eigenvalues of A — kBC' are in the left half-plane for all k sufficiently large.

The parametric dependence of dynamical properties for linear stochastic differential
equations (LSDEs) has been investigated with great intensity during the last decades.
For a survey on approaches which are closest in spirit to the present work, as well as
for further references, see Wihstutz [10]. We also note that for the investigation of the
bifurcation behaviour of a noisy Duffing-van der Pol-oscillator (see Arnold [1] Chapter 9)
a detailed study of the dependence on parameters of Lyapunov exponents for a noisy
damped harmonic oscillator has been performed by Imkeller and Lederer [7, 8].

We want to investigate dynamical properties of certain LSDEs obtained by applying
proportional feedback. More precisely, we consider a noisy version of (1) with propor-
tional output feedback, i.e.,

dr = (A — kBC)x dt + zm: Az« dW;(t). (2)

j=1

We are interested in the dependence of exponential growth rates for (2) on k, and, in
particular, on asymptotic formulas, valid for large k. Whilst for deterministic systems
this can be derived by studying the dependence of eigenvalues on parameters, for LSDEs
the situation is more complicated. Indeed, there are several competing notions of growth
rates (for example, in p*" mean or almost surely). Furthermore, the growth rates depend
on which notion of solution of (2) is adopted — It6 versus Stratonovich.

The paper is organised as follows. In Section 2 we recall some basic facts about LS-
DEs and their exponential growth rates, specifically Lyapunov exponents and moment
exponents. In Section 3 we consider almost sure growth rates, and we characterize
under which conditions (2) can be stabilized almost surely by high gain feedback. This
means that the leading Lyapunov exponent becomes negative for all sufficiently high
gain. We restrict ourselves to the simplest possible non-trivial case, which is the case
of a 2 x 2-system. To calculate the almost sure growth rate, i.e., the leading Lyapunov
exponent, we use the Furstenberg-Khasminskii formula, which yields a closed, albeit
complicated, formula. In subsection 3.1 we first investigate the case where A is sym-
metric. In this case, certain integrals in the Furstenberg-Khasminskii formula can be
computed in terms of hypergeometric functions. In subsection 3.2 we consider the case
of a general system matrix A, invoking the results for the symmetric case together with
some slightly involved comparison arguments. These results are in a spirit of those
obtained by Imkeller and Lederer [7, 8], who obtained explicit formulas for Lyapunov
exponents of certain linear two-dimensional systems arising from the linearization of
the Duffing-van der Pol-oscillator around zero.

In Section 4 we consider the 2"¢ mean growth rates and characterize under which con-
ditions the system can be stabilized in second mean by high gain feedback. Here we use



the classical technique of considering the norm induced by a positive definite matrix P
(thus defining a Lyapunov function), applying the It6 formula to obtain estimates for
the exponential growth of second moments, and then choosing the matrix P in an
appropriate way. As a result we obtain that when the noise enters the system in a
purely skew-symmetric way, then for high gain the exponential growth rate of the sec-
ond moment approaches twice the Lyapunov exponent, the almost sure exponential
growth rate. When the noise is entering non skew-symmetrically, the growth rates have
different limiting behaviour as k — oo.

2 Notions of growth rates for linear SDEs

To introduce the notions of growth rate for (2), consider a general linear stochastic
differential equation

m

dr = Avdt + Y Az« dW(t), (3)

j=1
where A and A; are d x d-matrices, W; are independent standard Wiener processes,
1 < j < m, and * stands for an interpretation of (3) either as an It6 or as a Stratonovich
equation. Denote by z(t, x¢) denote the solution of (3) at time ¢, with initial condition
To at time ¢t = 0.

There are several non-equivalent notions of exponential growth rates for (3). The lead-
ing Lyapunov exponent of (3) is defined as

1
A = lim —1og( sup ||x(t;x0)||> P-a.s., (4)
e llzoll=1
where || - || is any norm on R?. Existence of the almost sure limit and the fact that

the limit is constant a.s. follows from the subadditive ergodic theorem of Kingman [9].
The LSDE (3) is said to be almost surely exponentially stable if A < 0.

The exponential growth rate in the p™ mean is g(p)/p, where g(p) is given by

g(p) = lim ~log E( sup [la(t;0)|l") - (5)

=00 llzo||=1

In (5), E denotes expectation. The function p — g¢(p) is a real analytic function,
convex, and ¢'(0) = A, provided certain non-degeneracy conditions are satisfied, see
Arnold, Oeljeklaus and Pardoux [5]. Consequently,

9(p) > 9(q) > ¢'(0) = A (6)

p q

for p > ¢ > 0. In particular, the growth rate in p'" mean is greater than or equal to
the almost sure growth rate for p > 0. We are interested in the dependence of the



growth rates given by (4) and (5) for the LSDE (2) as we vary the feedback gain k. For
example: How does the feedback gain influence the difference between g(2) and 2\?

