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ON REFLECTING BOUNDARY PROBLEM
FOR OPTIMAL CONTROL∗

OANA-SILVIA SEREA†

Abstract. This paper deals with Mayer’s problem for controlled systems with reflection on the
boundary of a closed subset K. The main result is the characterization of the possibly discontinuous
value function in terms of a unique solution in a suitable sense to a partial differential equation of
Hamilton–Jacobi–Bellman type.

Key words. control of variational inequality, boundary reflection, viscosity solutions

1. Introduction. We investigate the Mayer control problem:

Minimize g(x(T ))(1)

for a given T > 0 over all absolutely continuous solutions of the following differential
variational inequality:

⎧⎨
⎩

(i) x′(t) ∈ f(x(t), u(t)) −NK(x(t)) for almost all t ≥ t0,
(ii) x(t) ∈ K for all t ≥ t0, x(t0) = x0, and
u(·) : [0,∞) → U is a measurable function,

(2)

where NK(x) is the normal cone to K at x ∈ K (see Definition 1).
Here K is a nonempty closed subset of R

N , g : K → R and f is a function from
K × U into R

N .
If U(t0) is the set of measurable controls on [t0,∞) with values in U , the value

function corresponding to the optimal control problem (1), (2) is given by

V (t0, x0) = inf
u(·)∈U(t0)

g(x(T ; t0, x0, u(·)) for all (t0, x0) ∈ [0, T ] ×K,(3)

where x(·; t0, x0, u(·)) denotes the solution of (2) starting from (t0, x0).
By the very definition it is easy to see that the value function is finite on its domain

[0, T ] × K, if and only if (2) has solutions. This explains the choice of the form of
the right-hand side of the differential inclusion (2). We notice that NK(x) = {0}
whenever x ∈ intK; f is modified only on the boundary of K, so (2) is a problem with
reflection at the boundary. We shall show that this reflection allows us to obtain the
existence of solutions to (2) (see section 1).

Our main purpose in this paper is to characterize the value function (3) by an
equation of Hamilton–Jacobi type.

Of course, the characterization is based on a suitable definition for the notion
of viscosity solutions of a Hamilton–Jacobi–Bellman inequality (HJBI) that we will
introduce below.

†Laboratoire de Mathématiques, Unité CNRS, FRE-2218, Université de Bretagne Occidentale, 6
avenue Victor Le Gorgeu, BP 809, 29285 Brest cedex, France (Oana-Silvia.Serea@univ-brest.fr).
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More precisely, we will prove that the value function V is the unique solution to

⎧⎨
⎩

∂V
∂t (t, x) + H(x, ∂V

∂x (t, x)) − 〈
∂V
∂x (t, x), NK(x)

〉 � 0
if (t, x) ∈ [0, T ) ×K,

with the condition V (T, x) = g(x) if x ∈ K,
(HJBI)

where H(x, p) := minu∈U 〈f(x, u), p〉.
If the boundary of K, ∂K ∈ C1, and K is the closure of an open set, we will

show that V is a viscosity solution of the following Hamilton–Jacobi equation with
Neumann-type boundary condition in the sense of [13]:

⎧⎨
⎩

∂V
∂t (t, x) + H(x, ∂V

∂x (t, x)) = 0 if (t, x) ∈ [0, T ) ×K,
∂V
∂n (t, x) = 0 if (t, x) ∈ [0, T ) × ∂K,

with the condition V (T, x) = g(x), x ∈ K,
(4)

where n(x) is the unit outward normal to K at x ∈ ∂K.
It is well known that the value function for the Skorokhod control problem (see

[3], [13]) with a smooth K is a viscosity solution of (4). The Skorokhod problem for a
smooth K has been considered and solved by Lions [13] and Lions and Snitzman [14].
Another study was made by Tanaka in [18] when K is convex with normal reflection.
By a different approach, this problem was considered like a viability problem for a
differential inclusion by Frankowska in [8]. Note that the notion of solutions of the
Skorokhod problem is not the same as the notion of solutions to (2) that we use
in this paper, but for the smooth case the two control problems lead to the same
Hamilton–Jacobi equation (4).

Our second interest is to establish that the two following systems,

{
(i) x′(t) ∈ F (x(t)) −NK(x(t)) for almost all t ≥ t0,
(ii) x(t) ∈ K for all t ∈ [t0,∞), t0 ≥ 0, x(t0) = x0 ∈ K

(5)

and {
(i) x′(t) ∈ ΠcoTK(x(t))F (x(t)) for almost all t ≥ t0,
(ii) x(t) ∈ K for all t ∈ [t0,∞), t0 ≥ 0, x(t0) = x0 ∈ K,

(6)

have the same set of solutions.
Here K is compact, F : K → R

N is a set valued map and coA is the closed convex
hull of a set A.

In general, the map x → NK(x) has no easy continuity properties and so the
right side of the differential inclusion is (2). For this reason the set of solutions to (5)
or (6) may be empty. So it is necessary to find regularity hypotheses for K in order
to provide existence and eventually uniqueness results for (5) or (6).

These kind of results for a general map F can be applied, in particular, when
F (·) = f(·, U), allowing us to obtain properties of the set of solutions to (2).

Our main contribution here is the fact that by introducing the projection on the
closed convex hull of TK(x) in (6) we succeed in treating the case where the set K is
only compact, improving the already known equivalence and existence results of [2]
where K is supposed to be sleek.

Existence and equivalence results for (5) and (6) are established by Henry [11] for
a convex set. The convexity assumption on the set K, has been relaxed by Cornet in
[6], who merely required the tangential regularity. We also refer to Thibault [19] for
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the case of a closed set K for an existence result of viable solution, but the reflection
is made using the Clarke normal cone. Note that in [19] the set K may depend on t.

We note that the boundary reflection control problem was not yet well studied
for nonsmooth K. We also succeed in generalizing some existence and equivalence
results of [2] for the systems (5) and (6).

Let us explain how this paper is organized.
In the first section we introduce some preliminaries and we study the systems (5),

(6).
In the second section we prove that the value function is a viscosity solution of

(HJBI) in the sense of Definition 3, and a uniqueness result for the solutions of this
partial differential inequality is also established.

In the third section we study the case of discontinuous and only bounded value
functions for our control problem. Our main result says that V is the unique gen-
eralized solution to the corresponding (HJBI) for arbitrary discontinuous terminal
cost g.

The fourth section concerns existence and uniqueness results of l.s.c. solutions to
(HJBI) in the sense of Definition 16.

