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Abstract

Sufficient conditions involving Lie brackets of arbitrarily high-order are obtained for
local controllability of families of vector fields. After providing a general framework for
the generation of high-order control variations, a specific method for generating such
variations is proposed. The theory is applied to a number of nontrivial examples.
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1. Introduction

In this paper we present a technique for generating high-order variations of families of
vector fields. Our approach is motivated by the early work of Sussmann on local controlla-
bility [Sussmann 1978]. As in [Sussmann 1978] we consider a set S of analytic vector fields
on Ω ⊂ Rn and an S-trajectory to be a continuous curve which is a finite concatenation
of integral curves of vector fields in S. A point q is S-reachable from p if there exists an
S-trajectory t 7→ γ(t) such that γ(0) = p, q = γ(t) for some t ≥ 0, and S-reachable from p
in time ≤ T if t ≤ T . We say S is locally controllable (hereafter abbreviated l.c.) if, for
every T > 0, the set of points S-reachable from p in time ≤ T contains p in its interior.
In [Sussmann 1978] Sussmann defines the set S1

p of Lie brackets of order two of vector fields
in S. His main result is that S is locally controllable at p if 0 ∈ int(conv(S(p) ∪ S1

p(p)))
where conv stands for convex hull. The main contribution in this paper is the construction
of sets of vector fields S2

p , S
3
p · · · of higher-order Lie brackets of vector fields in S. In Theo-

rem 4.5 we summarize our results concerning the generation of these high-order variations.
This method of generating variations leads to a controllability result, Theorem 3.7, which
states that S is locally controllable at p if

0 ∈ int(conv(S(p) ∪ S1
p(p) ∪ · · · ∪ Sm

p (p)))
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for some m ≥ 1. Of course, the problem of local controllability, especially for control affine
systems, has been studied in detail. We refer particularly to [Agrachev and Gamkrelidze
1993, Bianchini and Stefani 1993, Hermes and Kawski 1987, Kawski 1987, Kawski 1990,
Kawski 1991, Sussmann 1983, Sussmann 1987].

The paper is organized as follows. In Section 2 we review Sussmann’s results on local
controllability and consider an example. In Section 3 we introduce our high-order condition
for local controllability, Theorem 3.7. In Section 4 we introduce a concrete class of higher
order variations which allow us to apply Theorem 3.7. In Section 5 we give some examples
illustrating our results.

2. First-order conditions

Suppose that S is a set of vector fields on an open set Ω ⊂ Rn and 0 ∈ conv(S(p))
for some p ∈ Ω, where conv(S(p)) is the convex hull in Rn ≃ TpΩ of the set of vectors
S(p) = {X(p) | X ∈ S}. Then, as in [Sussmann 1978], we let L0(S, p) ⊂ Rn denote the
unique linear subspace of maximal dimension such that

0 ∈ intL0(S,p)(conv(S(p)) ∩ L0(S, p))

and define
Z0
p = {X ∈ S | X(p) ∈ L0(S, p)}.

Let S̃1
p denote the set of second-order Lie Brackets S̃1

p = {[X,Y ] | X,Y ∈ Z0
p}, where

[X,Y ](p) = dYpX(p) − dXpY (p). The following sufficient condition was established by
Sussmann.

2.1 Theorem: ([Sussmann 1978]) Suppose that S is a finite set of vector fields such that
0 ∈ int(conv(S(p) ∪ S̃1

p(p))). Then S is locally controllable at p.

2.2 Remark: A natural extension of this result would involve S̃2
p , the set of all triple brackets

of elements of Z0
p . Sussmann points out that the corresponding second-order theorem, that

S is locally controllable at p if

0 ∈ int(conv(S(p) ∪ S̃1
p(p) ∪ S̃2

p(p))), (2.1)

is false. One consequence of our results is that this theorem does hold if S̃2
p is the restricted

set of triple brackets of elements of Z0
p of the form [X, [X,Y ]]. For example, if in R3 we

take the vector fields

W = (1, z, 0), X = (−1, 0, x2), Y = (0, 1, 0), Z = (0,−1, 0),

then (2.1) holds at p = (0, 0, 0), but clearly the family is not locally controllable at this
point as one can never reach states with negative z coordinate. •

3. Higher-order Lie brackets

In this section we develop our methodology for the generation of control variations
involving of arbitrarily high-order brackets of vector fields in S. Our method for doing
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so begins with some constructions involving what we call complementary sets of vector
fields. After these considerations have been discussed in Section 3.1, in Section 3.2 we
produce explicit S-trajectories which give us control variations involving certain high-order
Lie brackets of vector fields in S. In Section 3.3 we apply these constructions to give a
theorem on local controllability of S.

If X is a vector field, we denote its flow by t 7→ Xt(p). If X,Y are vector fields we let
adX Y denote the Lie bracket [X,Y ](p) = dYpX(p)− dXpY (p). We shall consider iterated
brackets of vector fields from a family of vector fields, and so need the notion of degree
of a bracket. For us, this will refer to the number of vector fields involved in the bracket.
Thus a plain vector field has degree 1 and [X,Y ] is a bracket of degree 2. Of course, to be
perfectly clear about this, one should use free Lie algebras [Serre 1992]. However, the loss
of rigor in what we do here does not merit the introduction of the additional terminology.

3.1. Complementary vector fields. A finite subset Xp ⊂ Z0
p is said to be complementary

at p if
0 ∈ intaff(Xp(p))(conv(Xp(p))),

where aff denotes the affine hull. Equivalently, Xp is complementary if 0 can be written as
a linear combination of the X(p), X ∈ Xp, with strictly positive coefficients. Clearly Z0

p is
complementary at p. If Z0

p is convex then there are many complementary sets. We note
that Z0

p is convex if S is. Furthermore it is known that S is l.c. if and only if conv(S) is l.c. .
While our results do not depend on S being convex, to simplify notation we will assume
that S is convex for the rest of this paper. We will also assume that the family of vector
fields has the property that S(p) ⊂ TpΩ is compact.

3.1 Proposition: Suppose Z0
p is convex. Then for every X ∈ Z0

p there exists a vector field
Y ∈ Z0

p such that {X,Y } is complementary at p.

Proof: Let X ∈ Z0
p . From the definition of Z0

p there exist λi > 0 and Yi ∈ Z0
p such

that
∑k

i=0 λi = 1 and λ0X(p) + λ1Y1(p) + · · · + λkYk(p) = 0. Set λ∗ =
∑k

i=1 λi and

Y =
∑k

i=1(λi/λ∗)Yi. Because Z0
p is convex Y ∈ Z0

p . This, together with the fact that
(λ0X + λ∗Y )(p) = 0 completes the proof. ■

Suppose that Xp = {X1, . . . , Xk} ⊂ Z0
p is complementary at p. Then Xp gives rise to

vector fields which vanish at p, namely those which can be expressed as Z = λ1X
1 + · · ·+

λkX
k for appropriate λi > 0. We define Zp be the collection of all such vector fields Z.

Since we assume that S is convex we know that Z ∈ S and thus

Zp = {Z | Z ∈ S, Z(p) = 0}.

Part of our approach will be to systematically consider rather general classes of S-
trajectories To this end, let π be a permutation of {1, . . . , k}. We denote by Xπ

t (p) the
composition of integral curves of the vector fields in Xp with time rescaled, namely

Xπ
t (p) = X

π(k)
λπ(k)t

◦ · · · ◦Xπ(1)
λπ(1)t

(p),

where λi > 0 and
∑k

i=0 λiX
i(p) = 0. Note that Xπ

t (p) is reachable in time (
∑

i λi)t. In
spite of a rescaling of time, Xπ

t (p) is an S-trajectory in the sense that all points of the form
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Xπ
t (p) for t sufficiently small are the image of a proper S-trajectory. Let Pk denote the set

of sequences of permutations of {1, 2, . . . , k}. If η ∈ Pk then η = (πℓ, πℓ−1, . . . , π1) for some
ℓ ∈N, and we define a X1

p-trajectory X
η
t (p) to be the S-trajectory which is the composition

of the curves Xπi
t (p). Then the Campbell-Baker-Hausdorff formula [Varadarajan 1974]

asserts that, for t sufficiently small, there exist vector fields Xη,i and Xπ,i such that

Xπ
t (p) =

( k∑
i=1

λπ(i)X
π(i) +Xπ,1t+Xπ,2t2 + o(t2)

)
t
(p)

X
η
t (p) = Xπs

t ◦ · · · ◦ Xπ1
t (p),

= (Xη,1 +Xη,2t+ o(t))t(p),

(3.1)

where Xη,1 is a multiple of
∑k

i=1 λiX
i, and hence vanishes at p. Note that the Campbell-

Baker-Hausdorff formula also provides explicit expressions for these terms in the series.
In any event, this leaves as dominant the second-order term Xη,2(p). Sussmann [1978]
generates a richer class of S-trajectories which allows him to prove his theorem on local
controllability (stated as Theorem 2.1 here). However, the local controllability result can
be proved using the smaller class of S-trajectories we consider here. We also point out,
that as with Xπ

t (p) above, the point X
η
t (p) is reached by an S-trajectory after some time

σt, σ > 0, has elapsed.

3.2 Remark: In equation (3.1) we have expressed X
η
t (p) as an integral curve for a “time-

dependent” vector field X(t) = Xη,1 + Xη,2t + o(t). To make this more precise we fix
τ > 0 and let ατ (t) denote the integral curve of the vector field X(τ) through p, that is
ατ (t) = (X(τ))t(p) where d

dtατ (t) = X(τ)(ατ (t)) and ατ (0) = p. Then X
η
t (p) denotes the

point ατ (t)|τ=t. •

3.3 Remark: While our definition for S1
p differs slightly from Sussmann’s S̃1

p , we do have

conv(S̃1
p) ⊂ conv(S1

p). To show this we can utilize the limited set of permutations used by
Sussmann in his proof of his sufficiency condition for l.c. (Theorem 3 of [Sussmann 1978]). •

Before we define Sk
p , we motivate the notion of S-trajectories which approximate integral

curves to orders higher than one. Let X,Y ∈ S1
p . From the definition of S1

p there exist
S-trajectories Xη

t (p) = (X1 + tX + o(t))t(p) and Y
η
t (p) = (Y 1 + tY + o(t))t(p) such that X1

and Y 1 are linear combinations of vector fields in S that vanish at p. Now suppose that
(λ1X + λ2Y + λ3Z)(p) = 0 for some Z ∈ S and λ1, λ2, λ3 > 0. Proceeding as above, while
rescaling time to ensure compatibility between the vector fields in S and S1

p , we construct
the S-trajectory

Xt(p) = X
η√
λ1t

◦ Yη√
λ2t

◦ Zλ3t2(p).