As mentioned earlier in the introduction, the dependence of growth rates of LSDEs on
parameters has been of interest. One of the earliest results of this type, of relevance
here, goes back to Arnold, Crauel and Wihstutz [2]. Consider a Stratonovich equation
of the form

m
dr = Avdt+ ) u;Bjx o dW(t), (7)
7j=1
where Bj, 1 < j < m, form a basis for the d(d — 1)/2-dimensional linear space of skew
symmetric d X d-matrices and, as before, the W; are independent standard Wiener
processes. In [2], the following limiting behaviour for the leading Lyapunov exponent
is obtained:
1

A
4

d
trAzéZaii as minu; — 00.
i=1

This result has been subsequently generalized by Arnold, Eizenberg and Wihstutz [3] to
allow for weaker conditions on the (B;). One consequence of this result is the surprising
observation that we can ‘stabilize’ (7) by high-intensity noise if tr A < 0. So, given a
deterministic system & = Ax with tr A < 0, it suffices to agitate the system by noise as
in (7), and increase the intensity u until almost sure stability is achieved.

Whilst high intensity noise would seem impractical, this result motivates us to determine
if noise can enhance more traditional stabilization by proportional feedback.

Second mean feedback stabilization of a general controlled It6 LSDE

dr = (Az+ Bug)dt+ Y (A; +u;B;)z dW;(t) n
j=1

y = Cx

has been considered by Damm [6]. Here uy, ..., u,, are controls, and A, A;, B, B; and C
are matrices of suitable dimensions. This problem is quite involved. It turns out that
stabilization in second mean is equivalent to the existence of positive definite solutions to
certain generalized linear matrix inequalities. We are not aware of any similar results for
almost sure stabilization. Rather than pursuing this general feedback problem we limit
our interest to the parametric dependence of the growth rates A and ¢g(p) in a set-up less
general than (8). We assume that the noise enters in a “non-systematic” way in the sense
that it does not contribute systematically to the almost sure exponential growth rates
of the system. More precisely, we impose the condition that the noise enters so that the
leading Lyapunov exponent of the Stratonovich equation (2) is bounded in o, where A
is an arbitrary d x d matrix. This implies that the matrices (A; — trdAj Id), 1 <j<m,
are skew-symmetric with respect to some basis of R? see Arnold, Oeljeklaus, and
Pardoux [5]. We therefore assume that the matrices A; in (2) are skew-symmetric,
1<j<m.




Furthermore, we restrict attention to the 2 x 2 case of system (2). This is the simplest
non-trivial case and allows for a neat and clear formulation of the main results. Higher
dimensional cases would also be possible, but the technical conditions are considerably
more involved, and we currently do not have a complete picture.

3 Almost sure exponential growth rates

As already mentioned, we will investigate the simplest case possible. That is, we inves-
tigate the dependence of the almost sure exponential growth rate, i.e., the Lyapunov
exponent, on the parameters k£ and o for the Stratonovich equation

a—Fk b 0-1
dx-( . d)xdt—l—J(lO)xodW(t). (9)
In (9), a,b,¢,d € R are fixed parameters. The drift matrix (“;k z) in (9) arises via a
change of coordinates from (1) in the case u = —ky, and CB > 0, if the dimension

is 2. We show that limy_,, A\p, = %(Qd — 0?), so that (9) is high-gain almost sure
exponentially stabilizable if and only if d < 302

3.1 Remark Without high-gain k, we have from Arnold, Crauel and Wihstutz [2]
that lim, ;oo A = %(a + d), and so almost sure stability if mixing of the negative trace
by the noise is strong enough.

With high-gain, but no noise, high-gain stabilization is possible only if the zero-dynamics
are exponentially stable, i.e., d < 0, whilst the noise term has a stabilizing effect and
with high enough gain £ the intensity of the noise only has to be strong enough to
overcome the influence of possibly ‘unstable zero dynamics’.

Whilst the results are simply stated, their derivation, as with analogous results obtained
by Imkeller and Lederer [7, 8], is quite involved. To proceed we first recall some details
about the well known method for calculating Lyapunov exponents of a linear SDE

dv = Ax dt + Z Ao dW(1) (10)

i=1

via the Furstenberg-Khasminskii formula. Here A, A; are d x d-matrices, and W; are
independent Wiener processes, 1 < j < m, and the equation is interpreted in the
Stratonovich sense.

