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Abstract. This paper focuses on the stability analysis of systems having a continuum of equilib-
ria. Two notions that are of particular relevance to such systems are convergence and semistability.
Convergence is the property whereby every solution converges to a limit point that may depend on
the initial condition. Semistability is the additional requirement that all solutions converge to limit
points that are Lyapunov stable. We give new Lyapunov-function-based results for convergence and
semistability of nonlinear systems. These results do not make assumptions of sign definiteness on
the Lyapunov function. Instead, our results use a novel condition based on nontangency between the
vector field and invariant or negatively invariant subsets of the level or sublevel sets of the Lyapunov
function or its derivative and represent extensions of previously known stability results involving
semidefinite Lyapunov functions. To illustrate our results we deduce convergence and semistability
of the kinetics of the Michaelis–Menten chemical reaction and the closed-loop dynamics of a scalar
system under a universal adaptive stabilizing feedback controller.
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1. Introduction. This paper focuses on the stability analysis of systems that
have a continuum of equilibria. Examples of such systems include mechanical systems
having rigid-body modes and isospectral matrix dynamical systems [15]. Such sys-
tems also arise in chemical kinetics, compartmental modeling, and adaptive control.
Since every neighborhood of a nonisolated equilibrium contains another equilibrium,
a nonisolated equilibrium cannot be asymptotically stable. Thus asymptotic stability
is not the appropriate notion of stability for systems having a continuum of equilibria.
However, given a system that has a continuum of equilibria, it is still natural to ask if
the trajectories converge to limit points and if the limit points are Lyapunov stable.
These questions lead us to consider the properties of convergence and semistability.
For linear systems, semistability was originally defined in [9] and applied to matrix
second-order systems in [3]. In the present paper, we extend the notion of semista-
bility to nonlinear systems. Preliminary versions of some of the results of this paper
appeared in [5, 6].

Convergence is the notion that every trajectory of the system converges to a limit
point. The limit point, which is necessarily an equilibrium, depends in general on the
initial conditions. In a convergent system, the limit points of trajectories may or may
not be Lyapunov stable. Semistability is the additional requirement that trajectories
converge to limit points that are Lyapunov stable. More precisely, an equilibrium is
semistable if it is Lyapunov stable, and every trajectory starting in a neighborhood
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of the equilibrium converges to a (possibly different) Lyapunov stable equilibrium. It
can be seen that, for an equilibrium, asymptotic stability implies semistability, while
semistability implies Lyapunov stability.

The relationship between Lyapunov stability, semistability, and asymptotic sta-
bility can be understood by considering the motion of a particle translating along
a fixed direction. Such a particle, when moving under the action of a linear elastic
spring, possesses a unique equilibrium, which is Lyapunov stable. In the additional
presence of viscous damping, all motions of the particle converge to the unique equi-
librium state, which is thus asymptotically stable. On the other hand, a particle
moving under the action of viscous damping in the absence of a position-dependent
restoring force can remain at rest in any position and thus exhibits a continuum of
equilibria, each of which is Lyapunov stable. All motions of such a particle converge
to rest, and the equilibrium that the particle converges to is determined by the initial
position and velocity of the particle. The motion of the particle is thus convergent,
while every equilibrium of the dynamics is semistable.

Besides the damped motion of a particle, there are several applications which
involve systems having a continuum of equilibria, and in which semistability is the
appropriate notion of stability. For example, we can consider the stability of the
lateral dynamics of an aircraft in level trimmed flight. For disturbances affecting the
angle between the longitudinal axis and the velocity vector, the vertical tail is designed
to influence yaw so as to cause the sideslip angle to converge to zero. However, the
heading angle will not generally converge to its predisturbance value. The offset in
the final heading angle is an indication of the existence of a continuum of semistable
equilibria.

Another application of semistability involves the kinetics of chemical reactions.
While periodic or chaotic behavior can occur in chemical reactions [27], it is of interest
to determine conditions under which the concentrations of the reacting species con-
verge. In this case, the limiting concentrations are not completely determined by the
dynamics but depend upon the initial concentrations as well. The stability of chem-
ical kinetics with respect to a stoichiometric subspace is considered in [11, 12, 28],
while [4] applies Lyapunov theory to study the semistability of mass action chemical
kinetics.

Chemical reactions are a special case of a more general class of systems known
as compartmental systems, which involve mass or energy balance [18]. Compartmen-
tal systems arise in biomedical, environmental, economic, power, and thermodynamic
applications. Since compartmental systems possess a continuum of equilibria, semista-
bility is the appropriate notion of stability.

In control applications, it is often desirable to design the control system so that the
closed-loop system, in the absence of exogenous inputs (commands and disturbances),
has an equilibrium that is asymptotically stable. For such designs, semistability is
not needed. However, adaptive controllers [17, 22, 23, 24] involve feedback gains
that evolve in response to the plant trajectories; that is, the limiting values of the
gains depend on the initial condition of the plant states. An adaptive closed-loop
system is thus not asymptotically stable, yet convergence and Lyapunov stability of
the plant/gain equilibria, that is, semistability, is desirable.

In all of the applications above, it is of interest to determine the convergence and
semistability properties of the system. Accordingly, we wish to obtain Lyapunov tests
for convergence and semistability.

It is obvious that if a system is convergent, then all of its trajectories converge
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to the set of equilibria. However, as the following example shows, the converse is not
true.

Example 1.1. Consider the system ẏ(t) = f(y(t)), where f : R
2 → R

2 is the
continuous vector field given by

f(x) = sign(x2
1 + x2

2 − 1)|x2
1 + x2

2 − 1|αfr(x)
(1)

+ sign(x2
1 + x2

2 − 1)|x2
1 + x2

2 − 1|βfθ(x),

with α, β ≥ 1 and the vector fields fr and fθ given by

fr(x) =

[ −x1

−x2

]
, fθ(x) =

[
x2

−x1

]
.(2)

The vector fields fr and fθ point in the radial and circumferential directions, respec-
tively, and thus the parameters α and β determine the rates at which solutions move
in these directions, respectively. This can be seen more clearly by rewriting (1) in
terms of polar coordinates r =

√
x2

1 + x2
2 and θ = tan−1(x2/x1) as

ṙ = −rsign(r2 − 1)|r2 − 1|α,(3)

θ̇ = −sign(r2 − 1)|r2 − 1|β .(4)

It can be seen from (3) and (4) that the set of equilibria f−1(0) consists of the
origin x = 0 and the unit circle S1 = {x ∈ R

2 : x2
1 + x2

2 = 1}. All solutions of
the system starting from nonzero initial conditions y(0) that are not on the unit
circle approach the unit circle. Solutions starting outside the unit circle spiral in
clockwise toward the unit circle, while solutions starting inside the unit circle spiral
out counterclockwise. Consequently, all solutions are bounded, and, for every choice
of α and β, all solutions converge to the set of equilibria. However, if α ≥ β +1, then
the system is not convergent. This can be seen by using (3) and (4) to obtain

dr

dθ
= r|r2 − 1|α−β .(5)

For initial values r(0) > 1, solutions of (5) converge to the equilibrium value r = 1
for decreasing θ, while, for initial values r(0) < 1, solutions converge to r = 1 for
increasing θ. For α ≥ β + 1, the right-hand side of (5) is locally Lipschitz in r.
Consequently, (5) has a unique maximally defined solution given by r ≡ 1 for the
initial condition r(0) = 1 for increasing as well as decreasing θ. Since convergence
to the equilibrium value r = 1 on a finite θ-interval for increasing (decreasing) θ
implies nonuniqueness of solutions for decreasing (increasing) θ for the initial condition
r(0) = 1, it follows that the solution r(·) of (5) can approach r = 1 only as θ →∞ if
r(0) < 1 and as θ → −∞ if r(0) > 1. This implies that, for α − β ≥ 1, the solutions
of (3)–(4) that converge to the unit circle spiral around an infinite number of times,
thus ruling out convergence. In subsequent sections, we will use the results of this
paper to show convergence and semistability in the case α ≤ β. Figure 1 shows the
phase portrait of the system for α = 2 and β = 1, while Figure 2 shows the phase
portrait of the system for α = β = 1.

In the case of Figure 1, where α = 2 and β = 1, it follows from (5) that dr
dθ → 0

as r → 1 so that all nontrivial trajectories approach the unit circle tangentially. As
shown above, the system depicted in Figure 1 is not convergent, and, moreover, every
equilibrium on the unit circle is unstable. In contrast, all trajectories in Figure 2,
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x1

x2

Fig. 1. Phase portrait of (3)–(4) for α = 2, β = 1.

x1

x2

Fig. 2. Phase portrait of (3)–(4) for α = β = 1.

where α = β = 1, approach the unit circle nontangentially, the system is convergent,
and all equilibria on the unit circle are semistable. Thus, Figures 1 and 2 suggest
that nontangency of trajectories to the set of equilibria is a sufficient condition under
which convergence to the set of equilibria implies convergence and semistability.

Intuitively, a vector field is nontangent to a set at a point if the vector field at
the point is not contained in the tangent space to the set at that point. We shall
apply this intuitive idea to the situation depicted in Figure 2, where the vector field
is the vector field describing the dynamics and the set is the set of equilibria of the
system. However, this intuitive notion presents two chief difficulties when the set
under consideration is the set of singular points of the vector field, that is, the set of
equilibria of the system. First, the vector field at an equilibrium is zero, and hence
it is always contained in the tangent space to the set of equilibria. To capture the
notion of nontangency in such a case, we introduce the direction cone of a vector field
in section 4. The second difficulty is that, unlike as in Figures 1 and 2, the set of
equilibria may not be sufficiently regular to possess a tangent space at the equilibrium
point under consideration and may have corners or self-intersections. For example,
consider a dynamical system that evolves on the nonnegative orthant and has the
boundary of the orthant as its set of equilibria. In this case, the set of equilibria
has a corner at the origin. We overcome this difficulty by considering the tangent
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cone [2, 26], which extends the notion of a tangent space to a nonsmooth setting. In
section 4, we formalize our intuitive notion of nontangency by defining nontangency
of a vector field to a set at a point to be the condition that the tangent cone to the set
at the point and the direction cone of the vector field at that point have no nonzero
vector in common. Section 4 contains examples illustrating direction cones as well as
nontangency. We also present a result that is useful in computing the direction cone
of a vector field in applications.

We apply our notion of nontangency in section 5, where we show that the solution
starting from a point converges if and only if the vector field is nontangent to the
positive limit set of the point at some positive limit point. While this result cannot
be applied directly in practice, we use it along with well-known properties of positive
limit sets to show that, if the vector field is nontangent to the largest invariant subset
of the zero-level set of the derivative of a Lyapunov function that is nonincreasing
along the solutions, then every bounded solution converges to a limit.

Since the application of the convergence results of section 5 depend on verifying
the boundedness of trajectories, we consider the property of boundedness in section 3.
We extend well-known results for boundedness involving proper (that is, radially
unbounded in the case where the state-space is R

n) Lyapunov functions [21, 30] by
introducing the notion of a weakly proper function. A function is weakly proper if the
connected components of its sublevel sets are compact. We show that the existence of
a weakly proper function that is nonincreasing along the trajectories implies that the
trajectories are bounded. The usefulness of this result is illustrated in the examples
given in section 3.

In section 6, we apply nontangency to Lyapunov stability. Here, prolongations
[7, 8] play a role analogous to that played by positive limit sets in section 5. More
specifically, we introduce the restricted prolongation of a point and show that an
equilibrium point is Lyapunov stable if and only if the vector field is nontangent at
the equilibrium to its restricted prolongation. The restricted prolongation of a point is
a subset of its positive prolongation as defined in [7, 8]. While positive prolongations
have been widely used in stability analysis [7], restricted prolongations have invariance
properties that are needed for the results that we present. These properties, which
are established in section 6, represent one of the key contributions of this paper.

In section 7, we use the results of sections 5 and 6 to obtain novel Lyapunov tests
for Lyapunov stability, semistability, and asymptotic stability of nonlinear systems.
These results do not make any assumptions about the sign definiteness of the Lya-
punov function. Instead, they require only that the Lyapunov function derivative be
nonpositive and the equilibrium be a local minimizer of the Lyapunov function on
the set of points at which the Lyapunov function derivative is negative. For Lya-
punov stability, the weaker assumptions on the Lyapunov function are supplemented
by assuming nontangency of the vector field to invariant or negatively invariant sub-
sets of the level set of the Lyapunov function containing the equilibrium and, for
semistability, to invariant or negatively invariant subsets of the zero-level set of the
Lyapunov function derivative. These results either extend or complement known re-
sults for Lyapunov stability and asymptotic stability involving semidefinite Lyapunov
functions and Lyapunov function derivatives as given in [1, 16, 20, 21].

As mentioned above, chemical kinetics comprise one of the application areas for
semistability theory. Since the kinetic equation for a system of chemical reactions
governs concentrations of the reacting species, all solutions of physical interest take
values in the nonnegative orthant. For such systems, which evolve on possibly closed
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positively invariant subsets of R
n, it is natural to consider relative stability, that is,

stability with respect to perturbed initial conditions that belong to the positively
invariant subset. Therefore, with applications to nonnegative dynamics in mind, we
consider relative stability of dynamical systems that evolve on (not necessarily open)
subsets of R

n. Relative stability has been considered previously in [7, 16].

We illustrate the main results by applying them to examples from chemical ki-
netics and adaptive control. More specifically, we use the nontangency-based Lya-
punov results to deduce convergence and semistability of the kinetics of the Michaelis–
Menten chemical reaction [11] and the closed-loop dynamics of a scalar system under
a universal adaptive stabilizing controller given in [17, 22].

2. Preliminaries. Let G ⊆ R
n, and let ‖ · ‖ denote a norm on R

n. A subset U
of G is relatively open in G if U is open in the subspace topology induced on G by the
norm ‖ · ‖. Given K ⊆ G, we let int K and bd K denote the interior and boundary,
respectively, of K in the subspace topology on G. Thus int K is the largest subset
of K that is relatively open in G, while bd K = (K ∩ G)\int K, where K denotes
the closure of K in R

n. A set U ⊆ G is relatively bounded in G if U is compact and
contained in G. A point x ∈ R

n is a subsequential limit of a sequence {xi} in R
n if

there exists a subsequence of {xi} that converges to x in the norm ‖ · ‖. A sequence
{xi} in G is relatively bounded in G if it is relatively bounded when viewed as a set.
Every sequence that is relatively bounded in G has at least one subsequential limit,
and every subsequential limit of the sequence is contained in G. When there is no
possibility of confusion, we will use “relatively open (bounded)” instead of “relatively
open (bounded) in G.” Also, in the case where G = R

n, we will use “open” and
“bounded” instead of “relatively open” and “relatively bounded,” respectively.