The last section is an appendix with technical proofs of our claims.

2. Preliminaries.

2.1. Definitions, assumptions, and notations. We assume that f : K×U →
R is continuous and satisfies⎧⎨

⎩
||f(x, u)|| ≤ a(1 + ‖x‖),
||f(x, u) − f(y, u)|| ≤ c1 ‖x− y‖
the set f(x, U) is convex,

for all x, y ∈ K,u ∈ U,(Hf )

where c1, a > 0 are constants; U is a compact metric space.
We recall the notions of tangent and normal cones.
Definition 1. For x ∈ K, we define by

TK(x) =

{
v ∈ R

N | lim
h→0+

inf dK(x + hv)/h = 0

}

the tangent cone to K at x and by

NK(x) = TK(x)− = {p ∈ R
N | 〈p, v〉 ≤ 0 for all v ∈ TK(x)}

the normal cone to K at x.
Recall that TK(x) is a closed cone and NK(x) is a closed convex cone.
Let us describe some classes of sets which will be used in the following sections.
Definition 2. A closed set K ⊂ R

N is called proximal retract if there ex-
ists a neighborhood I of K such that the projection ΠK(·) is single-valued in I, with
ΠK(x) := {z ∈ K | ||x− z|| = infy∈K ||x− y||} for all x ∈ R.

We will describe some of the properties of such sets. This will be the key for the
proof of the existence and uniqueness results concerning (5) and (HJBI). The class of
proximal retracts includes closed, convex subsets of R

N and submanifolds of R
N of

class C1,1. Another class of proximal retracts is the class of weakly convex sets (see
[8] for the definition and the geometrical interpretation). A complete characterization
of proximal retract sets is made in [17] (see Theorem 4.1, p. 5245). In particular, such
sets have the property that there exists ρ > 0 such that every nonzero normal “can be
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realized” by a ball with a radius equal to ρ. This characterization says, in particular,
that only “exterior” corners are allowed.

So, if K is proximal retract, then from Theorem 4.1 in [17], Lemma 4.2 and
Theorem 2.2 in [6] we have the following:

- There exist r, c > 0 such that the application x → NK(x) ∩ B(0, r) + cx is
monotone1 on K. This monotonicity property, which is equivalent to Definition 2, is
very important because it allows us to establish the uniqueness of solutions to (2).

- The set K is sleek, i.e., the map x → TK(x) is l.s.c.

- For all x ∈ K, TK(x) = CK(x), where CK(x) denotes Clarke’s tangent cone.2

Note that the class of sleek sets is larger then the class of proximal retracts.

2.2. Viscosity solutions. To describe the value function as a unique solution to
the corresponding HJBI, we introduce the following definition of solutions to (HJBI).

Definition 3. A viscosity supersolution of (HJBI) is an l.s.c. function ψ :
(0, T ) ×K → R such that

for any φ ∈ C1 and (t0, x0) ∈ arg min (ψ − φ) ,

if x0 ∈ intK,
∂φ

∂t
(t0, x0)+ H

(
x0,

∂φ

∂x
(t0, x0)

)
≤ 0

and if x0 ∈ ∂K, there exists y0 ∈ NK(x0) such that

∂φ

∂t
(t0, x0)+ H

(
x0,

∂φ

∂x
(t0, x0)

)
−

〈
y0,

∂φ

∂x
(t0, x0)

〉
≤ 0

and a viscosity subsolution of (HJBI) is a u.s.c. function ϕ : (0, T ) × K → R such
that

for any φ ∈ C1 and (t0, x0) ∈ arg max (ϕ− φ) ,

if x0 ∈ intK,
∂φ

∂t
(t0, x0)+ H

(
x0,

∂φ

∂x
(t0, x0)

)
≥ 0

and if x0 ∈ ∂K, there exists z0 ∈ NK(x0) such that

∂φ

∂t
(t0, x0)+ H

(
x0,

∂φ

∂x
(t0, x0)

)
−

〈
z0,

∂φ

∂x
(t0, x0)

〉
≥ 0.

A viscosity solution of (HJBI) is a function which is both subsolution and supersolu-
tion.

It is clear that a viscosity solution is a continuous function because it is simulta-
neously u.s.c. and l.s.c.

Remark 4. A motivation for our definition of (HJBI) is the fact that, when (t0, x0)
is a differentiability point of V , we have in the usual sense

∂V

∂t
(t0, x0)+ H

(
x0,

∂V

∂x
(t0, x0)

)
−

〈
NK(x0),

∂V

∂x
(t0, x0)

〉
� 0.(7)

1Recall that a set valued map G : K → R
N is monotone if 〈y1−y2, x1−x2〉 ≥ 0 for all yi ∈ G(xi),

i ∈ {1, 2}.
2CK(x) = {v| limh→0+,K�x′→x dK(x′ + hv)/h = 0}. This tangent cone is always convex.
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Indeed, there exists λ ∈ [0, 1] such that

0 = λ

(
∂V

∂t
(t0, x0)+ H

(
x0,

∂V

∂x
(t0, x0)

)
−

〈
y0,

∂V

∂x
(t0, x0)

〉)

+ (1 − λ)

(
∂V

∂t
(t0, x0)+ H

(
x0,

∂V

∂x
(t0, x0)

)
−

〈
z0,

∂V

∂x
(t0, x0)

〉)
,

and because NK(x0) is convex, (7) is verified.
It is quite natural to obtain an equation of the form (7), namely a partial differ-

ential inequality. The motivation lies in the fact that for a smooth set, the reflection
is channeled in a fixed direction, given by the outward normal. For nonsmooth sets
the outward normal will be replaced with the normal cone which, in general, contains
many directions.

Note that this definition contains those given by Lions in [13], when the boundary
of K, ∂K ∈ C1.

2.3. Control systems with reflection on the boundary of a constraint
set. In this section we study the differential inequalities (5) and (6) by explaining
the method which we use in order to get a boundary reflection for closed sets K. This
allows us to give some applications to the properties of solutions to the controlled
system (2).

We consider a closed set K, a set valued map F : K → R
N , and the following

differential inclusion:{
(i) x′(t) ∈ F (x(t)) for almost all t ≥ t0,
(ii) x(t0) = x0 ∈ K, t0 ≥ 0.

(8)

The equation (6) appears naturally if we want a given closed set to become a
viability3 domain of a new system which is “as close as possible” to the original
dynamic system (8).