Projection of (10) from R?\ {0} onto the unit sphere S ! = {v € R¢: |v| = 1} by
x +— x/]x| =: s gives the (non-linear) SDE

ds = ga(s)dt + Z ga,(s) o dW;(1) (11)



on S where ga(s) = As — (s, As)s. The SDE (11) defines a random dynamical
system on S%°!. Associated to every Lyapunov exponent there exists an invariant
measure for this random dynamical system, which is supported by the Oseledets space
associated with this Lyapunov exponent; for details see Arnold [1], Chapters 3 and 4.
Furthermore, the maximal Lyapunov exponent (almost sure exponential growth rate)
is given by

A= /sdl ( s, As) —1—2 % )s, Ajs) — (S,Aj8)2)> dp(s), (12)

Jj=1

where p is a (suitable) invariant measure for the Markov semigroup induced by (11).
Equation (12) is the Furstenberg-Khasminskii formula in the form it takes for a lin-
ear system induced by the linear SDE (10). In particular, if (11) is sufficiently non-
degenerate, then there exists a unique invariant Markov measure p, and this measure
has a smooth density with respect to the Lebesgue measure on S¢ !, which we denote
by p again. Non-degeneracy means that a certain hypo-ellipticity condition is satisfied,
whose precise form is not of interest here. The density p is given as a suitably normal-
ized solution of the associated Fokker-Planck equation. See Arnold [1], or Imkeller and
Lederer [7, 8].

In our particular case we have the linear Stratonovich SDE

a—Fkb 0-1
dx-( . d)xdt+a<10>xodW(t),

ds = ga(s) dt + gp(s) o dW (?)
with ga(s) = As — (s, As)s,

and (11) becomes

(s,As) = (a—k)si+ (b+c)s1s9+ ds% :
oals) = (@ —k)sy + bsy — (a — k)st — (b+ c)s?sy — ds3s;
4 csy +dsy — (a — k)s2sy — (b+ ¢)sys3 — ds ’

s = o (7).

and s = (s1,52)T. In polar coordinates, s = (cos ¢, sin 9)T with ¢ € [—7/2,7/2], this
becomes

d82
Cos

dy =

ccos p + dsinp — (a — k) cos? psin g — (b + ¢) cos psin® p — dsin?’godt

Cos
+o dW (1)

= (ccongo—l— (d — a + k) cos psin ¢ — bsin® go) dt + o dW(t).



To determine the invariant measure for the associated Markov semigroup we first note
that the SDE for the angle ¢ is elliptic. Consequently, there is a unique invariant
measure for the Markov semigroup, and this invariant measure has a C*° density ¢ —
Pr.o (), which is a solution of the Fokker-Planck equation. In the present case the
Fokker-Planck equation results in the ordinary differential equation

1
—(50219)" + (ccos®p + (d — a+ k) cospsinp — bsin® p)p' =0
with periodic boundary conditions on [—m/2,7/2). This gives
2
p = p(c—i— (d—a+k)cospsing — (b+c)sino)p + v

where v has to be chosen such that p is periodic. Rewriting in 2p-terms gives

2 1 1
po= _2(c+—(d—a+k)sin2g0— —(b+c)(1 —005290)>p+7
o 2 2

1
= ;((c—b)—i—(d—a+k)sin2g0—i—(b+c)cos2g0)p+fy.

Using standard trigonometric identities and setting

R(p,n) = %((c—b)(w—n) + %(d—a—l—k)(cos 21 — cos 2p) + %(b+c)(sin2<p—sin277)>

we obtain that the general, still to be normalized, solution p, is given by

¥
p(p) = eR(W,—g)p(_%) +7/ / el dqp . (13)
—/2

In (13) 7 has to be chosen such that p(%) = p(—%). For the leading Lyapunov exponent
we then obtain

/2
A= / <(a — k) cos® p + (b + c) cos psin ¢ + d sin® gp) p(p) de (14)
—7/2

3.2 Remark We will use the explicit formula for the leading Lyapunov exponent A =
ko given by (14), invoking the density p = p(k) given explicitly by (13). This is not
possible for higher dimensional LSDE. For d > 2 one might invoke the more systematic
approach as described, for example, by Wihstutz [10]. This involves putting e = k= for
suitable @ > 0, and denoting the generator induced by the projected SDE (11) by L.,
to obtain an expansion of A = A\(¢) around £ = 0 by expanding the expression A(¢) =
[ - p- given by (12), where p, is determined by L.p. = 0 (which is the Fokker-Planck
equation). Performing this asymptotic expansion formally for the two-dimensional case
considered here yields the limiting behaviour A = A ,2 + o(1) for k large in a more
intuitive manner than the direct approach which we adopt. However, it would seem
from the developments in [10] that justification of this more systematic asymptotic
expansion approach needs arguments which are at least as complicated as those used
in the direct approach.