We recall that a set K ⊆ G is connected if and only if every pair of relatively open
sets Ui ⊆ G, i = 1, 2, satisfying K ⊆ U1 ∪U2 and Ui ∩K �= ∅, i = 1, 2, has a nonempty
intersection. Also, a connected component of the set K ⊆ G is a connected subset of
K that is not properly contained in any connected subset of K.

Consider the system of differential equations

ẏ(t) = f(y(t)),(6)

where f : D → R
n is continuous on the open set D ⊆ R

n. We assume that, for every
initial condition y(0) ∈ D and every a > 0, the differential equation (6) possesses
a unique C1 solution y : [0, a) → D on the interval [0, a). Letting ψ(·, x) denote
the solution of (6) that exists on [0,∞) and satisfies the initial condition y(0) = x,
the above assumptions imply that the map ψ : [0,∞) × D → D is continuous [14,
Thm. V.2.1], satisfies ψ(0, x) = x, and possesses the semigroup property, that is,
ψ(t, ψ(h, x)) = ψ(t + h, x) for all t, h ≥ 0 and x ∈ D. Given t ≥ 0, it will often be
convenient to denote the map ψ(t, ·) : D → D by ψt. The orbit Ox of a point x ∈ D
is the set {ψ(t, x) : t ≥ 0}.

A set U ⊆ R
n is positively invariant if ψt(U) ⊆ U for all t ≥ 0. The set U is

negatively invariant if, for every z ∈ U and every t ≥ 0, there exists x ∈ U such that
ψ(t, x) = z and ψ(τ, x) ∈ U for all τ ∈ [0, t]. Hence, if U is negatively invariant, then
U ⊆ ψt(U) for all t ≥ 0, although the converse is not generally true. Finally, the set
U is invariant if ψt(U) = U for all t ≥ 0. Note that a set is invariant if and only if it is
positively as well as negatively invariant. Also, it is easy to show that each connected
component of a positively invariant (respectively, negatively invariant, invariant) set
is positively invariant (respectively, negatively invariant, invariant).
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In the rest of the paper, G ⊆ D will denote a positively invariant set so that
Ox ⊆ G for all x ∈ G. Except for local compactness, which is invoked in section 4 and
subsequent sections, we require no additional hypotheses on G.

An equilibrium point of (6) is a point x ∈ D satisfying f(x) = 0 or, equivalently,
ψ(t, x) = x for all t ≥ 0. We let E = f−1(0)∩G, the set of all equilibrium points of (6)
in G. An isolated equilibrium is an isolated point of E . An equilibrium point x ∈ E
is Lyapunov stable relative to G if, for every relatively open neighborhood Uε ⊆ G of
x, there exists a relatively open neighborhood Uδ ⊆ G of x such that ψt(Uδ) ⊆ Uε
for all t ≥ 0. If x ∈ E is Lyapunov stable relative to G, then every relatively open
neighborhood of x contains a positively invariant, relatively open neighborhood of x
[8, section V.1].

The system (6) is convergent relative to G if, for every x ∈ G, limt→∞ ψ(t, x)
exists and is contained in G. It follows from the continuity of ψ and the semigroup
property that, if x ∈ G is such that limt→∞ ψ(t, x) exists and is contained in G, then,
for every h > 0, ψh(limt→∞ ψ(t, x)) = limt→∞ ψ(t + h, x) = limt→∞ ψ(t, x) so that
limt→∞ ψ(t, x) ∈ E .

An equilibrium point x ∈ G is semistable relative to G if there exists a relatively
open neighborhood U ⊆ G of x such that, for every z ∈ U , limt→∞ ψ(t, z) exists, is
contained in G, and is Lyapunov stable relative to G. Note that if the equilibrium
x ∈ G is semistable relative to G, then every equilibrium in some relatively open
neighborhood of x is Lyapunov stable relative to G. In particular, every equilibrium
that is semistable relative to G is also Lyapunov stable relative to G.

An equilibrium point x ∈ G is asymptotically stable relative to G if x is Lyapunov
stable relative to G and there exists a relatively open neighborhood U ⊆ G of x such
that, for every z ∈ U , limt→∞ ψ(t, z) = x. It is easy to see that an equilibrium is
asymptotically stable relative to G if and only if it is an isolated equilibrium and is
semistable relative to G.

Given a function V : G → R, a point x ∈ G is a local minimizer of V relative to
K ⊆ G if there exists a relatively open neighborhood U ⊆ G of x such that V (x) ≤ V (z)
for all z ∈ U ∩ K. The point x ∈ G is a global minimizer of V relative to G if
V (x) ≤ V (z) for all z ∈ G. Local and global maximizers of V are defined similarly.

Given a continuous function V : G → R, we define

V̇ (x) = lim
h→0+

1

h
[V (ψ(h, x))− V (x)](7)

for every x ∈ R
n such that the limit in (7) exists. It is easy to see that if x ∈ E and

V : G → R, then V̇ (x) is defined and equals zero.
Some of the results that we present involve an equilibrium point that is also a

local or global maximizer of V̇ for some function V . Since V̇ is zero at equilibrium
points, an equilibrium x is a local maximizer of V̇ relative to G if and only if V̇
assumes nonpositive values in some relatively open neighborhood of x. Similarly,
an equilibrium x is a global maximizer of V̇ relative to G if and only if V̇ assumes
nonpositive values in G. We will find it convenient to state the familiar requirements
of local and global negative semidefiniteness on V̇ in terms of the equilibrium being
a local or global maximizer, respectively, of V̇ .

3. Boundedness of orbits. A function U : G → R is proper if U−1(I) is a
compact subset of G for all compact subsets I of R, and weakly proper if, for every
c ∈ R, every connected component of the set {x ∈ G : U(x) ≤ c} = U−1((−∞, c]) is
compact. If U is proper and bounded below on G, then U is weakly proper.
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We present a Lyapunov test for boundedness of orbits that will be useful in some
of the examples we present in this paper. The test involves weakly proper functions.

Proposition 3.1. Suppose there exists a weakly proper, continuous function
U : G → R such that U̇ is defined on G and such that U̇(x) ≤ 0 for all x ∈ G. Then,
for every x ∈ G, Ox is relatively bounded in G.

Proof. Consider x ∈ G, and let c = U(x). The assumptions on U̇ imply that
the function t �→ U(ψ(t, x)) is nonincreasing. Hence U(ψ(t, x)) ≤ c for all t ≥ 0 so

that ψ(t, x) ∈ K def
= {z ∈ G : U(z) ≤ c} for all t ≥ 0. Thus Ox ⊆ K. Since Ox is

connected, it follows that Ox is contained in a connected componentM of K. By weak
properness, M is compact, and thus Ox is contained in M. Hence Ox is relatively
bounded in G.

Proposition 3.1 is an extension of the following well-known sufficient condition for
boundedness of orbits. See, for instance, [21, Thm. 4], [30, Thm. 8.7].

Corollary 3.1. Suppose there exists a proper, continuous function U : G → R

such that U̇ is defined on G and such that U(x) ≥ 0 and U̇(x) ≤ 0 for all x ∈ G.
Then, for every x ∈ G, Ox is relatively bounded in G.

Proof. The result follows from Proposition 3.1 by noting that the function U is
weakly proper.

Example 3.1. Consider the uncertain linear system

ẏ(t) = −ay(t) + bu(t),(8)

where a, b ∈ R and b is nonzero but otherwise unknown. A universal adaptive stabi-
lizing controller for the system (8) is given by [17, 22, 24]

u(t) = −k2(t) cos k(t)y(t),(9)

where the adaptive gain parameter k satisfies the update law

k̇(t) = y2(t).(10)

The corresponding closed-loop system on G = R
2 is described by (10) and

ẏ(t) = −[a + bk2(t) cos(k(t))]y(t).(11)

We will use Proposition 3.1 to show that all orbits of the closed-loop system (10)–(11)
are bounded.

Consider the function U : R
2 → R given by U(x) = 1

2y2 + g(k), where x = (y, k)
and g : R → R is given by g(k) = ak + b(k2 − 2) sin k + 2bk cos k. It is easy to verify
that, for the closed-loop system, U̇(x) = 0 for every x ∈ R

2. We claim that the
function U is weakly proper.

Let c ∈ R, let K = {x ∈ R
2 : U(x) ≤ c}, and consider x0 = (y0, k0) ∈ K. Let

M be the connected component of K containing x0. By continuity of U , K is closed.
Since M is a connected component of a closed set, M is closed.

First suppose b > 0, and let p : R → R be given by p(k) = bk2 + ak − 2b. There
exists an integer m > 0 such that, for k1 = −(2m + 3

2 )π and k2 = (2m + 1
2 )π, it

follows that p(ki) > c, i = 1, 2, and k0 ∈ [k1, k2]. A simple computation shows that
p(ki) = g(ki), i = 1, 2, so that, for every y ∈ R, the points xi = (y, ki), i = 1, 2,
satisfy U(xi) = 1

2y2 + p(ki) > c. Letting ρ denote the projection (y, k) �→ k, it
follows that ρ(M) is a connected set that contains k0 ∈ [k1, k2] but does not contain
k1 and k2. Hence it follows that ρ(M) ⊆ [k1, k2]; that is, k ∈ [k1, k2] for every
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x = (y, k) ∈ M. Denote l = mink∈[k1,k2] g(k). Then, for every x = (y, k) ∈ M,
1
2y2 ≤ c − g(k) ≤ c − l. Thus, for every x = (y, k) ∈ M, y ∈ [y1, y2], where

y1 = −√2(c− l) and y2 =
√
2(c− l). Thus the closed set M is contained in the

compact set [y1, y2]× [k1, k2] and hence compact. It follows that U is weakly proper
in the case where b > 0.

Now suppose b < 0, and let p : R → R be given by p(k) = −bk2 + ak + 2b.
There exists an integer m > 0 such that, for k1 = −(2m + 1

2 )π and k2 = (2m + 3
2 )π,

it follows that p(ki) > c, i = 1, 2, and k0 ∈ [k1, k2]. Letting l = mink∈[k1,k2] g(k),

y1 = −√2(c− l), and y2 =
√
2(c− l), it can be shown by repeating the arguments

given above that the closed set M is contained in the compact set [y1, y2] × [k1, k2]
and hence compact. It follows that U is weakly proper in the case where b < 0.

Since the function U is weakly proper and U̇ ≡ 0, it follows from Proposition 3.1
that every orbit of the closed-loop system (10)–(11) is bounded.

4. Direction cones and nontangency. Given a set K ⊆ R
n, we let co K

denote the union of the convex hulls of the connected components of K and let coco K
denote the cone generated by co K. Given K ⊆ R

n and x ∈ R
n, we denote dist(x,K) =

infy∈K ‖x− y‖. Finally, we let Sn−1 = {x ∈ R
n : ‖x‖ = 1} denote the unit sphere in

R
n.

Given x ∈ G, the direction cone Fx of f at x relative to G is the intersection of
all sets of the form coco (f(U)\{0}), where U ⊆ G is a relatively open neighborhood
of x. It is easy to see that if x ∈ G\int E , then Fx is a closed cone containing f(x),
while if x ∈ int E , then Fx = ∅.

Let K ⊆ R
n and x ∈ K. A vector v ∈ R

n is tangent to K at x ∈ K if there exist
a sequence {xi} in K converging to x and a sequence {hi} of positive real numbers
converging to 0 such that limi→∞ 1

hi
(xi − x) = v. The tangent cone to K at x is the

closed cone TxK of all vectors tangent to K at x [2, p. 121], [26, Prop. 6.2]. It is easy
to see that 0 ∈ TxK. Moreover, if x is an isolated point of K, then TxK = {0}. Also,
if K ⊆ M, then, for every x ∈ K, TxK ⊆ TxM. Finally, if x ∈ K and U ⊆ R

n is an
open neighborhood of x such that K ∩ U is a differentiable submanifold of R

n, then
TxK is the usual tangent space to K at x.

Remark 4.1. Tangent cones are called contingent cones in [2]. We have followed
the terminology used in [26].

The vector field f is nontangent to the set K ⊆ G at the point x ∈ K relative to
G if TxK ∩ Fx ⊆ {0}.

Remark 4.2. The notion of nontangency introduced here is different from the
well-known notion of transversality [13]. Transversality between a vector field and
a set is possible only at a point in the set where the vector field is not zero and
the set is locally a differentiable submanifold of codimension one. On the other hand,
nontangency is possible even if the vector field is zero and the set is not a differentiable
submanifold of codimension one.

In the rest of the paper, we assume that G is locally compact, that is, every point
in G is contained in a relatively open and relatively bounded set U ⊆ G. In particular,
if G is either open or closed, then G is locally compact. Local compactness implies
that every relatively open neighborhood of a point x ∈ G contains a relatively open
neighborhood of x that is also relatively bounded in G [10, Thm. XI.6.2].

The following proposition is a key result of this paper. The result shows that if
the vector field f is nontangent to the set B of all subsequential limits of sequences of
points taken from a sequence of segments of orbits of (6), then the set B contains
exactly one point. This result will be applied to positive limit sets in section 5
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and restricted prolongations in section 6 to obtain nontangency-based conditions for
convergence and stability.

Proposition 4.1. Let x ∈ G, and let {xi} be a sequence in G converging to x.
Let Ii ⊆ [0,∞), i = 1, 2, . . . , be intervals containing 0, and let B ⊆ G be the set of all
subsequential limits contained in G of sequences of the form {ψ(τi, xi)}, where τi ∈ Ii
for each i. Then B = {x} if and only if f is nontangent to B at x relative to G.