From the Campbell-Baker-Hausdorff formula we obtain

Xt(p) =
(
X1 +X

√
λ1t+ o(t)

)
√
λ1t

◦
(
Y 1 + Y

√
λ2t+ o(t)

)
√
λ2t

◦ Zλ3t2(p)

=
(
t(
√
λ1X

1 +
√
λ2Y

1) + t2(λ1X + λ2Y + λ3Z + (1/2)
√

λ1λ2[Y
1, X1])

+ t3W + o(t3)
)
1
(p)

= (tXη,1 + t2Xη,2 + t3Xη,3)1(p)

for vector fields Xη,1, Xη,2, Xη,3 with the following properties:
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1. Xη,1 is a linear combination of vector fields from S;

2. Xη,2 is a linear combination of degree 1 and 2 brackets of vector fields evaluated at p
in S;

3. Xη,3 is a linear combination of degree 2 and 3 brackets of vector fields evaluated at p
in S;

4. Xη,1 and Xη,2 vanish at p.

Since the coefficients of t and t2 vanish at p we have produced an S-trajectory which
approximates, to the third-order in t, the integral curve of Xη,3. We let S2

p(Xp) denote
the set of all such terms Xη,3, and S2

p the union of the sets S2
p(Xp) over all subsets Xp

complementary at p.

3.2. Higher-order variations. We now define Si
p for i > 1 inductively. Suppose that we

have defined sets of vector fields S1
p , . . . , S

m
p with the following property: for any X ∈ Sj

p

there exists an S-trajectory of the form X
η
t (p) = (Xη(t))t(p) = (tXη(t))1(p), with Xη(t) a

time varying vector field so that for t sufficiently small tXη(t) can be represented by the
convergent power series

tXη(t) = tXη,1 + t2Xη,2 + · · ·+ tσj−1Xη,σj−1 + tσjXη,σj + o(tσj )

where the vector fields Xη,1, . . . , Xη,σj−1 vanish at p, X = Xη,σj , and σj is defined induc-
tively by σ1 = 2 and

σk+1 =
(σk + 1)lcm{σ1, . . . , σk}

σk
, (3.2)

where lcm denotes least common multiple. We note that one consequence of the above
definition is that σm+1 > σm > · · · > σ1. The reason for this definition becomes apparent
in the proof of Lemma 3.4. Let Lm(S, p) denote the unique linear subspace of maximal
dimension such that

0 ∈ intLm(S,p)

(
conv(S(p) ∪ S1

p(p) ∪ · · · ∪ Sm
p (p)) ∩ Lm(S, p)

)
and set

Zm
p = {X ∈ S ∪ S1

p ∪ · · · ∪ Sm
p | X(p) ∈ Lm(S, p)}.

A finite subset Xp ⊂ Zm
p is said to be complementary at p if

0 ∈ intaff(Xp(p))

(
conv(Xp(p))

)
,

or equivalently, if 0 can be written as a linear combination of the vectors X(p), X ∈ Xp,
with strictly positive coefficients. Suppose that Xp = {X1, . . . , Xk} is a subset of Zm

p

complementary at p, so that
∑k

i=0 λiX
i(p) = 0 for some λi > 0. Let π be a permutation of

{1, 2, . . . , k}. Then Xi ∈ S or Xi ∈ Smi
p where mi ∈ {1, . . . ,m}. If Xi ∈ Smi

p then, by our
induction hypothesis, there exists an S-trajectory of the form X

ηi
t (p) = (Xηi(t))t(p) where

the time-varying vector field Xηi(t) has the power series expansion

tXηi(t) = tXηi,1 + · · ·+ tσmi−1Xηi,σmi−1 + tσmiX + o(tσmi ) (3.3)
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and such that Xηi,1, . . . , Xηi,σmi−1 vanish at p. We rescale time by t 7→ αit
γi where αi =

λ
1/σmi
i , and γi = lcm{σ1, . . . , σm}/σmi . If Xi ∈ S we rescale time by t 7→ αit

γi where
γi = lcm{σ1, . . . , σm}—in effect we define σ0 = 1. We denote by Xπ

t (p) the S-trajectory

Xπ
t (p) = X

ηπ(k)

απ(k)t
γπ(k) ◦ · · · ◦ X

ηπ(1)

απ(1)t
γπ(1) (p). (3.4)

This rescaling is needed because, if X ∈ Sk
p , then, using a suitable control variation, we can

generate an S-trajectory which achieves motion in the X-direction to order σk in t. Finally,
if η ∈ Pk, so that η = (πs−1, πks−1 , . . . , π1), we define X

η
t (p) to be the composition of the

curves Xπi
t (p) and say that Xη

t (p) is an Xm+1
p -trajectory . Then

X
η
t (p) = Xπs

t ◦ · · · ◦ Xπ1
t (p) = (Xη(t))t(p).

For t sufficiently small the Campbell-Baker-Hausdorff formula yields

tXη(t) = tXη,1 + · · ·+ tσm+1−1Xη,σm+1−1 + tσm+1Xη,σm+1 + o(tσm+1), (3.5)

for vector fields Xη,i.
The following lemma makes clear why the inductive definition of the σk’s are as in (3.2).

The idea essentially is that one needs to define time rescalings along vector fields in an S-
trajectory to ensure that the desired term is the first nonzero term in the series expansion.
This makes sense of our inductive definition of Sm

p (p).

3.4 Lemma: The vector fields Xη,1, . . . , Xη,σm+1−1 that appear in equation (3.5) vanish at
p.

Proof: Let X ∈ Si
p, Y ∈ Sj

p where i, j ∈ {0, . . . ,m} and S0
p = S. By our induction hypothe-

ses there exist time-varying vector fields Xηi(t), Xηj (t) where

tXηi(t) = (tXηi,1 + · · ·+ tσi−1Xηi,σi−1 + tσiX + o(tσi)

tXηj (t) = (tXηj ,1 + · · ·+ tσj−1Xηj ,σj−1 + tσjY + o(tσj )

with Xηj ,k, Xηi,ℓ vanishing at p as in (3.3) above. The corresponding S-trajectories are
X
ηj
t (p) = (Xηj (t))t(p) = (tXηj (t))1(p) and X

ηi
t (p) = (Xηi(t))t(p) = (tXηi(t))1(p). Rescaling

time as above and concatenating these curves yields the S-trajectory

β(t) = X
ηj
αjt

γj ◦ X
ηi
αitγi

= (Xηj (αjt
γj ))αjt

γj ◦ (Xηi(αit
γi))αitγi (p)

= (αjt
γjXηj (αjt

γj ))1 ◦ (αit
γiXηi(αit

γi))1(p)

=
(σj+1∑

k=1

(αjt
γj )kXηj ,k + o(tγj(σj+1))

)
1
◦
(σi+1∑

ℓ=1

(αit
γi)ℓXηi,ℓ + o(tγi(σi+1))

)
1
(p),

where X = Xηi,σi , Y = Xηj ,σj , and Xηi,ℓ and Xηj ,k vanish at p for k < σj , ℓ < σi. For t
sufficiently small, the Campbell-Baker-Hausdorff formula gives the coefficients of t in the
power series expansion for β(t). In particular β(t) can be written as a convergent power
series whose terms are expressible as linear combinations of Lie brackets of the vector fields
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Xηi,ℓ andXηj ,k and Lie brackets of these vector fields of all orders. Our induction hypothesis
implies that Xηi,ℓ and Xηj ,k vanish at p if k < σj and ℓ < σi. Hence Lie brackets of these
vector fields also vanish at p. Thus the lowest order term with respect to t in the power
series expansion for β(t) which does not necessarily vanish at p will be

(αjt
γj )σjXηj ,σj + (αit

γi)σiXηi,σi .

From the above definitions

(αjt
γj )σjXηj ,σj = (λ

1/σj

j )σj )tγjσjXηj ,σj

and
(αit

γi)σiXηi,σi = (λ
1/σi

i )σi)tγiσiXηi,σi .

Thus
(αjt

γj )σjXηj ,σj + (αit
γi)σiXηi,σi = tlcm{σ1,...,σm}(λjX

ηj ,σj + λiX
ηi,σi).

The next (higher) power of t which appears in the power series for β(t) is tr which has as
coefficient the linear combination of vector fields

(αjt
γj )σj+1Xηj ,σj+1 + (αit

γi)σi+1Xηi,σi+1

= α
σj+1
j tγj(σj+1)Xηj ,σj+1 + ασi+1

i tγi(σi+1)Xηi,σi+1.

We now show that r ≥ σm+1. Since γj(σj +1) = (
σj+1
σj

)lcm{σ1, . . . , σm}, the sequence {σj}
is, by definition, monotone increasing, and σm+1 = (σm+1

σm
)lcm{σ1, . . . , σm} we see that

γj(σj + 1) > σm+1 for j < m and γj(σj + 1) = σm+1 if j = m. Among the Lie brackets of
order 2 in the power series expansion of β(t) which do not vanish at p, the terms with the
lowest power of t will have the form

[αjt
γjXηj ,1, (αit

γi)σiXηi,σi ] = αjαi
σitγj+γiσi [Xηj ,1, Xηi,σi ].

Here we have t to the power γj + γiσi and

γj + γiσi =
lcm{σ1, . . . , σm}

σj
+ lcm{σ1, . . . , σm}

=
(σj + 1

σj

)
lcm{σ1, . . . , σm}

≥ σm+1,

with equality holding if and only if j = m. Lie brackets of order greater than 2 which are
coefficients of ts with s ≤ σm+1 clearly must vanish at p. Thus if ℓ = lcm{σ1, . . . , σm} then
the power series expansion for Xπ

t (p) defined by (3.4) is of the form tZ1 + · · ·+ tℓ−1Zℓ−1 +
tℓZℓ + trZr + o(tr))1(p) where Z1, . . . , Zℓ−1 vanish at p, Zℓ =

∑m
i=1 λiX

i, hence by our
choice of the λi’s we have Zℓ(p) = 0, and r ≥ σm+1 with r = σm+1 if and only if one of the
vector fields Xi ∈ Sm

p . Extending this argument to X
η
t (p) completes the proof. ■

This lemma implies that Xη
t (p) is an S-trajectory which approximates, to order tσm+1 ,

the integral curve of Xη,σm+1 with time rescaled to tσm+1 . We let Sm+1
p (Xp) denote the set

of all such terms Xη,σm+1 , indexed over all Xm+1
p -trajectories Xη

t (p).
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3.5 Definition: Sm+1
p is defined to be the union of the sets Sm+1

p (Xp) over all subsets Xp

complementary at p.

We note that vector fields in Sm
p will be linear combinations of brackets of degree at

most m+ 1 of vector fields in S. The following is a consequence of the above discussion.

