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Abstract. The purpose of this paper is to attain some optimality conditions for the identification
of a diffusion matrix (material) under several restrictions. Assuming that the set of such diffusion
matrices is closed for the H-convergence, we give a method to obtain admissible directions which
applies to a not-necessarily convex control set. Our results permit obtaining the diffusion matrix
from the state functions.
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1. Introduction. The problem we consider in the present paper is related to
the choice of an optimal material under several conditions, or the identification of a
material from a finite number of observations. In a mathematical setting, we have the
model problem

min
A∈M(Ω)

J(y1, . . . , yk),(1.1)

where yi = yi(A), 1 ≤ i ≤ k, are the solutions of the equations{ −divA∇yi = fi in D′(Ω),

yi ∈ H1
0 (Ω), 1 ≤ i ≤ k.

(1.2)

Here Ω is a bounded open set of RN , J is a smooth objective functional in H1
0 (Ω)k,

f1, . . . , fk are k fixed elements of H−1(Ω), and M(Ω) is a given set of measurable
functions with values in the space of symmetric matrices of order N . The elements
of M(Ω) are uniformly elliptic and bounded. Clearly, other generalizations can be
considered: J depending on A, other boundary conditions, etc. A physical example
is the identification of a material. For this purpose, we apply a finite number k of
external conditions (in our case they are represented by fi) and in each case we realize
a measure of the corresponding state. For example, we give the value zi of the state
in a subset ω ⊂ Ω. Then the problem can be formulated as

min

k∑
i=1

∫
ω

|yi − zi|2 dx,

where yi are the solutions of (1.2).
Assuming J is sequential lower semicontinuous for the weak topology of H1

0 (Ω)k

and M(Ω) is closed for the H-convergence or the G-convergence, because we are
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NONCONVEX CONTROL PROBLEMS IN THE COEFFICIENTS 217

working with symmetric matrices and thus the two concepts are equivalent (see, e.g.,
[22], [19], [18], [4], [25]), it is well known that (1.1) has, at least, a solution (see, e.g.,
[25], [17]). If M(Ω) does not satisfy this last condition and J is sequential continuous
for the weak topology of H1

0 (Ω)k, we can obtain a relaxed problem replacing M(Ω)
by its H-closure. Thus, it is natural to assume M(Ω) is H-closed. The calculus of
the H-closure of a set is a very difficult problem and there are a lot of works in this
field (see, e.g., [23], [14], [13], [8], [25], [3], [16] and the references in them). In this
paper we are interested in obtaining some necessary conditions which must satisfy the
optimal solution of (1.1). For k = 1, the problem has been studied in [13], [20], [8],
[25], [3]. For k > 1, there are few results to our knowledge (see [25], [6], [7], [3]).

The paper is organized as follows:
In section 3 we give a definition of admissible direction (see Definition 3.1). Then

we prove that if A is a solution of (1.1), y1, . . . , yk the corresponding state functions,
p1, . . . , pk the solutions of (3.2) (the adjoint states), and C the matrix defined by
(3.3), we have ∫

Ω

H : C dx ≤ 0(1.3)

for every admissible direction H. Related results can be found, for example, in [8],
[13], [25], [3]. However, in these papers, the admissible directions are of the form
H = B − A, with B in M(Ω), which needs some convexity assumptions. When
k ≤ N − 1 (in particular k = 1) and M(Ω) is obtained by homogenization, mixing a
finite number of matrices with fixed proportions, a result of Tartar (see [25]) shows
that although M(Ω) is not convex, for every ξ1, . . . , ξk ∈ RN , the set

{(Bξ1, . . . , Bξk) / B ∈ M(Ω)} ⊂ L∞(Ω)k(1.4)

is convex, and thus the directions H = B − A can still be considered. However, this
is not true for k ≥ N (or, in principle, for other choices of M(Ω) even if k ≤ N − 1).
This is the reason we have given a more general definition of admissible direction.

In section 4, assuming M(Ω) local (see Definition 4.1) and closed for the H-
convergence, we give an original method to find admissible directions following our
definition. As a consequence, we obtain the main result of the paper, Theorem 4.5,
where we prove that for every A,B ∈ M(Ω), l ∈ {1, . . . , N}, W ⊂ RN linear subspace
of dimension l, and every bounded measurable set T of W , with l-dimensional positive
measure, the matrix H defined by

H(x)ei = (B(x) −A(x))

(
ei +

1

|T |�

∫
T

∇W
z ŵi(x, z) d�(z)

)
(1.5)

is an admissible direction in A. Here e1, . . . , eN is the standard basis of RN , ∇W
z

denotes the gradient with respect to W , and ŵi is the solution of the partial differential
problem given by (4.4). This direction has the difficulty that ŵi (and then H) cannot
be explicitly obtained. However, we think that it can be interesting, for example, to
apply a descent method in order to solve numerically problem (1.1), where we can
obtain ŵi numerically. Related to this point, an interesting question, one that we
want to study in the future, is the optimal choice of W and T to obtain the steepest
descent direction. A criterion to determine this direction (see Remark 4.9) can be to
calculate the maximum of H : C on the set of matrices H obtained by (1.5).

Although, as we have said above, it is not possible in general to obtain ŵi explic-
itly, we show in Theorem 4.12 that this can be carried out for a particular choice of
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218 J. CASADO-DÍAZ, J. COUCE-CALVO, AND J. D. MARTÍN-GÓMEZ

T (which probably is not optimal). This permits us to obtain a family of admissible
direction, depending on the subspace W chosen. Essentially, they are of the form
B − A plus a term which has a growth of order two in B − A for every B ∈ M(Ω).
When the dimension of W is equal to 1, the corresponding admissible direction comes
just from a lamination. In this case the expression of H is known and it can be found,
for example, in [25] (it can also be obtained from the results in [10]), but to our
knowledge its utility to obtain optimality conditions for problem (1.1) has not been
exploited. Most of the consequences we obtain in the present paper using Theorem
4.12 use only, in fact, l = 1. However, we show that in some cases (see Remark 4.17)
it is better to use a subspace of dimension greater than one. Using Theorem 4.12 we
prove in Corollary 4.18 that for every B ∈ M(Ω), the condition

C : (A−B) ≥ 0(1.6)

(which is the condition we find if the admissible directions are of the form B−A) is still
true on the set where C has a nonpositive eigenvalue or where Ker(A−B) �= {0}. In
particular (see Corollary 4.20) the condition (1.6) holds a.e. in Ω for every B ∈ M(Ω)
when k ≤ N −1. When M(Ω) comes from the mixture of a finite number of materials
with fixed proportions, this result can also be obtained from the convexity of the set
defined by (1.4), but we note that our set M(Ω) is more general.

In section 5 we study the case where M(Ω) is invariable by rotations, which is a
natural assumption in the applications. Then we show that condition (1.3) implies
that C and A are mutually diagonalizable a.e. in Ω. Moreover, assuming further
hypotheses (in particular if M(Ω) is H-closed and N ≥ 3), we prove in Proposition
5.4 that the eigenvalues of A and C are mutually ordered.

As application of the results stated above, it is possible to obtain, in some situ-
ations, the matrix A from C and then to reduce the set of optimality conditions to
a nonlinear partial differential system with variables yi, pi, 1 ≤ i ≤ k. The main
problem to carrying out this point is that in general, the H-closure of a given set is
unknown. In section 6, we apply our results to two examples: The first one is the
mixture of two homogeneous isotropic materials, which has also been studied in [3]
(see also [25] for k = 1). In this case M(Ω) is convex. In second problem we consider
a polycrystal in dimension 2, where M(Ω) is not convex.

2. Notation. For a linear subspace W ⊂ RN , we define L(W,W ) as the space of
the linear applications from W into W and by Ls(W,W ) the subspace of the symmetric
applications. When W = RN we write MN = L(RN ,RN ), Ms

N = Ls(RN ,RN ).

The orthogonal projection of RN into W is denoted by PW .

For a matrix A ∈ MN , we define AW ∈ L(W,W ) by AW = PWA|W .

The orthogonal subspace of W is denoted by W⊥.

For u : W → R, we denote ∇Wu : W → W the gradient of u with respect to W ,
i.e., ∇Wu is defined by

∇Wu ξ = Dξu ∀ ξ ∈ W,

where Dξu is the derivative of u in the direction ξ.

We denote by {e1, . . . , eN} the standard basis of RN .

The group of the orthogonal matrices in RN of determinant 1 is denoted by ON .

The scalar product of two matrices A,B ∈ MN is written A : B.