Proof. First, we note that x ∈ B since x = limi→∞ ψ(0, xi). Necessity now follows
by noting that if B = {x}, then TxB = {0}, and hence TxB ∩ Fx ⊆ {0}.

To prove sufficiency, suppose z0 ∈ B, z0 �= x. If the sequence {f(xi)} is eventually
zero, then every sequence of the form {ψ(τi, xi)} converges to x, and, consequently, B
is a singleton. Hence we may assume without loss of generality that f(xi) �= 0 for every
i. Let {Uk} be a nested sequence of neighborhoods of x that are relatively bounded
and relatively open in G, contained in U , and such that Uk+1 ⊂ Uk and xk ∈ Uk for
every k = 1, 2, . . . , ∩kUk = {x}, and z0 /∈ U1. Since z0 ∈ B, there exists a sequence
{τi} such that τi ∈ Ii for every i, and limi→∞ ψ(τi, xi) = z0 /∈ U1. By continuity of
ψ, for every k, there exists a sequence {hk

j }∞j=k in [0,∞) such that, for every j ≥ k,

hk
j ∈ Ij , hk

j ≤ τj , ψ(τ, xj) ∈ Uk for every τ ∈ [0, hk
j ), and ψ(hk

j , xj) ∈ bd Uk. For
each k, let zk ∈ bd Uk be a subsequential limit of the relatively bounded sequence
{ψ(hk

j , xj)}∞j=k. Then, for every k, it follows that zk ∈ B, zk �= x, and limk→∞ zk = x.

Now consider a subsequential limit v of the bounded sequence {‖zk − x‖−1(zk − x)}.
Clearly, v ∈ TxB. Also, ‖v‖ = 1 so that v �= 0. We claim that v ∈ Fx.

Let V ⊆ G be a relatively open neighborhood of x, and consider ε > 0. By
construction, there exists k such that

∥∥v − ‖zk − x‖−1(zk − x)
∥∥ < ε/3. Moreover,

since ∩iUi = {x}, we can assume that Uk ⊆ V. Since zk belongs to the boundary of a

relatively open neighborhood of x, δ
def
= ‖zk−x‖ > 0. Since zk = limi→∞ ψ(hk

i , xi) and
x = limi→∞ xi, there exists i such that xi ∈ V, ‖x−xi‖ < εδ/3, and ‖zk−ψ(hk

i , xi)‖ <
εδ/3. Let A be the connected component of f(V)\{0} containing f(xi) �= 0. Since

f is continuous, it follows that f(ψ(τ, xi)) ∈ A for all τ ∈ [0, hk
i ]. Therefore, w

def
=

ψ(hk
i , xi)−xi =

∫ hk
i

0
f(ψ(τ, xi))dτ is contained in the convex cone generated by A [29,

Thm. I.6.13]. Since A is connected, coco A is simply the convex cone generated by

A. Since A and A generate the same closed convex cone, we have coco A ⊆ coco A =
coco A ⊆ coco (f(V)\{0}). Thus w ∈ coco (f(V)\{0}). Now,

∥∥v − δ−1w
∥∥ =

∥∥v − δ−1(zk − x)− δ−1(ψ(hk
i , xi)− zk)− δ−1(x− xi)

∥∥
≤ ∥∥v − ‖zk − x‖−1(zk − x)

∥∥+ δ−1‖ψ(hk
i , xi)− zk‖+ δ−1‖x− xi‖

< ε.

We conclude that, for every ε > 0, there exists w ∈ coco (f(V)\{0}) and δ > 0 such
that ‖v − δ−1w‖ < ε. It follows that v ∈ coco (f(V)\{0}). Since the neighborhood
V was arbitrary, it follows that v ∈ Fx. Thus, if B �= {x}, then there exists v ∈ R

n

such that v �= 0 and v ∈ TxB ∩ Fx; that is, f is not nontangent to B at x relative to
G. Sufficiency now follows.

Since any application of Proposition 4.1 will involve finding the direction cone, we
next give a result that provides a convenient means of determining the direction cone
in applications. For this purpose, it will be useful to introduce the limiting direction
set of a vector field at a point.

Let x ∈ G\int E . A vector v ∈ Sn−1 is a limiting direction of f at x rel-
ative to G if there exists a sequence {xi} in G\E such that limi→∞ xi = x and
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limi→∞ 1
‖f(xi)‖f(xi) = v. The limiting direction set Lx of f at x relative to G is

the set of all limiting directions of f at x relative to G. Clearly, Lx is nonempty, com-
pact, and contained in Sn−1. Moreover, for every ε > 0, there exists a relatively open
neighborhood Uε ⊆ G of x such that, for every z ∈ Uε\E , dist( 1

‖f(z)‖f(z),Lx) < ε.

Consider x ∈ G\int E , and let U ⊆ G be a relatively open neighborhood of x. For
every sequence {xi} in G\E converging to x ∈ G, the sequence { 1

‖f(xi)‖f(xi)} is even-
tually in the cone generated by f(U)\{0} and hence in coco (f(U)\{0}) so that every
subsequential limit of the sequence { 1

‖f(xi)‖f(xi)} is contained in coco (f(U)\{0}).
Since U was chosen arbitrarily, it follows that Lx ⊆ Fx. The following result shows
that if no connected component of the limiting direction set contains the origin in its
convex hull, then the direction cone is contained in the union of the convex cones gen-
erated by the connected components of the limiting direction set. This result provides
a convenient means for determining the direction cone in applications.

Proposition 4.2. Let x ∈ G\int E, and suppose 0 /∈ co Lx. Then Fx ⊆coco Lx.
Proof. See the appendix.
Remark 4.3. A special case where Proposition 4.2 applies is the case where

Lx ⊆ Sn−1 is finite. Suppose x ∈ G is such that Lx is finite. Then co Lx = Lx ⊆ Sn−1,
and thus 0 /∈ co Lx. Moreover, coco Lx is the union of rays generated by the points
of Lx. Proposition 4.2 implies that Fx ⊆ coco Lx. However, since Lx ⊂ Fx and
since Fx is a cone, the rays generated by points of Lx are contained in Fx, that is,
coco Lx ⊆ Fx. Thus, in the case where the limiting direction set is finite, the direction
cone is the union of rays generated by points of the limiting direction set.

The following example shows that, in general, Fx �⊆ coco Lx.
Example 4.1. Consider the system (6), where f : R

3 → R
3 is given by

f(x) = −(x2
1 + x2

2)
6


 x1

x2

0


+ (x2

1 + x2
2)


 x2

−x1

0


+ (x2

1 + x2
2)

2


 0

0
1


 .(12)

Letting G = R
3, the set of equilibria is E = {x ∈ G : x1 = x2 = 0}.

Let a ∈ R, and consider x = [0 0 a]T ∈ E . To compute Lx, it will be con-
venient to introduce the function r : G → R given by r(z) =

√
z2
1 + z2

2 and the
function θ : G\E → [0, 2π) such that, for every z ∈ G\E , z1 = r(z) cos(θ(z)) and
z2 = r(z) sin(θ(z)).

For every z ∈ G, ‖f(z)‖ = (r(z))3
√
1 + (r(z))2 + (r(z))20, while, for every z ∈

G\E ,

1

‖f(z)‖f(z) =
1√

1 + (r(z))2 + (r(z))20


 −(r(z))10 cos(θ(z)) + sin(θ(z))
−(r(z))10 sin(θ(z))− cos(θ(z))

r(z)


 ,(13)

where ‖ · ‖ denotes the Euclidean norm on R
3. Consider a sequence {xi} in G\E

converging to x. Since limi→∞ r(xi) = 0, it is easy to see from (13) that every

subsequential limit of the sequence {‖f(xi)‖−1f(xi)} is of the form [sinα − cosα 0]
T
,

where α ∈ R. On the other hand, for every α ∈ R, the sequence {xi} given by xi =[
1
i cosα 1

i sinα a
]T

converges to x while limi→∞ ‖f(xi)‖−1f(xi) = [sinα − cosα 0]
T
.

Hence we conclude that the limiting direction set of f at x is a circle and is given by
Lx = {[sinα − cosα 0]

T
: α ∈ R}. Lx is connected, and hence it easily follows that

co Lx = {w ∈ R
3 : w2

1 + w2
2 ≤ 0, w3 = 0} and coco Lx = {w ∈ R

3 : w3 = 0}. Note
that 0 ∈ co Lx.
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We claim that Fx �⊆ coco Lx. To see this, consider the vector w = [0 0 1]T.
Clearly, w /∈ coco Lx. We claim that w ∈ Fx.

Let U be an open neighborhood of x. Choose ε > 0 such that {z ∈ G : ‖z − x‖ ≤
ε} ⊆ U , and consider z1 = [ε 0 a]T and z2 = [−ε 0 a]T. Then zi ∈ U , i = 1, 2. It is easy
to verify that w = 1

2ε−4[f(z1) + f(z2)]. Since U\E is connected and f is continuous,
f(U)\{0} = f(U\E) is also connected. Therefore, f(zi), i = 1, 2, are contained in the
same connected component of f(U)\{0}. Hence w ∈ coco(f(U)\{0}). Since U was
chosen to be arbitrary, it follows that w ∈ Fx.

The following example illustrates direction cones, nontangency, and the use of
Proposition 4.2.

Example 4.2. Consider the system described in Example 1.1 with G = R
2, and

let x ∈ S1. As discussed in Example 1.1, x is an equilibrium point for the system. It
is easy to show that

Lx = {±fθ(x)}, α > β,

=
{
± 1√

2
(fθ(x) + fr(x))

}
, α = β,

= {±fr(x)}, α < β,

where fr and fθ are given in (2). Thus Lx is finite, and hence, by Remark 4.3,

Fx = {kfθ(x) : k ∈ R}, α > β,
= {k(fθ(x) + fr(x)) : k ∈ R}, α = β,
= {kfr(x) : k ∈ R}, α < β.

(14)

The unit circle S1 is a differentiable submanifold of R
2. Hence, for every x ∈ S1,

TxS
1 is the tangent line to S1 at x. Since the vector field fθ points in the circumfer-

ential direction at every point, it follows that, for every x ∈ S1, TxS
1 = span {fθ(x)}.

It now follows from (14) that

TxS
1 ∩ Fx = TxS

1, α > β,
= {0}, α ≤ β.

(15)

Thus, for every x ∈ S1, f is nontangent to S1 at x relative to G if and only if α ≤ β.
It can be observed that Figures 1 and 2 reflect this fact.

5. Positive limit sets, convergence, and nontangency. In this section, we
present nontangency-based Lyapunov results for convergence. These results use three
key ideas. The first of these, given in Proposition 5.1, is that a solution of (6) converges
to a limit if and only if its positive limit set is a singleton set. The second key idea,
presented as Proposition 5.2, is to use Proposition 4.1 to show that the positive limit
set of a solution of (6) is a singleton set if and only if the vector field f is nontangent
to the positive limit set at some point. Since it is not generally possible to find the
positive limit set of a solution in practice, it is difficult to check nontangency of the
vector field f to the positive limit set in applications. Since nontangency to any
outer estimate of the positive limit set implies nontangency to the positive limit set
itself, the third key idea is to check nontangency of the vector field f to an outer
estimate of the positive limit set that is easier to find in practice. Proposition 5.3
gives outer estimates of the positive limit sets in terms of invariant subsets of the
level and sublevel sets of a Lyapunov function and its derivative. Theorem 5.1, the
main result of this section, combines the ideas of Propositions 5.1, 5.2, and 5.3 to give
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a sufficient condition for convergence that involves a nontangency condition between
the vector field f and invariant subsets of the level sets of the derivative of a Lyapunov
function.

Given x ∈ G, the positive limit set of x relative to G is the set O∞
x of points z ∈ G

such that there exists a divergent sequence {ti} in [0,∞) satisfying limi→∞ ψ(ti, x) =
z. The first part of the following result on positive limit sets is well known in the case
G = R

n. See, for instance, [7, Thm. 5.5, 5.9], [8, p. 24], [19, p. 114], and [21]. The
second part depends on the local compactness of G.

Proposition 5.1. Let x ∈ G. If Ox is relatively bounded in G, then O∞
x is

nonempty, compact, invariant, and connected, and, in addition, ψ(t, x) → O∞
x as

t →∞; that is, for every relatively open subset U ⊆ G that contains O∞
x , there exists

T > 0 such that ψ(t, x) ∈ U for all t > T . Moreover, limt→∞ ψ(t, x) exists and is
contained in G if and only if O∞

x contains exactly one point.

Proof. The first part of the result is well known for G = R
n. The proof is

similar in the case where G �= R
n and is left to the reader. In the second part,

the necessity is straightforward. To prove sufficiency, suppose that O∞
x = {z}. Let

Uε ⊆ G be a relatively open neighborhood of z. Since G is locally compact, there exists
a neighborhood U ⊆ Uε of x that is relatively open and relatively bounded in G. Since
z ∈ O∞

x , there exists a divergent sequence {ti} in [0,∞) such that ψ(ti, x) ∈ U for all
i. We claim that there exists T > 0 such that ψ(t, x) ∈ Uε for all t > T . If not, then by
the continuity of ψ, for every i, there exists τi > ti such that ψ(τi, x) ∈ bd U . In this
case, the sequence {ψ(τi, x)} is relatively bounded in G and hence has a subsequential
limit w ∈ G. By construction, w ∈ bd U and hence w �= z. However, by definition,
w ∈ O∞

x = {z}, which is a contradiction. Hence we conclude that there exists T > 0
such that ψ(t, x) ∈ Uε for all t > T . Since Uε was chosen arbitrarily, it follows that
limt→∞ ψ(t, x) = z ∈ G.

The following application of Proposition 4.1 gives a nontangency-based necessary
and sufficient condition for a solution of (6) to converge to a limit.

Proposition 5.2. Let x∈G, and suppose that O∞
x is nonempty. Then limt→∞ψ(t,

x) exists and is contained in G if and only if there exists z ∈ O∞
x such that f is

nontangent to O∞
x at z relative to G.