3.6 Proposition: Suppose that X ∈ Sm
p . Then

(i) for t sufficiently small, there exists an S-trajectory X
η
t (p) of the form

X
η
t (p) = (Xη,1 + · · ·+ tσm−1Xη,σm + tσmXη,σm+1 + o(tσm))t(p), (3.6 )

where X = Xη,σm and the vector fields Xη,k vanish at p for k = 1, . . . , σm − 1;

(ii) if X(p) = 0 then Xη,σm+1 in (3.6) belongs to Sm+1
p ;

(iii) the S-trajectory (3.6) has the form

X
η
t (p) = p+ tσmX(p) + o(tσm),

where X is a linear combination of brackets of vector fields in S of degrees up to and
including m+ 1.

Proof: Assertion (i) follows from our definition of Sm
p . In particular the fact that, for t

sufficiently small, there exists an S-trajectory X
η
t (p) of the form

X
η
t (p) = (Xη,1 + · · ·+ tσm−1Xη,σm + tσmXη,σm+1 + o(tσm))t(p),

where X = Xη,σm and the vector fields Xη,k vanish at p for k = 1, . . . , σm − 1 follows from
the definition of Sm

p and Lemma 3.4. For (ii), suppose that X also vanishes at p. Then,
by definition, Xp = {X} ⊂ Zm

p is a set of vector fields complementary at p and hence the
Xm
p -trajectory X

η
t (p) is also a Xm+1

p -trajectory and then Xη,σm+1 ∈ Sm+1
p by definition.

For assertion (iii) we write (3.6) in exponential form:

X
η
t (p) = exp(tXη,1 + · · ·+ tσm−1Xη,σm−1 + tσmX + o(tσm))(p)

= p+ tσmX(p) + o(tσm),

since Xη,1(p) = · · · = Xη,σm−1(p) = 0. ■

3.3. A theorem on local controllability. The main results in this section is the following
high-order sufficient condition for local controllability.

3.7 Theorem: Suppose that S is a set of vector fields on Ω ⊂ Rn such that

0 ∈ int
(
conv(S(p) ∪ S1

p(p) ∪ · · · ∪ Sm
p (p))

)
for some m ≥ 1. Then S is locally controllable at p.

Before we present the proof we establish the following technical lemma:
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3.8 Lemma: Suppose that X ∈ Sm
p . Then there exists an S-trajectory X

η
t (p) with the

property that

X
η
t (p) = p+

tσm

σm
X(p) + o(tσm),

where X is a linear combination of brackets of vector fields in S of degrees up to and
including m+ 1, and σm > 0 is some (non-unique) positive integer.

Proof: Here X ∈ Sm
p and from the construction of Sm

p we know that

X
η
t (p) = (Xη,1 + · · ·+ tσm−2Xη,σm−1 + tσm−1X + o(tσm−1))t(p)

where the vector fields Xη,k vanish at p for k = 1, . . . , σm − 1. The positive integer σm
depends on the number of vector fields in the (possibly non-unique) set of complementary
vector fields used to construct Xη

t (p). The fact that X is a linear combination of brackets
of vector fields in S of degrees up to and including m+ 1 was noted above. Set

X(t) = Xη,1 + · · ·+ tσm−2Xη,σm−1 + tσm−1X + o(tσm−1),

a time-dependent vector field and let α(t) = (X(t))t(p), the “approximate integral curve”
as in Remark 3.2. Given x ∈ Ω we set

X(t)(x) = Xη,1(x) + · · ·+ tσm−2Xη,σm−1(x) + tσm−1X(x) + o(tσm−1)

dXx(t) = dXη,1
x + · · ·+ tσm−2dXη,σm−1

x + tσm−1dXx + o(tσm−1)

Ẋ(t) = Xη,2 + · · ·+ (σm − 2)tσm−3Xη,σm−1 + (σm − 1)tσm−2X + o(tσm−2).

Then the derivatives of α(t) ∈ Rn with respect to t take the form α̇(t) = X(t)(α(t)),
and α̈(t) = dXα(t)(t)α̇(t) + Ẋ(t)(α(t)). Thus α(0) = p, α̇(0) = X(0)(p) = Xη,1(p), and

α̈(0) = dXη,1
p Xη,1(p) + Xη,2(p). For σm > 2 we have Xη,1(p) = Xη,2(p) = 0 and hence

α̇(0) = α̈(0) = 0. It is straightforward to show that α(k)(0) = (k − 1)!Xη,k(p) = 0 for
1 ≤ k ≤ σm − 1 and α(σm)(0) = (σm − 1)!X(p). In particular we have the Taylor series
expansion

α(t) = α(0) + α(1)(0)t+ · · ·+ 1

σm!
α(σm)(0)tσm + o(tσm)

= p+
tσm

σm
X(p) + o(tσm).

The observation that Xη
t (p) = α(t) completes the proof. ■

Proof of Theorem 3.7: By assumption there exist vector fields Xi
1, . . . , X

i
ki

∈ Si
p for 0 ≤ i ≤

m such that 0 is contained in the absolute interior of the convex hull of {Xi
j(p) | 0 ≤ i ≤

m, 1 ≤ j ≤ ki}. Here we set S0
p = S. In light of Lemma 3.8 we can find corresponding

S-trajectories

X
ηi,j
t (p) = p+

tσi

σi
Xi

j(p) + o(tσi).

Rescaling time by tσi = σisi,j for si,j > 0 we have X̃
ηi,j
t (p) = p + si,jX

i
j(p) + o(si,j). The

composition of such S-trajectories yields

α(s1,1, s1,2, . . . , sm,km) = p+
m∑
i=0

ki∑
j=1

si,jX
i
j(p) + o(s1,1 + s1,2 + · · ·+ sm,km).
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This is the form of the S-trajectories used in the proof of Theorem 3 in [Sussmann 1978].
We can then apply Lemma 4 of [Sussmann 1978] to conclude that S is l.c. at p. ■

3.9 Remark: Suppose that X ∈ Sm
p and that Z1, . . . , Zℓ ∈ Zp. Then the directions spanned

by ± adZ1 ◦ adZ2 ◦ · · · ◦ adZℓ X(p) can be considered as available directions for the purposes
of local controllability, provided that there exists Y ∈ Sm

p so that X(p) + Y (p) = 0. This
may be argued by slightly generalizing Theorem 2.4 in [Bianchini and Stefani 1993].

4. A concrete class of higher-order variations

While Theorem 3.7 is interesting, it is not so easy to apply as we have not been very
concrete about describing tangent vectors in Sm

p (p). In this section we provide a description
of some such tangent vectors. Our description arises from developing S-trajectories associ-
ated with sequences of permutations. One of the consequences of our development is the
identification of terms in the series expansion for the S-trajectories that are independent of
permutation. These are obstructions to local controllability in our setup. In the parlance
of Sussmann [1987], these are fixed points of a group action in a free Lie algebra.

4.1. Variations associated with sequences of permutations. Suppose that X,Y ∈ S.
Then, for t sufficiently small,

Yt ◦Xt(p) =
(
A0(X,Y ) +A1(X,Y )t+A2(X,Y )t2 +A3(X,Y )t3 + · · ·

)
t
(p)

where, from the Campbell-Baker-Hausdorff formula,

A0(X,Y ) = X + Y

A1(X,Y ) =
1

2
adX Y

A2(X,Y ) =
1

12
(ad2Y X + ad2X Y )

A3(X,Y ) = − 1

24
adY ad2X Y

A4(X,Y ) = − 1

180
adY ad3X Y − 1

120
[adX Y, ad2X Y ] +

1

180
ad2Y ad2X Y

+
1

360
[adX Y, ad2Y X]− 1

720
ad4X Y − 1

720
ad4Y X

(4.1)

and Ak(X,Y ) can, in principal, be expressed explicitly as functions of X,Y for all k > 0.
Let N denote the positive integers. If Xi, Y i ∈ S, s = (s1, . . . , sk) ∈ Nk, then for π ∈ P 0

k ,
the group of permutations of {1, 2, . . . , k}, we form the S-trajectory

Xπ
t (p) = Y

π(1)

t
sπ(1) ◦X

π(1)

t
sπ(1) ◦ Y

π(2)

t
sπ(2) ◦X

π(2)

t
sπ(2) ◦ · · · ◦ Y

π(k)

t
sπ(k) ◦X

π(k)

t
sπ(k) (p)

= (Q0
π +Q1

πt+Q2
πt

2 + · · · )t(p),
(4.2)
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where the vector fields Qℓ
π = Qℓ

π(X
1, Y 1, . . . , Xk, Y k, s) are linear combinations of the

vector fields Aj(Xi, Y i) and their Lie brackets. For example, for s = (1, . . . , 1) we have

Q0
π = A0(X1, Y 1) + · · ·+A0(Xk, Y k),

Q1
π =

k∑
i=1

A1(Xi, Y i) +
1

2

∑
1≤i<j≤k

[A0(Xπ(i), Y π(i)), A0(Xπ(j), Y π(j))].

The order of the group P 0
k is k! and we define P 1

k to be the elements of the k!-fold direct
product of P 0

k with itself, Πk!
i=1P

0
k , of the form π = (π1, . . . , πk!) where πi ∈ P 0

k are distinct .
We note that P 1

k is a set with Γ = k!! elements. If π = (π1, . . . , πk!) ∈ P 1
k we define a

corresponding S-trajectory

Xπ
t (p) = Xπ1

t ◦ · · · ◦ Xπk!
t (p) = (Q0

π +Q1
πt+Q2

πt
2 + · · · )t(p)

where, as above, Qℓ
π = Qℓ

π(X
1, Y 1, . . . , Xk, Y k, s) is a linear combination of the vector fields

Aj(Xi, Y i) and their Lie brackets. Similarly π ∈ P 2
k if π = (π1, . . . , πγ) where πi ∈ P 1

k and

Xπ
t (p) = Xπ1

t ◦ · · · ◦ XπΓ
t (p) = (Q0

π +Q1
πt+Q2

πt
2 + · · · )t(p).

In this way we can inductively define subsets of permutations P ℓ
k . It will be convenient to

use the notation Γ(k, ℓ) to denote the cardinality of P ℓ
k . Thus Γ(k, 0) = k! and Γ(k, ℓ+1) =

Γ(k, ℓ)!. Note that if π = (π1, . . . , πΓ(k,ℓ)) ∈ P ℓ+1
k where πi ∈ P ℓ

k , then Xπ
t (p) denotes the

S-trajectory
Xπ
t (p) = Xπ1

t ◦ · · · ◦ XπΓ(k,ℓ)

t (p)

= (Q0
π +Q1

πt+ · · · )t(p).
(4.3)

For example, P 0
2 = {π1, π2} with

π1 =

(
1 2
1 2

)
, π2 =

(
1 2
2 1

)
.

