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Abstract. Graph topologies for nonlinear operators which admit coprime factorisations are
defined w.r.t. a gain function notion of stability in a general normed signal space setting. Several
metrics are also defined and their relationship to the graph topologies are examined. In particular,
relationships between nonlinear generalisations of the gap and graph metrics, Georgiou-type formulae
and the graph topologies are established. Closed loop robustness results are given w.r.t. the graph
topology, where the role of a coercivity condition on the nominal plant is emphasised.
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1. Introduction. The theory of coprime factorisations of linear signal operators
is well known to be a significant tool in the study of robustness of stability for linear
feedback systems and has been extensively studied (see [5, 16, 20]). Perturbations to
normalized co-prime factors form a good description of physically realistic deviations
from nominal models, since they allow a unified treatment of both low and high
frequency uncertainties [8]. In the linear theory, it is well known that the graph
topology is the appropriate topological description for studying robustness of stability
and that co-prime factor perturbations can be used to induce the graph topology.
Furthermore, the graph topology is metrizable, and both the gap metric [3, 21] and
the graph metric [20] provide suitable metrizations, the former being more suitable for
calculations by standard H∞ optimizations, (although both metrics are topologically
equivalent) [5, 16, 21]. There is thus a rich set of equivalences between the notions of
co-prime factorisations, gap/graph metrics and topologies and their attendant robust
stability theorems. Moreover, this framework is a cornerstone of modern robust linear
control theory.

Given the richness and importance of this framework in the linear setting, it is
natural to seek extensions to the nonlinear case, and to alternative signal spaces.
Indeed, by adopting a notion of stability corresponding to the existence of a linear
gain, (typically either in an L2 or L∞ setting), a number of authors have previously
considered a nonlinear theory of co-prime factorisation. Here we highlight three con-
tributions of particular relevance to the context of this paper. In [18], Verma defined
a notion of co-prime factorisation for nonlinear mappings and, presented a stability
result for a nonlinear system. In [2], Anderson, James and Limebeer generalised the
linear theory of normalized co-prime factor robustness optimisation to the case of
affine input nonlinear systems and presented a optimal robustness margin. In [10], a
new definition of “normalized” was introduced for left representation for the graph of
a nonlinear system and different gap metrics were studied. Many further pointers to a
growing literature on nonlinear co-prime factorisation can be found in the monograph
[14] and the references therein.

On the other hand, the gap metric has also been generalised into a nonlinear
setting in a fundamental contribution by Georgiou and Smith, [7]. In further recent
papers [1], [22], [10], generalisations of Vinnicombe’s ν-gap metric [21] to nonlinear
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operators have been considered (for linear systems the ν gap is always smaller than
the gap, and has sharper properties, however, the nonlinear theory does not as yet
reflect these extra properties).

The purpose of this paper is three-fold:

1. To further extend the existing robust stability theory by replacing the restric-
tive requirement of the existence of an induced gain by the weaker requirement
of the existence of a gain function, see also [7].

2. To provide the topological descriptions underpinning the convergence and
robust stability notions in both the case of linear gain and gain function
stability; in particular to provide a topological characterisation of nonlinear
gap topologies in terms of co-prime factor perturbations.

3. To establish links between the nonlinear graph topologies, the recent results
on the nonlinear gap metric [7] and other metrizations (eg. graph metrics
[20] and Georgiou-type formulae [4]).

In the context of the first and second items, directly related work of which the authors
are aware can be found in [17], where a sufficient condition for the existence of coprime
factorisation of nonlinear mappings was given in the sense of IOS; we will show much
more of the theory for linear gains can be extended to this more general setting.
In [7], robustness of stability results were given in a gain function setting using a
generalisation of the gap metric. Interestingly whilst the results in the gain function
setting given in [7] implicitly define a notion of plant convergence, the underlying
topology is not explicit. In particular, in contrast to the case of the linear gain,
a metric was not defined, hence a topology cannot be automatically induced. One
contribution of this paper is to provide the underlying topology, and to provide explicit
metrizations. In the case of stability of nonlinear operators defined via a linear gain,
we show that the graph metric naturally generalizes and induces the graph topology.
In the more general case of gain function stability, we only show that the gap topology
is stronger than the (weighted) graph topology. The converse relationship remains
open. However, we do establish many other relationships and equivalences between a
variety of gap and graph metrics and topologies.