Indeed, when the necessary and sufficient condition for the existence of viable
solutions

F (x) ∩ TK(x) 
= ∅ for all x ∈ K

is not satisfied, the natural way to solve the above problem is to introduce the pro-
jected problem (6).

We note that ΠcoTK(x)F (x) = F (x) whenever x ∈ intK; F is modified only on
the boundary of K, so (6) is a problem of reflection at the boundary. Moreover, the
application x → ΠcoTK(x)F (x) has no easy continuity properties, but, thanks to the
properties of the projection on a convex cone, it is possible to prove that the solutions
to (5) and (6) coincide. We do not make any assumption on the regularity of the set
K, improving already known results of [2] where the set K is sleek.

It is easier to find sufficient conditions for the set K in order to obtain continuity
properties of the right-hand side of (5). So, for the study of existence and uniqueness
of solutions we consider (5). We have the following proposition.

Proposition 5. (i) Suppose that K is closed and F is a set valued map. Then
the sets of absolutely continuous solutions to (5) and (6) are equal.

3Recall that a solution x(·) to (8) is called viable in K if x(t) ∈ K for all t ≥ 0. The set K is a
viability domain for (8) if for all x0 ∈ K there exists a solution to (8) which is viable in K.
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Moreover if F is a Marchaud map4 and K is bounded and sleek, then

(ii) for every (t0, x0) ∈ [0,∞)×K there exists a solution of (5) or equivalently of
(6).

(iii) the restriction of the map (t0, x0) ∈ [0, T ] × K → SF (t0, x0) to a compact
set C is compact into [0,∞) × K × W 1,1(0,∞ ;K)e−bt for all b with b > a. Here
SF (t0, x0) denotes the set of solutions to (5) starting from (t0, x0).

Before giving the proof, we note that the first part of the above proposition is a
generalization of Theorem 10.1.1 in [2] where the set K is supposed to be sleek; here
K is only bounded. The second part recalls well-known existence and compactness
results (see [1] and [2]).

Proof. (i) Using Proposition 0.6.4 from [1] we deduce that

ΠcoTK(x)F (x) ⊂ F (x) −NK(x) for all x ∈ K,

and, consequently, a solution to (6) is also a solution to (5).

Conversely, if x(t) ∈ K for all t ≥ t0, we have

lim
h→0

x(t + h) − x(t)

h
∈ TK(x(t)) and lim

h→0

x(t) − x(t− h)

h
∈ −TK(x(t)) for a.e. t ≥ t0,

so x′(t) ∈ TK(x(t)) ∩ −TK(x(t)) ⊂ NK(x(t))⊥ a.e. t ≥ t0.

Let t ≥ t0 be a derivability point of x(·), and let x′(t) = f(t) − p(t) with f(t) ∈
F (x(t)) and p(t) ∈ NK(x(t)).

The above arguments say that 〈x′(t) − f(t), x′(t)〉 = 0.

Thus, x′(t) ∈ ΠcoTK(x(t))f(t) ⊂ ΠcoTK(x(t))F (x(t)) for a.e. t ≥ t0.

(ii) We prove now the existence of a solution to the differential inequality (5). If
K is sleek, then the map x → NK(x) has a closed graph.

For all x ∈ K, we set H(x) = F (x)− a(1 + ||x||)B ∩NK(x), where B denotes the
unit ball of R

N .

Because the map x → a(1 + ||x||)B ∩ NK(x) is Marchaud, H is also Marchaud.
Hence by Theorem 2.1.3 in [1] the existence of solutions of (5) follows.

Let us prove that the closed subset K is a viability domain for the differential
inclusion (5).

Indeed, using the equality I −ΠNK(x) = ΠTK(x), we have that for any x ∈ K and
f ∈ F (x), f − ΠNK(x)f ∈ (F (x) −NK(x)) ∩ TK(x).

Using the estimation ||ΠNK(x)f || ≤ ||f || ≤ a(1 + ||x||), we get that ΠNK(x)f ∈
a(1 + ||x||)B ∩NK(x) and consequently f − ΠNK(x)f ∈ H(x) ∩ TK(x).

The above arguments say that H satisfies the hypotheses of viability theorem
4.2.1 of [1], and since H(x) ⊂ F (x) −NK(x), the second part ensues.

(iii) See Theorem 2.2.1 in [1].

Now, let us begin a short study of the optimal control problem with reflected
trajectories. From now on, we consider that the set valued map F is given by the
equality

F (x) = f(x, U) = {f(x, u), u ∈ U} for all x ∈ K.

4A set valued map F from R
N onto R

N is called Marchaud map if F is u.s.c. with nonempty
compact convex values and has a linear growth.
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We denote by Sf (t0, x0) the set of absolutely continuous solutions to{
(i) x′(t) ∈ f(x(t), u(t)) −NK(x(t)) for almost all t ≥ t0,
(ii) x(t) ∈ K for all t ≥ t0, x(t0) = x0 ∈ K for all u(·) ∈ U(t0),

(9)

and by SF (t0, x0) the set of absolutely continuous solutions to{
(i) x′(t) ∈ F (x(t)) −NK(x(t)) for almost all t ≥ t0,
(ii) x(t) ∈ K for all t ≥ t0, x(t0) = x0 ∈ K.

(10)

We will prove now that (9) and (10) are equivalent. In this paper, we will use one of
these systems to simplify our proofs.

Proposition 6. Suppose that K is a compact sleek set and (Hf ) holds.
(i) If x(·) is a solution to (10) starting from (t0, x0) ∈ [0, T ]×K, then there exists

u(·) ∈ U(t0) such that x(·) is equal to x(·; t0, x0, u(·)), the solution of (9).
(ii) As a direct consequence of (i),

SF (t0, x0) = Sf (t0, x0) for all (t0, x0) ∈ [0,∞) ×K.

Proof. We essentially use the fact that K is sleek (which implies that the ap-
plication x → NK(x) has a closed graph) and Theorem 1.14.1 from [1]. Consider
Φ(t) := {v ∈ U | x′(t) ∈ f(x(t), v) −NK(x(t))} for a.e. t ≥ t0. We can prove that the
multivalued function Φ has a measurable selection which gives our measurable control
u(·) ∈ U(t0).

Moreover, with an easy computation, using the fact that K is proximal retract
and Gronwall’s inequality, we obtain the following estimation.