Thus

P 1
2 = {(π1, π2), (π2, π1)}

P 2
2 = {((π1, π2), (π2, π1)), ((π2, π1), (π1, π2))}.

For π = (π1, π2) ∈ P 1
2 , then

Xπ
t (p) = Y 1

ts1 ◦X1
ts1 ◦ Y 2

ts2 ◦X2
ts2 ◦ Y 2

ts2 ◦X2
ts2 ◦ Y 1

ts1 ◦X1
ts1

and if π = (π2, π1) ∈ P 1
2 , then

Xπ
t (p) = Y 2

ts2 ◦X2
ts2 ◦ Y 1

ts1 ◦X1
ts1 ◦ Y 1

ts1 ◦X1
ts2 ◦ Y 2

ts2 ◦X2
ts2 .

Similar expressions then hold for the elements of P 2
2 . In essence these are analogous to the

time reversal permutations considered by Sussmann [1987].
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4.2. Permutation-invariant elements. Next we turn to a more detailed investigation of
the terms in the power series expansion for the S-trajectories of the preceding section. In
particular, we show that such power series expansions possess terms that are independent
of the sequence of permutations. In essence, these are terms in the series which cannot
be modified by changing the sequence, and so may be thought of as obstructions to local
controllability.

The first result exposes the pattern in which invariant terms arise in the series expan-
sion (4.3) under sequences of permutations of a given length. If s = (s1, . . . , sk) ∈ Nk we
set

m(s) = min{si | 1 ≤ i ≤ k}

and define mi(s) inductively by

m0(s) + 2 = min{si + sj | 1 ≤ i, j ≤ k, i ̸= j}

and
mℓ(s) = m0(s) + ℓm(s).

4.1 Lemma: Let π ∈ P ℓ
k and let Xπ

t (p) be the S-trajectory

Xπ
t (p) = (Q0

π +Q1
πt+ · · · )t(p).

defined by (4.3). Then Q0
π, . . . , Q

mℓ(s)
π are independent of π and Q0

π, . . . , Q
m(s)−2
π vanish

identically.

Proof: We begin by considering the case π ∈ P 0
k . To help with notation we set

Xj(t) =
∞∑
i=0

Ai(Xπ(j), Y π(j))t(i+1)sπ(j)

so that the S-trajectory Xπ
t (p) defined by (4.2) is the composition of integral curves of the

vector fields Xj followed for one unit of time. Thus Xπ
t (p) = (X1(t))1 ◦ · · · ◦ (Xk(t))1(p),

and, using the Campbell-Baker-Hausdorff formula, we have

Xπ
t (p) =

( k∑
j=1

Xj(t) +
∑

1≤i<j≤k

1

2
[Xi(t), Yi(t)] + · · ·

)
1
(p), (4.4)

where the additional terms are iterated brackets of the vector fields Xi(t) of degree greater
than two. We note that

∑k
j=1Xj(t) is independent of our choice of π ∈ P 0

k . Writing the
above vector field explicitly as a power series in t,

Xπ
t (p) = (Q0

πt+Q1
πt

2 + · · · )1(p),

we see that, from the definition of Xj(t), the lowest power of t with a nonzero co-
efficient will be tm(s) where m(s) = min{si | 1 ≤ i ≤ k} as above. In particular

Q0
π, . . . , Q

m(s)−2
π are identically zero. Similarly the lowest power of t with a nonzero co-

efficient in
∑

1≤i<j≤k
1
2 [Xi(t), Yj(t)] will be tm0(s)+2 so that Q

m0(s)+1
π is the coefficient of
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the t which could vary with π ∈ P 0
k . From our definition of m0(s) we have m(s) < m0(s)

and hence

Xπ
t (p) = (Qm(s)−1

π tm(s)−1 + · · ·+Qm0(s)
π tm0(s) +Qm0(s)+1

π tm0(s)+1 + · · · )t(p),

where Q
m(s)−1
π , . . . , Q

m0(s)
π are invariant with respect to π ∈ P 0

k . This proves the lemma in
the case ℓ = 0. Now suppose that the lemma holds for π ∈ P ℓ

k . Let π = (π1, . . . , πΓ(k,ℓ)) ∈
P ℓ+1
k where πi ∈ P ℓ

k and set

Xπ
t (p) = Xπ1

t ◦ · · · ◦ XπΓ(k,ℓ)

t (p).

By assumption
Xπi
t (p) = (Qm(s)−1

πi
tm(s)−1 +Qm(s)

πi
tm(s) + · · · )t(p)

where Q
m(s)−1
πi , . . . , Q

mℓ(s)
πi are independent of πi. Setting Qj = Qj

πi for j = m(s) −
1, . . . ,mℓ(s) it follows that X

πi
t (p) = (X̄i(t))t(p) where

X̄i(t) = Qm(s)−1tm(s)−1 +Qm(s)tm(s) + · · ·+Qmℓ(s)tmℓ(s) +Qmℓ(s)+1
πi

tmℓ(s)+1 + · · · .

As in (4.4), the Campbell-Baker-Hausdorff formula yields an expression for Xπ
t with X̄i(t)

replacing Xi(t). Arguing as in the case ℓ = 0 above we can conclude that

Xπ
t (p) =

(
Γ(k, ℓ)Qm(s)−1tm(s)−1 + · · ·+ Γ(k, ℓ)Qmℓ(s)tmℓ(s)

+ (Qmℓ(s)+1
π1

+ · · ·+Qmℓ(s)+1
πΓ(k,ℓ)

)tmℓ(s)+1 + · · · (Qmℓ(s)+m
π1

+ · · ·

+Qmℓ(s)+m
πΓ(k,ℓ)

)tmℓ(s)+m +Qmℓ(s)+m+1
π tmℓ(s)+m+1 + · · ·

)
t
(p).

Since mℓ(s)+m = mℓ+1(s) and in the above equation the coefficients of ti with i ≤ mℓ+1(s)
are π-invariant the induction is complete. ■

Let π ∈ P ℓ
k . In light of Lemma 4.1 we set

Qi
inv = Qi

π, mℓ−1(s) < i ≤ mℓ(s).

where Qi
inv = Qi

inv(X
1, Y 1, . . . , Xk, Y k, s) depends on Xi, Y i and s but is independent of

π. For ℓ = 0 we set
Qi

inv = Qi
π, i ∈ {0, 1, . . . ,m0(s)}.

In the case s = (1, . . . , 1) it is straightforward to show that mℓ(s) = ℓ and

Q0
inv = A0(X1, Y 1) + · · ·+A0(Xk, Y k),

Q1
inv = k!(A1(X1, Y 1) + · · ·+A1(Xk, Y k)),

Q2
inv = (k!)2(A2(X1, Y 1) + · · ·+A2(Xk, Y k)) +B,

where B is a linear combination of degree 3 brackets of the vector fields A0(Xi, Y i). For
our application, the pairs {Xi, Y i} above will be complementary at p so that A0(Xi, Y i)
and hence B vanish at p.

The following proposition relates the definition of Qi
inv to the S-trajectory corresponding

to π ∈ P ℓ
k where i ≤ mℓ(s).
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4.2 Proposition: For each ℓ ≥ 0 and π ∈ P ℓ
k there corresponds an S-trajectory of the form

Xπ
t (p) =

(
α0Q

0
inv + · · ·+ αmℓ(s)Q

mℓ(s)
inv tmℓ(s) +Qmℓ(s)+1

π tmℓ(s)+1 + · · ·
)
t
(p),

where αi > 0, i ∈ {0, 1, . . . ,mℓ(s)}.

Proof: The proof of Lemma 4.1 contains this result with a slight change of notation using the
subscript “inv” to keep track of the vector fields invariant with respect to the appropriate
collection of permutations. ■

4.3 Remark: In the case of an single-input affine system ẋ = f(x) + ug(x), consider the
sets {X1 = f + g, Y 1 = f − g} and {X2 = f − g, Y 2 = f + g}, and take s1 = s2 = 1 to
compute

Q0
inv = 4f,

Q2
inv =

8

3
ad2g f,

Q4
inv =

8

15
ad4g f +

56

45
adg ad

3
f g −

496

45
[adf g, ad

2
f g],

Q6
inv =

1136

315
[[f, g], ad4f g]−

119912

945
[ad2f g, ad

3
f g] +

32

105
ad3g ad

3
f g

− 1024

315
[adf g, ad

3
g ad

2
f g] +

3376

315
[adf g, [adf g, ad

2
g f ]]−

144

35
[ad2f g, ad

3
g f ]]

+
16

315
ad6g f +

176

945
[ad2g f, [g, ad

2
f g]]−

176

945
[g, ad5f g].

These are linear combinations of bad vector fields as per [Sussmann 1987]. We show in
Corollary 4.8 that for two pairs of complementary vector fields, Qℓ

inv = 0 for ℓ odd. We also
remark that the eccentric character of the coefficients in the expressions for the permutation
invariant brackets is a consequence of our use of the Campbell-Baker-Hausdorff formula. •

4.4 Remark: In a given example one may have many more permutation-invariant vector
fields than the Qi

inv, which are invariant on essentially the free Lie algebra level. •

4.3. Applications to local controllability. In this section we summarize the above devel-
opments as they apply to conditions for local controllability. The following result relates
the permutation dependent constructions to the more general constructions of Section 3.2.

4.5 Theorem: Suppose that {Xi, Y i} ⊂ S for i = 1, . . . , k, s ∈ Nk, and Q0
inv(p) =

Q1
inv(p) = · · · = Q

mℓ(s)
inv (p) = 0. Then

1. Q
mℓ(s)+1
π ∈ S

mℓ(s)+1
p for all π ∈ P ℓ

k and

2. Q
mℓ(s)+1
inv ∈ S

mℓ(s)+1
p .

The next three corollaries specialize the theorem to interesting cases. The first deals
with the case when all time rescalings are equal to 1. In practice, this will often be the case,
but in Remark 4.10 we provide a situation where it is beneficial to allow the more general
class of rescalings.



High-order variations for families of vector fields 15

4.6 Corollary: Suppose that {Xi, Y i} ⊂ S for i = 1, . . . , k and s = (1, . . . , 1). Then

1. if Q0
inv(p) = Q1

inv(p) = · · · = Qℓ
inv(p) = 0 then Qℓ+1

π ∈ Sℓ+1
p for all π ∈ P ℓ

k and

2. if {Xi, Y i} are complementary at p for i = 1, . . . , k then

(a) ± adXi Y i ∈ S1
p and ± ad(Xi1+Y i1 ) ◦ · · · ◦ ad(Xis+Y is ) adXi Y i(p) ∈ S1

p(p) where
i1, . . . , is ∈ {1, . . . , k},

(b) 2 ad2Xi Y i − ad2Y i Xi ∈ S2
p and ad2Xi Y i ∈ S2

p , and

(c) ± adY i ad2Xi Y i ∈ S3
p if

∑k
i=1(ad

2
Xi Y i + ad2Y i Xi)(p) = 0.

Our next result specializes Theorem 4.5 to two pairs of vector fields.