The tensorial product of two vectors ξ, η ∈ RN is denoted as ξ ⊗ η.
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NONCONVEX CONTROL PROBLEMS IN THE COEFFICIENTS 219

For a bounded open set Ω ⊂ RN , we denote by M(Ω) a fixed subset of the space
L∞(Ω,Ms

N ) such that there exist α, β > 0 which satisfy

B(x)ξξ ≥ α|ξ|2, |B(x)ξ| ≤ β|ξ| ∀B ∈ M(Ω) a.e. x ∈ Ω.(2.1)

For a matrix A ∈ M(Ω), KA(M(Ω)) and K̄A(M(Ω)) are the cones of admissible
directions of M(Ω) in A; see Definition 3.1.

For T ⊂ RN and � ∈ (0, N ], we denote by |T |� the �-dimensional Hausdorff
measure of T . The integral of a function u : T → R, with respect to the �-dimensional
Hausdorff measure, is written ∫

T

u(z) d�z.

When � = N , we simplify the notation by writing |T | and∫
T

u(z) dz.

We use the subindex � to mean periodicity. For example, for a cube Y ⊂ RN ,
H1

� (Y ) is the space of functions of H1
loc(R

N ) which are Y -periodic.

3. Optimality conditions. In this section we introduce the definition of admis-
sible direction. Using it, we obtain the first optimality result for the control problem
(1.1).

Definition 3.1. For A ∈ M(Ω), let us define the cone of admissible directions
K̄A(M(Ω)) as the closure in the weak-∗ topology of L∞(Ω,Ms

N ) of the set KA(M(Ω)),
where KA(M(Ω)) is the set of H ∈ L∞(Ω,Ms

N ) such that there exist a constant c > 0
and Aε ∈ M(Ω), ε > 0, such that⎧⎨

⎩
‖Aε −A‖L∞(Ω,Ms

N ) ≤ cε,

lim
ε→0

Aε −A

ε
= H a.e. in Ω.

(3.1)

Theorem 3.2. We consider J : H1
0 (Ω)k → R, Fréchet derivable, f1, . . . , fk ∈

H−1(Ω)k. Let A ∈ M(Ω) be a solution of (1.1) and y1, . . . , yk the solutions of (1.2).
We define the adjoint states p1, . . . , pk as the solutions of{ −div(A∇pi) = ∂iJ(y1, . . . , yk) in D′(Ω),

pi ∈ H1
0 (Ω), 1 ≤ i ≤ k,

(3.2)

and the matrix C ∈ L1(Ω,Ms
N ) by

C =
1

2

k∑
i=1

(∇yi ⊗∇pi + ∇pi ⊗∇yi).(3.3)

Then we have ∫
Ω

H : C dx ≤ 0 ∀H ∈ K̄A(M(Ω)).(3.4)
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220 J. CASADO-DÍAZ, J. COUCE-CALVO, AND J. D. MARTÍN-GÓMEZ

Proof. Let us first prove the result for H ∈ KA(M(Ω)). For ε > 0 small enough,
we define y∗i,ε, 1 ≤ i ≤ k, as the solution of

{ −div((A + εH)∇y∗i,ε) = fi in D′(Ω),

y∗i,ε ∈ H1
0 (Ω).

(3.5)

Then it is easy to check that for 1 ≤ i ≤ k, we have

lim
ε→0

y∗i,ε − yi

ε
= ẏi in H1

0 (Ω),(3.6)

with ẏi the solutions of{ −div(A∇ẏi + H∇yi) = 0 in D′(Ω),

ẏi ∈ H1
0 (Ω).

(3.7)

Now, for ε > 0, we consider Aε ∈ M(Ω) in the conditions of (3.1). Then for
1 ≤ i ≤ k, we define yi,ε as the solutions of

{ −div(Aε∇yi,ε) = fi in D′(Ω),

yi,ε ∈ H1
0 (Ω).

(3.8)

Taking y∗i,ε − yi,ε as test function in the difference of (3.5) and (3.8), and dividing by
ε, we get

1

ε

∫
Ω

(A + εH)∇(y∗i,ε − yi,ε)∇(y∗i,ε − yi,ε) dx

=

∫
Ω

Aε − (A + εH)

ε
∇(yi,ε − y∗i,ε)∇(y∗i,ε − yi,ε) dx(3.9)

+

∫
Ω

Aε − (A + εH)

ε
∇y∗i,ε∇(y∗i,ε − yi,ε) dx.

By the ellipticity of A+ εH (for ε small enough) and (3.1), we deduce from (3.9) the
existence of c > 0 such that

1

ε
‖y∗i,ε − yi,ε‖2

H1
0 (Ω) ≤ c‖y∗i,ε − yi,ε‖H1

0 (Ω)‖µε‖L2(Ω),

with

µε =
Aε − (A + εH)

ε
∇y∗i,ε.

From (3.1), (3.6), and the Lebesgue-dominated convergence theorem, we deduce that
µε converges strongly to zero in L2(Ω)N . Thus,

lim
ε→0

y∗i,ε − yi,ε

ε
= 0 in H1

0 (Ω),

which, by (3.6), implies

lim
ε→0

yi,ε − yi
ε

= ẏi in H1
0 (Ω).(3.10)
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NONCONVEX CONTROL PROBLEMS IN THE COEFFICIENTS 221

On the other hand, since A is a solution of (1.1) and Aε ∈ M(Ω), we have

J(yε) − J(y)

ε
≥ 0 ∀ ε > 0,

with yε = (y1,ε, . . . , yk,ε) and y = (y1, . . . , yk). From (3.10) and the Fréchet deriv-
ability of J , we get

k∑
i=1

〈∂iJ(y), ẏi〉 = lim
ε→0

J(yε) − J(y)

ε
≥ 0.(3.11)

But taking ẏi as the test function in (3.2) and pi as the test function in (3.7), we have

k∑
i=1

〈∂iJ(y), ẏi〉 =

k∑
i=1

∫
Ω

A∇pi∇ẏi dx = −
k∑

i=1

∫
Ω

H∇yi∇pi dx.

This proves

∫
Ω

H : C dx =

k∑
i=1

∫
Ω

H∇yi∇pi dx ≤ 0 ∀H ∈ KA(M(Ω)).(3.12)

Now let H be in K̄A(M(Ω)). For δ > 0 we define

Gδ =

{
M ∈ L∞(Ω,Ms

N )/

∣∣∣∣
∫

Ω

C : (M −H) dx

∣∣∣∣ < δ

}
.

Since Gδ is a neighborhood of H in the weak-∗ topology of L∞(Ω,Ms
N ), there exists

Hδ in Gδ ∩KA(M(Ω)) and then, from (3.12), we get∫
Ω

C : H dx =

∫
Ω

C : Hδ dx +

∫
Ω

C : (H −Hδ) dx < δ

for every δ > 0. This proves (3.4).
Remark 3.3. The above theorem is still true if the elements of M(Ω) are not

necessarily symmetric by changing A to At in the definition (3.2) of the functions pi
and taking

C =

k∑
i=1

∇pi ⊗∇yi.

Remark 3.4. If M(Ω) is convex, the condition (3.4) implies∫
Ω

A : C dx = max

{∫
Ω

B : C dx / B ∈ M(Ω)

}
.(3.13)

Remark 3.5. Theorem 3.2 still holds if we take KA(M(Ω)) as the cone of matrices
H ∈ L∞(Ω,Ms

N (Ω)) such that for every sequence Φ1
ε, . . . ,Φ

k
ε , which respectively

converges in L2(Ω)N to Φ1, . . . ,Φk, there exists Aε ∈ M(Ω) such that

Aε −A

ε
Φi

ε → HΦi in L2(Ω)N , i = 1, . . . , k.
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222 J. CASADO-DÍAZ, J. COUCE-CALVO, AND J. D. MARTÍN-GÓMEZ

The advantage of this definition is the following: If M(Ω) is the set we obtain by
mixing r materials with proportions fixed, then for every ξ1, . . . , ξN−1 ∈ RN , the set

{(Bξ1, . . . , BξN−1)/B ∈ M(Ω)} ⊂ L∞(Ω)N−1

is convex (see [24], [25]). So, with this definition of KA(M(Ω)), the matrices of the
form B − A belong to KA(M(Ω)) if k ≤ N − 1. Thus, (3.13) still holds in this case.
Later we will deduce this result (see Corollary 4.20) for more general choices of M(Ω),
using simply Definition 3.1 of admissible directions.

4. Calculus of admissible directions. In the following, let us calculate ex-
plicitely some admissible directions by imposing additional hypotheses about M(Ω).

