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DIFFERENTIAL GAMES WITH ERGODIC PAYOFF∗

MRINAL K. GHOSH† AND K. S. MALLIKARJUNA RAO‡

Abstract. We address a zero-sum differential game with ergodic payoff. We study this prob-
lem via the viscosity solutions of an associated Hamilton–Jacobi–Isaacs equation. Under certain
condition, we establish the existence of a value and prove certain representation formulae.
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1. Introduction. In this article, we consider a general, nonlinear controlled
dynamical system

ẋ(t) = b(x(t), u1(t), u2(t))(1.1)

with performance index r(x(t), u1(t), u2(t)), where u1, u2 are controls. Associated to
this controlled dynamical system we can pose two kinds of problem—H∞ control and
the differential game. In H∞ control, the performance index is referred to as the
output response and u2 as disturbance. A closed set T with respect to which the
undisturbed system (u2 = 0) is stable and a constant γ are given. The problem is to
find a strategy α = α[u2] such that∫ t

0

|r(x(s), α[u2](s), u2(s))|2 ds ≤ γ2

∫ t

0

|u2(s)|2 ds(1.2)

for all t ≥ 0 and all disturbances u2. If we can find such a strategy, we say that the
problem is solvable with disturbance attenuation level γ.

The other problem is the differential game problem. In this case, we call the
performance index the running payoff function. There are two controllers or decision
makers called players. Player 1 wishes to minimize the running payoff function on
finite or infinite time horizon over his control variables u1(t), whereas Player 2 wishes
to maximize the same over his control variables u2(t). Since the interests of the
two players are conflicting, the basic problem is to resolve this conflict by arriving
at solution that serves the interests of both players. In other words, we look for
a min-max/max-min solution to this problem. For infinite horizon problems, one
usually considers two payoff criteria: the discounted payoff criterion and the ergodic or
averaged payoff criterion. These two payoff criteria are, in some sense, complementary
to each other. The immediate future is far more important than the distant future
in the discounted payoff criterion. Quite contrary to this, the finite time behavior of
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the system is irrelevant in the ergodic payoff criterion. It is the asymptotic behavior
of the ergodic payoff that matters. Thus in the ergodic payoff criterion, one looks for
some kind of stability or averaging mechanism taking place.

The differential game (in the sense of Elliott–Kalton) with discounted payoff cri-
terion has been studied extensively in the literature; see [1] and the references therein.
The basic idea is to show that the lower and upper value functions satisfy the dynamic
programming principle (DPP) and thus they are viscosity solutions to corresponding
Hamilton–Jacobi–Isaacs (HJI) equations. If the Isaacs minimax principle holds, then
by a minimax theorem, one obtains that the differential game has value. This pro-
cedures does not seem to be applicable to the differential games with ergodic payoff.
Thus in order to study the differential games with ergodic payoff, we need to approach
the problem in a different way.

In the traditional approach to differential games, one first establishes the DPP,
which in turn leads to the HJI equations. In this article, we follow a reverse approach
which was used by Świech [18] to treat a stochastic differential game with a finite
horizon payoff criterion (see also [17]). The main idea is to use the integration along
the trajectories of the controlled dynamical system to study the HJI equations. Since
the HJI equation in general does not admit classical solutions, we need to use the
concept of viscosity solutions introduced by Crandall and Lions [4]. We show that if
the HJI equation corresponding to ergodic payoff criterion has a viscosity solution,
then the scalar quantity appearing in the HJI equation is the ergodic value for the
differential game problem under certain stability assumption on the dynamics. Fur-
ther, under a dissipativity assumption, we show that the HJI equation has a viscosity
solution. The novelty of this approach is that it is quite simple and it can be used to
prove the DPP.

There is a close connection between H∞ control and differential games. A H∞
control problem can be viewed as a differential game problem (see [3]). Using this
observation, several authors have studied HJI equations and established DPP for
the solutions; see [6], [9], [13], [15], [16], and the references therein. In [16] an H∞
control problem is considered and studied using the viscosity solution techniques.
Some representation formulas are proved for the viscosity solutions of the associated
HJI equation. As a consequence, the author obtained the DPP for the viscosity
solutions and established the value function to be the minimal viscosity solution under
some nonnegativity assumptions and certain stability assumptions. In [9], [13], an
analogous problem in the stochastic case is considered. Here the authors first obtained
the DPP. The value function is again shown to be the minimal viscosity solution. The
results in the deterministic case are obtained by letting the diffusion coefficient be
zero. Further in [13], the uniqueness of the viscosity solution is established in a
certain class of functions with some growth conditions. Thus the results in these
articles are similar to ours. However, the assumptions considered there are different
from the assumptions in this article. Note that in the mentioned articles, the ergodic
value corresponding to the associated differential game turns out to be zero. Thus
the results presented in this article can be seen as more general concerning differential
games with ergodic payoff. We now describe our problem.

Let Ui, i = 1, 2, be given compact metric spaces. Let Ai, i = 1, 2, denote the
set of all measurable functions ui : [0,∞) → Ui. The set Ai is called the set of
all admissible controls for player i. Consider the d-dimensional controlled dynamical
system x(·) described by{

ẋ(t) = b(x(t), u1(t), u2(t)), t > 0,
x(0) = x,

(1.3)
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where b : Rd × U1 × U2 → Rd and ui(·) ∈ Ai. We assume that

(A1) b is continuous and there exists a constant C1 > 0 such that for all u1 ∈ U1

and u2 ∈ U2

|b(x, u1, u2) − b(y, u1, u2)| ≤ C1|x− y|.