3.1 The case of a symmetric drift matrix

We first treat the case b = ¢. This means that the drift matrix A in (9) is symmetric.
Then ¢ — R(p,n) is periodic for every 7, and therefore (13) yields that periodicity of p
holds if and only if v = 0. This gives

p(p) = exp [—% ((d —a+k)(1+ cos2¢p) — 2bsin 2g0>]p(—7r/2)

In order to make p the density of a probability measure we have to choose

p(=3) = (/W/Z exp[——((d —a+k)(14 cos2yp) — 2bsin 2g0>] d(p)_l :

Note that p(—F) > 0. Having determined the dependence of the invariant density p
on k and o, we now turn to the calculation of the leading Lyapunov exponent as given

by (14), which here takes the form

w/2
A= / ((a — k) cos® p + 2bcos @ sin ¢ + dsin” <p) () dp. (15)
—m/2

We first ignore the normalizing factor p(—7) and consider

I:= /2 ((a—k) cong0+2bcosgosin<,0+dsin2go>

w[3

X exp(—%((d —a+k)(1+cos2yp) — 2bsin2gp)> dp.

k+d—a

Defining Ry, = /(k+d — a)? + (2b)% and 1 via tant, = 5

formula

, and using the

scos2p + tsin2p = Rsin(2¢ + 1)
with R = v/s%2 + t2 and tany = s/t, we obtain

a—k—dy [™?
I = exp(7>//2[(a—k)cosQ<,0+2bcos<,psing0+dsin2<,0

1
X exp (—WR]C Sln(?(p + wk)) ng .
Rearranging

(a — k) cos® ¢ + 2bcos @ sin ¢ + dsin? ¢
= (a—k—d)cos®p+2bcos psing + d
—k—d
= %(cos&p—l— 1)+ bsin® p +d

1
=3 (@ —k —d)cos2p +2bsin2¢p+a+d—k



and using periodicity of sine and cosine together with the identities sin(f+7/2) = cos
and cos(f + 7/2) = —sin 3 we obtain
1

I = —exp(

: a—k—d)

202
/2
x/ [(a—k—d)cos(2<p—wk)+2bsin(2g0—1/)k)+a+d—k
—7/2
X exp (—% sin 2@) dy
o

1

= 3eo(* 5

202

/2
x/ [—(a—k—d)sin(?w—wk)+2bcos(2<p—1/)k)+a+d—k
/2

R
X exp (—T‘Z coS 2g0> dy

- et (1)

202 202

/2
X / [(k + d — a)(sin 2¢ cos P — cos 2 sin )
/2

—|—2b(cos 2¢ cos Y, + sin 2¢ + sin 2 sin T/Jk) +a+d-— k]

R
X exp (__;C cos? go) deo.
o
Integrating over a symmetric interval around zero we only keep integrals over even
functions. This gives
a—k—d+ Rk)

202

I = exp(
w/2
x/ [(a—d—k)cos?wsinwk+2b6052gocoswk+a+d—k
0

R,
X exp (_ﬁ coS go) deo.
Now cos ¢, = 2b/ Ry and siny, = (k +d — a)/ Ry, so

T:exp<a_k2_ag+Rk>
X /OW/Z[%Q — (kR—Zd_ @)’ cos2p+a+d— k] exp(—% cos? go) dy
- o)
X/UTF/Q[CH-d—knL (k+d_RZ)2_4b2 - (k+d_RZ)2_4b22COSQSO]
R

X exp (—U—g cos? gp) dy .



From the theory of hypergeometric functions we know that

/2 R
H::/ exp(——;c cos? gp) dp = T
0 o 2

and 1
T R
K ::/ exp(——;C cos? <p) cos? pdp =
0 o

where H denotes hypergeometric functions. This gives

a—k—d+Rk>

L= exp( 202

H(3], 1L, )
TH(3) 12, ),

y ([a+d—k+ (k+d—a)* —4b* ]H—2[ (k+d—a)*—4b* ]K) ‘

V(k+d—a)?+ 4b?

V(k+d—a)?+ 4b?

Using similar calculations we obtain for the normalizing factor

a—d—k+Rk Rk

p(=5) = mexp( 5 ) H(3],[1), =) = 2exp(

o2

Now

(k+d—a)*— 4b°

a—d—k—i—Rk)H.

202

a+d—Fk+ = 2d+€1(l€),

V(k+d—a)?+ 4b?
(k+d—a)*— 4b°
V(k+d—a)?+ 4b?

Yiwae
H = —(—
2\ Ry
K = 5(0_2
4\ Ry,

+e4(k), and

Ry=+/(k+d—a)2+(20)2 = k+es(k),

where |e; (k)| < ME™Y, |ea(B)| < M, |es(k)| < MET3/2, |es(k)| < ME~5/2, and |es(k)| <
MFE~1/? for a suitable constant M. In the following we will denote constants independent
of £ by M without always noting when their value changes. This gives

o? a—d, Vo?
and, introducing the notion .J for later reference,
. a—d, Vo?
J :p(—g) :Wexp( 9 5 ) W+€7(l€), (]_7)

where |eg(k)] < MkEk=3/? and |e; (k)| < ME=3/2.

10



From (15) we obtain
2

I o
)\:)\k,azzj:d_?—i_eS(kz)

with |eg(k)| < ME™".

This proves the following proposition.