Proof. Consider z ∈ O∞
x . There exists a divergent sequence {ti} in [0,∞) such

that limi→∞ ψ(ti, x) = z. For every i, denote xi = ψ(ti, x) so that limi→∞ xi = z.
O∞

x is the set of subsequential limits of sequences of the form {ψ(hi, xi)}, where
hi ∈ [0,∞) for every i. Letting Ii = [0,∞) for every i and B = O∞

x , it follows from
Proposition 4.1 that O∞

x = {z} if and only if f is nontangent to O∞
x at z. The result

now follows from the second part of Proposition 5.1.

Example 5.1. Consider the system described in Example 1.1, and assume that
α ≥ β + 1. Let G = R

2, and consider x ∈ G\S1. As discussed in Example 1.1,
limt→∞ ψ(t, x) does not exist. Indeed, O∞

x = S1. As discussed in Example 4.2, f is
not nontangent to O∞

x = S1 at x, thus illustrating Proposition 5.2.

It should be noted that in order to apply Proposition 5.2 to a solution of (6),
the positive limit set of the solution needs to be known. Since it is not generally
possible to find the positive limit set of a solution, Proposition 5.2 is not directly
useful in applications. However, Lyapunov functions can sometimes be used to obtain
sets that contain the positive limit set of a solution. The following proposition gives
two such containment results for positive limit sets. The result is a straightforward
extension of [8, Thm. VIII.6.1, c)] and [21, Thm. 1]. Hence the proof is left to the
reader. We note only that the proof uses the invariance properties of positive limit
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sets given in Proposition 5.1.
Proposition 5.3. Suppose V : G → R is a continuous function such that V̇ is

defined on G, and V̇ (x) ≤ 0 for all x ∈ G. Let x ∈ G be such that Ox is relatively
bounded in G. Let P and N denote the largest invariant subsets of the sets {z ∈ G :
V (z) ≤ V (x)} and V̇ −1(0), respectively. Then O∞

x ⊆ P ∩ N . In addition, if V̇ ≡ 0,
then O∞

x is contained in the largest invariant subset of V −1(V (x)).
In the following example, we illustrate Propositions 5.2 and 5.3 by applying them

to the chemical kinetics of the Michaelis–Menten chemical reaction.
Example 5.2. In the Michaelis–Menten chemical reaction, a substrate S is con-

verted into a product P through an intermediate complex C in the presence of an
enzyme E. The reaction is depicted as

S + E
k1�
k2

C
k3→ P + E,

where ki > 0, i = 1, 2, 3, are chemical rate constants. In this example, we use
Propositions 5.2 and 5.3 to show that the concentrations of species S, P, C, and E in
this chemical reaction converge to equilibrium values.

Letting y1(t), y2(t), y3(t), and y4(t) denote the instantaneous nonnegative concen-
trations of the species S, C, E, and P, respectively, the law of mass action kinetics
yields [11]

ẏ(t) = y2(t)v1 + y1(t)y3(t)v2,(16)

where v1 =
[

k2 −(k2 + k3) k2 + k3 k3

]T
and v2 =

[ −k1 k1 −k1 0
]T
.

Equation (16) is of the form (6), where f : R
4 → R

4 is given by f(x) = x2v1+x1x3v2.
The nonnegative orthant G = {x ∈ R

4 : xi ≥ 0, i = 1, . . . , 4} is positively invariant
under the dynamics (16) [4, 11]. Since the vectors v1 and v2 are linearly independent,
it is easy to see that the set of equilibrium concentrations in G is E = E1 ∪ E2, where
E1 = {x ∈ G : x1 = 0, x2 = 0, x3 > 0} and E2 = {x ∈ G : x1 ≥ 0, x2 = 0, x3 = 0}.

We claim that f is nontangent to E1 at every point in E1 relative to G. Indeed, the
direction cone Fx of f at every point x ∈ G is contained in the span of v1 and v2, while
every vector that is tangent to E1 at some point x ∈ E1 is contained in the span of the

vectors v3 =
[
0 0 1 0

]T
and v4 =

[
0 0 0 1

]T
. Since {vi : i = 1, 2, 3, 4} is

a set of linearly independent vectors, it follows that span{v1, v2}∩span{v3, v4} = {0}.
Thus TxE1 ∩ Fx ⊆ {0} for every x ∈ E1.

It is easy to verify that the function U : G → R given by U(x) = x1+2x2+x3+x4

is proper and satisfies U̇ ≡ 0. It follows from Corollary 3.1 that every orbit in G is
relatively bounded in G. Hence, by Proposition 5.1, O∞

x is nonempty for every x ∈ G.
Now consider the function V : G → R defined by V (x) = 1

2x2
2+x1(x2+x3)− 1

2x2
3.

Then V̇ (x) = −k3x2(x2 + x3) ≤ 0 for all x ∈ G. Thus V̇ −1(0) = {x ∈ G : x2 = 0}. If
a solution y of the differential equation (16) satisfies y2 ≡ 0, then ẏ2 ≡ 0 and hence
y1y3 ≡ 0. It therefore follows that the largest invariant subset of V̇ −1(0) is the set
E of equilibrium concentrations. Proposition 5.3 now implies that O∞

x ⊆ E for every
x ∈ G.

Next, consider the function W : G → R defined by W (x) = x2 + x3. It is easy to
verify that Ẇ ≡ 0. Hence, by Proposition 5.3, for every x ∈ G, O∞

x is contained in
the level set W−1(W (x)) of W containing x. Thus it follows that, for every x ∈ G,
O∞

x ⊆ W−1(W (x)) ∩ E . Since W−1(0) = E2, it follows that W−1(W (x)) ∩ E ⊆ E1
for every x ∈ G satisfying W (x) > 0. Hence we conclude that, for every x ∈ G\E2,
O∞

x ⊆ E1.
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Now consider x ∈ E2. Then x is an equilibrium, and concentrations starting
from the initial value x clearly converge to the equilibrium value x. Next, consider
x ∈ G\E2. Then O∞

x ⊆ E1 and, for every z ∈ O∞
x , TzO∞

x ∩ Fz ⊆ TzE1 ∩ Fz ⊆ {0}.
Hence Proposition 5.2 implies that concentrations starting from the initial values x
converge to equilibrium values. We conclude that the system described by (16) is
convergent relative to G; that is, the concentrations of all species in the Michaelis–
Menten reaction converge to equilibrium values.

The following result gives a sufficient condition for a trajectory of (6) to converge
to a limit. Unlike Proposition 5.2, the following result is not based on nontangency.

Proposition 5.4. Let x ∈ G. If O∞
x contains an equilibrium z that is Lyapunov

stable relative to G, then z = limt→∞ ψ(t, x); that is, O∞
x = {z}.

Proof. Suppose z ∈ O∞
x is Lyapunov stable relative to G. Let Uε ⊆ G be a

relatively open neighborhood of z. By Lyapunov stability, there exists a relatively
open neighborhood Uδ ⊂ G of z such that ψt(Uδ) ⊆ Uε for every t ≥ 0. Since z ∈ O∞

x ,
there exists h ≥ 0 such that ψ(h, x) ∈ Uδ. Therefore, ψ(t + h, x) = ψt(ψ(h, x)) ∈
ψt(Uδ) ⊆ Uε for every t > 0. Since Uε ⊆ G was chosen arbitrarily, it follows that z =
limt→∞ ψ(t, x). It immediately follows that limi→∞ ψ(ti, x) = z for every divergent
sequence {ti} and thus O∞

x = {z}.
Our next result applies Propositions 5.2, 5.3, and 5.4 to obtain a sufficient con-

dition for convergence. The result uses Proposition 5.3 to obtain a set containing all
positive limit sets and then uses Propositions 5.2 and 5.4 to show convergence.

Theorem 5.1. Suppose Ox is relatively bounded in G for all x ∈ G, and assume
that there exists a continuous function V : G → R such that V̇ is defined on G
and satisfies V̇ (x) ≤ 0 for all x ∈ G. Let S ⊆ E denote the set of equilibria that
are Lyapunov stable relative to G, and let N0 denote the largest invariant subset of
V̇ −1(0). For every k = 0, 1, 2, . . . , letMk ⊆ Nk denote the set of points in Nk where f
is not nontangent to Nk relative to G, and let Nk+1 ⊆Mk denote the largest invariant
subset of Mk. If Mk ⊆ S for some k, then the system (6) is convergent relative to
G.

Proof. Consider x ∈ G. Since Ox is relatively bounded in G, Proposition 5.1
implies that O∞

x is nonempty and invariant. To prove the result, we first show that
if O∞

x contains more than one element, then O∞
x ⊆Mk\S for every k.

Suppose O∞
x contains more than one element. By Proposition 5.3, it follows that

O∞
x ⊆ N0. Now assume that O∞

x ⊆ Nk for some k = 0, 1, . . .. Since O∞
x contains

more than one element, it follows from Proposition 5.2 that, for every z ∈ O∞
x , f is

not nontangent to O∞
x at z relative to G, that is, {0} �⊇ TzO∞

x ∩ Fz ⊆ TzNk ∩ Fz.
Since Mk = {z ∈ Nk : TzNk ∩ Fz �⊆ {0}}, it follows that O∞

x ⊆ Mk. Since O∞
x is

invariant, O∞
x ⊆ Nk+1. It follows by induction that O∞

x ⊆ Nk+1 ⊆ Mk for every k.
Also, it follows from Proposition 5.4 that O∞

x ∩S=∅. Thus O∞
x ⊆Mk\S for every k.

It follows from the above arguments that if Mk\S = ∅ for some k, then O∞
x

contains only one element, and hence, by Proposition 5.1, limt→∞ ψ(t, x) exists and
is contained in G. The result now follows.

Example 5.3. In this example, we use Theorem 5.1 to show that the closed-loop
adaptive system given by (10) and (11) in Example 3.1 is convergent.

It was shown in Example 3.1 that every orbit of the system (10)–(11) is bounded.
Consider the function V : R

2 → R given by V (x) = e−k, x = (y, k) ∈ R
2. For the

closed-loop system (10)–(11), it follows that V̇ (x) = −e−ky2 ≤ 0 for all x = (y, k) ∈
R

2. Thus V̇ −1(0) = {(y, k) ∈ R
2 : y = 0} = E , the set of equilibria, and the largest

invariant subset of V̇ −1(0) is N0 = V̇ −1(0) = E .
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To investigate nontangency, let f : R
2 → R

2 denote the right-hand side of (10)–
(11), and let Z = {(0, k) : a + bk2 cos k = 0}. We note that Z ⊆ E . Since b �= 0, the
set Z is nonempty, and every point of Z is isolated. For every x = (y, k) ∈ N0\Z and
every sequence {xi} = {(yi, ki)} in R

2\E converging to x and satisfying sign(yi) =
sign(yj), i, j = 1, 2, . . . , we have

lim
i→∞

1

‖f(xi)‖f(xi) = lim
i→∞

1√
y2
i + (a + bk2

i cos ki)2

[ −sign(yi)(a + bk2
i cos ki)

|yi|
]

=

[ −sign(y1)sign(a + bk2 cos k)
0

]

∈ {[±1 0]T}.

Thus, for every x ∈ N0\Z, Lx is finite. By Remark 4.3, for every x ∈ N0\Z,
Fx = coco Lx = {(c, 0) : c ∈ R}. On the other hand, for every x ∈ N0, TxN0 =
{(0, c) : c ∈ R}. Hence f is nontangent to N0 at every point x ∈ N0\Z.

In order to apply Theorem 5.1, we note that, in the notation of Theorem 5.1,
N1 ⊆ M0 ⊆ Z. If N1 is empty, then M1 ⊆ N1 is empty. If N1 is nonempty, Z
consists only of isolated points and hence TxN1 = {0} for every x ∈ N1. Consequently,
f is nontangent to N1 at every point in N1 and hence M1 is empty. In either case,
M1 ⊆ S vacuously. It now follows from Theorem 5.1 that the system (10)–(11) is
convergent relative to R

2.
The following two results follow easily from Theorem 5.1.
Corollary 5.1. Suppose Ox is relatively bounded in G for all x ∈ G, and assume

that there exists a continuous function V : G → R such that V̇ is defined on G and
satisfies V̇ (x) ≤ 0 for all x ∈ G. Let N be the largest invariant subset of V̇ −1(0). If
f is nontangent to N at every z ∈ N relative to G, then the system (6) is convergent
relative to G.

Proof. Suppose f is nontangent to N at every z ∈ N relative to G. In the notation
of Theorem 5.1, N0 = N , while M0 = ∅. Thus M0 ⊆ S vacuously, and the result
follows from Theorem 5.1.

Corollary 5.2. Suppose Ox is relatively bounded in G for all x ∈ G, and assume
that there exists a continuous function V : G → R such that V̇ is defined on G and
satisfies V̇ (x) ≤ 0 for all x ∈ G. Let N be the largest invariant subset of V̇ −1(0). If
every point in N is Lyapunov stable relative to G, then the system (6) is convergent
relative to G.

Proof. Suppose every point in N is Lyapunov stable relative to G. Then, in the
notation of Theorem 5.1, M0 ⊆ N0 = N = S. The result now follows from Theorem
5.1.

In the following example, we illustrate Corollary 5.1 by applying it to the system
considered in Example 1.1.

Example 5.4. Consider the system described in Example 1.1. Suppose α ≤ β,
and let G = R

2. Consider the Lyapunov function V : G → R given by V (x) =
1
4 (x

2
1 + x2

2 − 1)2. It is easy to compute V̇ (x) = −(x2
1 + x2

2)|x2
1 + x2

2 − 1|1+α so that

V̇ (x) ≤ 0 for all x ∈ G and V̇ −1(0) = S1 ∪ {0}. Since every point in V̇ −1(0) is an
equilibrium, the largest invariant subset of V̇ −1(0) is N = V̇ −1(0). We know from
Example 4.2 that f is nontangent to N at every point in S1 relative to G. Since {0}
is an isolated point of N , it follows that f is nontangent to N at 0 relative to G.
Thus the hypotheses of Corollary 5.1 are satisfied, and we conclude that the system
considered in Example 1.1 is convergent relative to G = R

2 in the case where α ≤ β.
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6. Restricted prolongations, Lyapunov stability, and nontangency. In
this section, we develop three key ideas that will be needed for the nontangency-
based Lyapunov tests for Lyapunov stability, semistability, and asymptotic stability
that we present in the next section. The first of these ideas, given in Proposition 6.2,
is that an equilibrium is Lyapunov stable if and only if its restricted prolongation, as
defined below, is a singleton set. The second key idea, given in Proposition 6.3, is
to use Proposition 4.1 to show that the restricted prolongation of an equilibrium of
(6) is a singleton set if and only if the vector field f is nontangent to the restricted
prolongation at the equilibrium. Since it is not generally possible to find the restricted
prolongation of an equilibrium in practice, nontangency of the vector field f to the
restricted prolongation is difficult to verify in applications. Since nontangency to any
outer estimate of the restricted prolongation implies nontangency to the restricted
prolongation itself, the third key idea is to determine outer estimates of the restricted
prolongation that are easier to find in practice. Proposition 6.4 gives outer estimates of
restricted prolongations in terms of connected components of invariant and negatively
invariant subsets of level and sublevel sets of a Lyapunov function and its derivative.
This result depends on the invariance properties of restricted prolongations given in
Proposition 6.1.