Let r : Rd × U1 × U2 → Rd be the payoff function. We assume that

(A2) r is continuous and there exists a constant C2 > 0 such that for all u1 ∈ U1

and u2 ∈ U2

|r(x, u1, u2) − r(y, u1, u2)| ≤ C2|x− y|.

Let Γ denote the set of all maps α : A2 → A1 that are nonanticipative in the
sense that for any t > 0 and u2, ũ2 ∈ U2, u2(s) = ũ2(s) for all s ≤ t implies α[u2](s) =
α[ũ2](s) for all s ≤ t. Similarly, ∆ is defined to be the set of all maps from A1 to A2

that are nonanticipative.

Let

ρ+(x) := sup
β∈∆

inf
u1(·)∈A1

lim sup
T→∞

1

T

∫ T

0

r(x(t), β[u1](s), u1(s)) ds,

ρ−(x) := inf
α∈Γ

sup
u2(·)∈A2

lim sup
T→∞

1

T

∫ T

0

r(x(t), u2(s), α[u2](s)) ds.

The functions ρ+(x), ρ−(x) are called the upper and lower ergodic value functions
associated with the differential game. If ρ+(x) = ρ−(x) = ρ, a constant for all x, we
say that the differential game with ergodic payoff criterion has a value.

The rest of the paper is organized as follows. In section 2, we prove that if the
associated HJI equation has a viscosity solution (ρ,w), then the upper and lower
values coincide with ρ, and thus the differential game has value. We then prove some
more representation formulas for the ergodic value. We also prove DPP for viscosity
solution and a partial uniqueness result for viscosity solutions. In section 3, we show
the existence of a viscosity solution to the HJI equation in two ways under a suitable
assumption. Section 4 contains some concluding remarks.

2. Viscosity solutions and ergodic value. Consider the following HJI equa-
tions

ρ = inf
u1∈U1

sup
u2∈U2

{b(x, u1, u2) ·Dw(x) + r(x, u1, u2)}, x ∈ Rd(2.1)

and

ρ = sup
u2∈U2

inf
u1∈U1

{b(x, u1, u2) ·Dw(x) + r(x, u1, u2)}, x ∈ Rd.(2.2)

Definition 2.1. A viscosity subsolution of (2.1) is a pair (ρ,w), where ρ is a
real number and w(·) is an upper semicontinuous function such that for x ∈ Rd and
a smooth function φ, we have

ρ ≤ inf
u1∈U1

sup
u2∈U2

{b(x, u1, u2) ·Dφ(x) + r(x, u1, u2)}
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whenever w − φ has a local maximum at x. A pair (ρ,w) of a real number ρ and a
lower semicontinuous function w(·) is said to be a viscosity supersolution of (2.1) if
for x ∈ Rd and a smooth function φ, we have

ρ ≥ inf
u1∈U1

sup
u2∈U2

{b(x, u1, u2) ·Dφ(x) + r(x, u1, u2)}

whenever w−φ has a local minimum at x. A viscosity solution of (2.1) is a pair (ρ,w)
that is both viscosity sub- and supersolution of (2.1). Similarly, a viscosity solution of
(2.2) is defined.

We now proceed to prove the main result of this section, which provides estimates
for ρ+ in terms of viscosity sub- and supersolutions of (2.1) and, similarly, for ρ−, in
terms of viscosity sub- and supersolutions of (2.2). We prove this result under the
following additional assumption:

(A3) For each x ∈ Rd, there is a constant M = M(x) > 0 such that |x(t)| < M
for all t ≥ 0, where x(·) is the solution of (1.3) under any pair of admissible controls
(u1(·), u2(·)) ∈ A1 ×A2.

Remark 2.2. Since for any t, s ≥ 0,

x(t) − x(s) =

∫ t

s

b(x(τ), u1(τ), u2(τ)) dτ

and |x(τ)| ≤ M by assumption (A3), we can find a constant C > 0 such that

|x(t) − x(s)| ≤ C|t− s|.

Thus under assumptions (A1) and (A3), the solutions of (1.3) are globally Lipschitz
continuous.

We now state and prove the main result of this section. Throughout the section,
we assume (A1)–(A3).