Definition 4.1. We say that M(Ω) is local if there exists a multivaluated appli-
cation F : x ∈ Ω → F (x) ⊂ Ms

N such that

M(Ω) = {B ∈ L∞(Ω,Ms
N )/B(x) ∈ F (x) a.e. x ∈ Ω},

where F is measurable in the sense that

{x ∈ Ω/F (x) ∩G �= ∅} is measurable ∀G ⊂ Ms
N open.

As it is proved in [21], the local property is satisfied in several typical examples
of M(Ω). A first consequence of assuming M(Ω) is local follows.

Proposition 4.2. We assume M(Ω) is local. We consider A∈M(Ω), H1, . . . ,
Hm∈KA(M(Ω)), ω1, . . . , ωm ⊂ Ω measurable such that |ωi ∩ ωj | = 0 if i �= j. Then
the matrix H =

∑m
i=1 Hi

χ
ωi

belongs to KA(M(Ω)).
Proof. By Definition 3.1, for every i ∈ {1, . . . ,m} there exists Ai

ε ∈ M(Ω) and
c > 0 (which can be taken independent of i) such that

‖Ai
ε −A‖L∞(Ω,Ms

N ) ≤ cε, lim
ε→0

Ai
ε −A

ε
= Hi a.e. in Ω.

Taking then

Aε =

m∑
i=1

Ai
ε
χ
ωi

+ A χ
Ω\∪m

i=1ωi
,

which belongs to M(Ω) because M(Ω) is local, we have

‖Aε −A‖L∞(Ω,Ms
N ) ≤ cε, lim

ε→0

Aε −A

ε
= H a.e. in Ω,

and then H belongs to KA(M(Ω)).
Remark 4.3. It is not difficult to show that the above result remains true if we

replace KA(M(Ω)) by K̄A(M(Ω)).
Using Proposition 4.2, we get the following.
Proposition 4.4. In the assumptions of Theorem 3.2, if M(Ω) is local, we have

H : C ≤ 0 a.e. in Ω ∀H ∈ K̄A(M(Ω)).(4.1)

Proof. By Proposition 4.2, for every H ∈ KA(M(Ω)) and every ω ⊂ Ω measurable,
the matrix H χ

ω belongs to KA(M(Ω)). So, using (3.4), we get∫
ω

H : C dx ≤ 0.(4.2)

D
ow

nl
oa

de
d 

06
/1

0/
16

 to
 1

50
.2

14
.1

82
.1

69
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



NONCONVEX CONTROL PROBLEMS IN THE COEFFICIENTS 223

Since K̄A(M(Ω)) is the closure of KA(M(Ω)) in the weak-∗ topology of L∞(Ω,Ms
N ),

we deduce that (4.2) holds, in fact, for every H ∈ K̄A(M(Ω)) and every ω ⊂ Ω
measurable, which implies (4.1).

Let us now see how assuming M(Ω) is local permits us to obtain admissible
directions.

Theorem 4.5. We suppose that M(Ω) is local and closed for the H-convergence.
We consider a linear subspace W ⊂ RN of dimension � and a measurable bounded
subset T ⊂ W such that |T |� is positive. Then, for every A,B ∈ M(Ω), the matrix
H ∈ L∞(Ω,Ms

N ) defined by

H(x)ei = (B(x) −A(x))

(
ei +

1

|T |�

∫
T

∇W
z ŵi(x, z) d�(z)

)
(4.3)

for 1 ≤ i ≤ N and a.e. x ∈ Ω belongs to KA(M(Ω)). In (4.3), the function ŵi is
defined by ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ŵi(x, .) ∈ H1
loc(W ), ∇W

z ŵi(x, .) ∈ L2(W,W ),∫
W

(A(x) χ
W\T + B(x) χ

T )∇W
z ŵi(x, .)∇W

z v̂ d�(z)

=

∫
T

(A(x) −B(x))ei∇W
z v̂ d�(z),

∀ v̂ ∈ H1
loc(W ), ∇W

z v̂ ∈ L2(W,W ) a.e. x ∈ Ω.

(4.4)

Proof. We consider A, B, W , and T as in the statement of the theorem. For an
orthonormal basis {e′1, . . . , e′�} of W , we denote

Y =

{
�∑

i=1

λie
′
i /−

1

2
< λi <

1

2
, 1 ≤ i ≤ �

}
⊂ W.

For ε > 0 small enough, we denote Tε = ε
1
� T ⊂ Y , T̃ε =

⋃
k∈Z�(Tε +

∑�
i=1 kie

′
i), and

we define Ãε : Ω ×W → Ms
N by

Ãε(x, y) = A(x)(1 − χ
T̃ε

(y)) + B(x) χ
T̃ε

(y).

Since M(Ω) is local and closed for the H-convergence, the matrix Aε obtained by tak-
ing, for ε fixed, the H-limit when δ tends to zero of the matrices x → Ãε(x,

1
δP

W (x))

belongs to M(Ω). Since the matrices Ãε are a tensorial product of functions which
only depend on x and functions which only depend on y, it is well known (see, e.g.,
[5], [2]) that Aε is given by

Aε(x)ei =

∫
Y

Ãε(x, y)(∇W
y wi,ε + ei) d�(y),(4.5)

where wi,ε is the unique solution of

⎧⎪⎪⎨
⎪⎪⎩

wi,ε ∈ L2(Ω, H1
� (Y )/R),∫

Y

Ãε(x, y)(∇W
y wi,ε(x, y) + ei)∇W

y v(y) d�(y) = 0

∀ v ∈ H1
� (Y )/R a.e. x ∈ Ω.

(4.6)

D
ow

nl
oa

de
d 

06
/1

0/
16

 to
 1

50
.2

14
.1

82
.1

69
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



224 J. CASADO-DÍAZ, J. COUCE-CALVO, AND J. D. MARTÍN-GÓMEZ

Let us study the asymptotic behavior of Aε. First, we remark that for every v ∈
H1

� (Y )/R and a.e. x ∈ Ω, we have∫
Y

Ãε(x, y)ei∇W
y v(y) d�(y) =

∫
Y

A(x)ei∇W
y v(y) d�(y)

+

∫
Tε

(B(x) −A(x))ei∇W
y v(y) d�(y),

but for a.e. x ∈ Ω, the first term on the right-hand side vanishes. So, wi,ε satisfies⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Y

Ãε(x, y)∇W
y wi,ε(x, y)∇W

y v(y) d�(y)

=

∫
Tε

(A(x) −B(x))ei∇W
y v(y) d�(y)

∀ v ∈ H1
� (Y )/R a.e. x ∈ Ω.

(4.7)

For 1 ≤ i ≤ N , we take wi,ε as the test function in (4.7). Then we get∫
Y

Ãε(x, y)∇W
y wi,ε(x, y)∇W

y wi,ε(x, y) d�(y) =

∫
Tε

(A(x) −B(x))ei∇W
y wi,ε(x, y) d�(y)

for a.e. x ∈ Ω. Using then (2.1) and the Cauchy–Schwarz inequality, we deduce there
exists c > 0 such that ∫

Y

|∇W
y wi,ε(x, y)|2 d�(y) ≤ c|Tε|� = cε(4.8)

for ε > 0 small enough and a.e. x ∈ Ω.
We define ŵi,ε : Ω × (ε−

1
� Y ) → R by

ŵi,ε(x, z) = ε−
1
� wi,ε(x, ε

1
� z).

From (4.8), we deduce that ∇W
z ŵi,ε

χ
ε−

1
� Y

is bounded in L∞(Ω, L2(W,W )). So

there exists a subsequence of ε, which we still denote by ε, which converges weak-∗ in
L∞(Ω, L2(W,W )). Since the curl of the limit is zero, it is the gradient of a function
ŵi ∈ L∞(Ω, H1

loc(W )). Once we prove that ŵi is the solution of (4.4), we conclude
that the whole of the sequence converges.

We consider v̂ ∈ D(W ) and ε > 0 small enough, such that ε
1
� supp(v̂) ⊂ Y , then

we define vε ∈ H1
� (Y ) by

vε(y) = ε
1
� v̂(ε−

1
� y) a.e. y ∈ Y.

Taking vε as the test function in (4.7), using the change of variables z = ε−
1
� y, and

integrating with respect to x in a measurable set ω, we get∫
ω

∫
ε−

1
l Y

(A(x) χ
W\T (z) + B(x) χ

T (z))∇W
z ŵi,ε(x, z)∇W

z v̂(z) d�(z) dx

=

∫
ω

∫
T

(A(x) −B(x))ei∇W
z v̂(z) d�(z) dx.