Lemma 7. Assume that (Hf ) holds true and K is a bounded proximal retract.
Then for x0(·) ∈ Sf (t0, x0), x1(·) ∈ Sf (t1, x1) with fixed u(·) ∈ U(t0) and for t ≥ t1 ≥
t0, there exists C > 0, a constant depending on t, such that

‖x0(t; t0, x0, u(·)) − x1(t; t1, x1, u(·))‖ ≤ C(‖x0 − x1‖ + |t0 − t1|).
We omit the proof of Lemma 7 because it is an easy adaptation of Lemma 4.4,

p. 143, proved in [6]. As a direct consequence of the above estimation we obtain the
following.

Corollary 8. Assume that (Hf ) holds true and K is a bounded proximal retract.
Then for fixed u(·) ∈ U(t0) there exists an unique solution of (2).

2.4. The optimal control problem. First, we give some standard results con-
cerning the regularity of V without proof. Later we shall prove the existence and the
uniqueness of viscosity solutions of (HJBI).

Lemma 9. Suppose that (Hf ) holds true and K is a compact proximal retract.
Then we have the following:

(i) (Existence of an optimal control.) If g is l.s.c., then V is l.s.c. and there exists
an optimal trajectory starting from each point (t0, x0) ∈ [0, T ] ×K, i.e., there exists
x̄(·) ∈ SF (t0, x0) such that

V (t0, x0) = g(x̄(T ; t0, x0, ū(·))) for all (t0, x0) ∈ [0, T ] ×K.

(ii) If g is a Lipschitz function, then V is locally Lipschitz and bounded.
Next we give the Bellman dynamic programming.
Proposition 10 (dynamic programming principle). Let g : K → R be a bounded

function, K a compact proximal retract, and suppose that (Hf ) holds. Then, for all
(t0, x0) ∈ [0, T ] ×K we have

V (t0, x0) = inf
x∈SF (t0,x0)

V (t0 + h, x(t0 + h)) with h > 0 small enough.(11)
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3. The Hamilton–Jacobi partial differential variational inequality.

3.1. Existence result. The aim of this section is to provide an existence and a
comparison result for viscosity solutions to a partial differential inequality with a kind
of boundary conditions for nonsmooth sets, which generalizes first order Hamilton–
Jacobi equations with Neumann conditions for smooth sets.

Using the dynamic programming principle we prove that the value function for the
control problem (1), (2) is the viscosity solution of (HJBI) in the sense of Definition 3.

Proposition 11. If K is a compact proximal retract, g a Lipschitz function, and
(Hf ) holds true, then V is a locally Lipschitz viscosity solution of (HJBI) with the
final condition V (T, x) = g(x) for all x ∈ K.

This theorem can be considered as an existence result of solutions to (HJBI).
Proof. First we prove that V is a supersolution.
We consider (t0, x0) ∈ arg min(V − ψ), ψ ∈ C1, with

V (t0, x0) = ψ(t0, x0) and V (t, x) ≥ ψ(t, x)

in a neighborhood of (t0, x0).
For all h > 0 small enough, there exists xh(·) ∈ SF (t0, x0) such that

ψ(t0, x0) + h2 = V (t0, x0) + h2 ≥ V (t0 + h, xh(t0 + h)) ≥ ψ(t0 + h, xh(t0 + h)).

For a subset A of R
N we denote by B(A, ε) = {x ∈ R

N | infy∈A ||y − x|| ≤ ε}.
B(A, ε) denotes the neighborhood of the set A with a radius equal to ε > 0.

Let M be a bound of F on K. Using the Lipschitz property of F (·) and the upper
semicontinuity of NK(·) ∩B(0,M), we have that, for all ε > 0, there exists an h > 0
small enough such that the following inclusions hold:

1

h
(xh(t0 + h) − x0) ∈ 1

h

∫ t0+h

t0

(F (xh(s)) −NK(xh(s)) ∩B(0,M))ds

⊂ 1

h

∫ t0+h

t0

(F (x0))ds + B(0, 1)
1

h

∫ t0+h

t0

L||xh(s) − x0||ds

− 1

h

∫ t0+h

t0

B(NK(x0) ∩B(0,M), ε)ds

= F (x0) + B(0, 1)
1

h

∫ t0+h

t0

L||xh(s) − x0||ds−B(NK(x0) ∩B(0,M), ε).

Hence for all ε > 0, there exists a sequence hn such that limn→∞ hn = 0 and

lim
n

1

hn
(xhn

(t0 + hn) − x0) ∈ F (x0) −B(NK(x0) ∩B(0,M), ε).

Letting ε → 0 we obtain that

lim
n

1

hn
(xhn

(t0 + hn) − x0) ∈ F (x0) −NK(x0) ∩B(0,M).(12)

Moreover,

lim
n

(
1

hn
[ψ(t0 + hn, xhn

(t0 + hn; t0, x0, u(·))) − ψ(t0, x0)] − hn

)
(13)

= lim
n

(
1

hn

[
ψ

(
t0 + hn, x0 + hn

(
1

hn
(xhn(t0 + hn) − x0)

)
− ψ(t0, x0)

]
− hn

)
.
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Using (12) and (13) we have the following.
First case (x0 ∈ intK). Then NK(x0) = {0} and there exists u ∈ U such that

∂ψ

∂t
(t0, x0) +

〈
∂ψ

∂x
(t0, x0), f(x0, u)

〉
≤ 0,

and consequently

∂ψ

∂t
(t0, x0) + inf

u∈U

〈
∂ψ

∂x
(t0, x0), f(x0, u)

〉
≤ 0.

Second case (x0 ∈ ∂K). Then {0} ⊂ NK(x0) and there exist u ∈ U , yu ∈ NK(x0)
such that:

∂ψ

∂t
(t0, x0) +

〈
∂ψ

∂x
(t0, x0), f(x0, u) − yu

〉
≤ 0.

So, there exists w0 = yu ∈ NK(x0) ∩B(0,M) such that

∂ψ

∂t
(t0, x0) + inf

u∈U

〈
∂ψ

∂x
(t0, x0), f(x0, u)

〉
−

〈
w0,

∂ψ

∂x
(t0, x0)

〉
≤ 0

and V is a supersolution.
The proof of the fact that V is subsolution is similar and we omit it.

3.2. Uniqueness result. This section concerns the uniqueness of the viscosity
solutions of (HJBI). The importance of this result leads us to treat it separately.
Moreover, the characterization of the value function as the unique solution of (HJBI)
ensues.

Theorem 12 (uniqueness result in the Lipschitz case). Assume that (Hf ) holds
true. Let K be a compact proximal retract and g be a Lipschitz function. Then there
exists at most one uniformly continuous viscosity solution of (HJBI) which satisfies
the final condition V (T, x) = g(x) for all x ∈ K.