Theorem 2.3. (i) Let (ρ,w) be a viscosity subsolution of (2.1). Then

ρ ≤ sup
β∈∆

inf
u1(·)∈A1

lim inf
T→∞

1

T

∫ T

0

r(x(s), u1(s), β[u1](s)) ds.(2.3)

(ii) Let (ρ,w) be a viscosity supersolution of (2.1). Then

ρ ≥ sup
β∈∆

inf
u1(·)∈A1

lim sup
T→∞

1

T

∫ T

0

r(x(s), u1(s), β[u1](s)) ds.(2.4)

(iii) Let (ρ,w) be a viscosity subsolution of (2.2). Then

ρ ≤ inf
α∈Γ

sup
u2(·)∈A2

lim inf
T→∞

1

T

∫ T

0

r(x(s), α[u2](s), u2(s)) ds.(2.5)

(iv) Let (ρ,w) be a viscosity supersolution of (2.2). Then

ρ ≥ inf
α∈Γ

sup
u2(·)∈A2

lim sup
T→∞

1

T

∫ T

0

r(x(s), α[u2](s), u2(s)) ds.(2.6)

Proof. We prove (iii) and (iv); (i) and (ii) can be proved similarly.
Let (ρ,w) be a viscosity subsolution of (2.2). Assume that w is C1,1 (i.e., w

is differentiable with bounded and Lipschitz derivatives). Let K be the common
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Lipschitz constant associated with w,Dw. Then (ρ,w) satisfies (2.2) in the classical
sense. In particular, for any ε > 0 and any x ∈ Rd,

ρ− ε < sup
u2∈U2

inf
u1∈U1

(b(x, u1, u2) ·Dw(x) + r(x, u1, u2)).(2.7)

Set

Λ(x, u2) = inf
u1∈U1

(b(x, u1, u2) ·Dw(x) + r(x, u1, u2)).

Then it is easy to note that Λ is uniformly continuous on Rd × U2. Since U2 is
separable, we can find a sequence {ui

2} in U2 and a family of balls {Bri(xi)} covering
Rd such that

ρ− ε < Λ(x, ui
2) for all x ∈ Bri(xi) and i.

Note that here the sequence {ui
2} can be chosen to be finite since U2 is compact. In

that case, the sequence of balls {Bri(xi)} should be replaced by a finite family of open
sets.

Define, ψ : Rd → U2 by

ψ(x) = uk
2 if x ∈ Brk(xk) \

k−1⋃
i=1

Bri(xi).

Then ψ is a Borel map and ρ − ε < Λ(x, ψ(x)) ∀x ∈ Rd. We make the following
claims.

Claim A. For x ∈ Rd, m > 0, there exists βm ∈ ∆ such that

(ρ− ε)N − C
N

m
−
∫ N

0

r(x(s), u1(s), β
m[u1](s)) ds ≤ w(x(N)) − w(x)

for any positive integer N , where x(·) is the solution of (1.3) with the initial condition
x(0) = x under controls (u1(·), βm[u1](·)) and C is a constant depending on K,C1, C2

but not on x, N , and m.
Claim B. For each α ∈ Γ, we can find ũ1(·) ∈ A1 and ũ2(·) ∈ A2 such that

βm[ũ1](·) = ũ2(·) and α[ũ2](·) = ũ1(·).(2.8)

Assuming the claims to be true, we complete the proof of (2.5). Divide the
inequality in Claim A by N , and let N → ∞ to obtain

(ρ− ε) ≤ C
1

m
+ lim inf

N→∞

1

N

∫ N

0

r(x(s), u1(s), β
m[u1](s)) ds.(2.9)

Using (2.8) in (2.9), we deduce

(ρ− ε) ≤ C
1

m
+ inf

α∈Γ
sup

u2(·)∈A2

lim inf
N→∞

1

N

∫ N

0

r(x(s), α[u2](s), u2(s)) ds.

Letting m → ∞, we obtain

(ρ− ε) ≤ inf
α∈Γ

sup
u2(·)∈A2

lim inf
N→∞

1

N

∫ N

0

r(x(s), α[u2](s), u2(s)) ds.
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We now need to replace the limit along the integers by the limit along any real
sequence. For this, choose any sequence Tn → ∞. Then

1

Tn

∫ Tn

o

r(x(s), α[u2](s), u2(s)) ds

=
1

Tn

∫ [Tn]

0

r(x(s), α[u2](s), u2(s)) ds +
1

Tn

∫ Tn

[Tn]

r(x(s), α[u2](s), u2(s)) ds.

Using (A3), we note that the second term on the right-hand side of the above equality
vanishes as n → ∞. Note also the fact that∣∣∣∣∣ 1

Tn

∫ [Tn]

0

r(x(s), α[u2](s), u2(s)) ds−
1

[Tn]

∫ [Tn]

0

r(x(s), α[u2](s), u2(s)) ds

∣∣∣∣∣ → 0

as n → ∞. Thus

lim
n→∞

1

Tn

∫ Tn

o

r(x(s), α[u2](s), u2(s)) ds = lim
n→∞

1

[Tn]

∫ [Tn]

o

r(x(s), α[u2](s), u2(s)) ds.

Since this is true for any sequence (Tn) tending to ∞, we obtain

(ρ− ε) ≤ inf
α∈Γ

sup
u2(·)∈A2

lim inf
T→∞

1

T

∫ T

0

r(x(s), α[u2](s), u2(s)) ds.

This proves (2.5) under the assumption that w is C1,1. We now turn to the general
case. Let wε be the sup-convolution of w, i.e.,

wε(y) = sup
|z|≤M+2

{
w(z) − |z − y|2

2ε

}
.