An outline of this paper is as follows. Section 2 is devoted to the preliminaries,
in particular known results on coprime factorisation for nonlinear systems are briefly
reviewed. The main results are arranged in three sections. In Section 3, we define
pointwise and weighted graph topologies and study the associated convergence over a
general subset of signal operators admitting coprime factorisations. In Section 4, we
study the metrizability of the weighted graph topology. Seven gap metrics are consid-
ered. Equivalences and other relationships between the metrics and their associated
topologies (including equivalence to the weighted graph topology) are presented. Fi-
nally in Section 5, we apply the graph topologies to study the robust stability of
nonlinear feedback systems. A summary and discussion of future work is given in
Section 6.

2. Background on Coprime Factorisation. The material in this section is
mostly directly based on (and straightforward generalisations of) work of previous
authors, [7, 17, 18, 19]. However, we need to present this material within the language
of this paper and for completeness.

We let U ,Y be two signal spaces respectively representing the input and output
signal spaces. These could be the spaces L∞

n := L∞(R+, Rn), L∞,e
n , Lp

n, Lp,e
n , lp or

even a general set on which a truncation can be defined and for which any truncated
domain is a normed linear space and supτ>0 ‖Tτx‖ < ∞ implies x ∈ Us. In particular,
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for one-dimensional continuous domains, we define the truncation operator and the
truncated norm for a signal u, say u ∈ L∞,e

n , by

(Tτu)(t) =

{

u(t), t ≤ τ
0, t > τ

, ‖u‖τ = ‖Tτu‖.

where norm of a normed space X is denoted by ‖ · ‖X or ‖ · ‖ if the usage is un-
ambiguous. Note however, that the notion of truncation and all the material in this
paper equally applies to signal spaces with discrete domains, eg. L∞(Z+, Rn), and
to multidimensional domains, eg. L∞(Rm

+ , Rn), under a suitably modified notion of
truncation. Let Us,Ys be the auxiliary normed subspaces which consist of all bounded
signals in U ,Y, respectively. In the case where U (resp. Y) is a normed space, Us = U
(resp. Ys = Y). Typically U ,Y are taken to be extended spaces (eg. L∞,e

n ), and
Us,Ys are their non-extended subspaces (eg. L∞

n ).
The identity operator on any space Y is denoted by IY or I if the usage is clear.

Given a matrix operator (A,B), let (A,B)⊤ be its transpose, that is (A,B)⊤ =
(

A
B

)

. We also let K∞ denote the set of functions ω : [0,∞) → [0,∞) which are

continuous, strictly increasing and ω(0) = 0, ω(∞) = ∞.
Any signal operator P : Dom(P ) → Y is assumed to be causal and its domain is

denoted by

Dom(P ) = {u ∈ Us : Pu ∈ Ys}.

It is worthwhile to observe that unstable plant operators P̂ are often thought of as
operators U → Y for suitably large signal spaces U , Y. We will only have need to be
interested in the relation between elements in Dom(P ) and Ys so do not consider the
definition of P on the wider signal spaces. However, it should be noted that under
extra assumptions such as causal extendibility [6] and for appropriate choices of signal
space, the operator P : Dom(P ) → Ys uniquely extends to an operator P̂ : U → Y,
hence the topologies we will define on sets of operators P : Dom(P ) → Ys can be
thought of as topologies on sets of operators P̂ : U → Y.

Linear gains of operators P : Dom(P ) → Y are defined by:

‖P‖ := sup

{

‖Pu‖

‖u‖
: u ∈ Dom(P ) with ‖u‖ 6= 0

}

.

If P is causal, one can prove that

‖P‖ = sup

{

‖Pu‖τ

‖u‖τ
: τ > 0, u ∈ Dom(P ) with ‖u‖τ 6= 0

}

which is used in [7] as the definition of linear gain. When P is a linear operator,
‖P‖ is the induced operator norm of P . In the nonlinear setting, in contrast to linear
systems, it is often the case that Dom(P ) = Us and yet no linear gain exists. Therefore
a weaker notion of stability is adopted, namely that of the existence of a gain function.
The gain function of an operator P is defined by:

γ(P )(r) := sup
{

‖Pu‖τ : τ > 0, u ∈ Dom(P ) with ‖u‖τ ≤ r
}

for r ≥ 0.