3.3 Proposition In the case of a symmetric drift matriz, i. e., in the case b = ¢, the
leading Lyapunov exponent X = A, of the LSDE (9) satisfies

2

Moo = d =+ O(k™)

for k large. In particular,

0_2

li =d—- —.
kggo)\k’” d 2

3.2 The case of a general drift matrix

Having assumed b = ¢ in the drift matrix for the calculations in the previous subsection,
we now use these calculations to obtain a result for the case b # c.

3.4 Theorem The Lyapunov exponent X = A, of the linear Stratonovich SDE (9)

satisfies

0_2

Mo = d — > +O0(k™)
for k large. In particular,
2
lim Ay =d — —
k—o0 ’ 2

for every a,b,c,d.

ProOF Having established the result for the case b = ¢ in the previous section, we
proceed by showing that the general case is close to the symmetric case for k sufficiently
large.

First note that (13), (14), p(=%) = p(5), and [ p(¢) dp =1 gives A = I/J with

/2 m/2
- / (om(Q)g(p)dp  and J = / m(0)g() o

—7/2 w/2

q(p) = (a—k)cos®p+ (b+c)cospsing + dsin’
= (a—d—k)cos’ o+ (b+c)cospsing +d,

m(p) = exp(%‘?[(b—i— ¢)sin2p — (d — a+ k)(cos 2¢ + 1)]) :
9() = exp(c(;b(swrg))Jr[1—exp(ca_2b7f)] [exp(c;b(w—g))]f(w)

11



and f is given by

)
/ exp (52 [—2(c — b)n + (d — a + k) cos 2y — (b + ¢) sin 2n]) dn
—m/2

flp) = /2

/ exp (52 [—2(c — b)n + (d — a + k) cos 2n — (b + ¢) sin 2n]) dn
—m/2

In the symmetric case we had g(¢) =1 on [—7/2,7/2]. We will show that I and J are
close to the corresponding integrals with ¢ = 1. Whilst the integrals I and J look at first
glance rather intractable, there are several simplifications if &k is large. In particular,
for k large we have f(¢) ~ 0 for —7/2 < p < —7n/4, and f(¢) ~ 1 for 7/4 < p < 7/2.
We will make this more precise below.

First note that 0 < f < 1, hence there exists M > 0, independent of %k, such that
lg(p)] < M for all . Next consider the behaviour of m(y) for large k. Here the
relevant term is —(d — a + k)(cos2¢ + 1). Note that cos2¢p + 1 > 0 for all ¢. Define

1
intervals Ij, and J close to —m/2 and 7/2, respectively, such that 1+ cos2¢p > ﬁ for
all ¢ € I, U Jy, by
1

V2V

I, = [-7/2,—cos!

] and J = [cos ! , /2] .

1
V2vk
For ¢ ¢ Ij, U J then

—(d—a+k)(1+cos2p) < —g
for k large. Noting that, for k£ large,
lg(p)| = |(a — k) cos® p + (b + ¢) cos psin ¢ + dsin® | < 2k,

we obtain
VE
/ d(e)m(P)g(e) dg| < kM exp(~5)
[=m/2,m[2\(15 U k)

for some M > 0. Since k exp(—@) < exp(—%) for k large we thus obtain

Vi
/ a(e)m()g(e) dg| < Mexp(=F).
[=m/2,m/2]\(1 VU k)

and so

/2
[ semnerao [ aem@nerag] < (-5 a9

—71'/2 I, UJy

By similar arguments one obtains
/2 \/E
[ atomiorde— [ atomle)de] < Mexp(~). (19)
—7/2 I UJy

12



It follows from (18) and (19) that we only need to deal with the difference between I
and [ ¢(o)m(p) de on I, U Jj.

Loosely speaking we have g(¢) ~ 1 on I}, and

9(p) ~ exp [C;bﬂ] + <1 — exp [C;b ]) =

on Ji, both uniformly in k.

To be more precise, consider first f(¢) for ¢ € I;. For ¢ € I}, and k sufficiently large
we have cos2p < —1/2, and for ¢ € [—7 /6,7 /6] we have cos2¢ > 1/2. It follows that,
for ¢ € I,

f exp (52 [—2(c = b)n + (d — a + k) cos 2n — (b + ¢) sin 2n]) dn
f 7r/Bexp (55 [=2(c — b)n + (d — a + k) cos 2 — (b + ¢) sin 27]) dn
< Mexp(—k),

0< flp) <

whence

9(p) — eXp(CU2

(p+5) ‘ < Mexp(—F).
Expanding ¢ — exp(<2(¢ + 3)) in Taylor series around —7/2 we obtain

c

—b 1/¢c— c
5 (<,0+7r/2)—|—§( g

(o+n2) 45 (5

Yo+ 7/2) +eulk) (20

g(p) =

with |e; (k)| < Mkt for all ¢ € I.
Similarly for ¢ € J; we have

1> f(p) = 1— f;r/Q exp (# [—2(c—=b)n+ (d—a+k)cos2n— (b+c) sin277]) dn

f:/r?Q exp (# [—2(c—=b)np+ (d—a+k)cos2n — (b+ ¢)sin 277]) dn

> 1- Mexp(—k) )

and expanding the exp-term in ¢ — g(¢) in Taylor series around 7 /2 gives

o(0) =1+ o m/2 4 (Tl -m/2) + (e -1/2) +ealh) @)

with |ea (k)| < ME™L, for all p € Jg.
Based on these estimates and expansions we would expect, loosely speaking, that