Then wε converges to w uniformly as ε → 0 on BM+1 := B̄(0,M + 1), and wε are
Lipschitz continuous and satisfy a.e. on BM+1

ρ ≤ inf
u2∈U2

sup
u1∈U1

{b(y, u1, u2) ·Dwε(y) + r(y, u1, u2)} + σ1(ε)

for some modulus σ1 (see [10], [11]). For each δ > 0, let wδ
ε be a smooth approximation

of wε such that wδ
ε , Dwδ

ε are smooth and they converge to wε, Dwε uniformly on
compact sets, respectively, and they all have the same Lipschitz constant. Now, using
these facts, we can find another modulus σ2 such that

ρ ≤ inf
u2∈U2

sup
u1∈U1

{b(y, u1, u2) ·Dwδ
ε (y) + r(y, u1, u2)} + σ1(ε) + σ2(δ)(2.10)

on BM+1/2. Note that σ2 may depend on ε and x. Observe that while proving (2.5),
we have used the smoothness of w only in BM . Thus we can use the above arguments
with wδ

ε and (2.10) to conclude

ρ ≤ inf
α∈Γ

sup
u2(·)∈A2

lim inf
T→∞

1

T

∫ T

o

r(x(s), α[u2](s), u2(s)) ds + σ1(ε) + σ2(δ),

where x(·) is the solution of (1.3) with the initial condition x(0) = x under the controls
(α[u2](·), u2(·)). Now letting δ and then ε to 0, we obtain (2.5). This completes the
proof of part (iii). We now proceed to prove the claims.
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Proof of Claim A. Let t = 1
m . Define

um
2 (s) = ψ(x) for s ∈ [0, t).

We extend the definition of (um
2 (·), x(·)) to [0, (i + 1) t) assuming that it has been

defined on [0, i t) as follows. Let x(·) be the solution (2.1) with initial value x and
controls (u1(·), um

2 (·)) in the interval [0, it). Set

um
2 (s) = ψ(x((i t)−)) for s ∈ [i t, (i + 1) t).

Note that x((it)−) exists since X(·) is Lipschitz continuous and bounded. This defines
um

2 (·) on R.
Let x(.) be the solution of (1.3) with initial value x(0) = x and controls (u1(·), um

2 (·) ).
Then,

w(x((i + 1)t)) − w(x(it))

=

∫ (i+1)t

it

Dw(x(s)) · b(x(s), u1(s), u
m
2 (s)) ds

=

∫ (i+1)t

it

(Dw(x(s)) −Dw(x(it))) · b(x(s), u1(s), u
m
2 (s)) ds

+

∫ (i+1)t

it

Dw(x(it)) · (b(x(s), u1(s), u
m
2 (s)) − b(x(it), u1(s), u

m
2 (s))) ds

+

∫ (i+1)t

it

(Dw(x(it)) · b(x(it), u1(s), u
m
2 (s)) + r(x(it), u1(s), u

m
2 (s))) ds

+

∫ (i+1)t

it

(r(x(s), u1(s), u
m
2 (s)) − r(x(it), u1(s), u

m
2 (s))) ds

−
∫ (i+1)t

it

r(x(s), u1(s), u
m
2 (s)) ds.

Note that w,Dw, b are all Lipschitz along the trajectory x(·) and they are bounded
by assumptions (A1) and (A3). Using these facts in the above together with the
definition of ψ, we obtain,

w(x((i + 1)t)) − w(x(it)) ≥ −C

∫ (i+1)t

it

(s− i t) ds + (ρ− ε)

∫ (i+1)t

it

ds

−
∫ (i+1)t

it

r(x(s), u1(s), u
m
2 (s)) ds

= −C t2 + (ρ− ε)t−
∫ (i+1)t

it

r(x(s), u1(s), u
m
2 (s)) ds

for a constant C > 0 which will depend only on x and other Lipschitz constants. Now
define a strategy βm ∈ ∆ by βm[u1](·) = um

2 (·) for u1(·) ∈ A1. Note that βm[u1](·) on
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[it, (i + 1)t) depends only on [0, it). Adding these inequalities for i = 0, . . . , Nm− 1,
we get the inequality stated in Claim A.

Proof of Claim B. We define such controls inductively. Let ũ2(·) = ψ(x) on [0, t).
Define ũ1|[0,t) = α[ũ2]|[0,t). Having known ũ1(·) and ũ2(·) on [0, it), we define ũ2(·)
on [it, (i + 1)t) by ũ2(s) = ψ(x(it)−), where x(·) satisfies

ẋ(s) = b(x(s), ũ1(s), ũ2(s)), s ∈ [0, it)

and x(0) = x . It is now easy to check (2.8). This completes the proof of Claim B.
We now prove part (iv). Let w be a viscosity supersolution of (2.2) and assume

w ∈ C1,1. The proof for general w follows from an argument as in that of (iii). One
has for any ε > 0 and any x ∈ Rd,

sup
u2∈U2

inf
u1∈U1

(b(x, u1, u2) ·Dw(x) + r(x, u1, u2)) < ρ + ε.

Set

Λ(x, u1, u2) = (b(x, u1, u2) ·Dw(x) + r(x, u1, u2)).

By the uniform continuity of Λ, we can find a countable family Bri(xi) × Bri(u
i
2)

covering Rd and a sequence ui
1 ∈ U1 such that

Λ(x, ui
1, u2) < ρ + ε ∀ (x, u2) ∈ Bri(xi) ×Bri(u

i
2).