In the case where P is causal, we also have

γ(P )(r) = sup
{

‖Pu‖ : u ∈ Dom(P ), ‖u‖ ≤ r
}

for r ≥ 0.
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We summarize elementary properties of the linear gain ‖P‖ and the gain function
γ(P ) in the following lemma:

Lemma 2.1. The linear gain and gain function have the following properties:
1. γ(P )(0) = 0 if P (0) = 0;
2. γ(P )(r1) ≤ γ(P )(r2) if r1 ≤ r2;
3. For any two well-defined operators P1, P2 and any r > 0, λ ∈ R, we have

‖λP1‖ = 0 ⇐⇒ P1 = 0, γ(P1) = 0 ⇐⇒ P1 = 0,

‖λP1‖ ≤ |λ|‖P1‖, γ(λP1)(r) ≤ |λ|γ(P1)(r),

‖P1 + P2‖ ≤ ‖P1‖ + ‖P2‖, γ(P1 + P2)(r) ≤ γ(P1)(r) + γ(P2)(r),

‖P1P2‖ ≤ ‖P1‖‖P2‖, γ(P1P2)(r) ≤ γ(P1)
(

γ(P2)(r)
)

.

4. γ(P )(r) ≤ r‖P‖ for all r > 0. In particular, if P is linear and bounded, then
γ(P )(r) = r‖P‖.

Definition 2.2. A signal operator P is said to be: (i) gain stable if ‖P‖ < ∞;
(ii) (gf)-stable if γ(P )(r) < ∞ for each r ≥ 0.

We remark that gain stability implies (gf)-stability and both imply P (Dom((P )) ⊂
Ys. In fact, a stable operator P maps bounded subsets of Us into bounded subsets
of Ys (compare to [19]).As a shorthand, in the rest of this paper, a stable operator is
taken to mean that the operator is stable in the sense of (gf)-stability unless specified
otherwise.

Definition 2.3. A causal operator P : Dom(P ) ⊂ Us → Y is said to admit
a (right) coprime factorisation if and only if there exist causal stable operators N :
Us → Ys and D : Us → Us such that

i) D is causally invertible with Dom(D−1) = Dom(P );
ii) P = ND−1;
iii) There exists a causal stable mapping L : Us×Ys → Us such that L(D,N)⊤ = I.

In that case, we also say that P admits the coprime factorisation (N,D) and we write
P = ND−1. For convenience, we call L the associated operator to this coprime
factorisation. The set of all coprime factorisations of P is denoted by rcf(P ).

In this definition, and henceforth, an operator D : Us → Us is said to be invertible
with inverse D−1 if D−1 : Dom(D−1) ⊂ Us → Us is a well-defined operator and
DD−1|Dom(D−1) = I,D−1D|Us

= I. Equivalently, D is required to be both left and
right invertible.

Definition 2.4. Suppose (N,D) is a coprime factorisation of P . If

‖(D,N)⊤u‖ = ‖u‖ for all u ∈ U ,

we say that (N,D) is a normalized right coprime factorisation of P . The set of all
normalized right coprime factorisations is denoted by nrcf(P ).

Definitions 2.3 and 2.4 are generalizations of the coprime factorisation and nor-
malized coprime factorisation for linear operators (see [20]) to the nonlinear case, as
considered previously by various authors. Definition 2.3 is given by Verma and Hunt
in [19] (see also [12, 18]) where the stability is in the sense of “bounded input implies
bounded output” (resp. linear gain) between normed spaces. Sontag [17] also defined
the concept in which L is required to be of the form (B,A) with A : Y → U , B : U → U .
Others using this Bezout identity to define coprime factorisations for nonlinear sys-
tems include Hammer [9], James, Smith and Vinnicombe [10], Moore and Irlichet [11]
etc. Whilst the Bezout identity BN + AD = I always appears in the linear case, the
more general form of L is less restrictive in the nonlinear setting. Generalizations of
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normalized coprime factorisation, including those for specific signal operators, can be
found in [2, 10, 13, 14, 15] and the references therein.

Existence and construction of (normalized) coprime factorisations for certain
classes of nonlinear systems have been considered previously. For example, in [2,
10, 13, 15], normalized coprime factorisations for stabilizable nonlinear affine systems

x′ = f(x) + g(x)u, y = C(x)

were constructed; Sontag [17] proved that, in the sense of IOS, if the above system
with C = I is smoothly input to state stabilizable by a controller of the form u =
k(x) + v , then its input to state mapping P : u 7→ x admits a coprime factorisation
with L = (I,A), where −A is the memoryless operator induced by the smooth state
feedback controller u = k(x), N is the input to state mapping v 7→ x of the closed-loop
system and D = I −AN . Similar existence results were obtained by Verma and Hunt
[19], in the sense of (gf)-stability, for the causal I/O mapping of the system

x′(t) = f(x(t), u(t), t), x(0) = x0,
y(t) = h(x(t), u(t), t)

in the case when U ,Y are Lp spaces. Other references to the state space construction
of co-prime factors can be found in [14] and the references therein.

The following two results can be found in [18] where the notion of stability is in
the sense of a finite linear gain. However, the proofs remain valid in the context of
(gf)-stability, hence we omit the proofs.