[ aomn@raes [ aemds

I, UJg

Actually, this is not as simple as it looks. The problem is that the right hand side is
O(1/Vk), and so we have to be careful with arguments based on any “errors” being

13



small for £ — oo.
We proceed more carefully: On I we obtain, invoking (20),

q()m(p)g(e)

= q(e)m(e)
e/ + 5 (o) + (e - m/2) +ah)].

X |1+
So
q(p)m(p)g(v) — q(p)m(p)

b E+d—
= q(p)exp( 2;0 sin 2¢) exp(—% cos® )

X CUZb(go +7/2) + %(C;b(go +7T/2))2 + 1(0_ b(<,0+7r/2)>3 + el(k)] .

Similarly on J; we obtain from (21)

a()m(p)g(e) — ale)m(e)
= q(p) exp(b2+ € sin 2¢) exp(—w cos® )

x {C;b(so —/2) + %(C;b(w —7/2))% + é(c;b(go —7/2)) + eQ(k)] .

We consider the contributions of the terms ((a—d—k) cos® p) and ((b+c) cos psin p+d)
in ¢() separately. The term ((a — d — k) cos® p) contributes

o2

b k+d—
/ (a —d — k) cos® ¢ exp( 2+ ©sin 20) exp(—# cos? )
o

2
Iy g

x [C;b(<p+7r/2) + %(C;b(w+7r/2)>2 + %(c;b(gp +7r/2))3 + el(k)] dy

to fIk (a(p)m(0)g() — q(p)m(y)) de. The corresponding contribution from Jj, is

b k+d—
/ (a —d — k) cos® ¢ exp( 2+ Csin 20) exp(—# cos? )
T o

o2

2

Taking Taylor expansions of ¢ + sin 2 and ¢ — cos? ¢ around —7/2 and /2, respec-
tively, changing variables, and combining the contributions of the (a—d—k) cos? p-terms
from I, and J, we arrive at an error term of the form

e m2 45 (e 1/2) + (e w2 + k)] do.

1

/ a (a—d—k)a2? exp(—wﬁ)
0

o2

x[(exp(—b;cx) —exp(b+cx)>(C_bnc—i-é(c_b)g) (22)

o2 o2 o2

+%<exp(—b;cx) + exp(b + Cx)) (C — bx) 2] dr + e3(k)

o? o?

14



with |es(k)| < ME~3/2. Here we used that, after the change of variables around 7/2 and
around — /2, respectively, cos? ¢ gives a term of the order #2+O(x*). Using integration
by parts one verifies that the error terms e (k) and ey(k) contribute an O(k~%/2) term,
and the O(z*) term from cos? ¢ contributes an O(k™2) term.

Identifying the exponential terms inside the square brackets as —2sinh(*¢z) and
cosh(%x), and expanding sinh x and cosh z, respectively, around = = 0, (22) becomes

1

2 Ftd—
M / 7 b exp(— LT Ty g 4 02
0

o2

for k large. Again using integration by parts this can be seen to grow not faster than
Mk=3/% for k — oo (recall that M is a variable constant).

Using similar calculations in which we again need to combine contributions from [ and
Ji we can show that the term ((b+c) cos psing+d) in ¢(p) contributes to the integral
fIk-UJk- (a(p)m(©)g(p) — q(¢)m(p)) dp an error term bounded in magnitude by Mk=/2.

Collecting the above estimates we obtain

/IUJ q(p)m(p)g(p) dw—/wj a(p)m(p) d(p‘ < MEY? and

/ m(w)g(w)dw—/ m(w)dw‘ < ME32
I UJy I,UJ;,

for some positive M and k sufficiently large. In view of (18) and (19) this implies

/2

‘/1/; a(e)m(p)g(p) dgo—/mq(go)m(@) d(p‘ < ME? and (23)

w/2 w/2
[ m@strdo= [ mieyde] < wak 24)
—7/2 —7/2
Now put
w/2 w/2
Tsym=/ / q(p)m(p)dp  and szmz/ / m(p) de;
—m/2 —m/2

the subscript ‘sym’ refers to the symmetric case treated in section 3.1. From (16)
and (17) we obtain

Iy = 7r(d - —) exp(—

a—d, Vo?