Passing to the limit in this equality and taking into account the arbitrariness of v̂
and ω, and the density of D(RN )/R in the factor space of functions with gradient in
L2(RN ) over R (see, e.g., [9]), we show that ŵi is the solution of (4.4) for 1 ≤ i ≤ N .
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NONCONVEX CONTROL PROBLEMS IN THE COEFFICIENTS 225

Let us now prove

∇W
z ŵi,ε

χ
ε−

1
� Y

→ ∇W
z ŵi in L2(Ω, L2(W,W ))(4.9)

for 1 ≤ i ≤ N . For this purpose, it is enough to take wi,ε as the test function in (4.7),

to use the change of variables z = ε−
1
� y, to take ŵi as the test function in (4.4), and

to use that ∇W
z ŵi,ε

χ
ε−

1
� Y

converges to ∇W
z ŵi, weak-∗ in L∞(Ω, L2(W,W )). This

gives∫
Ω

∫
ε−

1
� Y

(A χ
W\T + B χ

T )∇W
z ŵi,ε∇W

z ŵi,ε d�(z) dx

= 1
ε

∫
Ω

∫
Y

Ãε∇W
y wi,ε∇W

y wi,ε d�(y) dx =
1

ε

∫
Ω

∫
Tε

(A−B)ei∇W
y wi,ε d�(y) dx

=

∫
Ω

∫
T

(A−B)ei∇W
z ŵi,ε d�(z) dx →

∫
Ω

∫
T

(A−B)ei∇W
z ŵi d�(z) dx

=

∫
Ω

∫
W

(A χ
W\T + B χ

T )∇W
z ŵi∇W

z ŵi d�(z) dx.

This implies (4.9).
Now, for i, j ∈ {1, . . . , N} and a.e. x ∈ Ω, we write

Aε(x)eiej =

∫
Y

Ãε(x, y)[∇W
y wi,ε + ei]ej d�(y)

(4.10)

=

∫
Y

Ãε(x, y)∇W
y wi,εej d�(y) + A(x)eiej + ε|T |l(B(x) −A(x))eiej .

Taking wi,ε as the test function in the problem satisfied by wj,ε and using the

change of variables z = ε−
1
� y, we have∫

Y

Ãε(x, y)∇W
y wi,εej d�(y) = −

∫
Y

Ãε(x, y)∇W
y wj,ε∇W

y wi,ε d�(y)

= −ε

∫
ε−

1
� Y

(A(x) χ
W\T (z) + B(x) χ

T (z))∇W
z ŵj,ε∇W

z ŵi,ε d�(z).

So, from (4.10), we get(
Aε −A

ε

)
eiej = |T |�(B(x) −A(x))eiej

−
∫
ε−

1
� Y

(A(x) χ
W\T (z) + B(x) χ

T (z))∇W
z ŵj,ε∇W

z ŵi,ε d�(z).

Since ∇W
z ŵj,ε, ∇W

z ŵi,ε are bounded in L∞(Ω, L2(W,W )), we deduce that Aε−A
ε is

bounded in L∞(Ω,Ms
N ). On the other hand, using (4.9), we have

lim
ε→0

∫
ε−

1
� Y

(A(x) χ
W\T (z) + B(x) χ

T (z))∇W
z ŵj,ε∇W

z ŵi,ε d�(z)

=

∫
W

(A(x) χ
W\T (z) + B(x) χ

T (z))∇W
z ŵj∇W

z ŵi d�(z)

= −
∫
T

(B(x) −A(x))∇W
z ŵiej d�(z),
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226 J. CASADO-DÍAZ, J. COUCE-CALVO, AND J. D. MARTÍN-GÓMEZ

where we have used the problem satisfied by ŵj and where the limit is taken in L1(Ω).
So we have proved that the matrix

ei → |T |�(B(x) −A(x))

(
ei +

1

|T |�

∫
T

∇W
z ŵi(x, z) d�(z)

)

is in KA(M(Ω)). Since KA(M(Ω)) is a cone, we conclude the proof of the theo-
rem.

Remark 4.6. Theorem 4.5 applies, for example, to the case where M(Ω) is the set
of materials which can be obtained by homogenization, mixing m materials with the
prescribed volume. These sets usually appear in problems of optimal design. Some
applications are given in the last section of the paper; see also, e.g., [3], [8], [13], [25],
and references therein.

Remark 4.7. The method used in the proof of Theorem 4.5 to obtain admissible
directions, which consists of putting an inclusion of a tensor B in a background of
tensor A, is a variation of the classical Weierstrass test. Related ideas have been used,
for example, by K. A. Lurie (see [8] and references therein).

Remark 4.8. In Theorem 4.5 the expression of H when T is contained in a
subspace W of dimension l can be obtained from the corresponding result to W = RN

(and then the case W = RN can be consider as the most interesting one). It is enough
to consider the matrix Hε corresponding to W = RN and Tε ⊂ RN defined by

Tε = {x + εy : x ∈ B(0, 1) ∩W⊥, y ∈ T}

and then pass to the limit in ε. The proof of Theorem 4.5 given above has the
advantage that we do not need to realize this second limit.

Remark 4.9. The expression (4.3) of the admissible direction H has the difficulty
that the function ŵi is not explicit. However, as we said in the introduction, we think
that it can be used, for example, to obtain a steepest descent direction. Then the
function ŵi can be calculated numerically. For this purpose we recall that by (3.11)
in the proof of Theorem 3.2 we have

J(yε) ∼ J(y) + ε

k∑
i=1

〈∂iJ(y), ẏi〉 = J(y) − ε

∫
Ω

H : C dx

and then, since M(Ω) is local, an idea to obtain the steepest direction is to maximize
the product H : C in the closure of the matrices H given by (4.3). By Remark 4.8,
it is enough to consider W = RN . We remark that the set of such H is bounded and
it is not difficult to show that its closure is convex and thus is essentially a ball (for
some norm).

In Theorem 4.5, the set T does not depend on x ∈ Ω. Thanks to Proposition 4.2
we can, in fact, take T depending on x. A result in this sense, which we use later in
Theorem 4.12, is the following.

Lemma 4.10. Assume M(Ω) is local and closed for the H-convergence. We
consider a linear subspace W ⊂ RN of dimension �, a measurable bounded subset
T0 ⊂ W , and a matrix E ∈ L∞(Ω,L(W,W )) which is invertible a.e. in Ω and such
that E−1 also belongs to L∞(Ω,L(W,W )). Then, taking T (x) = E(x)T0, for a.e.
x ∈ Ω, the matrix H defined by (4.3) with T = T (x) is in K̄A(M(Ω)) for every
A,B ∈ M(Ω).

Proof. For E in the conditions of the lemma, it is well known that there exists

a sequence En =
∑m(n)

j=1 Ej,n
χ
ωj,n with Ej,n ∈ L(W,W ), ωj,n ⊂ Ω measurable,
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NONCONVEX CONTROL PROBLEMS IN THE COEFFICIENTS 227

∪m(n)
j=1 ωj,n = Ω, ωj,n ∩ ωl,n = ∅ if l �= j, and such that En converges strongly to

E in L∞(Ω,L(W,W )). If n ∈ N is large enough (denoting by ‖ · · · ‖ the norm in
L∞(Ω,L(W,W ))), we have ‖En −E‖ < ‖E−1‖−1, and then En is also invertible and
satisfies

‖E−1
n − E−1‖ ≤ ‖E−1‖‖E − En‖

‖E−1‖−1 − ‖E − En‖
.

So E−1
n also converges to E−1 in L∞(Ω,L(W,W )).
We now take Tn(x) = En(x)T0 and we denote by Hn ∈ L∞(Ω,Ms

N ) the matrix
defined by

Hn(x)ei = (B(x) −A(x))

(
ei +

1

|Tn|�

∫
Tn

∇W
z ŵi,n(x, z) d�(z)

)
,

where, for i ∈ {1, . . . , n}, ŵi,n is the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ŵi,n(x, .) ∈ H1
loc(W ), ∇W

z ŵi,n(x, .) ∈ L2(W,W ),∫
W

(A χ
W\Tn

+ B χ
Tn

)∇W
z ŵi,n∇W

z v̂ d�(z)

=

∫
Tn

(A−B)ei∇W
z v̂ d�(z)

∀ v̂ ∈ H1
loc(W ), ∇W

z v̂ ∈ L2(W,W ) a.e. x ∈ Ω.