Define a map ψ : Rd × U2 → U1 by

ψ(x, u2) = uk
1 if (x, u2) ∈ Brk(xk) ×Brk(uk

2) \
k−1⋃
i=1

Bri(xi) ×Bri(u
i
2).

Then ψ is Borel measurable and

Λ(x, ψ(x, u2), u2) < ρ + ε ∀(x, u2).

Claim C. For each integer m > 0, there exists αm ∈ Γ such that∫ N

0

r(x(s), αm[u2](s), u2(s)) ds + w(x(N)) − w(x) ≤ (ρ + ε)N + C
N

m

for all positive integers N and u2(·) ∈ A2, where x(·) is the solution of (1.3) with
the initial condition x(0) = x under controls (αm[u2](·), u2(·)) and C is a constant
independent of N and m.

Assuming that the claim is true, we see, on dividing by N and letting N → ∞,

lim sup
N→∞

1

N

∫ N

0

r(x(s), αm[u2](s), u2(s)) ds ≤ (ρ + ε) +
C

m
,

which implies

inf
α∈Γ

sup
u2(·)∈U2

lim sup
N→∞

1

N

∫ N

0

r(x(s), α[u2](s), u2(s)) ds ≤ ρ.

From this one can deduce (iv).
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Proof of Claim C. Let t = 1/m. Define αm[u2](s)) = ψ(x, u2(s)) for s ∈ [0, t).
Assuming that we have defined αm[u2](·), x(·) on [0, it), we extend its definition to
[0, (i+1)t) as follows. Let x(·) satisfy (1.3) in (0, it) with the initial condition x(0) = x
under the controls (αm[u2](·), u2(·)). Then define αm[u2](s) = ψ(x((it)−, u2(s))) for
s ∈ [it, (i + 1)t). This defines αm ∈ Γ.

Now let x(·) denote the solution of (1.3) with the initial condition x(0) = x under
the controls (αm[u2](·), u2(·)). Then, for any i, as in Claim A, we can show that

w(x((i + 1)t)) − w(x(it)) ≤ C t2 + (ρ + ε)t−
∫ (i+1)t

it

r(x(s), αm[u2](s), u2(s)) ds.

Summing over i from 0 to Nm− 1, we obtain Claim C.
As an immediate consequence of the theorem, we obtain the following comparison

principle.
Corollary 2.4. Assume that (ρ,w), (ρ̄, w̄) are viscosity sub- and supersolutions

of (2.1) (or (2.2)). Then, ρ ≤ ρ̄.
Proof. We prove for the case of (2.1). The proof of (2.2) follows similarly. By

parts (i) and (ii) of Theorem 2.3, we have

ρ ≤ sup
β∈∆

inf
u1(·)∈A1

lim inf
T→∞

1

T

∫ T

0

r(x(s), u1(s), β[u1](s)) ds

and

ρ̄ ≥ sup
β∈∆

inf
u1(·)∈A1

lim sup
T→∞

1

T

∫ T

0

r(x(s), u1(s), β[u1](s)) ds.

Hence ρ ≤ ρ̄.
Remark 2.5. In this corollary, we have not assumed any growth on w and w̄.

If w and w̄ are given to be bounded, then one can give a very simple proof of this
comparison principle using comparison principle for stationary HJI equations (see
[12]).

Note that under assumptions (A1)–(A3), if (2.1) has a viscosity solution (ρ,w),
then ρ = ρ+, and if (2.2) has a viscosity solution (ρ̄, w), then ρ = ρ−, using Theorem
2.3. Thus if the Isaacs minimax condition holds, i.e., for any x, p ∈ Rd, if we have

inf
u2∈U2

sup
u1∈U1

{b(x, u1, u2) · p + r(x, u1, u2)} = sup
u1∈U1

inf
u2∈U2

{b(x, u1, u2) · p + r(x, u1, u2)},

then, using Fan’s minimax theorem [8] we can deduce the following result. We omit
the details.

Theorem 2.6. Assume that the Isaacs minimax condition holds. Assume that
(ρ,w) is a viscosity solution of (2.1) or equivalently of (2.2). Then ρ = ρ+(x) = ρ−(x)
for all x ∈ Rd.

By interchanging the roles of taking limits as T → ∞ and taking infimum and
supremum over controls in the proof of the Theorem 2.3, we obtain the following
result.

Theorem 2.7. Let (ρ,w) be a viscosity solution of (2.1). Then

ρ = lim
T→∞

sup
β∈∆

inf
u1(·)∈A1

1

T

∫ T

0

r(x(s), u1(s), β[u1](s)) ds.
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Similarly, if (ρ̄, w̄) is a viscosity solution of (2.2), then

ρ̄ = lim
T→∞

inf
α∈Γ

sup
u2(·)∈A2

1

T

∫ T

0

r(x(s), α[u2](s), u2(s)) ds.

Remark 2.8. Let w+(T, x) and w−(T, x) denote the upper and lower value func-
tions of the finite horizon problem with horizon T , dynamics (1.3), payoff function r,
and zero terminal cost; i.e., they are defined as follows:

w+(T, x) := sup
β∈∆

inf
u1(·)∈A1

∫ T

0

r(s, x(s), u1(s), β[u1](s)) ds

and

w−(T, x) := inf
α∈Γ

sup
u2(·)∈A2

∫ T

0

r(s, x(s), α[u2](s), u2(s)) ds,

where x(·) is solution of (1.3) with the initial condition x(0) = x under respective
controls. Then the conclusion of the above theorem can be restated as

ρ = lim
T→∞

w+(T, x)

T
and ρ̄ = lim

T→∞

w−(T, x)

T
.