Given a point x ∈ G and a relatively open and relatively bounded neighborhood
U ⊆ G of x, the restricted prolongation of x with respect to U is the set RU

x ⊆ U of all
subsequential limits of sequences of the form {ψ(ti, xi)}, where {ti} is a sequence in
[0,∞) and {xi} is a sequence in U converging to x such that the set ψ([0, ti]×{xi}) is
contained in U for every i. It is easy to see that, for every x ∈ G and every relatively
bounded and open neighborhood U ⊆ G of x, RU

x contains x and is thus nonempty.
The restricted prolongation of x relative to G is the union Rx of all sets of the form
RU

x where U ⊆ G is a relatively open and relatively bounded neighborhood of x. It
can be shown that Rx is the set of all subsequential limits of sequences of the form
{ψ(ti, xi)}, where {ti} is a sequence in [0,∞) and {xi} is a sequence in G converging
to x such that the set ∪iψ([0, ti] × {xi}) is relatively bounded in G. The restricted
prolongation is a subset of the positive prolongation as defined in [7, 8].

The following result gives invariance properties of restricted prolongations.

Proposition 6.1. Suppose x ∈ G, and let U⊆G be a relatively open and relatively
bounded neighborhood of x. Then RU

x and Rx are connected. Moreover, if x is an
equilibrium, then RU

x is negatively invariant and Rx is invariant.

Proof. To prove the first part of the proposition, suppose RU
x is not connected.

Then there exist open and disjoint subsets V and W of R
n such that RU

x ⊆ V ∪W,
RU

x ∩ V �= ∅, and RU
x ∩ W �= ∅. Since x ∈ RU

x , we may assume without loss of
generality that x ∈ V.

Consider z ∈ RU
x ∩ W. There exist a sequence {xi} in G converging to x and a

sequence {ti} in [0,∞) such that limi→∞ ψ(ti, xi) = z and ψ([0, ti] × {xi}) ⊆ U for
every i. Since limi→∞ ψ(0, xi) = x and limi→∞ ψ(ti, xi) = z, there exists k > 0 such
that, for every i > k, the connected set ψ([0, ti]×{xi}) intersects the disjoint, relatively
open sets V and W. We conclude that, for every i > k, there exists τi ∈ [0, ti] such
that ψ(τi, xi) ∈ (V ∪W)c = Vc ∩Wc, where Ac denotes the complement R

n\A of the
set A ⊆ R

n. The sequence {ψ(τi, xi)} is relatively bounded in G and contained in the
closed set Vc ∩Wc. Therefore, the sequence {ψ(τi, xi)} has a subsequential limit in
Vc∩Wc. However, by definition, every subsequential limit of the sequence {ψ(τi, xi)}
is contained in RU

x ⊂ V ∪W. This contradiction proves that RU
x is connected.
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It now follows that Rx is a union of connected sets of the form RU
x , all of which

contain x, and is thus connected [10, Thm. V.1.5].

To prove the second part of the proposition, suppose x ∈ G is an equilibrium,
and consider z ∈ RU

x . There exist a sequence {ti} in [0,∞) and a sequence {xi} in G
converging to x such that z = limi→∞ ψ(ti, xi) and, for every i, ψ(h, xi) ∈ U for every
h ∈ [0, ti].

Now, let t ≥ 0. If z = x, then ψ(τ, x) = x = z for every τ ∈ [0, t]. Hence suppose
z �= x. If the sequence {ti} has a bounded subsequence, say, {tik}, then we may
assume that limk→∞ tik = T so that z = limk→∞ ψ(tik , xik) = ψ(T, x) = x. However,
this contradicts our assumption that z �= x. Hence we conclude that the sequence
{ti} diverges. Therefore, there exists N > 0 such that ti > t for all i > N . The
sequence {ψ(ti+N − t, xi+N )}∞i=1 is contained in U and hence relatively bounded in G.
Let y ∈ G be a subsequential limit point of this sequence. Clearly, y ∈ RU

x . Also, by
continuity and the semigroup property, ψ(t, y) = z, and, for every τ ∈ [0, t], ψ(τ, y) is
a subsequential limit of the bounded sequence {ψ(ti+N + τ − t, xi+N )}∞i=1 and hence
contained in RU

x . This proves the negative invariance of RU
x .

From the negative invariance of RU
x , it follows that Rx is the union of negatively

invariant sets and hence negatively invariant. To prove positive invariance of Rx, let
τ ≥ 0 and z ∈ Rx. There exist a sequence {ti} in [0,∞) and a sequence {xi} in G
converging to x and a compact set M ⊆ G such that z = limi→∞ ψ(ti, xi) and, for
every i and every h ∈ [0, ti], ψ(h, xi) ∈M. Now, for every i and every h ∈ [0, ti + τ ],
ψ(h, xi) is contained in the compact subset ψ([0, τ ]×M) of G. Hence a subsequence
of the sequence {ψ(ti+ τ, xi)} converges in G. The limit of this subsequence is ψ(τ, z)
by continuity and the semigroup property and is contained in Rx by definition. Thus
ψ(τ, z) ∈ Rx for every z ∈ Rx and τ ≥ 0. This proves the positive invariance and
hence the invariance of Rx.

The utility of prolongations in stability analysis stems from the well-known fact
that an equilibrium point is Lyapunov stable if and only if the positive prolongation
of the equilibrium consists only of the equilibrium point. See, for instance, [7, Prop.
7.3] and [8, Thm. V.1.12]. We prove the same result for restricted prolongations in
Proposition 6.2 below. Since, as mentioned above, the restricted prolongation of a
point is a subset of the positive prolongation of the point, Proposition 6.2 is a sharper
version of the results [7, Prop. 7.3] and [8, Thm. V.1.12]. However, our reason for
considering restricted prolongations instead of positive prolongations in this paper is
that restricted prolongations are invariant and connected as proved in Proposition
6.1 above. Positive prolongations, on the other hand, may neither be connected
nor invariant under our assumptions on the system (6). Since the invariance and
connectedness of restricted prolongations play a crucial role in our main results, we
introduce restricted prolongations instead of using positive prolongations.

Proposition 6.2. Suppose x ∈ G, and let U⊆G be a relatively open and relatively
bounded neighborhood of x. Then the following statements are equivalent.

(i) The point x is a Lyapunov stable equilibrium relative to G.
(ii) RU

x = {x}.
(iii) Rx = {x}.
Proof. If x is a Lyapunov stable equilibrium relative to G, then the positive

prolongation of x, which contains Rx, is {x} [7, Prop. 7.3], [8, Th. V.1.12], and hence
Rx = {x}. Thus (i) implies (iii).

Since x ∈ RU
x and RU

x ⊆ Rx, (iii) implies (ii).

To show that (ii) implies (i), suppose x is not a Lyapunov stable equilibrium
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relative to G. Then there exist a neighborhood V ⊆ U of x that is relatively bounded
and relatively open in G, a sequence {xi} in V converging to x, and a sequence {ti}
in [0,∞) such that ψ(ti, xi) ∈ bd V for every i. Without loss of generality, we may
assume that the sequence {ti} is chosen such that, for every i, ψ(h, xi) ∈ V for all h ∈
[0, ti). Now, every subsequential limit of the relatively bounded sequence {ψ(ti, xi)}
is distinct from x by construction and is contained in RU

x by definition. Thus the
negation of (i) implies the negation of (ii). Hence it follows that (ii) implies (i).

The following result characterizes Lyapunov stable equilibrium points in terms of
nontangency.

Proposition 6.3. Let x ∈ G, and let U ⊆ G be a relatively open and relatively
bounded neighborhood of x. Then the following statements are equivalent.

(i) The point x is a Lyapunov stable equilibrium relative to G.
(ii) The vector field f is nontangent to RU

x at x relative to G.
(iii) The vector field f is nontangent to Rx at x relative to G.
Proof. If x is a Lyapunov stable equilibrium relative to G, then it follows from

Proposition 6.2 that Rx = {x} and hence TxRx = {0}. Thus (i) implies (iii).

Since RU
x ⊆ Rx, it follows that TxRU

x ⊆ TxRx and hence (iii) implies (ii).

Now, suppose (ii) holds so that TxRU
x ∩ Fx ⊆ {0}. Let z ∈ RU

x . There exist a
sequence {xi} converging to x and a sequence {ti} in [0,∞) such that ∪iψ([0, ti] ×
{xi}) ⊂ U and limi→∞ ψ(ti, xi) = z.

First, suppose that the sequence {ti} converges to 0. Then by continuity, z =
limi→∞ ψ(ti, xi) = ψ(0, x) = x. Next, suppose the sequence {ti} does not converge to
0. Then there exists a subsequence {tik} of the sequence {ti} such that infk tik > 0.
Let Ik = [0, tik ] for each k, and let B ⊆ U denote the set of all subsequential limits
of sequences of the form {ψ(τk, xik)}∞k=1, where τk ∈ Ik for every k. By construction,
z ∈ B and B ⊆ RU

x . Therefore, TxB∩Fx ⊆ TxRU
x ∩Fx ⊆ {0}; that is, f is nontangent

to B at x relative to G. It now follows from Proposition 4.1 that B = {x}. Hence
z = x. Since z ∈ RU

x was arbitrary, it follows that RU
x = {x}. Proposition 6.2 now

implies that (i) holds.

Example 6.1. Consider the system described in Example 1.1, and assume that
α ≥ β +1. Let G = R

2. As discussed in Example 1.1, every point in S1 is an unstable
equilibrium. From Figure 1, we observe that, for every z ∈ S1, Rz = S1. Since S1

consists only of equilibrium points, it follows that Rz is invariant for every z ∈ S1.
This illustrates Proposition 6.1. As seen in Example 4.2, the vector field f is not
nontangent to S1 at any z ∈ S1, thus illustrating the equivalence of (i) and (iii) in
Proposition 6.3.

As mentioned earlier, it is not generally possible to find the restricted prolongation
of an equilibrium, and hence Proposition 6.3 cannot be directly used in applications.
However, the following proposition shows that Lyapunov functions can be used to
obtain sets that contain the restricted prolongation of an equilibrium. The proof uses
the properties of invariance and connectedness of restricted prolongations given in
Proposition 6.1.

Proposition 6.4. Suppose V : G → R is a continuous function such that V̇ is
defined on G. Let x ∈ G be an equilibrium, and let W ⊆ G be a relatively open neigh-
borhood of x. LetMx and Nx denote the largest connected subsets of V −1(V (x))∩W
and V̇ −1(0) ∩ W, respectively, that contain x and are negatively invariant. Let Px

denote the largest connected subset of {z ∈ G : V (z) ≤ V (x)} that contains x and is
invariant. Then the following statements hold.

(i) If x is a global maximizer of V̇ relative to G, then Rx ⊆ Px.
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(ii) If x is a local maximizer of V̇ relative to G and a local minimizer of V relative

to the set K def
= G\V̇ −1(0), then there exists a relatively open and relatively

bounded neighborhood V ⊆ W of x such that RV
x ⊆Mx.

(iii) Mx ⊆ Nx.
Proof. (i) Suppose x is a global maximizer of V̇ relative to G so that V̇ (z) ≤

V̇ (x) = 0 for every z ∈ G. Consider z ∈ Rx. Let {xi} be a sequence in G converging to
x and {ti} a sequence in [0,∞) such that limi→∞ ψ(ti, xi) = z. Since V is continuous
and decreasing along the solutions of (6), it follows that V (z) = limi→∞ V (ψ(ti, xi)) ≤
limi→∞ V (xi) = V (x). Thus Rx is contained in the set {z ∈ G : V (z) ≤ V (x)}. By
Proposition 6.1, Rx is invariant and connected. Also, x ∈ Rx. Hence it follows that
Rx ⊆ Px.

(ii) Let x be a local maximizer of V̇ relative to G and a local minimizer of V
relative to the set K. Let U ⊆ W be a relatively open neighborhood of x such that
V̇ (z) ≤ V̇ (x) = 0 for every z ∈ U and V (x) ≤ V (w) for every w ∈ U∩K. Consider w ∈
U∩K. There exists a sequence {wi} in U∩K that converges to w. Then V (wi) ≥ V (x)
for every i. It now follows by continuity of V that V (w) = limi→∞ V (wi) ≥ V (x).
Next let V ⊆ G be a relatively open and relatively bounded neighborhood of x such
that V ⊆ U . Then, for every w ∈ V ∩ K, V (w) ≥ V (x).

Now consider z ∈ RV
x . Let {xi} be a sequence in V converging to x and {ti} a

sequence in [0,∞) such that the sequence {ψ(ti, xi)} converges to z and, for every
i, ψ(τ, xi) ∈ V ⊂ U for every τ ∈ [0, ti]. Then, V (z) = limi→∞ V (ψ(ti, xi)) ≤
limi→∞ V (xi) = V (x). Thus V (z) ≤ V (x). We claim that V (z) = V (x). To see this,
first suppose z ∈ RV

x ∩ K ⊆ V ∩ K. Then, since V (w) ≥ V (x) for every w ∈ V ∩ K, it
follows that V (z) = V (x). Next assume that z ∈ RV

x∩(G\K) = RV
x∩int V̇ −1(0). Since

G\K is relatively open in G and z ∈ G\K, there exists m > 0 such that ψ(ti, xi) ∈ G\K
for every i > m. For each i > m, let τi denote the smallest number in [0, ti] such
that ψ(t, xi) ∈ G\K for all t ∈ (τi, ti]. The sequence {τi}∞i=m either has a positive
subsequence or is eventually zero.