Joym = 7TGXP(W) Ve + ma(k)

with both |n;(k)| < Mk=3/2, j = 1,2, where we note that the derivation of (16) and (17)
goes through without changes if 2b is replaced by b+ c.
Rewriting (23) and (24) with this notation gives

I = Igym + eq(k) and J = Jgym +e5(k),

15



where |e;(k)] < MkE™%, j = 4,5. So finally, we obtain

I Ism+64(k) 0'2
Ay = = = ym T W, O k),
59T T Tom t ea(k) 5 teslk)

where, due to the k~'/2-term in Iy, and Jym, respectively, |eg(k)] < Mk~'. This
proves the claim. O

4 Exponential growth rates in second mean

In the calculation of Lyapunov exponents in the previous section we adopted a Strato-
novich interpretation. To calculate the exponential growth rate of the second mean,
i.e., g(2), it is more suitable to work with an It interpretation. So in order to com-
pare results between the two notions of growth rate we need to transform (9) from
Stratonovich to Ito form. A general linear Stratonovich SDE

dor = Axdt + Y Ajz o dW;(2)
j=1
is equivalent to the Ito LSDE

de = (A+ 3 iA?)x dt + Zij dW;(t).
i=1

j=1
In our case this transforms (9) to
a—k—1o? b 0 —1
_ 2
dx—( . d_%02>xdt+a<1 0 )xdW(t).

For an Ito equation
dr = Agr dt + Ay dW (1),

g(2) coincides with the smallest n € R such that there exists a symmetric, positive
definite matrix P with
ATP + PAy + ATPA, <nP. (25)

Indeed this follows from (25) by adopting ||z|| = (z, Px)'/? as a norm in the definition
of g(2) and by using the It6 formula applied to V(t) = (z(t), Px(t)).

4.1 Proposition The exponential growth rate of the second mean of the linear Strato-
novich SDE (9), which is ¢(2)/2 with g(2) = gx»(2) given by (5), satisfies

Gko(2) = (2d— o) +O(k ™),

hence, for o fized,
lim gy, (2) = 2d — o
k—o0

16



for every a,b,c,d.

PROOF From (6) we already know that gy ,(2) > 2\, for every k, o, hence Theorem 3.4
yields
gro(2) > (2d—0?) + O(k 1) (26)

for k — oo. It remains to show that gi »(2) < (2d — 0?) + O(k™"), i.e., that there exist
n and P > 0 such that

o-k-}o? di;gz]PjLP[“’k’%ﬂ d,’;ﬂ] +o [0 o] P[Y o] <P (27)

c -1 0 1 0

and n < (2d — 0?) + O(k™'). Without loss of generality we choose P = [ (1] Z }
Denoting by Q(P) the left hand side of (27) we obtain

Q(P) = 20 — 2k — (1 —p)o®+2cq (a—k+d—20%)g+b+cp
T\ (a—k+d—20%qg+b+cp 2dp + (1 — p)o? + 2bgq

Choosing p = p(k) =1+ % we obtain

P) = 20 — k +2cq (a+d—k—20%)q+b+c(l1+%)
Q( )_ (a+d—k—202)q+b+c(1+%) (2d_o.2_|_(§+2p#)p ,

where we left p unresolved in the lower right entry. Now choose, for k sufficiently large,
q=q(k) = %. For this choice of P = P(k) we obtain

Q(P) = < 20— k(:)—i_ 2cq ((Qd— 0_2) 3_ 077 + %)p ) S ((2d_02) +O(k_1)) P. (28)

Combining (26) and (28) we conclude that for & — oo the second mean exponent g ,(2)
satisfies

Gko(2) =2d—o* +O(k™)
as required. O
Until now we have assumed that the noise enters in a skew-symmetric way. For the

following slightly more general case the arguments carry over in a rather straightforward
manner.

4.2 Theorem Consider the linear Stratonovich SDE

da;:<“_k Z>xdt+a<7_1>xodW(t) (29)

c 1 v
with v € R. Then:

17



(i) The almost sure exponential growth rate of (29), the Lyapunov exponent iy, is
independent of ~v. In particular,

o? o?

Moo =d — — + O(k’l) and therefore lim Ay, =d — —
’ 2 k—o0 ’ 2

for every v € R;
(ii) The exponential growth rate of the 2"! mean, gy ,~(2)/2, satisfies

Okon(2) =2d+2v° — o>+ O(k™")
for large k. In particular,

lim gy, (2) =2d +27° — o”.

k— 00

NOTE The theorem can be rephrased as: = )\ + 7% asymptotically.

9(2)
2

PROOF It is straightforward to see that the leading Lyapunov exponent of (29) is
independent of . Indeed, since 7Id commutes with all matrices, solutions of (29)
and (9) can be transformed into each other as follows. If z(¢;z) is a solution of (9),
then y(t; z9) = z(t; 20)e?” " ® is a solution of (29). Since lim W (¢)/t = 0 a.s. for t — oo,
the Lyapunov exponents of (29) are the same as those of (9). Consequently, application
of Theorem 3.4 to (29) for v = 0 proves (i).