This can be seen as the longtime behavior of viscosity solutions of HJI equations
corresponding to differential games on finite horizon. We refer to [2], [14] for the
study of longtime behavior of viscosity solutions of Hamilton–Jacobi equations.

We now give another representation formula for ρ in terms of the discounted value
of the differential game. Let wλ denote the upper value of the differential game on an
infinite horizon with discount factor λ > 0, i.e.,

wλ(x) = sup
β∈∆

inf
u1(·)∈A1

∫ ∞

0

e−λsr(x(s), u1(s), β[u1](s)) ds;

then

ρ = lim
λ→0

λwλ(x).

An analogous statement holds for the lower value function. This is the content of our
next result. We closely follow the arguments in the proof of Theorem 2.3.

Theorem 2.9. (i) Let (ρ,w) be a viscosity solution of (2.1). Then

ρ = lim
λ→0

sup
β∈∆

inf
u1(·)∈A1

λ

∫ ∞

0

e−λsr(x(s), u1(s), β[u1](s)) ds.

(ii) Similarly, if (ρ,w) is a viscosity solution of (2.2), then

ρ = lim
λ→0

inf
α∈Γ

sup
u2(·)∈A2

λ

∫ ∞

0

e−λsr(x(s), α[u2](s), u2(s)) ds.

Proof. We prove only (ii); (i) can be proved in an analogous way. Again we prove
this under the additional assumption that w is C1,1. The proof of the general case
can be done as before.
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Fix x. Let βm ∈ ∆ be as in the proof of Theorem 2.3. Let u1(·) ∈ A1. Let x(·)
denote the solution of (1.3) with the initial condition x(0) = x under the controls
(u1(·), βm[u1](·)). Then for a.e. s,

d

ds
e−λsw(x(s)) = e−λsb(x(s), u1(s), ū2) ·Dw(x(s)) − λe−λsw(x(s)).

Now following the arguments in the proof of Claim A of Theorem 2.3, we obtain

e−λ(i+1)tw(x((i + 1)t)) − e−λitw(x(it))

=

∫ (i+1)t

it

e−λsDw(x(s)) · b(x(s), u1(s), β
m[u1](s)) ds

≥ −C

∫ (i+1)t

it

e−λs(s− i t) ds + (ρ− ε)

∫ (i+1)t

it

e−λs ds

−
∫ (i+1)t

it

e−λsr(x(s), u1(s), β
m[u1](s)) ds

≥ −C t
1

λ

[
e−λit − e−λ(i+1)t

]
+ (ρ− ε)

1

λ

[
e−λit − e−λ(i+1)t

]

−
∫ (i+1)t

it

e−λsr(x(s), u1(s), β
m[u1](s)) ds.

Adding these inequalities for i = 0, . . . , Nm− 1, and multiplying by λ, we get

λe−λNw(x(N)) − λw(x) ≥ C
1

m
[1 − e−λN ] + (ρ− ε)[1 − e−λN ]

− λ

∫ N

0

e−λsr(x(s), u1(s), β
m[u1](s)) ds.

Now letting N → ∞, we obtain

ρ− ε + λw(x0) ≤ λ

∫ ∞

0

e−λsr(x(s), u1(s), β
m[u1](s)) ds− C

1

m
.

Using (2.8), we get

ρ− ε + λw(x0) ≤ inf
α∈Γ

sup
u2(·)∈A2

λ

∫ ∞

0

e−λsr(x(s), α[u2](s), u2(s)) ds.

Now taking limit as λ → 0 and then ε → 0, we get

ρ ≤ lim inf
λ→0

inf
α∈Γ

sup
u2(·)∈A2

λ

∫ ∞

0

e−λsr(x(s), α[u2](s), u2(s)) ds.

Similarly, we can obtain

ρ ≥ lim sup
λ→0

inf
α∈Γ

sup
u2(·)∈A2

λ

∫ ∞

0

e−λsr(x(s), α[u2](s), u2(s)) ds.
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This completes part (ii).
Remark 2.10. If (ρ,w) is a viscosity subsolution of (2.2), then note that the

following result holds:

ρ ≤ inf
α∈Γ

sup
u2(·)∈A2

lim inf
λ→0

λ

∫ ∞

0

e−λsr(x(s), α[u2](s), u2(s)) ds.

Similar statements hold for the other cases.
We now present a dynamic programming principle for the viscosity solutions of

(2.1) and (2.2).
Theorem 2.11. (i) Let (ρ,w) be a viscosity solution of (2.1). Then for any

T > 0,

w(x) = sup
β∈∆

inf
u1(·)∈A1

[∫ T

0

r(x(s), u1(s), β[u1](s)) ds + w(x(T ))

]
− ρT.

(ii) Let (ρ,w) be a viscosity solution of (2.2). Then for any T > 0,

w(x) = inf
α∈Γ

sup
u2(·)∈A2

[∫ T

0

r(x(s), α[u2](s), u2(s)) ds + w(x(T ))

]
− ρT.