First consider the case where {τi}∞i=m has a positive subsequence, say, {τik}∞k=1.
By the continuity of ψ, it follows that ψ(τik , xik) ∈ K for every k. Since V is non-
increasing along the solutions of (6) in U , V (ψ(τik , xik)) ≤ V (xik) for all k, and
hence limk→∞ V (ψ(τik , xik)) ≤ limk→∞ V (xik) = V (x). On the other hand, x is
a global minimizer of V on the set V ∩ K so that V (ψ(τik , xik)) ≥ V (x) for all k.
Thus limk→∞ V (ψ(τik , xik)) = V (x) for all k. Since ψ(t, xi) ∈ G\K ⊆ V̇ −1(0) for all
t ∈ (τi, ti] and every i, it follows that V (ψ(tik , xik)) = V (ψ(τik , xik)) for all k. Hence
V (z) = limk→∞ V (ψ(tik , xik)) = limk→∞ V (ψ(τik , xik)) = V (x).

Finally, consider the case where the sequence {τi}∞i=m is eventually zero. In this
case, there exists K > 0 such that, for every i > K and every t ∈ [0, ti], it follows that
V (ψ(t, xi)) = V (xi). Hence V (z) = limi→∞ V (ψ(ti, xi)) = limi→∞ V (xi) = V (x).

We have thus shown that if z ∈ RV
x , then V (z) = V (x). Therefore, RV

x ⊆
V −1(V (x)) ∩ V ⊂ V −1(V (x)) ∩ W. By Proposition 6.1, RV

x is negatively invariant
and connected, and x ∈ RV

x . Hence RV
x ⊆Mx.

(iii) Consider z ∈Mx, and let t > 0. By negative invariance, there exists w ∈Mx

such that ψ(t, w) = z and ψ(τ, w) ∈ Mx ⊆ V −1(V (x)) for all τ ∈ [0, t]. Hence
V (ψ(τ, w)) = V (x) for every τ ∈ [0, t], and thus V̇ (ψ(τ, w)) = 0 for every τ ∈ [0, t).
Let {ti} be a sequence in [0, t) converging to t. Then, by the continuity of ψ, {ψ(ti, w)}
is a sequence in V̇ −1(0) that converges to z. It follows that z ∈ V̇ −1(0). Thus

Mx ⊆ V̇ −1(0). Since Mx is negatively invariant, connected, contains x, and is
contained in W, the result follows.
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It is interesting to note the parallels between the ideas used in this section and
those used in the previous section. The propositions given in section 5 allow us to
conclude convergence of a solution of (6) under the assumption of nontangency of the
vector field f to an outer estimate of the positive limit set of that solution. The results
of this section allow us to conclude the Lyapunov stability of an equilibrium of (6)
under the assumption of nontangency of the vector field f to an outer estimate of the
restricted prolongation of the equilibrium. The outer estimates of the positive limit
set in section 5 and the restricted prolongation in this section are in terms of invariant
and negatively invariant subsets of level and sublevel sets of a Lyapunov function and
its derivative. Moreover, the results of sections 5 and 6 depend on the invariance
properties of the positive limit set and the restricted prolongation, respectively.

7. Stability theorems. In this section, we use the results of the previous two
sections to derive Lyapunov results for Lyapunov stability, semistability, and asymp-
totic stability. The main results are Theorems 7.1 and 7.2. These results do not
make any assumptions about the sign definiteness of the Lyapunov function. Instead,
these results require only that the Lyapunov function derivative be nonpositive and
the equilibrium be a local minimizer of the Lyapunov function on the set of points
where the Lyapunov function derivative is negative. The weaker assumptions on the
Lyapunov function are supplemented by assuming nontangency of the vector field
to the level set of the Lyapunov function containing the equilibrium or to the clo-
sure of the zero-level set of the Lyapunov function derivative. In both Theorems 7.1
and 7.2, Propositions 6.4 and 5.3 are used to “trap” the restricted prolongation and
the positive limit set, respectively, in the level sets of the Lyapunov function and its
derivative. Propositions 6.3 and 5.2 are then used to deduce stability and convergence
from nontangency.

Theorem 7.1. Suppose V : G → R is a continuous function such that V̇ is defined
on G. Let x ∈ E be a local maximizer of V̇ relative to G and a local minimizer of V

relative to the set K def
= G\V̇ −1(0). Let W ⊆ G be a relatively open neighborhood of x.

For every z ∈ E∩W, letMz denote the largest connected subset of V −1(V (z))∩W that
is negatively invariant and contains z. Let N denote the largest negatively invariant

subset of V̇ −1(0) ∩W and, for every z ∈ N , let Nz denote the connected component
of N containing z.

Then the following statements hold.
(i) If f is nontangent toMx at x relative to G, then x is Lyapunov stable relative

to G.
(ii) If f is nontangent to Nx at x relative to G, then x is Lyapunov stable relative

to G.
(iii) If there exists a relatively open neighborhood U ⊆ W of x such that every

equilibrium in U is a local minimizer of V relative to K and, for every z ∈
N ∩U , f is nontangent to Nz at z relative to G, then x is semistable relative
to G.

(iv) If x is an isolated equilibrium, and there exists a relatively open neighborhood
U ⊆ W of x such that, for every z ∈ N ∩ U , f is nontangent to Nz at z
relative to G, then x is asymptotically stable relative to G.

Proof. (i) Suppose TxMx ∩ Fx ⊆ {0}. By (ii) of Proposition 6.4, there exists
a relatively open and bounded neighborhood V ⊆ W of x such that RV

x ⊆ Mx.
Therefore, TxRV

x ∩ Fx ⊆ TxMx ∩ Fx ⊆ {0}. Hence, by Proposition 6.3, x is a
Lyapunov stable equilibrium relative to G.

(ii) Note that since x is an equilibrium, x ∈ V̇ −1(0). Suppose TxNx ∩ Fx ⊆ {0}.
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By (iii) of Proposition 6.4, Mx ⊆ Nx. Hence TxMx ∩ Fx ⊆ TxNx ∩ Fx ⊆ {0}.
Therefore, by (i), x is a Lyapunov stable equilibrium relative to G.

(iii) Let U ⊆ W be a relatively open neighborhood of x such that every equilibrium
in U is a local minimizer of V relative to K and TzNz ∩Fz ⊆ {0} for every z ∈ N ∩U .
Since x is a local maximizer of V̇ relative to G, we may assume without loss of
generality that V̇ (z) ≤ V̇ (x) = 0 for every z ∈ U . It follows that every equilibrium in
U is a local maximizer of V̇ relative to G. Since every equilibrium in U is contained
in N , it follows from (ii) that every equilibrium in U is Lyapunov stable relative to
G. In particular, x is Lyapunov stable relative to G. By Lyapunov stability of x and
local compactness of G, there exists a positively invariant neighborhood V ⊂ U of x
that is relatively open and relatively bounded in G, and such that V ⊂ U . For every
z ∈ V, Oz ⊆ V is relatively bounded in G. Therefore, by Propositions 5.1 and 5.3,

O∞
z ⊆ V ⊂ W is nonempty and contained in V̇ −1(0). The invariance of O∞

z implies

that O∞
z is contained in the largest invariant subset of V̇ −1(0) ∩ W. Since every

invariant set is also negatively invariant, it follows that O∞
z ⊆ N for every z ∈ V.

Consider z ∈ V and w ∈ O∞
z . Since O∞

z is connected and contained in N , it follows
that O∞

z ⊆ Nw. Therefore, TwO∞
z ∩ Fw ⊆ TwNw ∩ Fw ⊆ {0}. Now Proposition 5.2

implies that limt→∞ ψ(t, z) exists. Since z ∈ V was chosen arbitrarily, it follows that
every trajectory in V converges to a limit. The positive invariance of V implies that
the limit of every trajectory in V is contained in V. Since every equilibrium in V ⊂ U
is Lyapunov stable relative to G, it follows that x is semistable relative to G.

(iv) Suppose x is an isolated equilibrium, and let U ⊆ W be a relatively open
neighborhood of x such that TzNz ∩ Fz ⊆ {0} for every z ∈ N ∩ U . Without loss of
generality, we may assume that x is the only equilibrium in U . Then, it follows from
(iii) that x is semistable relative to G. Asymptotic stability now follows by noting
that every isolated equilibrium that is semistable relative to G is asymptotically stable
relative to G.

Remark 7.1. Note that Theorem 7.1 does not require V̇ to be continuous. How-

ever, in the case where V̇ is continuous, we have V̇ −1(0) = V̇ −1(0), and the set K
in Theorem 7.1 is the set of points where the Lyapunov derivative is negative. Thus,
in the case where V̇ is continuous, Theorem 7.1 requires the equilibrium to be a lo-
cal minimizer of V only relative to the set of points where the Lyapunov function is
strictly decreasing along the solutions of (6).

Example 7.1. In this example, we apply Theorem 7.1 to the mass action kinetics
(16) of the Michaelis–Menten chemical reaction introduced in Example 5.2.

Recall that the set of equilibrium concentrations of the reaction in the nonnegative
orthant G is E = E1 ∪ E2, where E1 = {x ∈ G : x1 = 0, x2 = 0, x3 > 0} and
E2 = {x ∈ G : x1 ≥ 0, x2 = 0, x3 = 0}. Also recall from Example 5.2 that the right-
hand side f of the differential equation (16) is nontangent to E1 at every point in E1
relative to G.

We claim that every equilibrium in E1 is semistable relative to G. To show this, let
α ∈ (1, 1 + k3/k2), and consider the function V : G → R defined by V (x) = αx1 + x2.
Then, V (x) ≥ 0 for every x ∈ G and V −1(0) = E1. Thus every point in E1 is a local
minimizer of V relative to G. Since V̇ : G → R is given by V̇ (x) = [αk2−(k2+k3)]x2+

k1(1−α)x1x3, it follows that V̇ (x) ≤ 0 for every x ∈ G and V̇ −1(0) = V̇ −1(0) = E so

that the largest negatively invariant subset of V̇ −1(0) is E .
Now consider an equilibrium x ∈ E1. There exists a relatively open neighborhood

U ⊆ G of x such that U ∩E = U ∩E1. It now follows that every equilibrium z ∈ U ∩E
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is a local maximizer of V̇ and a local minimizer of V relative to G and, as shown
in Example 5.2, that f is nontangent to E at every z ∈ U ∩ E relative to G. Hence,
applying (iii) of Theorem 7.1 with W = G, it follows that every equilibrium in E1 is
semistable relative to G.

The following corollary of Theorem 7.1 is an extension of Theorems 1 and 2 from
[16].

Corollary 7.1. Suppose V : G → R is a continuous function such that V̇ is
defined on G. Let x ∈ E be a local maximizer of V̇ relative to G and a local minimizer of
V relative to the set K def

= G\V̇ −1(0). Let W ⊆ G be a relatively open neighborhood of
x. For every z ∈ W, letMz denote the largest connected subset of V −1(V (z))∩W that
is negatively invariant and contains z. Let N denote the largest negatively invariant

subset of V̇ −1(0) ∩W. Then the following statements hold.
(i) IfMx = {x}, then x is Lyapunov stable relative to G.
(ii) If x is an isolated point of N , then x is asymptotically stable relative to G.
Proof. (i) Suppose Mx = {x}. Then Lyapunov stability of x follows from (i) of

Theorem 7.1 by noting that TxMx = {0}.
(ii) Suppose {x} is an isolated point of N . Since every equilibrium in W is

contained in N , it follows that x is an isolated equilibrium. Also, the connected
component Nx of N containing x is {x}, and hence TxNx = {0}. The statement (ii)
now follows by applying Theorem 7.1, (iv).

Remark 7.2. Theorems 1 and 2 of [16] follow from (i) and (ii) of Corollary 7.1,
respectively. However, while Corollary 7.1 requires only that the equilibrium be a
local minimizer of the Lyapunov function relative to the set of points at which the
Lyapunov function is strictly decreasing, the results of [16] require the equilibrium to
be a local minimizer of the Lyapunov function relative to G. Thus Corollary 7.1 is an
extension of the main results of [16]. It is shown in [16] that the main result of [1]
follows from Theorem 1 in [16]. Since Corollary 7.1 is an extension of the main results
of [16], the arguments presented in [16] can be used to show that the main result of
[1] follows from Corollary 7.1.

Remark 7.3. It is interesting to note that neither Corollary 7.1 nor the results
of [16] can be applied in the case of Example 7.1, because the level sets of V and V̇
containing the equilibrium point of interest contain a continuum of equilibria. Con-
sequently, the equilibrium point of interest is not an isolated point of the largest
negatively invariant subset of the level sets of V or V̇ , and the results mentioned
above do not apply.

The following corollary of Theorem 7.1 does not require finding negatively invari-
ant subsets of the level sets of the Lyapunov function and its derivative.

Corollary 7.2. Suppose V : G → R is a continuous function such that V̇ is
defined on G. Let x ∈ V̇ −1(0) be a local maximizer of V̇ relative to G and a local

minimizer of V relative to the set K def
= G\V̇ −1(0). Then the following statements

hold.

(i) If f is nontangent to V −1(V (x)) at x relative to G, then x is a Lyapunov
stable equilibrium relative to G.

(ii) If f is nontangent to V̇ −1(0) at x relative to G, then x is a Lyapunov stable
equilibrium relative to G.

(iii) If there exists a relatively open neighborhood U ⊆ G of x such that every
equilibrium in U is a local minimizer of V relative to K and f is nontangent
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to V̇ −1(0) at every point in U ∩ V̇ −1(0) relative to G, then x is a semistable
equilibrium relative to G.

(iv) If x is an isolated point of the set V̇ −1(0), then x is an asymptotically stable
equilibrium relative to G.