4.7 Corollary: Suppose that {X1, Y 1}, {X2, Y 2} ⊂ S, s = (1, 1), and Q0
inv(p) = Q1

inv(p) =
· · · = Qℓ

inv(p) = 0. Then

1. Qℓ+1
inv ∈ Sℓ+1

p and

2. −Qℓ+1
inv ∈ Sℓ+1

p and Qℓ+2
inv ∈ Sℓ+2

p if ℓ is even.

Finally, we consider the case of a single pair of vector fields. In practice, this simple
result is often the most useful, as we shall see in Section 5.

4.8 Corollary: Suppose {X,Y } ⊂ S. The following statements hold:

1. if s = (1, 1) then for the pairs {X1, Y 1} = {X,Y } and {X2, Y 2} = {Y,X} we have
Qℓ

inv = 0 for ℓ odd;

2. if s = (1) then Qℓ
inv = Aℓ(X,Y ). In particular, Ak(X,Y )(p) = 0, k ∈ {0, 1, . . . , ℓ}

implies Aℓ+1(X,Y ) ∈ Sℓ+1
p .

4.9 Remark: We can replace one or more of the pairs {Xi, Y i} in Theorem 4.5 with {Y i, Xi}
to generate additional vector fields in Sℓ+1

p . •

4.10 Remark: In Theorem 4.5 the vanishing of the vector fields Qi
inv at p can be replaced

by conditions for neutralization resembling those in the existing literature (e.g., [Krener
1974, Sussmann 1987]). That is, we may ask not that Q0

inv(p) = · · · = Qℓ
inv(p) = 0, but that

Q0
inv(p) = · · · = Qℓ−1

inv (p) = 0 and 0 ∈ conv{Q0
inv(p), Q

1
inv(p), . . . , Q

ℓ
inv(p)}. More generally,

suppose that for i, j ∈N we denote

Qi
inv = Qi

inv(X
1, Y 1, . . . , Xk, Y k, s), Q̃j

inv = Q̃j
inv(X̃

1, Ỹ 1, . . . , X̃ k̃, Ỹ k̃, s̃),

and that for a specific ℓ,m ∈ N we have Qℓ
inv(p) + Q̃m

inv(p) = 0. Then we consider the
augmented collection of pairs of vector fields

{X1, Y 1}, . . . , {Xk, Y k}, {X̃1, Ỹ 1}, . . . , {X̃ k̃, Ỹ k̃}

and choose ŝ = (ms1, . . . ,msk, ℓs̃1, . . . , ℓs̃k̃). The resulting set of invariant vector fields

Q̂i
inv will have Q̂mℓ−1

inv a positive multiple of Qℓ
inv + Q̃m

inv and for j < ml− 1 the vector fields

Q̂j
inv will be linear combinations of Q0

inv, . . . , Q
ℓ−1
inv , Q̃0

inv, . . . , Q̃
m−1
inv , and their Lie brackets.

The notion of rescaling time to generate new higher-order S-trajectories is inherent in the
definition of the sets Sk

p . Examples 5.3 and 5.4 illustrates this point. •
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4.11 Remark: Stefani’s example [Stefani 1985]

ẋ = u

ẏ = x

ż = x3y

in R3 fits the framework of Corollary 4.7. As noted in Sussmann’s paper [Sussmann 1987],
the Lie brackets in f = (0, x, x3y) and g = (1, 0, 0) of degree 3, 4, and 5 vanish at p = (0, 0, 0).
Consider {X1 = f + g, Y 1 = f − g}, {X2 = f/2 + 2g, Y 2 = f/2 − 2g} ⊂ S and s = (1, 1).
Corollary 4.6(2a) implies that ±[f, g] ∈ S1

p while f ± g ∈ S = conv{f + g, f − g}. Thus
we can find control variations in the directions (±1, 0, 0), (0,±1, 0). To generate the control
variations in the directions (0, 0 ± 1) we use Corollary 4.6(1). Note that P 0

2 = {π1, π2}
where π1(1) = 1, π1(2) = 2 and π2(1) = 2, π2(2) = 1 so that

Xπ1
t (p) = X1

t ◦ Y 1
t ◦X2

t ◦ Y 2
t (p) = (Q0

inv +Q1
π1
t+Q2

π1
t2 + · · · )t(p).

But Q0
inv = 3f which vanishes at p and Corollary 4.6(1) implies that Q1

π1
∈ S1

p . But Q
1
π1

= 0
hence Q2

π1
∈ S2

p as a consequence of Proposition 3.6(i). Similarly Q2
π1
, Q3

π1
, Q4

π1
vanish at p,

as they consist of linear combinations of Lie brackets in f and g of degree 3, 4, and 5, hence
Q5

π1
∈ S5

p . Likewise Q5
π2

∈ S5
p . Since Q5

π1
(p) = (0, 0, 21/18) and Q5

π2
(p) = (0, 0,−21/18),

Theorem 3.7 implies local controllability. •

Proof of Theorem 4.5: Choose πj ∈ P ℓ
k . Then Proposition 4.2 asserts that there exists an

S-trajectory

Xπ
t (p) =

(
αj
0Q

0
inv + · · ·+ αj

mℓ(s)
Q

mℓ(s)
inv tmℓ(s) +Qmℓ(s)+1

πj
tmℓ(s)+1 + · · ·

)
t
(p).

Since Qi
inv(p) vanishes for 0 ≤ i ≤ mℓ(s) it follows that Q

mℓ(s)+1
πj ∈ Sa

p for some a ∈ N.

Here Q
mℓ+1(s)
πj is the coefficient Qπj of the lowest power of t with the property that Qπj

could vary with πj ∈ P ℓ
k . To determine a we note that, in light of Lemma 3.8, X ∈ Sa

p

implies X is a linear combination of brackets of vector fields in S of degrees up to and

including a + 1. To determine the bracket of highest degree in Q
mℓ(s)+1
πj we can, without

loss of generality, assume that min{s1, . . . , sk} = 1 and take s1 = 1 (if this is not the case
we can replace si with si − (min{s1, . . . , sk} − 1) without changing the vector fields Qj

π).
Then

Y 1
t ◦X1

t (p) =
(
A0(X1, Y 1) +A1(X1, Y 1)t+A2(X1, Y 1)t2 +A3(X1, Y 1)t3 + · · ·

)
t
(p)

which has the consequence that Q
mℓ(s)+1
πj is a linear combination of brackets of vector

fields in S of degrees up to and including mℓ(s) + 2. Thus a = mℓ(s) + 1. Finally, if
P ℓ+1
k = {π1, . . . , πΓ(k,ℓ)} then we form the S-trajectory

Xπ
t (p) =

(
α0Q

0
inv + · · ·+ αmℓ(s)Q

mℓ(s)
inv tmℓ(s) +

Γ(k,ℓ)∑
j=1

Qmℓ(s)+1
πj

tmℓ(s)+1 + · · ·
)
t
(p),

where αi > 0. Since

Q
mℓ(s)+1
inv =

Γ(k,ℓ)∑
j=1

Qmℓ(s)+1
πj

,
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it follows that Q
mℓ(s)+1
inv ∈ Sℓ+1

p . ■

Before proving the corollaries to Theorem 4.5 we establish some technical lemmas.

4.12 Lemma: Suppose that P,Q are vector fields on Ω ⊂ Rn. Then, for t sufficiently
small, the integral curve Qt ◦ Pt(p) = (

∑∞
ℓ=0M

ℓ(P,Q))t(p) for vector fields M ℓ(P,Q) with
the following properties:

1. M ℓ(P,Q) = (−1)ℓM ℓ(Q,P );

2. if Pt =
∑∞

i=0A
i
1t

i and Qt =
∑∞

i=0A
i
2t

i then M ℓ(P,Q) has a power series expansion
in t whose coefficients are Lie brackets of the vector fields Ai

j of degree ℓ+ 1.

Proof: The existence of the vector fields M ℓ(Q,P ) follows from the Campbell-Baker-
Hausdorff formula and we have M0(P,Q) = P +Q = M0(Q,P ) and M1(P,Q) = 1

2 adP Q =
−1

2 adQ P = −M1(Q,P ). Thus P +Q is a linear combination of the vector fields Ai
j , which

we call Lie brackets of degree 1 while M1(P,Q) is a linear combination of the vector fields of
the form [Ai

1, A
j
2] which are Lie brackets of degree 2. Thus (1) and (2) hold for ℓ = 0, 1. We

now establish (1). Set Mk = Mk(P,Q) and M̄k = Mk(Q,P ). Suppose that M j = (−1)jM̄ j

for j < ℓ. For j = ℓ the Campbell-Baker-Hausdorff formula [Varadarajan 1974] asserts that

(ℓ+ 1)M ℓ =
1

2
[P −Q,M ℓ−1] +

∑
p≥1
2p≤ℓ

K2pVp(P,Q)

with
Vp(P,Q) =

∑
k1,...,k2p>0
k1+···+k2p=ℓ

[Mk1−1, [Mk2−1, . . . , [Mk2p−1, P +Q] . . . ]

Hence

(ℓ+ 1)M̄ ℓ =
1

2
[Q− P, M̄ ℓ−1] +

∑
p≥1
2p≤ℓ

K2pV̄p(P,Q)

with
V̄p(P,Q) =

∑
k1,...,k2p>0
k1+···+k2p=ℓ

[M̄k1−1, [M̄k2−1, . . . , [M̄k2p−1, P +Q] · · · ].