(4.11)

From Theorem 4.5 and Proposition 4.2, this function belongs to KA(M(Ω)). Using
the change of variables w̃i,n(z̃) = wi,n(Enz̃), we deduce that w̃i,n is the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w̃i,n(x, .) ∈ H1
loc(W ), ∇W

z̃ w̃i,n(x, .) ∈ L2(W,W ),∫
W

(E−1
n )t(A χ

W\T0
+ B χ

T0)E
−1
n ∇W

z̃ w̃i,n∇W
z̃ ṽ d�(z)

=

∫
T0

(E−1
n )t(A−B)ei∇W

z̃ ṽ d�(z)

∀ ṽ ∈ H1
loc(W ), ∇W

z̃ ṽ ∈ L2(W,W ) a.e. x ∈ Ω.

From the uniform convergence of E−1
n to E−1, we easily deduce that ∇W

z̃ w̃i,n converges
a ∇W

z̃ w̃i in L∞(Ω, L2(W,W )), with w̃i the solution of⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w̃i(x, .) ∈ H1
loc(W ), ∇W

z̃ w̃i(x, .) ∈ L2(W,W ),∫
W

(E−1)t(A χ
W\T0

+ B χ
T0

)E−1∇W
z̃ w̃i∇W

z̃ ṽ d�(z)

=

∫
T0

(E−1)t(A−B)ei∇W
z̃ ṽ d�(z)

∀ ṽ ∈ H1
loc(W ), ∇W

z̃ ṽ ∈ L2(W,W ) a.e. x ∈ Ω.

Returning to the old variables, we then deduce that ∇W
z ŵi,n converges to ∇W

z ŵi in
L∞(Ω, L2(W,W )), with ŵi the solution of (4.4). Thus, Hn converges strongly to H
in L∞(Ω,Ms

N ). So H belongs to K̄A(M(Ω)).
Let us now obtain the solutions ŵi of (4.4) for some particular choices of T and

then use Proposition 4.4 to obtain explicit optimality conditions.
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228 J. CASADO-DÍAZ, J. COUCE-CALVO, AND J. D. MARTÍN-GÓMEZ

Lemma 4.11. If M(Ω) is local and closed for the H-convergence, then, for every
linear subspace W ⊂ RN of dimension � and every A,B ∈ M(Ω), the matrix

(B −A) − (B −A)(B + (�− 1)A)−1
W PW (B −A)

is in K̄A(M(Ω)).
Proof. Let W be a linear subspace of RN of dimension l. Since A and A−1 are in

L∞(Ω,Ms
N ), there exists R ∈ L∞(Ω,L(W,W )), with R−1 ∈ L∞(Ω,L(W,W )), such

that RAWRt = IW a.e. in Ω. We define T0 the unitary ball in W and for a.e. x ∈ Ω
we take T (x) = R(x)−1T0 and H(x) the matrix given by (4.3) with T = T (x). From
Lemma 4.10, H belongs to K̄A(M(Ω)).

The problem is to calculate the solution ŵi, 1 ≤ i ≤ N , of (4.4). For this purpose,
the idea is to use the change of variables z′ = Rz, which transforms (4.4) in a similar
problem, where A and T are respectively replaced by the identity and the unitary
ball in W . This problem can be solved by using in a suitable way the fundamental
solution of the laplacian. Doing this and returning to the old variables we deduce
that (up to a function which only depends on x) ŵi is given by

ŵi(x, z) =

⎧⎪⎨
⎪⎩
µi(x)z in T,

µi(x)z

|Rz|� in W \ T,
1 ≤ i ≤ N,

where µi(x) = (B(x) + (�− 1)A(x))−1
W PW (A(x) −B(x))ei. Then by (4.3) we deduce

H(x)ei = (B(x) −A(x))(ei + µi(x)).

Taking into account the expression of µi, we finish the proof of the theorem.
Using Lemma 4.11 and condition (3.4), we deduce the following theorem.
Theorem 4.12. In the assumptions of Theorem 3.2, if M(Ω) is local and closed

for the H-convergence, then, for every linear subspace W ⊂ RN of dimension �, we
have

C : {(A−B) + (A−B)(B + (�− 1)A)−1
W PW (A−B)} ≥ 0 a.e. in Ω ∀B ∈ M(Ω).

(4.12)

Remark 4.13. The condition (4.12) can also be written

C : (A−B) + min
1≤�≤N

min
dim(W )=l

C : (A−B)(B + (�− 1)A)−1
W PW (A−B) ≥ 0.

(4.13)

Thus, the better choice for W is to consider just the subspace which gives the minimum
in this expression. This can also be related to the choice of the steepest descent
direction, mentioned in Remark 4.9. If we restrict ourselves to the set of matrices H
of the form

H = B −A− (A−B)(B + (�− 1)A)−1
W PW (A−B),

then to choose the matrix giving the maximum of H : C is equivalent to solving the
minimization problem which appears in (4.13).

Remark 4.14. The condition (4.12) must be compared with the usual one when
M(Ω) is convex, which is

C : (A−B) ≥ 0 ∀B ∈ M(Ω), a.e. in Ω.(4.14)
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NONCONVEX CONTROL PROBLEMS IN THE COEFFICIENTS 229

In general we get a perturbation of this condition with a term of second growth in
(B − A). We will see in Corollary 4.18 how condition (4.12) implies (4.14), at least
in a subset of Ω.

Corollary 4.15. In the assumptions of Theorem 3.2, if M(Ω) is local and closed
for the H-convergence, then, for every B ∈ M(Ω), we have

C : (A−B) +
(A−B)C(A−B)ξξ

Bξξ
≥ 0 ∀ ξ ∈ RN \ {0} a.e. in Ω.(4.15)

Proof. It is enough, for ξ ∈ RN \ 0, to take W = {λξ / λ ∈ R} in Theorem 4.12
and to use that in this case:

(A−B)B−1
W PW (A−B) =

(A−B)ξ ⊗ (A−B)ξ

Bξξ
.

Remark 4.16. The condition (4.15) is equivalent to

C : (A−B) + min
Bξξ=1

B[B−1(A−B)C(A−B)]ξξ ≥ 0

or, equivalently (observe that B−1(A−B)C(A−B) is symmetric with respect to the
scalar product given by (ξ|η) = Bξη for every ξ, η ∈ RN ),

C : (A−B) + min{λ : λ eigenvalue of B−1(A−B)C(A−B)} ≥ 0.(4.16)

Remark 4.17. The inequality (4.15) has been obtained taking � = 1 in (4.12);
then it comes just from a lamination in the direction ξ. So Corollary 4.15 holds if we
assume only M(Ω) is local and stable under lamination (and not necessarily by H-
convergence). The sets of matrices stable under lamination have been characterized
by Francfort and Milton in [10] and [15]. In particular, it has been shown that, under
a suitable change of variables, the set M(Ω), assumed stable under lamination, is
convex. Corollary 4.15 can also be obtained from this result. In fact, deriving the
usual formula for the lamination of two matrices A and B in the direction ξ, it has
been proved in [25] that the matrix

B −A− (A−B)ξ ⊗ (A−B)ξ

Bξξ

is an admissible direction. However, this has not been applied in our knowledge to the
obtaining of optimality conditions for problem (1.1). Most of the results we obtain in
the following can be deduced using (4.15), and then one can conjecture that the choice
� = 1 is the best one in (4.12) (or even using all the matrices H given by Theorem
4.5) or, equivalently (see Remark 4.13), that the minimum in (4.13) is attained for
� = 1. An easy counterexample shows that this is not true in general; it is enough to
consider C = B = I and A = mI with m > 1. Then the minimum of the eigenvalues
of B−1(A−B)C(A−B) is (m− 1)2 while taking, for example, W = RN we have

C : (A−B)(B + (N − 1)A)−1
W PW (A−B)

= C : (A−B)(B + (N − 1)A)−1(A−B)

=
N(m− 1)2

1 + (N − 1)m
< (m− 1)2.
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230 J. CASADO-DÍAZ, J. COUCE-CALVO, AND J. D. MARTÍN-GÓMEZ

Corollary 4.18. In the assumptions of Theorem 3.2, with M(Ω) local and
closed for the H-convergence, we define

Ω− = {x ∈ Ω : ∃λ ≤ 0 eigenvalue of C(x)}

and

ΩB = {x ∈ Ω : Ker(A(x) −B(x)) �= {0}} ∀B ∈ M(Ω).