Proof. Let V ⊆ G be a relatively open neighborhood of x such that V̇ (z) ≤ V̇ (x) =
0 for every z ∈ V and V (x) ≤ V (z) for every z ∈ K ∩ V. There exists τ > 0 such
that ψ(t, x) ∈ V for all t ∈ [0, τ). Therefore, V (ψ(t, x)) ≥ V (x) for every t ∈ [0, τ).
However, since V̇ (ψ(t, x)) ≤ 0 for every t ∈ [0, τ), it follows that V (ψ(t, x)) ≤ V (x)
for every t ∈ [0, τ). We conclude that V (ψ(t, x)) = V (x) and V̇ (ψ(t, x)) = 0 for
every t ∈ [0, τ). In other words, ψ(t, x) ∈ V −1(V (x)) ∩ V̇ −1(0) for every t ∈ [0, τ).
In particular, x ∈ V̇ −1(0). Also, if {ti} is a sequence in [0, τ) that converges to
zero, then {ψ(ti, x)} is a sequence in V −1(V (x)) ∩ V̇ −1(0) converging to x such that
limi→∞ 1

ti
[ψ(ti, x)− x] = f(x). Thus f(x) ∈ TxV̇ −1(0) ∩ TxV −1(V (x)).

(i) Suppose TxV −1(V (x)) ∩ Fx ⊆ {0}. If Fx = ∅, then x ∈ int E and f(x) = 0.
On the other hand, if Fx �= ∅, then f(x) ∈ TxV −1(V (x))∩Fx ⊆ {0} so that f(x) = 0.
In either case, it follows that x is an equilibrium. Lyapunov stability of x now follows
from (i) of Theorem 7.1 by noting that if Mx is the largest connected, negatively
invariant subset of V −1(V (x)) containing x, then TxMx∩Fx ⊆ TxV −1(V (x))∩Fx ⊆
{0}.

(ii) Suppose TxV̇ −1(0)∩Fx ⊆ {0}. Arguing as in the proof of (i), it can be shown
that x is an equilibrium. Lyapunov stability of x now follows from (ii) of Theorem 7.1

by noting that if Nx is the largest connected, negatively invariant subset of V̇ −1(0)

containing x, then TxNx ∩ Fx ⊆ TxV̇ −1(0) ∩ Fx ⊆ {0}.
(iii) Suppose U ⊆ G is a relatively open neighborhood of x such that every equilib-

rium in U is a local minimizer of V relative to the set K and TzV̇ −1(0)∩Fz ⊆ {0} for
every z ∈ U∩ V̇ −1(0). Arguing as in the proof of (i), it can be shown that x is an equi-
librium. The result now follows from (iii) of Theorem 7.1 by noting that, if N is the

largest negatively invariant subset of V̇ −1(0), then, for every z ∈ N ∩U ⊆ V̇ −1(0)∩U ,
it follows that TzN ∩ Fz ⊆ TzV̇ −1(0) ∩ Fz ⊆ {0}.

(iv) Suppose x is an isolated point of V̇ −1(0). Then x is also an isolated point

of V̇ −1(0). Since ψ(t, x) ∈ V̇ −1(0) for all t ∈ [0, τ), it follows from the continuity
of ψ that ψ(t, x) = x for all t ∈ [0, τ). In other words, x is an equilibrium. Since
every equilibrium is contained in V̇ −1(0), it follows that x is an isolated equilibrium.

Since x is an isolated point of V̇ −1(0), it follows that TxV̇ −1(0) = {0}. Hence (iii)
implies that x is semistable relative to G. Since an isolated semistable equilibrium is
asymptotically stable, (iv) follows.

Example 7.2. Consider the system described in Example 1.1. Suppose α ≤ β,
and let G = R

2. Consider the Lyapunov function V : G → R given by V (x) = 1
4 (x

2
1 +

x2
2−1)2 introduced in Example 5.4, and recall that V̇ (x) = −(x2

1+x2
2)|x2

1+x2
2−1|1+α

so that V̇ (x) ≤ 0 for all x ∈ G and V̇ −1(0) = S1 ∪ {0}. The set K = G\V̇ −1(0) in
Corollary 7.2 is given in this case by K = G\(S1 ∪{0}). Hence every point x ∈ S1 is a
local minimizer of V relative to K. We know from Example 4.2 that f is nontangent
to S1 and hence to V̇ −1(0) at every z ∈ S1 relative to G. Hence by (iii) of Corollary
7.2, it follows that every x ∈ S1 is semistable relative to G = R

2.
The following theorem gives stability conditions in terms of invariant sets rather

than negatively invariant sets as in Theorem 7.1. Also, the first part of the theorem
does not require the equilibrium to be a local minimizer of the Lyapunov function.
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Theorem 7.2. Suppose V : G → R is a continuous function such that V̇ is
defined on G. For every z ∈ G, let Pz denote the largest connected subset of {w ∈
G : V (w) ≤ V (z)} that is invariant and contains z. Let x ∈ E be a global maximizer
of V̇ relative to G. Let ε > 0, and let Q be the largest invariant subset of the set
{w ∈ G : V (w) < V (x)+ ε}. For every z ∈ Q, let Qz denote the connected component
of Q containing z. Then the following statements hold.

(i) If f is nontangent to Px at x relative to G, then x is Lyapunov stable relative
to G.

(ii) If there exists a relatively open neighborhood U ⊆ G of x such that, for every
z ∈ U ∩ Q, f is nontangent to Qz at z relative to G, then x is semistable
relative to G.

(iii) If x is an isolated point of Q, then x is asymptotically stable relative to G.
If, in addition, x is a local minimizer of V relative to the set K def

= G\V̇ −1(0), then
the following statements hold.

(iv) If f is nontangent to Px ∩ V −1(V (x)) at x relative to G, then x is Lyapunov
stable relative to G.

(v) If f is nontangent to Px ∩ V̇ −1(0) at x relative to G, then x is Lyapunov
stable relative to G.

(vi) If there exists a relatively open neighborhood U ⊆ G of x such that every
equilibrium in U is a local minimizer of V relative to the set K and, for every

z ∈ U ∩ Q, f is nontangent to Qz ∩ V̇ −1(0) at z relative to G, then x is
semistable relative to G.

Proof. Note that by (i) of Proposition 6.4, Rx ⊆ Px.

(i) Suppose TxPx ∩Fx ⊆ {0}. We have TxRx ∩Fx ⊆ TxPx ∩Fx ⊆ {0}. Hence it
follows from Proposition 6.3 that x is Lyapunov stable relative to G.

(ii) Let U ⊆ G be a relatively open neighborhood of x such that TzQz ∩ Fz ⊆
{0} for every z ∈ U ∩ Q. Since V is continuous, we can assume without loss of
generality that V (z) < V (x) + ε for every z ∈ U . Then, for every z ∈ U , {w ∈
G : V (w) ≤ V (z)} ⊆ {w ∈ G : V (w) < V (x) + ε}. Consequently, Pz ⊆ Qz for
every z ∈ U . In particular, if z ∈ U is an equilibrium, then z ∈ Pz ⊆ Qz so that
TzPz ∩ Fz ⊆ TzQz ∩ Fz ⊆ {0}. It therefore follows from (i) that every equilibrium
in U is Lyapunov stable relative to G. In particular, x is Lyapunov stable relative to
G. By Lyapunov stability of x and local compactness of G, there exists a positively
invariant neighborhood V ⊂ U of x that is relatively open and bounded in G and such
that V ⊂ U . Consider z ∈ V. Then Oz ⊆ V is relatively bounded in G, and hence
by Propositions 5.1 and 5.3, O∞

z ⊆ V ⊂ U is nonempty, connected, and contained
in the largest invariant subset of {w ∈ G : V (w) ≤ V (z)} and hence in Q. Next,
let w ∈ O∞

z . Since O∞
z ⊆ Q is connected, it follows that O∞

z ⊆ Qw. Now, since
w ∈ V ∩ Q ⊆ U ∩ Q, we have TwO∞

z ∩ Fw ⊆ TwQw ∩ Fw ⊆ {0}. Proposition 5.2
now implies that limt→∞ ψ(t, z) exists and is contained in V ⊆ G. Since z ∈ V was
chosen arbitrarily, it follows that every trajectory in V converges to a limit. The
positive invariance of V implies that the limit of every trajectory in V is contained in
V. Since every equilibrium in V ⊂ U is Lyapunov stable relative to G, it follows that
x is semistable relative to G.

(iii) Suppose x is an isolated point of Q, and let U ⊆ G be a relatively open
neighborhood of x such that U ∩ Q = {x}. Then TxQ = {0}, and hence every point
z ∈ U∩Q satisfies TzQ∩Fz ⊆ {0}. By (ii), x is semistable relative to G. Next, consider
the relatively open neighborhood V = {z ∈ G : V (z) < V (x) + ε} of x. Since every
equilibrium in V is contained in Q, we have (U ∩V)∩E = U ∩ (V ∩E) ⊆ U ∩Q = {x}.
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Since U ∩ V is a relatively open neighborhood of x, it follows that x is an isolated
equilibrium. The result now follows by noting that an isolated equilibrium that is
semistable relative to G is also asymptotically stable relative to G.

Now, suppose x is a local minimizer of V relative to the set K = G\V̇ −1(0). By
(ii) and (iii) of Proposition 6.4, there exists a neighborhood V of x that is open and

bounded relative to G, and such that RV
x ⊆ V −1(V (x)) ∩ V̇ −1(0).

(iv) Suppose Tx(Px ∩ V −1(V (x))) ∩ Fx ⊆ {0}. Then TxRV
x ∩ Fx ⊆ Tx(Rx ∩

V −1(V (x)))∩Fx ⊆ Tx(Px ∩V −1(V (x)))∩Fx ⊆ {0}. It now follows from Proposition
6.3 that x is Lyapunov stable relative to G.

(v) Suppose Tx(Px ∩ V̇ −1(0))∩Fx ⊆ {0}. Then TxRV
x ∩Fx ⊆ Tx(Rx ∩ V̇ −1(0))∩

Fx ⊆ Tx(Px ∩ V̇ −1(0)) ∩ Fx ⊆ {0}. It now follows from Proposition 6.3 that x is
Lyapunov stable relative to G.

(vi) Let U ⊆ G be a relatively open neighborhood of x such that every equilibrium
in U is a local minimizer of V relative to the set K, and every point z in U ∩ Q
satisfies Tz(Qz ∩ V̇ −1(0)) ∩ Fz ⊆ {0}. Without loss of generality, we assume that
V (z) < V (x) + ε for every z ∈ U . Then, for every z ∈ U , Pz ⊆ Qz and hence Tz(Pz ∩
V̇ −1(0))∩Fz ⊆ Tz(Qz ∩ V̇ −1(0))∩Fz ⊆ {0}. It therefore follows from (v) that every
equilibrium in U is Lyapunov stable relative to G. In particular, x is Lyapunov stable
relative to G. By Lyapunov stability of x and local compactness of G, there exists a
positively invariant, relatively open, and relatively bounded neighborhood V ⊂ G of x
such that V ⊂ U . Consider z ∈ V. Then Oz ⊆ V is relatively bounded in G, and hence
by Propositions 5.1 and 5.3, O∞

z ⊆ V is nonempty, connected, and contained in the
largest invariant subset of {w ∈ G : V (w) ≤ V (z)} ⊂ {w ∈ G : V (w) < V (x) + ε} and
hence in Q. Next, let w ∈ O∞

z . Since O∞
z ⊆ Q is connected, it follows that O∞

z ⊆ Qw.
By Proposition 5.3, O∞

z is also contained in V̇ −1(0). Now, since w ∈ V ∩Q ⊆ U ∩Q,
we have TwO∞

z ∩ Fw ⊆ Tw(Qw ∩ V̇ −1(0)) ∩ Fw ⊆ Tw(Qw ∩ V̇ −1(0)) ∩ Fw ⊆ {0}.
Proposition 5.2 now implies that limt→∞ ψ(t, z) exists and is contained in G. Since
z ∈ V was chosen to be arbitrary, it follows that every trajectory in V converges to
an equilibrium in V ⊂ U . Semistability of x relative to G now follows by noting that
every equilibrium in V ⊂ U is Lyapunov stable relative to G.

Example 7.3. In this example, we use Theorem 7.2 to show that every equilibrium
(0, k) of the adaptive closed-loop system (10)–(11) satisfying g′(k) = a+ bk2 cos k > 0
is semistable, where g′ is the derivative of the function g : k �→ ak + b(k2 − 2) sin k +
2bk cos k introduced in Example 3.1.

Suppose k0 ∈ R is such that g′(k0) > 0. Since g′ is continuous, there exist δ > 0
and r > 0 such that g′(k) > r for all k ∈ [k0 − δ, k0 + δ]. In particular, we note that
g is increasing on the interval [k0 − δ, k0 + δ].

We claim that the equilibrium (0, k0) of the system (10)–(11) is semistable. To
show this, consider the Lyapunov function V (y, k) = e−k introduced in Example 5.3,
and let ε = V (0, k0)(e

δ − 1). It is easy to see that the set {(y, k) ∈ R
2 : V (y, k) ≤

V (0, k0) + ε} = {(y, k) ∈ R
2 : k ≥ k0 − δ}. Let Q denote the largest invariant subset

of {(y, k) ∈ R
2 : k ≥ k0 − δ}. Also, recall from Example 5.3 that V̇ (y, k) = −e−ky2

and V̇ −1(0) = {(0, k) : k ∈ R} = E .
Let U : R

2 → R be the function U(y, k) = 1
2y2+g(k), and recall from Example 3.1

that U is weakly proper and U̇ ≡ 0. Choose k1 ∈ (k0, k0 + δ), and let c = U(0, k1) =
g(k1). Note that since g is increasing on [k0, k0 + δ], U(0, k0) = g(k0) < g(k1) = c.
Let U be the connected component of the set {(y, k) ∈ R

2 : U(y, k) < c} containing
(0, k0). The set U is open by continuity and bounded by weak properness of U .
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Moreover, letting ρ denote the projection (y, k) �→ k, the set ρ(U) is a connected
set that contains k0 and does not contain k1 > k0. Hence we conclude that, for
every (y, k) ∈ U , k < k1 < k0 + δ. It follows that every (y, k) ∈ U ∩ Q satisfies
k ∈ [k0 − δ, k0 + δ]. Also, since U is bounded, it follows that there exists Y ≥ 0 such
that every (y, k) ∈ U satisfies |y| ≤ Y .