By our induction hypothesis we know that M j = (−1)jM̄ j for j < ℓ thus 1
2 [Q−P, M̄ ℓ−1] =

(−1)ℓ 12 [P −Q,M ℓ−1] and

V̄p(P,Q) =
∑

k1,...,k2p>0
k1+···+k2p=ℓ

[(−1)k1−1Mk1−1, [· · · , [(−1)k2p−1Mk2p−1, P +Q] . . . ]

=
∑

k1,...,k2p>0
k1+···+k2p=ℓ

(−1)k1+···+k2p−2p[Mk1−1, [· · · , [Mk2p−1, P +Q] . . . ]

= (−1)ℓVp(P,Q)

since (−1)k1+···+k2p−2p = (−1)ℓ(−1)2p = (−1)ℓ. This implies M ℓ(P,Q) = (−1)ℓM ℓ(Q,P ).
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To establish (2) we note that (2) holds for ℓ = 0, 1. Suppose that assertion (2) holds for
j < ℓ. Thus M ℓ−1(P,Q) has a power series expansion in t whose coefficients are Lie brackets
of the vector fields Ai

j of degree ℓ. Now P − Q has a power series expansion in t whose

coefficients are Lie brackets of the vector fields Ai
j of degree 1 hence, in the above formula

for M ℓ(P,Q), the term [P−Q,M ℓ−1] is a combination of Lie brackets of the vector fields Ai
j

of degree ℓ+1. The remaining terms in M ℓ(P,Q) involve the vector fields Vp(P,Q). By our
induction hypothesis the vector fields Mki−1 in Vp(P,Q) involve Lie brackets of the vector
fields Ai

j of degree ki. Since P +Q involve Lie brackets of the vector fields Ai
j of degree 1

it follows that [Mk1−1, [Mk2−1, . . . , [Mk2p−1, P + Q] . . . ] has a power series expansion in t
whose coefficients are Lie brackets of the vector fields Ai

j of degree k1+ · · ·+k2p+1 = ℓ+1.
This completes the induction. ■

4.13 Lemma: Suppose that {X1, Y 1}, {X2, Y 2} ⊂ S and s = (1, 1). Then Qℓ
inv is a linear

combination of Lie brackets of odd degree of the vector fields Ai
j = Ai(Xj , Y j) for all ℓ ≥ 0.

In particular, Qℓ
inv(X

1, Y 1, X2, Y 2, s) = (−1)ℓQℓ
inv(Y

1, X1, Y 2, X2, s).

Proof: We begin by examining the S-trajectories which correspond to permutation in P 0
2 .

By definition P 0
2 = {π1, π2} where π1(1) = 1, π1(2) = 2 and π2(1) = 2, π2(2) = 1. Then

Xπ1
t (p) = X1

t ◦ Y 1
t ◦X2

t ◦ Y 2
t (p) =

( ∞∑
i=0

Ai
1t

i
)
t
◦
( ∞∑
i=0

Ai
2t

i
)
t
(p)

where Ai
1 = Ai(X1, Y 1) and Ai

2 = Ai(X2, Y 2). Set P =
∑∞

i=0A
i
1t

i, Q =
∑∞

i=0A
i
2t

i so P
and Q are power series in t whose coefficients are Lie brackets of the vector fields Ai

j of
degree 1 (odd). Thus Xπ1

t (p) = Pt ◦ Qt(p) and, in light of Lemma 4.12, there exist vector
fields M i(P,Q) such that Xπ1

t (p) = (
∑∞

i=0M
i(P,Q))t(p). Since X

π2
t (p) = Qt ◦Pt(p) we have

Xπ2
t (p) =

( ∞∑
i=0

M i(Q,P )
)
t
(p) =

( ∞∑
i=0

(−1)iM i(P,Q)
)
t
(p)

where M ℓ(P,Q) is a power series in t whose coefficients are Lie brackets of the vector
fields Ai

j of degree ℓ + 1. We let Modd(P,Q) =
∑∞

i=0M
2i(P,Q) and M even(P,Q) =∑∞

i=0M
2i+1(P,Q) so that Modd(P,Q) (M even(P,Q)) is a power series in t whose co-

efficients are Lie brackets of the vector fields Ai
j of odd (even) degree. Furthermore

Modd(P,Q) = Modd(Q,P ) while M even(P,Q) = −M even(Q,P ). We now explore the
same issues for P 1

2 = {π̂1, π̂2} where π̂1 = (π1, π2) and π̂2 = (π2, π1) for the permuta-
tions π1, π2 ∈ P 0

2 defined above. Setting P̂ =
∑∞

i=0M
i(P,Q) and Q̂ =

∑∞
i=0M

i(Q,P ) we
have, as above,

Xπ̂1
t (p) = Xπ1

t ◦ Xπ2
t (p) = P̂t ◦ Q̂t(p).

From Lemma 4.12 there exist vector fields M̂ ℓ(P̂, Q̂) such that M̂ ℓ(Q̂, P̂ ) = (−1)ℓM̂ ℓ(P̂, Q̂)
hence

Xπ̂1
t (p) =

( ∞∑
ℓ=0

M̂ ℓ(P̂, Q̂)
)
t
(p), Xπ̂2

t (p) =
( ∞∑
ℓ=0

(−1)ℓM̂ ℓ(P̂, Q̂)
)
t
(p). (4.5)

We now establish that the vector fields M̂ ℓ(P̂, Q̂) are power series in t whose coefficients
are Lie brackets of the vector fields Ai

j of odd degree. We showed above that we have P̂ =
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∑∞
i=0M

i(P,Q) = Modd(P,Q) + M even(P,Q) while Q̂ =
∑∞

i=0M
i(Q,P ) = Modd(P,Q) −

M even(P,Q). From the Campbell-Baker-Hausdorff formula we know that M̂0 = P̂ + Q̂ =
2Modd(P,Q), a power series in t whose coefficients are Lie brackets of the vector fields Ai

j

of odd degree. Also

M̂1 = 1/2[P̂, Q̂] = [M even(P,Q),Modd(P,Q)].

Since M even(P,Q) is composed of Lie brackets of Ai
j of even degree and Modd(P,Q) is

composed of Lie brackets of Ai
j of odd degree it follows that M̂1 is composed of Lie brack-

ets of Ai
j of odd degree. Now suppose that this holds for M̂2, M̂3, . . . , M̂ ℓ−1. From the

Campbell-Baker-Hausdorff formula

(ℓ+ 1)M̂ ℓ =
1

2
[2M even(P,Q),M ℓ−1] +

∑
p≥1
2p≤ℓ

K2pVp(P,Q)

with
Vp(P,Q) =

∑
k1,...,k2p>0
k1+···+k2p=ℓ

[M̂k1−1, [M̂k2−1, . . . , [M̂k2p−1, 2Modd(P,Q)] · · · ].

By our induction hypothesis and the fact that M even(P,Q) is composed of Lie brackets of
Ai

j of even degree we see that [2M even(P,Q),M ℓ−1] is is composed of Lie brackets of Ai
j of

odd degree. Looking at the terms in Vp(P,Q) we note that

[M̂k1−1, . . . , [M̂k2p−1, 2Modd(P,Q)] · · · ]

has an even number of terms Mki−1 and Modd(P,Q) is composed of Lie brackets of Ai
j of

odd degree it follows that M̂ ℓ is composed of Lie brackets of Ai
j of odd degree. We can

now repeat the initial argument to show that if P 2
2 = {π1, π2} then there exist vector fields

M even(P,Q) composed of Lie brackets of Ai
j of even degree and Modd(P,Q) composed of

Lie brackets of Ai
j of odd degree such that

Xπ1
t (p) =

( ∞∑
i=0

M i(P,Q))t(p) = (Modd(P,Q) +M even(P,Q)
)
t
(p)

and

Xπ2
t (p) =

( ∞∑
i=0

M i(Q,P )
)
t
(p) =

( ∞∑
i=0

(−1)iM i(P,Q)
)
t
(p)

= (Modd(P,Q)−M even(P,Q))t(p).

We simply repeat the above steps for P 3
2 , P

4
2 , . . . to conclude that the vector fields M̂ ℓ(P̂, Q̂)

are power series in t whose coefficients are Lie brackets of the vector fields Ai
j of odd degree.

We now are in a position to verify that Qℓ
inv is a linear combination of Lie brackets of

the vector fields Ai
j of odd degree. We begin by choosing any π ∈ P k

2 . Then we know from

above that the corresponding S-trajectory Xπ
t (p) = (Modd(P,Q) +M even(P,Q))t(p) where

M even(P,Q) composed of Lie brackets of Ai
j of even degree and Modd(P,Q) composed of Lie
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brackets of Ai
j of odd degree. In the case where k is odd we showed that M even(P,Q) = 0.

Suppose k = 1. Then Xπ
t (p) = (Modd(P,Q))t(p) where Modd(P,Q) is a power series in t

whose coefficients are Lie brackets of the vector fields Ai
j of odd degree. Thus there exist

vector fields Qodd
0,1 , Q

odd
1,1 , . . . , which are linear combinations of Lie brackets of the vector

fields Ai
j of odd degree, such that

Xπ
t (p) = (Qodd

0,1 +Qodd
1,1 t+Qodd

2,1 t
2 + · · · )t(p).

But from Proposition 4.2 we have

Xπ
t (p)F = (α0Q

0
inv + α1Q

1
invt+Q2

πt
2 + · · · )t(p).

This means that α0Q
0
inv = Qodd

0,1 , α1, Q
1
inv = Qodd

1,1 , and Q2
π, are linear combinations of Lie

brackets of the vector fields Ai
j of odd degree. Next we consider the case where π ∈ P 2

2 =
{π1, π2}. Then

Xπ1
t (p) = (Modd(P,Q) +M even(P,Q))t(p)

where Modd(P,Q) (resp. M even(P,Q)) is a power series in t whose coefficients are Lie
brackets of the vector fields Ai

j of odd (resp. even) degree. Thus there exist vector fields

Qodd
0,1 , Q

odd
1,1 , . . . , and Qeven

0,1 , Qeven
1,1 , . . . , which are linear combinations of Lie brackets of the

vector fields Ai
j of odd and even degrees respectively, such that

Xπ1
t (p) = ((Qodd

0,1 +Qeven
0,1 ) + (Qodd

1,1 +Qeven
1,1 )t+ (Qodd

2,1 +Qeven
2,1 )t2 + · · · )t(p).

But from Proposition 4.2 we have

Xπ1
t (p) = (α0Q

0
inv + α1Q

1
invt+ α2Q

2
invt

2 +Q3
π1
t3 + · · · )t(p).

Similarly, using the expansion for Xπ2
t (p) in (4.5),

Xπ2
t (p) = (α0Q

0
inv + α1Q

1
invt+ α2Q

2
invt

2 +Q3
π2
t3 + · · · )t(p)

= ((Qodd
0,1 −Qeven

0,1 ) + (Qodd
1,1 −Qeven

1,1 )t+ (Qodd
2,1 −Qeven

2,1 )t2 + · · · )t(p).

Since Qℓ
inv is invariant with respect to our choice of permutation in P ℓ+1

2 , we can conclude
that Qeven

0,1 = Qeven
1,1 = Qeven

2,1 = 0. This in turn implies that Q0
inv, Q

1
inv, Q

2
inv and are linear

combinations of Lie brackets of the vector fields Ai
j of odd degree. It is straightforward to

show by induction that this is the case for all Qℓ
inv.

Finally we show that

Qℓ
inv(X

1, Y 1, X2, Y 2) = (−1)ℓQℓ
inv(Y

1, X1, Y 2, X2).