The proof can be adapted from Evans [7]. We only underline that the difference
to Evans’ proof is due to the monotonicity of the multivalued function x → NK(x) ∩
B(0,M) + cx.

4. The discontinuous case. In this section we investigate the value function V
when g : K → R is supposed to be bounded. In this case the value is only a bounded
function. A natural question is how to use the viscosity theory to describe V. Here
we establish a relation between the value and the viscosity sub or supersolutions of
(HJBI). This kind of problem has been studied for the Bolza problem in [15], [16].

The main point of this section is to prove the following.
Theorem 13. Suppose that K is a proximal retract and (Hf ) holds.
(i) If g is bounded, then for every (t, x) ∈ [0, T ] ×K

V (t, x) = inf{ψ(t, x)| ψ l.s.c. supersolution of (HJBI); ψ(T, ·) ≥ g(·)} and

V (t, x) = sup{ϕ(t, x)| ϕ u.s.c. subsolution of (HJBI); ϕ(T, ·) ≤ g(·)}.

(ii) If g is l.s.c., then

V = min{ψ | ψ l.s.c. supersolution of (HJBI); ψ(T, ·) ≥ g(·)}.
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(iii) If g is u.s.c., then

V = max{ϕ | ϕ u.s.c. subsolution of (HJBI) ; ϕ(T, ·) ≤ g(·)}.

Before giving the proof, we note that the above theorem allows us to get, in
particular, a stronger uniqueness result. More precisely, if ψ is an l.s.c. supersolution
and ϕ is a u.s.c. subsolution of (HJBI) satisfying ψ(T, ·) ≥ ϕ(T, ·) on K, then ψ ≥ ϕ
on [0, T ] ×K.

Proof. (i) Let ψ be an l.s.c. supersolution of (HJBI) with ψ(T, ·) ≥ g(·). We want
to prove that V ≤ ψ on [0, T ] ×K. To do this we use the following lemma proved in
the appendix.

Lemma 14. Assume that (Hf ) holds true, K is a compact proximal retract, and
ψ : (0, T ) × K → R is an l.s.c. viscosity supersolution of (HJBI). Then for every
(t0, x0) ∈ (0, T ) ×K there exists a solution x(·; t0, x0, u(·)) of (2) such that

ψ(t, x(t)) ≤ ψ(t0, x0) for all t ∈ [t0, T ].(14)

So we obtain that there exists an x(·) ∈ SF (t0, x0) satisfying (14). Hence we have
V (t0, x0) ≤ g(x(T )) ≤ ψ(T, x(T )) ≤ ψ(t0, x0).

Using the very definition of the value function, for all ε > 0 there exists uε(·) ∈
U(t0) such that g (x (T ; t0, x0, uε(·))) < V (t0, x0) + ε.

For M1 > supx∈K g(x) we define lε : R
N → R by the following formula:

lε(x) =

{
g (x (T ; t0, x0, uε(·))) if x = x (T ; t0, x0, uε(·)) ,
M1, if x 
= x (T ; t0, x0, uε(·)) .

Obviously lε is l.s.c. so Vlε , the value function of the control problem with g replaced
by lε, is a l.s.c. supersolution of (HJBI) and Vlε(T, ·) = lε(·) ≥ g(·).

We also have Vlε(t0, x0) = g (x (T ; t0, x0, uε(·))) ≤ V (t0, x0) + ε. By the definition
of the infimum we obtain

V (t0, x0) = inf{ψ(t0, x0) | ψ l.s.c. supersolution of (HJBI); ψ(T, ·) ≥ g(·)}.

Now let us prove the second relation. Let (t0, x0) ∈ (0, T ) × K. We denote by
A(t0, x0) := {x(T )| x(·) ∈ SF (t0, x0)}. By Proposition 5 A(t0, x0) is a compact
set. We define h : R

N → R by

h(y) =

{
V (t0, x0) if y ∈ A(t0, x0),
m if y ∈ R

N \ A(t0, x0),

where m = infx∈K g(x). So, h is u.s.c. because A(t0, x0) is closed.

Obviously we have that Vh(t0, x0) = V (t0, x0) and Vh(T, ·) ≤ h(·) ≤ g(·).
Moreover, Vh is (see Lemma 21 in the appendix) a u.s.c. subsolution for (HJBI).

Now, to complete the proof of (i) we use the definition of the supremum and the
following lemma proved in the appendix.

Lemma 15. Assume that (Hf ) holds true, K is a compact proximal retract, and
ϕ : (0, T )×K → R is a u.s.c. viscosity subsolution of (HJBI) such that ϕ(T, x) ≤ g(x)
for all x ∈ K. Then V (t, x) ≥ ϕ(t, x) for every (t, x) ∈ (0, T ) ×K.

The proofs of (ii) and (iii) are direct consequences of Lemma 14, Lemma 15, and
Lemma 21.
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5. On l.s.c. solutions of HJBI with reflection on smooth sets. If g : R
N →

R is an l.s.c. function, then V is also l.s.c. In [5], [8] a modification of the concept of
viscosity solutions for semicontinuous functions was proposed. This approach is based
on a construction of “touching from one side” functions, which is usual for viscosity
solutions theory.

We suppose that K is a C1,1 submanifold with boundary. If we denote by n(x)
the unit outward normal to K at x ∈ ∂K, the normal cone NK(x) is generated by
n(x), i.e., NK(x) = [0,∞)n(x) for x ∈ ∂K and NK(x) = {0} for x ∈ intK.

We propose a definition for l.s.c. solutions to the HJBI of Barron–Jensen–
Frankowska type.

Definition 16. A viscosity l.s.c. solution of (HJBI) is a function ψ : [0, T ]×K →
R such that

for any φ ∈ C1 and (t0, x0) ∈ arg min (ψ − φ) ,

if (t0, x0) ∈ [0, T ) × intK, we have
∂φ

∂t
(t0, x0)+ H

(
x0,

∂φ

∂x
(t0, x0)

)
≤ 0;

if (t0, x0) ∈ (0, T ] × intK, we have
∂φ

∂t
(t0, x0)+ H

(
x0,

∂φ

∂x
(t0, x0)

)
≥ 0;

if (t0, x0) ∈ [0, T ) × ∂K, then there exists u ∈ U such that

∂φ

∂t
(t0, x0) +

〈
(f(x0, u) − ΠNK(x)f(x0, u)),

∂φ

∂x
(t0, x0)

〉
≤ 0;

if (t0, x0) ∈ (0, T ] × ∂K and min
u∈U

〈f(x0, u), n(x0)〉 > 0, then for all u ∈ U,

∂φ

∂t
(t0, x0) +

〈
(f(x0, u) − ΠNK(x)f(x0, u)),

∂φ

∂x
(t0, x0)

〉
≥ 0.