Proof. We prove (ii); (i) can be proved analogously. Let T > 0 and m a positive
integer. Take t = T/m. As in Claim C, we obtain αm(.), given ε, u2(.), such that

w(x(T )) − w(x) ≤ −
∫ T

0

r(x(s), u1(s), u2(s)) ds + (ρ + ε)T − C
T 2

m
.

Therefore

w(x) ≥ inf
α∈Γ

sup
u2(·)∈A2

(∫ T

0

r(x(s), α[u2](s), u2(s)) ds + w(x(T ))

)
− ρT.

We can prove the other inequality similarly.
We now turn our attention to the uniqueness of w. Define a set Z as follows: z ∈ Z

if z = limtn→∞ x(tn), where tn → ∞ and x(·) is a solution of (1.3) with an initial
condition x(0) = x0 for some x0 ∈ Rd under some controls (u1(·), u2(·)) ∈ A1 × A2.
Then Z is nonempty under assumption (A3). We now show that if (ρ,w1) and (ρ,w2)
are two viscosity solutions of (2.1) such that w1 ≡ w2 on Z, then w1 ≡ w2.

Theorem 2.12. Let (ρ,w1) and (ρ,w2) be two viscosity solutions of (2.1) such
that w1 ≡ w2 on Z. Then w1 ≡ w2. An analogous result holds for (2.2).

Proof. We prove this for the case when w1, w2 are C1,1. The general case follows
similarly as in the proof of Theorem 2.3. Let m be a positive integer. Let αm be as in
Claim C when we take w = w2, and let βm be as in Claim A when we take w = w1.
Taking αm as α in (2.9), we obtain ũ1(·) ∈ A1 and ũ2(·) ∈ A2 such that

βm[ũ1](·) = ũ2(·) and αm[ũ2](·) = ũ1(·).

Using this, we obtain

w1(x(N)) − w1(x) ≥ −
∫ N

0

r(x(s), αm[ũ2](s), ũ2(s)) ds + (ρ− ε)N − C
N

m
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and

w2(x(N)) − w2(x) ≤ −
∫ N

0

r(x(s), αm[ũ2](s), ũ2(s)) ds + (ρ− ε)N + C
N

m
.

From these two inequalities, we obtain

w1(x) − w2(x) ≤ w1(x(N)) − w2(x(N)) + 2C
N

m
.(2.11)

Using the compactness and equi-Lipschitz continuity of trajectories, we get a trajec-
tory x̄(·) such that x(·) → x̄(·) as m → ∞. (Note that x(·) above depends on m.)
Now from (2.11) we obtain by letting m → ∞

w1(x) − w2(x) ≤ w1(x̄(N)) − w2(x̄(N)).

Now letting N → ∞, we see that

w1(x) − w2(x) ≤ 0.

Similarly, we can prove

w2(x) − w1(x) ≤ 0.

Thus w1 ≡ w2.
Remark 2.13. The uniqueness result in [13] is established under certain growth

conditions on the solutions. Here we have obtained similar results without any such
condition. Our uniqueness result, however, is not complete. We have shown that if
two solutions coincide on the set Z, then they are identical. In view of this, it would
be interesting to investigate the structure of Z.

3. Existence results. In the previous section, we studied some representation
formulas related to the viscosity solutions of (2.1) and (2.2). We now study the
existence of viscosity solutions to (2.1) and (2.2). We refer to [9] for analogoues
results. Here we present two simple proofs of the existence result.

To this end we make the following assumption.
(A4) There exists a constant C3 > 0 such that for all x, y ∈ Rd and (u1, u2) ∈

U1 × U2,

〈b(x, u1, u2) − b(y, u1, u2), x− y〉 ≤ −C3|x− y|2.

Remark 3.1. (i) Let (u1(·), u2(·)) ∈ A1×A2. Let x(·) and y(·) denote the solutions
of (1.3) with the initial conditions x(0) = x and y(0) = y, respectively, under these
controls. Then using (A4), we get

d

dt
|x(t) − y(t)|2 ≤ −C3|x(t) − y(t)|2.

Now using Gronwall’s inequality, we obtain

|x(t) − y(t)| ≤ |x− y|e−C4t

for a constant C4 > 0.
(ii) Using Gronwall’s inequality, it is easy to see that (A1) and (A4) together

imply (A3).
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We now give some examples where (A4) holds.
Example 3.2. (i) Let U1, U2 be subsets of Rm and Rq, respectively, for some m

and q. Let b be given by

b(x, u1, u2) = Bx + C1u1 + C2u2 + b1(x, u1, u2),

where B is a d×d matrix, C1 a d×m matrix, C2 a d×q matrix, and b1 : Rd×U1×U2 →
Rd. We assume the following:

∃α > 0 such that 〈Bx, x〉 ≤ −α|x|2

and

|b1(x, u1, u2) − b(y, u1, u2)| ≤ α1|x− y| for some α1 < α.

Under these assumptions, it is easy to verify that (A4) is satisfied.
(ii) Let U1, U2 be as above and let b be given by

b(x, u1, u2) = A + B1u1 + B2u2 + b̄(x),

where A is a d×d matrix, B1 a d×m matrix, and B2 a d×q matrix. Assume that there
are matrices C1, C2 of orders d×m and d×q, respectively, such that A+B1C1+B2C2

is stable. Further assume that b̄ is bounded and Lipschitz continuous. Then (A4) is
satisfied.