Concerning the exponential growth rate of the 2°¢ mean, denote by I the identity

matrix, and put J = ((1) _01). Transforming the Stratonovich SDE dx = Agx dt + Ajx o

dW (t) with Ay = vI + oJ to Ito form gives
dr = (Ag + s Az dt + o Az dW (1),

where A? = (72 — 0?)I + 2y0J. In order to determine ¢g(2) we have to find the small-
est 7 € R for which there exists a positive definite P such that

(Ao—i-%(ny—02)I+701)TP+P(A0+%(72—02)1—1—70[) + (’)/I—FO'J)TP(’)/[—FO'J) <nP.

(30)
Now the left hand side of (30) equals
, 0 T , 0 2 T
(Ao + (v* - 5)[ +2y0J) P+ P(Ag+ (v* — ?)I +2v0J) + 0 J'PJ,
which is simply (27) for the I1t6 LSDE
1
dv = (Ag+ (v* — 5a2)1 + o)z dt+ oJzdW(t),

corresponding to the Stratonovich equation

dr = (Ao + VI +yoJ)xdt +oJx o dW (t). (31)

18



Since (31) has the same form as (9), and, in particular,

)

with d = d + 72, it follows by applying Proposition 4.1 that

Q., o

Ay + ¥ + o = ( agk

9(2) =2d+2v* —o* +O(k™1)

for k — oo, proving (ii). O

4.3 Remark For the case of a skew-symmetric diffusion matrix we see from the
calculations of A and ¢(2) that whilst

g(2) > 2\

(the inequality is strict here, see Arnold, Oeljeklaus and Pardoux [5]), in the limit, for
high-gain £k tending to infinity,

lim ge,(2) =2 lim A\, = 2d — 0.
k—o00 k—o00

This means that the functions p — gi(p) converge with &k to infinity to the linear
p— (d— %0'2)]), uniformly in p € [0,2], for every o > 0. So the high-gain feedback
leads to a degeneracy in p — g(p).

4.4 Remark In fact, a similar degeneracy occurs in the case of the high-intensity noise
problem of Arnold, Crauel and Wihstutz [2]. Recall that for the Stratonovich equation

a b 0 -1
dx-(c d>xdt+a<1 0 >xodW(t)

1

g—00

we have

Transforming into the equivalent It6 equation

a— io? b 0 —1
— 2
dx-( . d_%02>xdt+a<1 0 )xdW(t).

and invoking the characterization of ¢(2) given around (25) one obtains

lim ¢(2) = (a+d).

o—00

To see this, we again need to find n so that

O(P) = 20 — (1 —p)o?+2cq (a+d—0?)g+b+cp < 1 ¢
T\ (at+d—0Y)g+b+cep 2dp+ (1 —p)o?+2bq | — qg p )’
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d —
Put p=1+ 7(1. Then we need

a+d+2cq (a4d—20%)q+b+c(l+ %52 < 1 g
(a+d—20%)q+b+c(l+ %52 a+d—d2 4 2bg ="\ qp)"
Choosing
b+ (14 (5Y) ok
202 —a—d o2’

for 202 > a + d, gives

= (M) 5 (st (1),

so that ¢,(2) < (a+d) + O(c?). Since g,(2) > 2}, and

lim A\, = (a +d)/2,

g—>00
we conclude that

lim ¢g,(2) =a+d.

T—00
4.5 Remark In the case of a more general diffusion matrix considered in Theorem 4.2
the degeneration described in Remark 4.3 does not occur. In fact, here noise assisted
high-gain stabilization may take place with respect to almost sure stability, but not
with respect to second mean stability. In particular, with a diffusion matrix of the
form o (} 711) we have convergence of the almost sure exponential growth rate Ay, to
d —c?/2 for k — oo, whereas gi,(2)/2 converges to d + o2/2 for k — oo.

5 Concluding remarks

We have considered the dependence of growth rates on the feedback gain £ for the
simplest case of an LSDE arising from proportional feedback applied to second order,
relative degree one control system. We have obtained explicit formulas for the Lyapunov
exponents and asymptotics of the growth rates valid for large enough k. We have shown,
in particular, that in case of a purely skew-symmetric noise the asymptotic dependence
on k for k large is the same whether we consider A, the leading Lyapunov exponent, or
whether we consider the growth rate in p'* mean for any p € [0,2]. This contrasts with
the situation where for any fixed & we would have that

p q

for all p < q.

20



As an application of these asymptotic estimates we see that the Stratonovich equa-
tion (9) is high-gain stabilizable (almost surely or in p* mean, 0 < p < 2) if, and only
if

Y

o > 2d.

In particular, for 0 # 0 we can allow d > 0, i.e., unstable zero dynamics, whereas if
o =0 we need d < 0 1i.e., the zero dynamics to be exponentially stable. We see in this
simple example that the noise has a stabilizing effect.

When the noise enters in a certain non skew-symmetric way then the same comments
apply to almost sure growth rates, so the noise is still stabilizing with respect to almost
sure stability. However, the same noise is destabilizing with respect to stability in 2"
mean.
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