Note that in intK the equation is satisfied in the Barron–Jensen–Frankowska
sense (see [5], [8]).

We obtain the following uniqueness results.
Proposition 17. Suppose that K is a C1,1 submanifold with boundary and for

any u ∈ U and for all x0 ∈ K we have 〈f(x0, u), n(x0)〉 < 0. If g is l.s.c. and
(Hf ) holds true, then the value function V is the unique l.s.c. viscosity solution of
(HJBI) which verifies the final condition V (T, x) = g(x) for all x ∈ K, and for all
(t, x) ∈ (0, T ] × ∂K we have

lim inf
(t′,x′)→(t,x)

x∈intK

V (t′, x′) = V (t, x).

The proof is similar to the proof of Theorem 2.3 in [8].
Proposition 18. Suppose that K is a C1,1 submanifold with boundary and for

any u ∈ U and for all x0 ∈ K we have 〈f(x0, u), n(x0)〉 > 0. If g is l.s.c. and
(Hf ) holds true, then the value function V is the unique l.s.c. viscosity solution of
(HJBI) which verifies the final condition V (T, x) = g(x) for all x ∈ K, and for all
(t, x) ∈ (0, T ] × ∂K we have

lim inf
(t′,x′)→(t,x)

x∈intK

V (t′, x′) = V (t, x).

Proof. Step 1. V satisfies Definition 16. The proof of the first inequality is similar
to the proof of the fact that V is an l.s.c. supersolution of (HJBI).
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For proving the second inequality we observe that for all x0 ∈ ∂K and u ∈ U ,

Φu(x0) := f(x0, u) − ΠNK(x)f(x0, u) ∈ ΠTK(x)f(x0, u) = Π∂TK(x)f(x0, u).

Consequently, −f(x0, u) + ΠNK(x)f(x0, u) ∈ −Π∂TK(x)f(x0, u).
As K is a C1,1 submanifold and for all x0 ∈ K, minu∈U 〈f(x0, u), n(x0)〉 > 0,

Φu(·) is a Lipschitz application on ∂K. Moreover, ∂K is locally invariant (see [2,
viability theorem 3.2.4] by Φu(·) and by −Φu(·) (because ∂TK(x) = −∂TK(x)).

Now let (t0, x0) ∈ arg min (V − φ) , φ ∈ C1. We have two cases.
First case (x0 ∈ ∂K). For a fixed constant control u ∈ U , we consider the solution

of {
x′(t) = −f(x(t), u) + ΠNK(x(t))f(x(t), u),

x(t0) = x0,

which stays in ∂K because of the invariance properties of Φu(·). Using the dynamic
programming principle we get V (t0, x0) ≥ V (t0 − h, x(t0 − h)) with h > 0 small
enough. So, φ(t0, x0) ≥ φ(t0 − h, x(t0 − h)) with h > 0 small enough. Recall that
φ ∈ C1 and consequently

∂φ

∂t
(t0, x0) +

〈
(f(x0, u) − ΠNK(x)f(x0, u)),

∂φ

∂x
(t0, x0)

〉
≥ 0.

Second case (x0 ∈ intK). NK(x0) = {0} and for all u ∈ U, because f is a Lipschitz
application, there exists B(x0; ru), ru > 0, such that the solution to

{
x′(t) = −f(x(t), u),

x(t0) = x0

stays in B(x0; ru). Using the dynamic programming principle, for h > 0 small enough
V (t0, x0) ≥ V (t0 − h, x(t0 − h)) so φ(t0, x0) ≥ φ(t0 − h, x(t0 − h)). Because φ ∈ C1

we obtain ∂φ
∂t (t0, x0) + 〈(f(x0, u), ∂φ

∂x (t0, x0)〉 ≥ 0. This allows us to say that V is an
l.s.c. solution of (HJBI).

Step 2 (uniqueness). Now let us prove that V is the unique l.s.c. solution of
(HJBI). Let W be an l.s.c. solution of (HJBI) with W (T, x) = g(x) for all x ∈ K. We
have already proved (see Theorem 13) that W ≥ V.

For the reverse inequality we consider (t0, x0) ∈ (0, T )×K and x(·) ∈ SF (t0, x0).
There exists u(·) ∈ U(t0) such that x(·) = x(·; t0, x0, u(·)). We have two cases.

First case (x(T ) ∈ intK). For a fixed u(·) ∈ U(t0), ∂K is invariant by Φu(.)(·)
and Φu(.)(·) is Lipschitz in the second variable, so we have that x([t0, T ]) ⊂ intK.

By the measurable viability theorem (see Theorem 4.7 in [10], [2]) Epi(W ) is
viable for the dynamics given by (t, x, y) → (−1,−f(x(t), u(t)), 0). For the solution
starting from (T, x(T ),W (T, x(T ))), we have for all t ∈ [t0, T ], W (T − t, x(T − t)) ≤
W (T, x(T )), so W (t0, x0) ≤ W (T, x(T )) = g(x(T )).

Second case (x(T ) ∈ ∂K). Denote by τ the first time with the property x(τ) ∈ ∂K.
Using invariance properties of Φu(.)(·) and because Φu(.)(·) is Lipschitz in the second
variable, we obtain that x([t0, τ)) ⊂ intK and x([τ, T ]) ⊂ ∂K.

As in the above case, we apply the measurable viability theorem (see Theorem
4.7 in [10], [2]) to Epi(W ), on the one hand, to [τ, T ] for the dynamics given by
(t, x, y) → (−1,−f(x(t), u(t))+ΠNK(x(t))f(x(t), u(t)), 0) for the solution starting from
(T, x(T ),W (T, x(T )) and, on the other hand, to [t0, τn) for the dynamics given by
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(t, x, y) → (−1,−f(x(t), u(t)), 0) for the solution starting from (τ, x(τ),W (τ, x(τ)) =
limn(τn, xn,W (τ, x(τ)), xn ∈ intK.

We have W (t0, x0) ≤ W (τ, x(τ)) and W (τ, x(τ)) ≤ W (T, x(T )) = g(x(T )). Con-
sequently, by definition of the value function W (t0, x0) ≤ V (t0, x0).