We now prove the existence via the vanishing limit in the discounted payoff
criterion.

Theorem 3.3. Assume (A1), (A2), and (A4). Let wλ be the unique viscosity
solution in the class of linear growth functions of

λwλ(x) = inf
u1(·)∈A1

sup
u2(·)∈A2

(b(x, u1, u2) ·Dwλ(x) + r(x, u1, u2)) .(3.1)

Then λwλ(x) → ρ, a constant as λ → 0. Also for any x̄ ∈ Rd, wλ(·)−wλ(x̄) converges
uniformly on compact sets to a continuous function w(·). Thus (ρ,w) is a viscosity
solution of (2.1) for any x̄ ∈ Rd. Moreover, ρ = ρ+(x) for all x ∈ Rd. An analogous
result holds for the existence of a viscosity solution to (2.2).

Proof. Using standard results in differential games and viscosity solutions [1], we
have

wλ(x) = sup
β∈∆

inf
u1(·)∈A1

∫ ∞

0

e−λtr(x(t), u1(t), β[u1](t)) dt.

Let u1(·) ∈ A1 and u2(·) ∈ A2. Then using Remark 3.1(i), we see that∣∣∣∣
∫ ∞

0

e−λsr(x(s), u1(s), u2(s)) ds−
∫ ∞

0

e−λsr(y(s), u1(s), u2(s)) ds

∣∣∣∣ ≤ 1

C4 + λ
|x−y|,

where x(·), y(·) are solutions of (1.3) with initial conditions x(0) = x and y(0) = y,
respectively, under the controls (u1(·), u2(·)). Using this fact, it is easy to note that wλ

is Lipschitz continuous where the Lipschitz constant is independent of λ. Therefore
by Ascoli-Arzela’s theorem for a fixed x̄, wλ(x) − wλ(x̄) converges locally uniformly
to a continuous function w(x) and λwλ(x) converges to a constant ρ. By the stability
of viscosity solutions, we note that (ρ,w) is a viscosity solution of (2.1). Now by
Theorem 2.6, ρ = ρ+(x) for all x ∈ Rd.
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We now turn our attention to the increasing horizon limit case. Let T > 0 and w0

be any Lipschitz continuous function. Now consider the HJI equation in (0, T )×Rd,{
wt(t, x) = inf

u1∈U1

sup
u2∈U2

{b(x, u1, u2) ·Dw(t, x) + r(x, u1, u2)},

w(0, x) = w0(x).
(3.2)

Then we have the following theorem.
Theorem 3.4. Assume (A1), (A2), and (A4). Let w(t, x) be the unique viscosity

solution of (3.2) in the class of linear growth functions. Then w(T,x)
T → ρ, a constant,

and w(T, x) − ρT converges locally uniformly to a continuous function w∞(x) such
that (ρ,w∞) is a viscosity solution of (2.1). Moreover, ρ = ρ+(x) for all x ∈ Rd. An
analogous results holds for (2.2).

Proof. Using standard results in differential games and viscosity solutions [7], we
have the following representation formula for w(t, x):

w(T, x) = sup
β∈∆

inf
u1(·)∈A1

[∫ T

0

r(x(s), u1(s), β[u1](s)) ds + w0(x(T ))

]
.

As in above theorem, using Remark 3.1(i), we can show that

|w(T, x) − w(T, y)| ≤ 1 − e−C10T

C10
|x− y|.

Using Ascoli-Arzela’s theorem, it is easy to see that w(T,x)
T → ρ, a constant w(T, x)−

ρT → w∞(x) locally uniformly to a continuous function w∞(x). We now need to
show that (ρ,w∞) is a viscosity solution of (2.1). Let

wε(t, x) = w(t/ε, x) for t ∈ [0, 1].

Then wε(t, x) − ρ t
ε → w∞(t, x) locally uniformly as ε → 0. Now it is easy to see that

wε is viscosity solution of{
εwε

t(t, x) = infu1∈U1
supu2∈U2

{b(x, u1, u2) ·Dwε(t, x) + r(x, u1, u2)},
w(0, x) = w0(x)

in (0, 1) × Rd. Using the stability of viscosity solutions [5], we get that (ρ,w∞) is a
viscosity solution of (2.1). This completes the proof.

4. Conclusions. In this paper, we have studied a zero sum differential game
with ergodic payoff. We have identified the scalar appearing in the HJI equation as
the ergodic value. Under a dissipativity-type condition, we have also established the
existence of a viscosity solution to HJI equations. We have carried out two asymp-
totics, namely, we have shown that the ergodic value is the vanishing limit of the
discounted value. At the same time, the ergodic value is also the time averaged limit
of the finite horizon value. Finally we wish to mention that although we have identi-
fied the scalar appearing in the HJI equation as the ergodic value, we have not been
able to establish the uniqueness (in some sense) of the solution of the HJI equation.
We have obtained only a partial uniqueness result. Thus the uniqueness issue and the
existence of viscosity solution to HJI equations under (A3) alone still remain problems
that need further investigation.
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