Using Lemma 4.12 with P = X,Q = Y we conclude that Ai(X,Y ) = (−1)iAi(Y,X). The
vector fields Ai

j enter into our S-trajectory in the power series
∑∞

i=0A
i(Xj , Y j)ti. Since

Qℓ
inv is the coefficient of tℓ in a power series expansion of a similar S-trajectory we can

conclude that Qℓ
inv is a linear combination of iterated Lie brackets

B = [Ai1
j1
, [Ai2

j2
, . . . , [Ai2k

j2k
, A

i2k+1

j2k+1
] . . . ]
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of an odd number of Ai
j ’s where jm ∈ {1, 2} and i1 + · · · + i2k+1 = ℓ − 2k. In light of

Lemma 4.12 withQ = Y, P = X we know that if im is even thenAim
j (Y j , Xj) = Aim

j (Xj , Y j)

and if im is odd then Aim
j (Y j , Xj) = −Aim

j (Xj , Y j) for j ∈ {1, 2}. If ℓ is even then there
must be an even number of integers in {i1, . . . , i2k+1} which are odd, and hence B does not
change sign when Xi and Y i are interchanged and this completes the proof. ■

Proof of Corollary 4.6: Suppose that s = (1, . . . , 1). Then (1) follows from Theorem 4.5
and the observation that in the case s = (1, . . . , 1) we have mi(s) = i. Suppose that
the subsets {Xi, Y i} ⊂ S are complementary at p for i = 1, . . . , k. From Remark 3.3
(or from the definition of A1(Xi, Y i)) we know that adXi Y i ∈ S1

p . Also {Xi, Y i} com-
plementary at p implies {Y i, Xi} complementary at p hence − adXi Y i ∈ S1

p . This
gives part (2a) of the corollary. To establish (2b) we can use Lemma 4.13 with the
choices X1 = Xi, Y 1 = Y i, X2 = Y i, Y 2 = Xi to conclude Q1

inv(X
1, Y 1, X2, Y 2, s) =

−Q1
inv(X

2, Y 2, X1, Y 1, s). Since Q1
inv is invariant with respect to permutations of {1, 2} we

conclude that Q1
inv(X

1, Y 1, X2, Y 2, s) = 0. As a result of Theorem 4.5, we have Q2
π ∈ S2

p

for all π ∈ P 1
2 . One can easily check from the definition that Q2

inv = (ad2Xi Y i + ad2Y i Xi)/6
while Q2

π = 2ad2Xi Y i − ad2Y i Xi for all π ∈ P 1
2 . Finally, if we reverse Xi and Y i we

get 2 ad2Y i Xi − ad2Xi Y i and conv{2 ad2Y i Xi − ad2Xi Y i, 2 ad2Xi Y i − ad2Y i Xi} contains a
positive multiple of ad2Xi Y i hence ad2Xi Y i ∈ S2

p . To complete the proof we must show
that (2c) holds. Here we simply augment our set of complementary vector fields by adding
in k additional pairs, namely those of the form (Y i, Xi). Arguing as in the proof of (2b)
above, we find that Q1

inv = 0, Q2
inv =

∑k
i=1(ad

2
Xi Y i + ad2Y i Xi), hence Q2

inv(p) = 0, and

Q3
inv =

∑k
i=1 adY i ad2Xi Y i. Thus Theorem 4.5 implies

∑k
i=1 adY i ad2Xi Y i ∈ S3

p . Now we

note that reversing Xi and Y i in adY i ad2Xi Y i gives the negative of this vector field. In this
way we can isolate each term in the above sum and conclude that ± adY i ad2Xi Y i ∈ S3

p . ■

Proof of Corollary 4.7: Suppose that {X1, Y 1}, {X2, Y 2} ⊂ S, s = (1, 1), and Q0
inv(p) =

Q1
inv(p) = · · · = Qℓ

inv(p) = 0. We begin by establishing assertion (1). We have Qℓ+1
π ∈ Sℓ+1

p

by Corollary 4.6 for any π ∈ P ℓ
2 . Since Q

ℓ+1
inv is a linear combination of the vector fields Qℓ+1

π

using positive coefficients it follows that Qℓ+1
inv ∈ Sℓ+1

p . Alternatively, from Proposition 4.2,
there is an S-trajectory of the form

Xt(p) =
(
α0Q

0
inv + · · ·+ αℓQ

ℓ
invt

ℓ + αℓ+1Q
ℓ+1
inv tℓ+1 +Qℓ+2

inv tℓ+2 + · · ·
)
t
(p),

where αi > 0. Since Q0
inv(p) = Q1

inv(p) = · · · = Qℓ
inv(p) = 0 we have Qℓ+1

inv ∈ Sℓ+1
p .

To establish (2) we note that

Qℓ+1
inv (X1, Y 1, X2, Y 2, s) = (−1)ℓ+1Qℓ+1

inv (Y 1, X1, Y 2, X2, s)

= −Qℓ+1
inv (X1, Y 1, X2, Y 2, s)

as a consequence of Lemma 4.13 and the assumption that ℓ+ 1 is odd. Similarly

Qℓ+2
inv (X1, Y 1, X2, Y 2, s) = Qℓ+2

inv (Y 1, X1, Y 2, X2, s).

Thus we can proceed as above using {Y 1, X1}, {Y 2, X2} ⊂ S, s = (1, 1) instead of
{X1, Y 1}, {X2, Y 2} ⊂ S and form an S-trajectory

X̂t(p) =
(
α0Q

0
inv + · · ·+ αℓQ

ℓ
invt

ℓ − αℓ+1Q
ℓ+1
inv tℓ+1 +Qℓ+2

inv tℓ+2 + · · ·
)
t
(p)
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and conclude that

−Qℓ+1
inv = −Qℓ+1

inv (X1, Y 1, X2, Y 2, s) = Qℓ+1
inv (Y 1, X1, Y 2, X2, s) ∈ Sℓ+1

p .

Finally, we form the S-trajectory

X̂t ◦ X2t ◦ X̂t(p) =
(
4α0Q

0
inv + · · ·+ 4αℓQ

ℓ
invt

ℓ + 4Qℓ+2
inv tℓ+2 + · · ·

)
t
(p)

and note that Q0
inv(p) = Q1

inv(p) = · · · = Qℓ
inv(p) = 0 implies Qℓ+2

inv ∈ Sℓ+2
p . ■

Proof of Corollary 4.8: The proof relies on Lemma 4.13 together with the fact that reversing
the roles of {X1, Y 1} and {X2, Y 2} is, in this case, the same as interchanging Xi and Y i.
Thus permutation invariance means that Qℓ

inv vanishes for ℓ odd, establishing (1). If s = (1)
then P ℓ

1 consists of the single permutation 1 7→ 1 so Qℓ
inv = Aℓ(X,Y ). Then (2) follows

from Corollary 4.6. ■

5. Examples

In the examples the sets S of vector fields are not convex. As noted in Section 3.1 we
can replace S by its convex hull without affecting local controllability. Certain of these ex-
amples may certainly be treated using existing techniques in the literature. Therefore, such
examples should be regarded as being illustrative of our theory, rather than as presenting
new ideas. However, we might mention that we do not know of a theory that will cover
Example 5.5.

5.1 Example: As in [Sussmann 1978] we consider the system S = {X,Y, Z} in the plane
where, in local coordinates (x, y),

X = (1, 0), Y = (−1, x2), Z = (0,−1).

Then

[X,Y ] = (0, 2x), [X, [X,Y ]] = (0, 2),

[Y, [X,Y ]] = (0,−2), [Z, Y ] = [Z,X] = (0, 0).

For p = (0, 0) we have L0(S, p) = R×{0}, and hence Z0
p = {X,Y } and S1

p = {[X,Y ], [Y,X]}.
This implies that S(p) = {(1, 0), (−1, 0), (0,−1)}, S1

p(p) = {(0, 0)}, and it follows that
L1(S, p) = L0(S, p) and Z1

p = {X,Y, [X,Y ], [Y,X]}. Since X(p) + Y (p) = (0, 0) the subset

{X,Y } ⊂ S is complementary at p. From Corollary 4.6(2b) we have ad2X Y = (0, 2) ∈ S2
p .

Thus
conv({(1, 0), (−1, 0), (0,−1), (0, 2)}) ⊂ conv(S(p) ∪ S1

p(p) ∪ S2
p(p))

and 0 ∈ int(conv(S(p) ∪ S1
p(p) ∪ S2

p(p))). Local controllability at p then follows from
Theorem 3.7. •
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5.2 Example: Consider the affine system

ẋ = u1

ẏ = u2

ż = x2 − y4,

(5.1)

with |ua| ≤ 1 for a = 1, 2 and p = (x(0), y(0), z(0)) = (0, 0, 0). Here the system model is of
the form

ẋ(t) = f0(x(t)) + u1(t)f1(x(t)) + u2(t)f2(x(t))

where f0, f1, f2 are smooth vector fields on R3 which, in local coordinates, are defined by
f0 = (0, 0, x2 − y4), f1 = (1, 0, 0), and f2 = (0, 1, 0). The nonzero Lie brackets are

adf1 f0 = (0, 0, 2x)

adf2 f0 = (0, 0,−4y3)

ad3f2 f0 = (0, 0,−24y)

ad2f1 f0 = (0, 0, 2)

ad2f2 f0 = (0, 0,−12y2)

ad4f2 f0 = (0, 0,−24)

while ad3f1 f0 = adkf0 ad
j
f1
f0 = (0, 0, 0) for j, k ≥ 1 and ad5f2 f0 = adkf0 ad

j
f2
f0 = (0, 0, 0) for

j, k ≥ 1. The tangent space to R3 at p is spanned by f1(p),f2(p), and [f1, [f1, f0]](p) hence
the first-order sufficient condition Theorem 2.1 cannot be employed. The generalization
of Hermes’ condition, Theorem 7.3 of [Sussmann 1987], does not apply because the “bad”
bracket ad2f1 f0 is not expressible in terms of “good” and “bad” brackets of the required
orders. On the other hand, the drift vector field f0 vanishes at p so that {X1, Y 1} =
{f0 + f1, f0 − f1} is complementary at p, as is {X2, Y 2} = {f0 + f2, f0 − f2}. In light
of equation (4.1) we have A0(X1, Y 1)(p) = A1(X1, Y 1)(p) = (0, 0, 0) while A2(X1, Y 1)(p)
is a positive multiple of (0, 0, 1). Corollary 4.8 lets us conclude that (0, 0, 1) ∈ S2

p(p).
Similarly Ai(X2, Y 2)(p) = (0, 0, 0) for i = 0, 1, 2, 3 and A4(X2, Y 2)(p) is a positive multiple
of (0, 0,−1) so that (0, 0,−1) ∈ S4

p(p) as a consequence of Corollary 4.8. Finally, we
note that f0(p) ± f1(p) = (±1, 0, 0) ∈ S(p) and f0(p) ± f2(p) = (0,±1, 0) ∈ S(p) hence
0 ∈ int(conv(S(p) ∪ S1

p(p) ∪ · · · ∪ S4
p(p))). Thus the system (5.1) is l.c. as a consequence of

Theorem 3.7. •
The next example illustrates the weakening of the hypotheses of Theorem 4.5 described

in Remark 4.10.