We note that here we can obtain uniqueness for l.s.c. solutions only in two (ex-
tremal) cases, where the vector field f(x, u) is pointing only outside of the domain or
only inside. For the intermediate situation it seems that we cannot obtain uniqueness
(see the counterexample given below). The lack of uniqueness can be a consequence
of the fact that in the intermediate situation we lose the Lipschitz regularity of Φu(·)
in ∂K and the idea of the above proof will fail.

Counterexample. Now we will show that a uniqueness result is not possible using
our definition without imposing boundary properties on our dynamics as we did in
the above propositions. We do this by giving a counterexample.

Let K = [0, 1] ⊂ R. For a dynamics given by f = 0 and g = 1 the value function
is V (t, x) = 1 for all (t, x) ∈ [0, 1] × [0, 1]. Moreover V is an l.s.c. solution of HJBI in
the sense of our definition. Define

u(t, x) =

{
1 if (t, x) ∈ [0, 1] × (0, 1],
0 if (t,x) ∈ [0, 1] × {0}.

It is easy to verify that u is also an l.s.c. solution for the HJBI and we do not
have uniqueness because 〈f(x0), n(x0)〉 = 0 for all x0 ∈ ∂K.

For another definition of the discontinuous solution Ley [12] obtained a coun-
terexample proving that there is no uniqueness to HJB with a notion of the solution
in the Ishii–Barles–Perthame sense.

6. Appendix. Let us give the proof of Lemma 14 and Lemma 15. We shall use
the following classical viability theorem and the fact that the definition of super and
subsolutions to (HJBI) can be written equivalently in terms of subdifferentials. (See
[15] to get formulations of viscosity solutions in terms of subdifferentials of the PDE
associated to the Mayer control problem with K = RN .)

Theorem 19 (see [2, viability theorem 3.2.4]). Assume that G is a Marchaud
map and let D ⊂ R

N be closed. If for every z ∈ D we have

for all p ∈ ND(z), min
y∈G(z)

〈y, p〉 ≤ 0,(15)

then for every x0 ∈ D, t0 < T, there exists a solution x(·) to the Cauchy problem
x′(s) ∈ G(x(s)), x(t0) = x0 such that x(t) ∈ D for all t ∈ [t0, T ].

Now we give the proof of Lemma 14 and Lemma 15.
Proof of Lemma 14. Fix t0 ∈ (0, T ). We set

Dψ = cl({(t, x, r) : t ∈ (0, T ], x ∈ K, r ≥ ψ(t, x)}) ∪ [T,∞) ×K × R,

F̃ (t, x, r) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t < 0,
t
t0

(1, F (x) −NK(x) ∩B(0,M), 0) if t ∈ [0, t0],

(1, F (x) −NK(x) ∩B(0,M), 0) if t ∈ [t0, T ],
(1, F (x) −NK(x) ∩B(0,M), 0) if t > T,

where cl denote the closure and M is a bound of F on K. We show that (15) holds
true for F̃ and Dψ.

First case (x0 ∈ intK). Let z0 = (s0, x0, r0 := ψ(t0, x0)) ∈ Dψ. If s0 = 0, then

F̃ = 0. Obviously (15) holds.
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If s0 ≥ T and (ps, px, pr) ∈ NDψ
(s0, x0, r0), then ps ≤ 0, px = 0, pr = 0. Hence

(15) holds.

It remains to consider the case s0 ∈ (0, T ). We have NDψ
(s0, x0, r0) ⊂ NDψ

(s0, x0,
ψ(s0, x0)). Let (ps, px, pr) ∈ NDψ

(s0, x0, ψ(s0, x0)).

If pr < 0, then (ps/− pr, px/− pr) ∈ ∂−ψ(s0, x0) (see Proposition 4.1 in [9]).

Since ψ is a supersolution of (HJBI) there exists y0 ∈ NK(x0) such that

ps
−pr

+ min
z∈F (x0)

〈
z,

px
−pr

〉
−

〈
y0,

px
−pr

〉
≤ 0 and

ps
−pr

+ min
z∈{F (x0)−NK(x0)∩B(0,M)}

〈
z,

px
−pr

〉
≤ 0.

Hence minỹ∈F̃ (s0,x0,r0)
〈ỹ, (ps, px, pr)〉 ≤ 0.

Now we consider the case pr = 0. By a Rockafellar’s lemma (see, for instance,
Lemma 4.2 in [9]) there exists a sequence sn → s0, xn → x0, and psn → ps, pxn

→ px,
prn → 0, prn < 0 such that (psn , pxn

, prn) ∈ NDψ
(psn , pxn

, prn). Since prn < 0 we
obtain from the previous case that

min
ỹn∈F̃ (sn,xn,rn)

〈ỹ, (psn , pxn , prn)〉 ≤ 0.

We get minỹ∈F̃ (s0,x0,r0)
〈ỹ, (ps, px, pr)〉 ≤ 0, because F̃ is Marchaud.

Second case (x0 ∈ ∂K). Let z0 = (s0, x0, r0 := ψ(t0, x0)) ∈ Dψ. If s0 = 0, then

F̃ = 0. Obviously (15) holds true.

If s0 ≥ T and (ps, px, pr) ∈ NDψ
(s0, x0, r0), then ps ≤ 0, px ∈ NK(x0), pr = 0.

Hence [F (x0) −NK(x0)] ∩ TK(x0) 
= ∅ and (15) holds.

It remains to consider s0 ∈ (0, T ), which is similar to the first case.

Finally we obtain minỹ∈F̃ (s0,x0,r0)
〈ỹ, (ps, px, pr)〉 ≤ 0.

In view of the above theorem we have a solution z(·) to the Cauchy problem
z′(s) ∈ F̃ (z(s)), z(t0) = z0. Let z(s) = (t(s), x(s), r(s)).

By the definition of F̃ we have t(s) = s, r(s) = r0 = ψ(t0, x0). Hence, (14) holds
true and the proof is completed.

Proof of Lemma 15. The proof is divided into several steps.