Then we have

C : (A−B) ≥ 0 a.e. in Ω− ∪ ΩB ∀B ∈ M(Ω).(4.17)

Proof. Let B be in M(Ω). For a.e. x ∈ ΩB , we choose ξ(x) ∈ Ker(A(x) −
B(x)) \ {0}, and for a.e. x ∈ Ω− \ ΩB , we take e(x) as an eigenvector associated
with a nonpositive eigenvalue of C(x) and ξ(x) = (A(x)−B(x))−1e(x). Then, taking
ξ = ξ(x) in (4.15), we obtain (4.17).

By the above result, it is interesting to learn how many nonpositive eigenvalues
have the matrix C. In this sense, we give the following theorem.

Theorem 4.19. For ξ1, . . . , ξk, η1, . . . , ηk ∈ RN \ {0}, we define

φ+
i =

ξi
|ξi|

+
ηi
|ηi|

, φ−
i =

ξi
|ξi|

− ηi
|ηi|

,

m = dim(Span{ξi, ηi / 1 ≤ i ≤ k}) = dim(Span{φ+
i , φ

−
i / 1 ≤ i ≤ k}),

m+ = dim(Span{φ+
i / 1 ≤ i ≤ k}), m− = dim(Span{φ−

i / 1 ≤ i ≤ k}),

C̃i =
1

2
(ξi ⊗ ηi + ηi ⊗ ξi), 1 ≤ i ≤ k, C̃ =

k∑
i=1

C̃i.

Then we have the following:
(i) For 1 ≤ i ≤ k, the matrix C̃i has as eigenvalues 1

2 (ξiηi + |ξi||ηi|) ≥ 0,
1
2 (ξiηi − |ξi||ηi|) ≤ 0, with respective eigenvectors φ+

i , φ−
i . The other eigenvalues of

C̃i are zero.
(ii) If k+ and k− are, respectively, the number of positive and negative eigen-

values of C̃, we have

m−m− ≤ k+ ≤ m+, m−m+ ≤ k− ≤ m−.(4.18)

Proof. The proof of (i) is easy to verify. In order to prove (ii), we use the
Courant–Fischer characterization of the eigenvalues:

λi+1 = max
dimE≤i

min
φ∈E⊥

|φ|=1

C̃φφ,

where λ1 ≤ · · · ≤ λN are the eigenvalues of C̃.
Taking i = m− and E = Span{φ−

j / 1 ≤ j ≤ k}, statement (i) gives

λm−+1 ≥ min
φ∈E⊥

|φ|=1

C̃φφ ≥ 0.(4.19)

So k− ≤ m−.
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NONCONVEX CONTROL PROBLEMS IN THE COEFFICIENTS 231

Now, if m−m− = 0, then clearly k+ ≥ m−m−. In another case, we consider E =
Span({φ−

j / 1 ≤ j ≤ k}∪{φ−
j , φ

+
j / 1 ≤ j ≤ k}⊥), which has dimension m−+N−m. If

φ ∈ E⊥, then, as above, statement (i) gives C̃jφφ ≥ 0, 1 ≤ j ≤ k, and then C̃φφ ≥ 0.

Moreover, C̃φφ = 0 iff C̃jφφ = 0, 1 ≤ j ≤ k, which, by statement (i), implies that
φ is orthogonal to φ−

j , φ+
j , 1 ≤ j ≤ k; i.e., φ is in E and so φ = 0. Thus, taking

i = m− + N −m in (4.19) and using the compactness of the unitary ball in RN , we
get

λm−+N−m+1 ≥ min
φ∈E⊥

|φ|=1

C̃φφ > 0,

and thus k+ ≥ m−m−.

The other inequalities in (4.18) follow analogously.

As a consequence we get the following.

Corollary 4.20. In the assumptions of Theorem 3.2, if M(Ω) is local and closed
for the H-convergence and k ≤ N − 1, then condition (4.14) holds.

Proof. We apply Theorem 4.19 to ξi = ∇yi(x), ηi = ∇pi(x), 1 ≤ i ≤ k, a.e. x ∈ Ω.
In this case C̃ = C(x). Since, clearly, the number m+ which appears in this result is
less than or equal to k ≤ N − 1, we deduce that the number of positive eigenvalues of
C is less than or equal to N−1, and then there exists at least a nonpositive eigenvalue
of C a.e. in Ω. Corollary 4.18 gives then (4.14).

5. Invariability by rotations. In the applications, it is a natural hypothesis
to assume that M(Ω) is invariable by rotations. We show in this section that this
assumption implies that the eigenvectors of A and C agree.

Definition 5.1. We say that M(Ω) is invariable by rotations if for every B ∈
M(Ω) and every Q ∈ L∞(Ω,MN ), with Q ∈ ON a.e. in Ω, the matrix QBQt belongs
to M(Ω).

We have the following result.

Proposition 5.2. In the assumptions of Theorem 3.2, if M(Ω) is invariable by
rotations, then A and C are mutually diagonalizable a.e. in Ω.

Proof. Let us first prove that given a skew-symmetric matrix R and a measurable
set ω ⊂ Ω, the function (RA + ARt) χ

ω belongs to KA(M(Ω)). To this purpose we
define G : MN → MN ×R by G(M) = (MM t,det(M)). Since Ker(G′(I)) coincides
with the space of skew-symmetric matrices, it is known (see, e.g., [1]) that for ε ∈ R
with |ε| small enough, there exists Pε ∈ MN such that G(Pε) = G(I) or, equivalently,
Pε ∈ ON , and (Pε − I)/ε converges to R. Defining then

Aε = PεAP t
ε
χ
ω + A χ

Ω\ω

and using that M(Ω) is invariable by rotations, we deduce that Aε belongs to M(Ω)
and (Aε − A)/ε converges to (RA + ARt) χ

ω in L∞(Ω,Ms
N ). Thus (RA + ARt) χ

ω

belongs to KA(M(Ω)).

Using now that the set of skew-symmetric matrices is a vectorial space, condition
(3.4), and the arbitrariness of ω, we deduce

2(RA) : C = (RA + ARt) : C = 0 a.e. in Ω.

For i, j ∈ {1, . . . , N}, i �= j, we take in the above equation R as the matrix
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232 J. CASADO-DÍAZ, J. COUCE-CALVO, AND J. D. MARTÍN-GÓMEZ

defined by

Rlk =

⎧⎪⎨
⎪⎩

1 if l = i, k = j,

−1 if l = j, k = i,

0 in another case.

Then we get

(AC)ij − (CA)ij = 0 a.e. in Ω,

i.e., A and C commute, and then they are mutually diagonalizable.
Remark 5.3. From Proposition 5.2, assuming that the matrix C is known and that

their eigenvalues are all different, we must look for the optimal solution A on the set of
matrices of M(Ω) which have the same eigenvectors as C a.e. So it can be interesting
to write condition (4.13) assuming that B is also mutually diagonalizable with C. If
we restrict ourselves to the spaces W which are generated by eigenvectors of C, we
get the following result: In the conditions of Proposition 5.2, if ci, ai, i ∈ {1, . . . , N},
are, respectively, the eigenvalues of C and A, then for every B ∈ M(Ω) mutually
diagonalizable with A and C, with eigenvalues b1, . . . , bN , we have

N∑
i=1

ci(ai − bi) + min
1≤�≤N

min
1≤i1<···<i�≤N

�∑
j=1

cij (aij − bij )
2

bij + (�− 1)aij
≥ 0.(5.1)

We also note that by Remark 4.16, for A, B, C as above, the condition (5.1) implies
in particular (4.15).

Assuming stronger hypotheses, we can improve Proposition 5.2. Proposition 5.4
below is related to a theorem due to Lewis [11], which applies to the optimization of
a function h : Ms

N → R convex and invariable by rotations (see also [12], where there
is a review of results corresponding to optimization problems on symmetric matrices).

Proposition 5.4. In the assumptions of Theorem 3.2, we assume M(Ω) invari-
able by rotations and at least one of the following hypotheses:

(i) M(Ω) is convex.
(ii) M(Ω) is H-closed and N ≥ 3.
(iii) M(Ω) is H-closed, N = 2 and k = 1.
Then there exists Q ∈ L∞(Ω,MN ), with Q ∈ ON a.e. in Ω, such that

QAQt = diag(a1, . . . , aN ),
(5.2)

QCQt = diag(c1, . . . , cN ),

and a1 ≤ · · · ≤ aN , c1 ≤ · · · ≤ cN .
Proof. From Proposition 5.2 there exists Q ∈ L∞(Ω,MN ), with Q ∈ ON a.e. in

Ω, such that (5.2) holds. Clearly, we can also assume c1 ≤ · · · ≤ cN a.e. in Ω. We
consider i, j ∈ {1, . . . , N}, i �= j, and we take L ∈ ON , defined by

Lei = ej , Lej = −ei, Lel = el ∀ l �= i, j.