5.3 Example: Consider the system S = {W,X, Y } in R3 where, in local coordinates
(x, y, z),

W = (0, 0,−1), X = (1, z, 0), Y = (−1, 0, x2).

Then

[X,Y ] = (0,−x2, 2x), [X, [X,Y ]] = (0,−4x, 2),

[Y, [Y,X]] = (0,−2x, 2), [Y, [X, [X,Y ]]] = (0, 4, 4x).

We take p = (0, 0, 0). Since (X + Y )(p) = 0 we have {X,Y } complementary at p. In
light of (4.1) and Corollary 4.8, Qi

inv is a positive multiple of Ai(X,Y ) and we have the
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S-trajectory

Xt ◦ Yt(p) =
(
A0(X,Y ) +A1(X,Y )t+A2(X,Y )t2 +A3(X,Y )t3 + · · ·

)
t
(p)

=
(
(X + Y ) +

1

2
adX Y t+

1

12
(ad2Y X + ad2X Y )t2

− 1

24
adY ad2X Y t3 + · · ·

)
t
(p).

Here A0(X,Y )(p) = (X+Y )(p) = 0 and A1(X,Y )(p) = 1
2 adX Y (p) = 0. Thus A2(X,Y ) =

1
12(ad

2
Y X + ad2X Y ) ∈ S2

p by Corollary 4.8. We note that

W ∈ S, A2 =
1

12
(ad2Y X + ad2X Y ) ∈ S2

p ,
(1
3
W +A2

)
(p) = (0, 0, 0),

where Ai = Ai(X,Y ). As in Remark 4.10 we consider the pairs {1
6W, 16W}, {X,Y } ⊂

conv(S) and take s = (3, 1). Here k = 2 thus P 0
2 = {π1, π2} where π1(1) = 1, π1(2) =

2, π2(1) = 2, π2(2) = 1. The S-trajectories (4.2) corresponding to π1, π2 are

Xπ1
t (p) =

(1
6
W

)
t3
◦
(1
6
W

)
t3
◦Xt ◦ Yt(p)

=
(1
3
W

)
t3
◦ (A0 +A1t+A2t2 + · · · )t(p)

=
(
A0 +A1t+

(
A2 +

1

3
W

)
t2 +

(
A3 − 1

6
[A0,W ]

)
t3 + · · ·

)
t
(p)

= (Q0
π1

+Q1
π1
t+Q2

π1
t2 + · · · )t(p)

and

Xπ2
t (p) =

(
A0 +A1t+ (A2 +

1

3
W

)
t2 +

(
A3 +

1

6
[A0,W ]

)
t3 + · · ·

)
t
(p)

= (Q0
π2

+Q1
π2
t+Q2

π2
t2 + · · · )t(p).

Here m(s) = 1,m0(s) = 2,m1(s) = 3,m2(s) = 4 and Lemma 4.1 implies that Q0
π, Q

1
π, Q

2
π

are constant functions of π ∈ P 0
2 , which is shown explicitly above. From our definition it

follows that Q0
inv = A0, Q1

inv = A1, and Q2
inv = A2 + 1

3W . Similarly if π = (π1, π2) ∈ P 1
2 we

have

Xπ
t (p) = Xπ1

t ◦ Xπ2
t (p)

=
(
2A0 + 2A1t+ 2

(
A2 +

1

3
W

)
t2 + 2A3t3 + · · ·

)
t
(p)

hence Q3
inv = 2A3 = − 1

12 adY ad2X Y . Since Q0
inv, Q

1
inv, and Q2

inv each vanish at p, Theo-
rem 4.5 implies that

Q3
inv = − 1

12
adY ad2X Y = (0,−1

3
,−1

3
x) ∈ S3

p .

Interchanging X and Y and repeating the previous steps, we can conclude that
− 1

12 adX ad2Y X = (0, 13 ,
1
3x) ∈ S3

p . In summary S(p) contains the vectors

W (p) = (0, 0,−1), X(p) = (1, 0, 0), Y (p) = (−1, 0, 0),
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S2
p(p) contains the vector 1

12(ad
2
Y X +ad2X Y )(p) = (0, 0, 13), and S3

p(p) contains the vectors

− 1

12
adY ad2X Y (p) = (0,−1

3
, 0), − 1

12
adX ad2Y X(p) = (0,

1

3
, 0).

Thus

conv({(±1, 0, 0), (0,±1
3 , 0), (0, 0,

1
3), (0, 0,−1)}) ⊂ conv(S(p) ∪ S1

p(p) ∪ S2
p(p) ∪ S3

p(p))

and 0 ∈ int(conv(S(p) ∪ S1
p(p) ∪ S2

p(p) ∪ S3
p(p))). Local controllability at p follows from

Theorem 3.7. This example illustrates the use of time rescaling to generate new higher-
order S-trajectories (see Remark 4.10). •

5.4 Example: Here is a control affine system which has a “bad” bracket that can be neu-
tralized as in [Bianchini and Stefani 1993]:

ẋ = yz + u1

ẏ = − xz + u2

ż = − u2,

with |ui| ≤ 1, i = 1, 2, and p = (0, 0, 0). Here f = (yz,−xz, 0), g1 = (1, 0, 0), g2 = (0, 1,−1),
and the brackets are

[f, g1] = (0, z, 0), [f, g2] = (y − z,−x, 0),

[g1, [f, g1]] = (0, 0, 0), [g2, [f, g2]] = (2, 0, 0), [g1, [f, g2]] = (0,−1, 0).

Motivated by Remark 4.10 we will show that the bad bracket [g2, [f, g2]] can be neutralized.
To this end we set

S = {f + ag1 + bg2 | − 1 ≤ a, b ≤ 1},
W = f + g1, X = f + g2, Y = f − g2,

and consider the pairs {1
3W, 13W}, {X,Y } ⊂ conv(S) and s = (3, 1). With P 0

2 = {π1, π2}
and Ai = Ai(X,Y ) as defined in Example 5.3, the S-trajectory (4.2) corresponding to π1 is

Xπ1
t (p) =

(1
3
W

)
t3
◦
(1
3
W

)
t3
◦Xt ◦ Yt(p)

=
(2
3
W

)
t3
◦ (A0 +A1t+A2t2 + · · · )t(p)

=
(
A0 +A1t+

(
A2 +

2

3
W

)
t2 +

(
A3 − 1

3
[A0,W ]

)
t3

+
(
A4 − 1

3
[A1,W ] +

1

18
[A0, [A0,W ]]

)
t4 + · · ·

)
t
(p)

= (Q0
π1

+Q1
π1
t+Q2

π1
t2 + · · · )t(p).

Here A2 = 1
3 ad

2
g2 f does not vanish at p but is neutralized in the above S-trajectory as

A2 + 2
3W does vanish at p. It is straightforward to check that Q0

π1
, . . . , Q3

π1
vanish at p

while

Q4
π1
(p) = −1

3
[A1,W ](p) = −1

3
[g1, [f, g2]](p) = (0, 13 , 0).
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From our definition of Sm
p (or from Proposition 3.6(i)) it follows that (0, 13 , 0) ∈ S4

p(p).
Now we can repeat the above construction with X and Y interchanged to conclude that
(0,−1

3 , 0) ∈ S4
p(p). Since f ± g1, f ± g2 ∈ S we have

conv({±(1, 0, 0),±(0, 1,−1),±(0, 13 , 0)}) ⊂ conv(S(p) ∪ S1
p(p) ∪ S2

p(p) ∪ S3
p(p) ∪ S4

p(p))

and 0 ∈ int(conv(S(p)∪ · · ·∪S4
p(p))). Local controllability at p follows from Theorem 3.7. •

5.5 Example: We consider the system on R3 defined by

ẋ = u1

ẏ = u2

ż = x2(1 + 1
2u2),

and with (u1, u2) ∈ U = [−α, α]2. We take as our reference point p = (0, 0, 0). For α < 2
the system is obviously not l.c. from p (ż > 0 in this case). Let us show that this system is
controllable if the controls are allowed to be sufficiently large. Some relevant Lie brackets
for this system are

[f, g1] = (0, 0,−2x), [f, g2] = (0, 0, 0), [g1, g2] = (0, 0, x)

[f, [f, g1]] = [f, [f, g2]] = (0, 0, 0), [g1, [f, g1]] = (0, 0,−2)

[g2, [f, g2]] = [g2, [f, g1]] = [g2, [g1, g2]] = (0, 0, 0), [g1, [g1, g2]] = (0, 0, 1).

We define a two complementary sets {X1, X2} = {f + αg1, f − αg1} and {Y 1, Y 2} =
{f − αg2, f + αg2}. By Corollary 4.6(2b) we have ad2X1 X2(p) = −2α2[g1, [f, g1]](p) ∈ S2

p .
Also consider π = ( 1 2

2 1 ) ∈ P 0
2 . By Proposition 4.2 we have

Xπ
t (p) = Q0

inv + tQ1
π + t2Q2

π + · · · )t(p),

where a direct calculation using the Campbell-Baker-Hausdorff formula yields

Q0
inv = 4f

Q1
π = 2α[f, g2]− 2α[f, g1]− α2[g1, g2]

Q2
π = α[f, [f, g2]] + α[f, [f, g1]] +

1

2
α2[g1, [f, g2]] +

1

2
α2[g2, [f, g1]]

− 5

6
α2[g2, [f, g2]] +

1

2
α3[g2, [g1, g2]]−

5

6
α2[g1, [f, g1]]−

1

2
α3[g1, [g1, g2]].

Since Q0
inv(p) = 0, by Corollary 4.6(1), we have Q1

π ∈ S1
p . Furthermore, since Q1

π(p) =
0, by Proposition 3.6(ii) we have Q2

π ∈ S2
p . One can then see that provided that α is

sufficiently large (to be exact, if α > 10
3 ), then we have 0 ∈ int

(
conv(S(p) ∪ S2

p)
)
. Small-

time local controllability of this example for the sufficiently large control set now follows
from Theorem 3.7. The lower bound of 10

3 on the size of the control set to ensure small-time
local controllability is undoubtedly not sharp.
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