First step. We fix t0 ∈ (0, T ), u(·) ∈ U(t0) such that u(·) is a continuous function.
We set

Dϕ = cl({(t, x, r) : t ∈ (0, T ], x ∈ K, r ≤ ϕ(t, x)}) ∪ [T,∞) ×K × R,

G(t, x, r) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t < 0,
t
t0

(1, F (x, u(t)) −NK(x) ∩B(0,M), 0) if t ∈ [0, t0],

(1, F (x, u(t)) −NK(x) ∩B(0,M), 0) if t ∈ [t0, T ],
(1, F (x, u(t)) −NK(x) ∩B(0,M), 0) if t > T,

and we want to prove that for every (t0, x0, ϕ(t0, x0)) ∈ (0, T ) ×K × R the solution
x(·; t0, x0, u(·)) to (2) satisfies

ϕ(t, x(t)) ≥ ϕ(t0, x0) for all t ∈ [t0, T ].(16)
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Since ϕ is a u.s.c. viscosity subsolution of (HJBI) we have

for any φ ∈ C1 and (t0, x0) ∈ arg max (ϕ− φ) ,

there exists z0 ∈ NK(x0) such that

∂φ

∂t
(t0, x0)+ H

(
x0,

∂φ

∂x
(t0, x0)

)
−

〈
z0,

∂φ

∂x
(t0, x0)

〉
≥ 0,

so − ∂φ

∂t
(t0, x0)+ min

y0∈NK(x0)∩B(0,M)

{〈
(f(x0, u(t0)) − y0),−∂φ

∂x
(t0, x0)

〉}
≤ 0.

Using the same arguments as we used in the proof of the above lemma and because
G is a Marchaud map, we obtain

min
y0∈NK(x0)∩B(0,M)

〈(f(x0, u(t0)) − y0), (ps, px, pr)〉 ≤ 0.

So, for every (pt, px, pr) ∈ NDϕ(t0, x0, ϕ(t0, x0)),

min
ỹ∈G(t0,x0,ϕ(t0,x0))

〈ỹ, (ps, px, pr)〉 ≤ 0.

Using Theorem 19 we obtain that for every (t0, x0, ϕ(t0, x0)) ∈ (0, T )×K×R the
solution x(·; t0, x0, u(·)) to (2) satisfies (16).

Second step. Fix u(·) ∈ U(t0). Then there exists a sequence un(·) ⊂ U(t0) of
continuous functions such that un(·) → u(·) in L∞(0, T ;U).

For all n ∈ N, xn(·; t0, x0, un(·)) satisfies

x′
n(t) ∈ f(xn(s), un(s))ds−

∫ t

t0

NK(xn(s)) ∩B(0,M)ds, or equivalently

xn(t) ∈ x0 +

∫ t

t0

f(xn(s), un(s))ds−
∫ t

t0

NK(xn(s)) ∩B(0,M)ds.(17)

As B(0,M) is a compact set and the application NK(·)∩B(0,M) is u.s.c., there exists
a measurable selection yn(·) ∈ NK(xn(s))∩B(0,M). Moreover, for all s ∈ [t0, T ] there
exists

lim
n→∞ yn(s) = y(s) ∈ NK(x(s)) ∩B(0,M).

Hence, by the Lebesgue theorem we obtain that

∫ t

t0

yn(s)ds →
∫ t

t0

y(s)ds ∈
∫ t

t0

NK(x(s)) ∩B(0,M)ds a.e. t ∈ [t0, T ].

Recall that the restriction of the application (t0, x0) ∈ [0, T ] × K → SF (t0, x0)
to a compact set C is compact into [0,∞) × K × W 1,1(0,∞ ;K)e−bt for all b with
b > a. Since xn(·; t0, x0, un(·)) ∈ SF (t0, x0) there exists x(·) ∈ SF (t0, x0) such that
limn→∞ xn(·) = x(·) in W 1,1(0, T ;K).

Passing to the limit in (17) we obtain that for almost all t ∈ [t0, T ] x(t) ∈ x0+∫ t

t0
f(x(s), u(s))ds−∫ t

t0
NK(x(s))∩B(0,M))ds and consequently, x(·)=x(·; t0, x0, u(·)).

Third step. Assume that x̄(·; t0, x0, ū(·)) is an optimal trajectory for V, starting
from (t0, x0) ∈ [0, T ] ×K, i.e., V (t0, x0) = g(x̄(T ; t0, x0, ū(·)).

Then there exists a sequence of continuous functions un(·), such that un(·) → ū(·)
in L∞(0, T ;U) and consequently xn(·; t0, x0, un(·))→ x̄(·; t0, x0, ū(·)) in W 1,1(0, T ;K).
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Using the above arguments for every n ∈ N, ϕ(t, xn(t; t0, x0, un(·)) ≥ ϕ(t0, x0) for
all t ∈ [t0, T ] and consequently, ϕ(T, xn(T ; t0, x0, un(·)) ≥ ϕ(t0, x0).

As ϕ is u.s.c., we obtain by letting n → ∞
V (t0, x0) = g(x̄(T ; t0, x0, ū(·))) ≥ ϕ(T, (x̄(T ; t0, x0, ū(·)))

≥ lim sup
n→∞

ϕ(T, xn(T ; t0, x0, un(·)) ≥ ϕ(t0, x0).

Then V ≥ ϕ and the proof is complete.
For the proof of Lemma 21 let us establish a stability result for (HJBI).
Lemma 20. Assume that H : K × R

N → R is a continuous Hamiltonian and let
K be a compact proximal retract. If wn : (0, T )×K → R is an increasing (decreasing)
sequence of uniformly locally bounded l.s.c. (u.s.c.) supersolutions (subsolutions) of
(HJBI) and w is a pointwise limit of wn, then w is an l.s.c. (u.s.c.) supersolution
(subsolution) of (HJBI).

The proof of this lemma is adapted from [3]. The main difficulties and changes
with Barles’s proof are given by the regularity of the application NK(·).

Lemma 21. Assume that (Hf ) holds. Let K be a compact proximal retract and g
be a u.s.c. (respectively, l.s.c.) function. Then V is a u.s.c. subsolution (respectively,
l.s.c. supersolution) of (HJBI).

Proof. We define a sequence gn : K → R by

gn(x) = sup
y∈K

(g(y) − n||x− y||).

The supconvolutions gn are Lipschitz, gn(x) ≥ gn+1(x), and lim gn(x) = g(x)
for every x ∈ K. Using Proposition 11, Vgn is a Lipschitz solution to (HJBI) with
Vgn(T, ·) = gn(·) and Vgn ≥ V.

Denote U(t, x) = limVgn(t, x). Then, using the above result, U is a u.s.c. subso-
lution of (HJBI) and U(T, x) = g(x). Obviously U ≥ V and by Lemma 15 we have
that U = V . So V is a u.s.c. subsolution for (HJBI).

The proof in the l.s.c. case is similar to the u.s.c. case.
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