Since M(Ω) is invariable by rotations, the matrix B = (LQ)t diag(a1, . . . , aN )LQ
belongs to M(Ω). Let us now see that if one of the hypotheses (i), (ii) or (iii) hold,
then

C : (A−B) ≥ 0 a.e. in Ω.(5.3)
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NONCONVEX CONTROL PROBLEMS IN THE COEFFICIENTS 233

For this purpose, we define M̃(Ω) as the convex hull of

{SASt / S ∈ L∞(Ω,MN ), S ∈ ON a.e. in Ω},

if (i) holds and as the H-closure of this set in cases (ii) and (iii). Then M̃(Ω) is
contained in M(Ω) and A belongs to M̃(Ω), so A is also a solution of (1.1) with M(Ω)
replaced by M̃(Ω).

In case (i), M̃(Ω) is convex and local, so from (4.1) and B−A in KA(M(Ω)), we
deduce (5.3).

In cases (ii) and (iii), M̃(Ω) is local and H-closed. Moreover, if (ii) holds, then
Ker(B − A) �= 0 a.e. in Ω, while if we have (iii) then, from Theorem 4.19, C has at
least a nonpositive eigenvalue. So, in both situations, we deduce (5.3) from (4.17).

From (5.3) we get

0 ≤ C : (A−B) = ci(ai − aj) + cj(aj − ai) = (ci − cj)(ai − aj) a.e. in Ω.

This finishes the proof of Proposition 5.4.

Remark 5.5. As we have seen in the proof of Proposition 5.4, the order relation
between the eigenvalues of C and A is a consequence of (5.3) with B defined as above.
So if N = 2 and M(Ω) is H-closed, by Corollary 4.18, the thesis of Proposition 5.4
still holds on the set where C has a least a nonnegative eigenvalue. Where the two
eigenvalues are positive, assuming c1 < c2, the condition (4.15) implies

a1 < a2 or a1 > a2 and c2a2 ≤ c1a1.(5.4)

Related to this inequality, we also remark that if in the conditions of Proposition
5.4 (ii) there are two eigenvalues of C, ci, cj such that ci ≤ cj ≤ 0, then besides
ai ≤ aj , we have |cj |aj ≤ |ci|ai.

6. Applications. In this section let us show how the condition (3.4) and the
consequences we have obtained from it can be used, in some cases, to obtain A∇yi,
A∇pi, 1 ≤ i ≤ k, as explicit functions of ∇yi, ∇pi and then, from (1.2) and (3.2), to
reduce the optimality conditions given in Theorem 3.2 to a nonlinear system in ∇yi,
∇pi. The main difficulty in carrying out this idea is that obtaining the H-closure of a
subset of L∞(Ω,MN ) is a very difficult problem, which has only been solved in some
particular cases (see [23], [14], [13], [8], [16], [25]). To simplify the exposition, we have
chosen two simple problems where the H-closure is well known. The first consists of
the mixture of two homogeneous isotropic materials in dimension two (the problem
can also be studied analogously for higher dimensions). This problem has also been
studied in [3] and [7]. In this case the set M(Ω) is convex. In the second problem we
consider a nonconvex situation corresponding to a polycrystal in dimension two.

First problem. We start by recalling the following result which has been proved
in [23] and [14].

Theorem 6.1. We assume N = 2. For 0 < α ≤ β and θ ∈ L∞(Ω) with 0 ≤ θ ≤ 1
a.e. in Ω, the set Mθ(Ω) of the H-limits of the sequences αI χ

ωn +β(1− χ
ωn)I, such

that ωn ⊂ Ω are measurable sets and satisfy χ
ωn converges weakly-∗ in L∞(Ω) to θ,

is characterized as follows:

Mθ ⊂ L∞(Ω,Ms
2) is the set of matrices such that their eigenvalues λ1, λ2 satisfy
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the following inequalities a.e. in Ω:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ− ≤ λ1, λ2 ≤ λ+,
2∑

i=1

1

λi − α
≤ 1

λ− − α
+

1

λ+ − α
,

2∑
i=1

1

β − λi
≤ 1

β − λ− +
1

β − λ+
,

(6.1)

where λ−, λ+ are given by

λ+ = αθ + β(1 − θ), λ− =

(
θ

α
+

1 − θ

β

)−1

.(6.2)

Let us see how the results obtained in the previous sections permit us to obtain
A from C, and then from ∇yi, ∇pi, 1 ≤ i ≤ k, for some choices of M(Ω) related to
Mθ(Ω).

In the following, we define

Ω̌ = {x ∈ Ω / (c1(x), c2(x)) �= (0, 0)},(6.3)

where c1, c2 are the eigenvalues of the matrix C.
Proposition 6.2. In the assumptions of Theorem 3.2, if M(Ω) is the set of

matrices defined in Theorem 6.1 for a fixed function θ and c1, c2, c1 ≤ c2, are the
eigenvalues of C, then there exists an associated basis {µ1, µ2} of eigenvectors of C
such that a.e. in Ω, we have

Aµi = aiµi, i = 1, 2,(6.4)

where a.e. in Ω̌, the functions a1, a2 are given by the following:

If c2 < 0 and

√
c2
c1

≥ α

α + (β − α)θ
⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a1 = α +

α(β − α)(1 − θ)

2α + (β − α)θ

(
1 +

√
c2
c1

)
,

a2 = α +
α(β − α)(1 − θ)

2α + (β − α)θ

(
1 +

√
c1
c2

)
.

If c1 > 0 and

√
c2
c1

≤ β

α + (β − α)θ
⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a1 = β − β(β − α)θ

α + β + (β − α)θ

(
1 +

√
c2
c1

)
,

a2 = β − β(β − α)θ

α + β + (β − α)θ

(
1 +

√
c1
c2

)
.

In another case a1 = λ−, a2 = λ+, where λ−, λ+ are defined by (6.2).
Proof. In this case, the set M(Ω) is local, convex, and invariable by rotations.

So we can apply Proposition 5.4 and (4.14), which imply that a.e. in Ω, A satisfies
(6.4) for a basis of eigenvectors of C, and a1c1 + a2c2 is the maximum of λ1c1 +λ2c2,
with λ1, λ2 in the set defined by (6.1). Solving this maximum problem we get the
expressions a1 and a2 given in Proposition 6.2.

The above result assumes that θ is known, but clearly this is not a realistic
situation. Next, we consider two examples where θ also varies. In the first one we
impose the condition

1

|Ω|

∫
Ω

θ dx = s,(6.5)
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NONCONVEX CONTROL PROBLEMS IN THE COEFFICIENTS 235

with s ∈ (0, 1). This means we know the proportion of the materials defined by α and
β but not its local distribution. This usually holds when one material is better than
the other but it is also more expensive. In the second situation we consider the case
where we do not have any restriction on θ.

Proposition 6.3. In the assumptions of Theorem 3.2, if for s ∈ (0, 1) given,
M(Ω) is the set of matrices defined in Theorem 6.1, with θ ∈ L∞(Ω), 0 ≤ θ ≤ 1 a.e.
in Ω and such that (6.5) holds, then the matrix A satisfies the thesis of Proposition
6.2, where the corresponding function θ is such that defining F ∈ L∞(Ω̌) by

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α(β2 − α2)(
√
−c1 −

√
−c2)

2

(2α + (β − α)θ)2
if c2 < 0 and

√
c2
c1

≥ α

α + (β − α)θ
,

−β(β2 − α2)(
√
c1 +

√
c2)

2

(α + β + (β − α)θ)2
if c1 > 0 and

√
c2
c1

≤ β

α + (β − α)θ
,

−(β − α)

(
αβ

(α + (β − α)θ)2
c1 + c2

)
in another case,

there exists r ∈ R which satisfies⎧⎨
⎩

F (x) ≤ r a.e. in {θ = 0} ∩ Ω̌,
F (x) = r a.e. in {0 < θ < 1} ∩ Ω̌,
F (x) ≥ r a.e. in {θ = 1} ∩ Ω̌.

(6.6)

Proof. We remark that if θ is the corresponding function associated with A in
the definition of the elements of M(Ω) and we define Mθ(Ω) as in the statement of
Theorem 6.1, then A is also the solution of (1.1) with M(Ω) replaced by Mθ(Ω). So
Proposition 6.2 applies.