We claim that U ∩ Q is contained in V̇ −1(0). To see this, consider (y, k) ∈
U ∩ Q, and let τ > 0. By the invariance of Q, there exists (y2, k2) ∈ Q such that
(φ1(τ), φ2(τ)) = (y, k), where φ : R → R

2 denotes the solution of (10)–(11) satisfying
φ(0) = (y2, k2). Since U̇ ≡ 0, U(φ(t)) = U(y, k) < c for every t ∈ [0, τ ]. Since, for
every t ∈ [0, τ ], both (y, k) and φ(t) are contained in the connected subset φ([0, τ ])
of the set {(y, k) : U(y, k) < c}, it follows that φ(t) ∈ U for every t ∈ U . Thus
φ(t) ∈ U ∩ Q for every t ∈ [0, τ ]. Consequently, φ2(t) ∈ [k0 − δ, k0 + δ] for all
t ∈ [0, τ ]. Next we compute d

dt (φ1(t))
2 = −2g′(φ2(t))(φ1(t))

2 so that y2 = (φ2(τ))
2 =

y2
2 exp[−2

∫ τ

0
g′(φ2(t))dt] ≤ Y 2 exp(−2rτ). Since τ > 0 was chosen arbitrarily, it

follows that y = 0. Thus U ∩ Q ⊆ V̇ −1(0).

It was shown in Example 5.3 that, for every (y, k) ∈ V̇ −1(0) such that g′(k) �= 0,
the vector field f defined by the right-hand side of (10)–(11) is nontangent to V̇ −1(0).
Hence, for every point (0, k) ∈ U∩Q, TzQ∩Fz = Tz(U∩Q)∩Fz ⊆ Tz(V̇

−1(0))∩Fz ⊆
{0}. Thus f is nontangent to Q at every point in U ∩ Q. By (ii) of Theorem 7.2, we
conclude that the equilibrium (0, k0) is semistable.

Remark 7.4. It is worthwhile to note that Theorem 7.1 cannot be applied in
Example 7.3 using the Lyapunov function V , because none of the equilibria of the
closed-loop system (10)–(11) are local minimizers of the function V . In fact, the
Lyapunov function V chosen in the example does not have any local minimizers.

Remark 7.5. The convergence of the closed-loop system (10)–(11) is also proved
in [17, p. 46]. However, unlike the proof given in [17], our proof of convergence
given in Example 5.3 is based on Lyapunov analysis. Moreover, in Example 7.3 we
go beyond convergence and identify a class of semistable equilibria for the closed-loop
system.

Remark 7.6. Theorems 7.1 and 7.2 involve hypotheses on the Lyapunov function
and its derivative that are weaker than sign definiteness or sign semidefiniteness. For
instance, in Theorem 7.1 and (iv)–(vi) of Theorem 7.2, the Lyapunov function is
required to have a local nonstrict minimum at the equilibrium point only with respect
to the set of points where the Lyapunov function derivative is negative, while in (i)–(iii)
of Theorem 7.2, the Lyapunov function is not required to have even a local minimum
at the equilibrium point of interest. Consequently, Theorems 7.1 and 7.2 can be used
to deduce stability of all equilibria in a continuum by considering a single Lyapunov
function for all the equilibria. This makes Theorems 7.1 and 7.2 particularly suited
for applications to systems having a continuum of equilibria. Examples 7.1 and 7.3
illustrate these observations.

Our final result is the following corollary of Theorem 7.2.

Corollary 7.3. Suppose V : G → R is a continuous function such that V̇
is defined on G. Let x ∈ E be a global minimizer of V relative to G and a global
maximizer of V̇ relative to G. Let P denote the largest subset of V −1(V (x)) that is
invariant and connected and contains x. Let N denote the largest invariant subset of

V̇ −1(0). Then the following statements hold.

(i) If P = {x}, then x is Lyapunov stable relative to G.
(ii) If x is an isolated point of N , then x is asymptotically stable relative to G.
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Proof. (i) Since x is a global minimizer of V relative to G, it follows that P is
also the largest connected subset of the set {z ∈ G : V (z) ≤ V (x)} that is invariant
and contains x. If P = {x}, then TxP ∩ Fx ⊆ {0}, and hence the result follows from
(i) of Theorem 7.2.

(ii) Since P is an invariant subset of a level set of V , it follows that P ⊆ V̇ −1(0).

Thus P is a connected invariant subset of V̇ −1(0) containing x, and hence P ⊆ N .
Now suppose x is an isolated point of N . Then P = {x}, and hence, by (i), x is
Lyapunov stable relative to G. By Lyapunov stability of x and local compactness of
G, there exists a relatively open, relatively bounded, and positively invariant neigh-
borhood U ⊆ G of x such that U ∩ N = {x}. For every z ∈ U , Oz ⊆ U is relatively
bounded. By Proposition 5.3, for every z ∈ U , O∞

z ⊆ Oz ⊆ U is contained in N .
Since U ∩ N = {x}, it follows that O∞

z = {x} for every z ∈ U . Asymptotic stability
of x now follows.

Remark 7.7. It is interesting to compare (ii) of Corollary 7.3 with the Krasovskii–
LaSalle theorem for asymptotic stability [20, Thm. 14.1]. In the result from [20],
the Lyapunov function and its derivative are assumed to be locally positive definite
and locally negative semidefinite, respectively, at the equilibrium. In other words,
the equilibrium is assumed to be a strict local minimizer for the Lyapunov function
and a local nonstrict maximizer for the Lyapunov function derivative. On the other
hand, Corollary 7.3 assumes the equilibrium to be a global nonstrict minimizer and a
global nonstrict maximizer for the Lyapunov function and its derivative, respectively.
In other words, Corollary 7.3 assumes the Lyapunov function to be only positive
semidefinite globally instead of positive definite locally at the equilibrium. Thus,
both (ii) of Corollary 7.3 and Theorem 14.1 of [20] assert asymptotic stability of the
equilibrium under two alternative and complementary sets of assumptions.

Remark 7.8. It is also interesting to compare Corollary 7.3 with Corollary 7.1.
While Corollary 7.3 requires the equilibrium to be a global minimizer and a global
maximizer of V and V̇ , respectively, Corollary 7.1 requires only that the equilibrium
be a local minimizer and a local maximizer, respectively, of V and V̇ . Thus the
hypotheses of Corollary 7.1 on the Lyapunov function and its derivative are weaker
than those of Corollary 7.3. However, Corollary 7.1 requires the equilibrium point
to be an isolated point of the largest negatively invariant subsets of level sets of V
and V̇ , while Corollary 7.3 requires only that the equilibrium be an isolated point
of the largest invariant subsets of level sets of V and V̇ . Since invariant sets are
also negatively invariant, it is clear that the hypotheses of Corollary 7.3 relating
to invariant subsets are weaker than the corresponding hypotheses in Corollary 7.1.
Thus both corollaries assert Lyapunov and asymptotic stability under alternative and
complementary sets of conditions.

8. Conclusions. This paper introduces convergence and semistability as two
notions of importance in the study of systems having a continuum of equilibria. The
main contribution of this paper has been the introduction of the notion of nontan-
gency and its application in the Lyapunov analysis of systems having a continuum
of equilibria. Positive limit sets and restricted prolongations play a key role in the
application of nontangency to Lyapunov analysis of convergence and stability, respec-
tively. We introduce restricted prolongations in the paper, establish their invariance
properties, and give inclusion results for restricted prolongations in terms of invariant
and negatively invariant subsets of the level and sublevel sets of a Lyapunov function
and its derivative. Using nontangency, we obtain Lyapunov results for convergence,
Lyapunov stability, semistability, and asymptotic stability. The results on Lyapunov
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stability and asymptotic stability involve hypotheses on the Lyapunov function and its
derivative that are weaker than sign definiteness or semidefiniteness. This makes our
results particularly suited for applications to systems having a continuum of equilibria.
The weaker hypotheses on the Lyapunov function and its derivative are supplemented
by assuming nontangency of the vector field to appropriate subsets of the level and
sublevel sets of the Lyapunov function and its derivative. We illustrate the main
results by applying them to an example from chemical kinetics and an example from
adaptive control.

Appendix. Proof of Proposition 4.2. We present here the proof of Propo-
sition 4.2. First, we recall some definitions related to set convergence [2, 26]. Con-
sider a sequence {Wk} of subsets of R

n. The limit superior of the sequence, de-
noted lim supk→∞Wk, is the set of all subsequential limits of sequences {wk} in
R

n such that wk ∈ Wk for every k. The limit inferior of the sequence, denoted
by lim infk→∞Wk, is the set of limits of convergent sequences {wk} in R

n such
that wk ∈ Wk for every k. The sequence {Wk} converges to the set W ⊆ R

n if
W = lim infk→∞Wk = lim supk→∞Wk.

The proof of Proposition 4.2 requires two basic results on set convergence. The
first result is that if {Wk} is a sequence of subsets of a bounded subset of R

n, then
the sequence {Wk} has a subsequence that converges to a nonempty set. This result
follows from Theorem 1.1.7 of [2] and Theorem 4.18 of [26]. The second result is given
by the following lemma.

Lemma A.1. Suppose {Wk} is a sequence of connected subsets of a bounded set
B ⊂ R

n that converges to a set W ⊆ R
n. Then W is connected.

Proof. Suppose W is not connected. Then there exist two disjoint open sets
U ⊆ R

n and V ⊆ R
n such thatW ⊆ U ∪V andW∩U andW∩V are nonempty. Since

W = lim infk→∞Wk, there exist convergent sequences {uk} and {vk} in R
n such that

limk→∞ uk ∈ W ∩ U , limk→∞ vk ∈ W ∩ V and, for every k, uk, vk ∈ Wk. Therefore,
there exists K > 0 such that, for every k > K, Wk ∩ U and Wk ∩ V are nonempty.
Since each Wk is connected, it follows that, for every k > K, there exists wk ∈ Wk

such that wk /∈ U ∪ V. The sequence {wk}∞k=K is contained in B and hence bounded.
Let w be a subsequential limit of the sequence {wk}∞k=K . Since the sequence {wk}∞k=K

is contained in the closed set R
n\(U ∪ V), it follows that w ∈ R

n\(U ∪ V). On the
other hand, w ∈ lim supk→∞Wk =W ⊆ U ∪V, which leads to a contradiction. Hence
we conclude that W is connected.

Proof of Proposition 4.2. Suppose 0 /∈ co Lx. For each k = 1, 2, . . . , let Uk =
{w ∈ R

n : dist(w,Lx) < 1/k}. For every k, Uk is an open set containing Lx, Uk is
compact, and Uk+1 ⊂ Uk. Moreover, ∩kUk = Lx.

For every k, there exists a relatively open neighborhood Vk ⊆ G of x such that,
for every z ∈ Vk\E , ‖f(z)‖−1f(z) ∈ Uk. It is easy to show that, for every k, every
connected component of f(Vk)\{0} is contained in the cone generated by a connected
component of Uk. Hence it follows that, for every k, coco(f(Vk)\{0}) ⊆ coco Uk.
Consequently, Fx ⊆ ∩∞

k=1coco (f(Vk)\{0}) ⊆ ∩∞
k=1coco Uk.

We claim that ∩∞
k=1coco Uk ⊆ coco Lx. To prove this, choose v ∈ ∩∞

k=1coco Uk.
There exist a sequence {αk} in (0,∞) and a sequence {vk} in R

n such that, for every
k, vk ∈ co Uk and

‖v − αkvk‖ <
1

k
.(17)

For each k, let Wk be a connected component of Uk such that vk is contained in
the convex hull of Wk. Each Wk is a subset of the bounded set U1. Hence there
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exists an increasing sequence {kj}∞j=1 of integers such that the subsequence {Wkj
}∞j=1

converges. Let W = limj→∞Wkj . Then, by Lemma A.1, W is connected.
Next, consider w ∈ W. There exists a sequence {wj} such that wj ∈ Wkj ⊆ Ukj

for every j, and limj→∞ wj = w. Since {Uk} is a decreasing sequence of sets, for every
k, the sequence {wj} is eventually contained in Uk. Hence w ∈ Uk for every k; that
is, w ∈ ∩kUk = Lx. Since w ∈ W was arbitrary, it follows that W ⊆ Lx. Hence the
connected set W is contained in a connected component of Lx.

By Caratheodory’s theorem [25, Thm. 17.1], for every j, there exist vectors
wi

j ∈ Wkj , i = 1, . . . , n, and scalars λi
j ∈ [0, 1], i = 1, . . . , n, such that λ1

j+ · · ·+λn
j = 1

and

vkj = λ1
jw

1
j + · · ·+ λn

j wn
j .(18)

For each i = 1, . . . , n, let λi ∈ [0, 1] and wi be subsequential limits of the bounded
sequences {λi

j}∞j=1 and {wi
j}∞j=1, respectively. Then, for every i, wi ∈ W, while

λ1 + · · ·+ λn = 1. Let w = λ1w1 + · · ·+ λnwn. Then w ∈ co Lx, and hence w �= 0.
By (18), there exists an increasing sequence {im}∞m=1 of integers such that, for

every m,

‖vim − w‖ <
1

m
.(19)

For every m, (17) implies that αim‖vim‖ ≤ ‖v‖+ i−1
m , while (19) implies that ‖vim‖ ≥

‖w‖−m−1. It therefore follows that, for every m > ‖w‖−1, αim ≤ (‖v‖+ i−1
m )(‖w‖−

m−1)−1. There exists M > 0 such that, for every m > M , i−1
m < ‖v‖ and m−1 <

‖w‖/2. Then, for every m > M , αim ≤ 4‖v‖/‖w‖. It follows that the subsequence
{αim}∞m=1 is bounded. Hence, by choosing subsequences appropriately, we may as-
sume that there exists α ∈ [0,∞) such that, for every m > M , |αim − α| < m−1.
Then, for every m > M , ‖v−αw‖ ≤ ‖v−αimvim‖+αim‖vim −w‖+ |αim −α|‖w‖ ≤
i−1
m +m−1(αim +‖w‖). Since the subsequence {αim}∞m=1 is bounded and the sequence
{im} is divergent, m can be chosen to make the right-hand side of the previous in-
equality arbitrarily small. It follows that v = αw and thus v ∈ coco Lx. The result
now follows.
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