Let us now vary θ. For every θ∗ ∈ L∞(Ω) such that 0 ≤ θ∗ ≤ 1 a.e. in Ω,

1

|Ω|

∫
Ω

θ∗ dx = s,

and θ∗ = θ a.e. in Ω \ Ω̌, we define Aθ∗ ∈ M(Ω) as the function given by Proposition
6.2 applied to θ∗ a.e. in Ω̌ and Aθ∗ = A a.e. in Ω \ Ω̌. Deriving Aθ∗ with respect to
θ∗, we obtain an admissible direction. Then, using condition (3.4), we get∫

Ω

Fϑdx ≤ 0(6.7)

for every ϑ ∈ L∞(Ω) such that ϑ = 0 a.e. in Ω \ Ω̌, ϑ ≥ 0 a.e. in {θ = 0} ∩ Ω̌, ϑ ≤ 0
a.e. in {θ = 1} ∩ Ω̌, and ∫

Ω

ϑ dx = 0.

It is easy to check that this implies the existence of r ∈ R, which satisfies the statement
of the proposition.

Remark 6.4. The expression of F is strictly decreasing with respect to θ. Then,
from (6.6), it is possible to obtain θ as a function of c1, c2 and r.

Remark 6.5. In Proposition 6.3, if r ≥ 0, then θ = 0 a.e. in the set

{c1 > 0}
⋂{√

c2
c1

≤ β

α

}
∩ Ω̌.

D
ow

nl
oa

de
d 

06
/1

0/
16

 to
 1

50
.2

14
.1

82
.1

69
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
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Analogously, if r ≤ 0, then θ = 1 a.e. in the set

{c2 < 0}
⋂{√

c2
c1

≥ α

β

}
∩ Ω̌.

We finish with the following result.

Proposition 6.6. In the assumptions of Theorem 3.2, let M(Ω) be the set
of matrices defined in Theorem 6.1, where θ is any function in L∞(Ω) such that
0 ≤ θ ≤ 1 a.e. in Ω, and denote by c1, c2, c1 ≤ c2, the eigenvalues of C. Then there
exists an associated basis {µ1, µ2} of eigenvectors of C such that a.e. in Ω we have
(6.4). Moreover, a.e. in Ω̌, the functions a1, a2 are given by the following:

If 0 ≤ c1 ≤ c2, then a1 = a2 = β.

If c1 ≤ c2 ≤ 0, then a1 = a2 = α.

If c1 < 0 < c2, then⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α

β
≥ −c1

c2
⇒ a1 = a2 = β,

β

α
> −c1

c2
>

α

β
⇒ a1 =

√
−αβc2

c1
, a2 = α + β −

√
−αβc1

c2
,

−c1
c2

≥ β

α
⇒ a1 = a2 = α.

Proof. We proceed similarly to Proposition 6.3, but now, in the condition (6.7),
the function ϑ does not necessarily satisfy∫

Ω

ϑ dx = 0.

This implies that the function F given in Proposition 6.3 satisfies (6.6) with r = 0,
which easily gives the result.

Second problem. Given a diagonal matrix Λ = diag(α, β) with 0 < α < β, let
us now consider the optimization problem (1.1) when M(Ω) is the H-closure of the
matrices of the form R(x)ΛR(x)t, where R is measurable, and R(x) belongs to O2 for
a.e. x ∈ Ω (observe that to assume Λ diagonal is not a restriction). This set M(Ω)
is known (see, e.g., [25], [16]) and agrees with the set of functions B ∈ L∞(Ω,Ms

2)
such that for a.e. x ∈ Ω, the eigenvalues b1(x) and b2(x) of B(x) satisfy α ≤ b1(x),
b2(x) ≤ β, b1(x)b2(x) = αβ. For this choice of M(Ω), we have the following result.

Proposition 6.7. In the assumptions of Theorem 3.2, if c1 and c2, with c1 ≤ c2,
are the eigenvalues of C, then there exists an associated basis {µ1, µ2} of eigenvectors
of C such that a.e. in Ω, we have

Aµi = aiµi, i = 1, 2,(6.8)

where a.e. in the set Ω̌ defined by (6.3), the functions a1, a2 are given by

c2 < 0 and
c2
c1

>
α

β
⇒

⎧⎪⎪⎨
⎪⎪⎩
a1 =

√
αβ

√
c2
c1

,

a2 =
√
αβ

√
c1
c2

.
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If c1 > 0 and c2
c1

≤ β
α , then there exist three possibilites:

{
a1 = α,
a2 = β,

or

{
a1 = β,
a2 = α,

or

⎧⎪⎪⎨
⎪⎪⎩

a1 =
√
αβ

√
c2
c1

,

a2 =
√
αβ

√
c1
c2

.

In another case a1 = α, a2 = β.
Proof. Since the set M(Ω) is invariable by rotations, we can apply Proposition

5.2 to deduce that for a.e. x ∈ Ω, there exists a basis {µ1(x), µ2(x)} of R2 such that

C(x)µi(x) = ci(x)µi(x), A(x)µi(x) = ai(x)µi(x), i = 1, 2,

with c1(x) ≤ c2(x), a1(x), a2(x) ∈ R. From the definition of M(Ω), we also have that
for a.e. x ∈ Ω, there exists t∗(x) ∈ [1, β

α ] such that

a1(x) = αt∗(x), a2(x) =
β

t∗(x)
.

Moreover, from (5.1), we deduce that t∗ satisfies

(t∗(x) − t)

(
αc1(x) − βc2(x)

t∗(x)t

)
(6.9)

+(t∗(x) − t)2 min

{
αc1(x)

t
,

βc2(x)

(t∗(x))2t
,

1

t∗(x) + t

(
αc1(x) +

βc2(x)

t∗(x)t

)}
≥ 0

for every t ∈ [1, β
α ] and a.e. x ∈ Ω. In the set where t∗(x) = 1, we have t∗(x) − t < 0

for every t ∈ (1, β
α ]. So, dividing by 1 − t and taking t converging to 1 on the right,

we deduce

αc1 − βc2 ≤ 0 a.e. in {x ∈ Ω : t∗(x) = 1}.(6.10)

Analogously, we deduce

βc1 − αc2 ≥ 0 a.e. in

{
x ∈ Ω : t∗(x) =

β

α

}
,(6.11)

αc1 −
βc2

(t∗(x))2
= 0 a.e. in

{
x ∈ Ω : 1 < t∗(x) <

β

α

}
,(6.12)

where the statement (6.12) implies

c1c2 > 0, t∗ =

√
βc2
αc1

a.e. in

{
x ∈ Ω̌ : 1 < t∗(x) <

β

α

}
.(6.13)

Analyzing the different cases which appear depending on the sign of c1 or c2, we easily
conclude from (6.10), (6.11), and (6.13) the proof of Proposition 6.7.

Remark 6.8. We have deduced (6.10), (6.11), and (6.13) from inequality (6.9).
One could conjecture that this inequality gives, in fact, more information. However, a
simple calculus shows that the statements (6.10), (6.11), and (6.13) also imply (6.9).

Remark 6.9. Proposition 6.7 does not give the expressions of a1 and a2 in the set
where c1 > 0 and c2

c1
≤ β

α ; it gives three possibilities. The possibility a1 = α, a2 = β
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seems to be the most natural in order to stick continuously with the values of a1 and
a2 in the other zones. We also note that if M(Ω) was convex then, using that B −A
is an admissible direction for every B ∈ M(Ω), we should obtain in place of (6.9) that

αt∗ +
β

t∗
= max

{
αt +

β

t
: t ∈

[
1,

β

α

]}
,

which implies that t∗ = 1 (and then a1 = α, a2 = β) a.e. on the set where c1 > 0 and
c2
c1

≤ β
α as well as the expressions of a1 and a2 given in Proposition 6.7 in the other

cases. However, since M(Ω) is not convex, this reasoning is not good and thus the
only conclusion we obtain is that stated in Proposition 6.7.
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Kohn, eds., Birkhäuser Boston, Boston, 1997, pp. 21–43.

D
ow

nl
oa

de
d 

06
/1

0/
16

 to
 1

50
.2

14
.1

82
.1

69
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



NONCONVEX CONTROL PROBLEMS IN THE COEFFICIENTS 239

[20] F. Murat and L. Tartar, Calculus of variations and homogenization, in Topics in the Math-
ematical Modelling of Composite Materials, Progr. Nonlinear Differential Equations Appl.
31, A. Cherkaev and R. Kohn, eds., Birkhäuser Boston, Boston, 1997, pp. 139–173.
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