Proposition 2.5. Suppose P admit coprime right factorisation (N,D). Then

Graph(P ) := {(u, Pu)⊤ : u ∈ Dom(P )} = {(Du,Nu)⊤ : u ∈ Us}.
Proof. See [18].

Proposition 2.6. (N,D), (N1,D1) ∈ rcf(P ) if and only if there exists an
causally stable operator U on Us, where U−1 exists and is stable and is such that
N = N1U,D = D1U .

Proof. See [18].

If the coprime factorisations in Proposition 2.6 are also normalized, then we also
have:

Proposition 2.7. If (N,D), (N1,D1) ∈ nrcf , then the operator U in Proposition
2.6 is such that ‖Uu‖ = ‖U−1u‖ = ‖u‖ for all u ∈ Us.

Proof. Let u ∈ Us. By Proposition 2.6 and the definition of normalized co-
prime factorisation, we see ‖U−1u‖ = ‖(D,N)⊤U−1u‖ = ‖(D1, N1)

⊤UU−1u‖ =
‖(D1, N1)

⊤u‖ = ‖u‖ and, similarly, ‖Uu‖ = ‖(D1, N1)
⊤Uu‖ = ‖(D,N)⊤U−1Uu‖=

‖(D,N)⊤u‖ = ‖u‖. This proves the proposition.

3. Graph Topologies. In this section, we will study graph topologies on the
set of certain signal operators having coprime factorisations. As in the linear case, we
will show that the graph topologies play a natural role in the theory of closed loop
robust stability.

In practice, the signal spaces, operators and associated coprime factorisations
concerned are constrained to lie within certain classes for different control problems.
For example, one may only interested in the case when U = L∞,e

n ,Y = L∞,e
m and

where all operators considered lie in the subset of i/o operators of all affine (nonlinear)
systems.

Here we list some particular categories that will be considered in this paper.
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• Category nor: U ,Y are general signal spaces as assumed and all operators
considered are those that admits normalized coprime factorisations in the
sense defined in the last section.

• Category ω with ω ∈ K∞: U ,Y are general signal spaces and all opera-

tors F considered are such that rcf(F ) 6= ∅ and sup
r>0

γ((N,D)⊤)(ω(r))

r
<

∞ for all (N,D) ∈ rcf(F ).
• Category L: U ,Y are both the frequency domain Hardy spaces H2 (see [20]),

operators are the real rational p × q transfer function matrices and the asso-
ciated coprime factorisations are those linear factorisations over RH∞

1 as in
[20] or [21].

Since F ≡ 0 has normalized coprime factorisation (0, I), we see that each category is
non-empty.

The graph topologies will be defined on a general category although in the next
section we mainly consider Nnor(U ,Y) and Nω(U ,Y). So we use Γ to represent the
category concerned and write

NΓ(U ,Y) :=

{

P : Dom(P ) ⊂ U → Y :
P and the associated rcf’s
N,D are with in category Γ

}

.

Correspondingly, we have notations Nnor(U ,Y),Nω(U ,Y) and NL(H2,H2) =: NL.
For example

Nnor(U ,Y) := {P : Dom(P ) ⊂ U → Y and nrcf(P ) 6= ∅}.

Nω(U ,Y) :=







P : Dom(P ) ⊂ U → Y :

rcf(P ) 6= ∅ and for all(N,D) ∈ rcf(P ),

sup
r>0

γ((N,D)⊤)(ω(r))

r
< ∞







.

A graph topology for NL, denoted by TL, has been defined in [20] by the following
local base for P ∈ RH∞:

N (N,D; ε) = {N1D
−1
1 : ‖(N1 − N,D1 − D)⊤‖∞ < ε,N,D,N1,D1 ∈ RH∞} (3.1)

with ε > 0, (N,D) ∈ rcf(P ), (N1,D1) ∈ rcf(N1D
−1
1 ), respectively. We will show that

our L2 topologies for NL are the same as TL.
For notational ease in the sequel, any pairs N,D or Nk,Dk are always assumed

to be coprime factorisations of P = ND−1 and Pk = NkD−1
k respectively, and P

and Pk are taken to be well-defined operators from Dom(P ) → Ys, Dom(Pk) → Ys

respectively.

3.1. Pointwise Graph Topology. Let ℜ be the vector space of all functions
from R

+ to R. For any open subset Ω ⊂ R and a finite subset {t1, · · · , tn} ⊂ R
+, let

V(t1, · · · , tn; Ω) = {f ∈ ℜ : f(ti) ∈ Ω}.

1H2 is the space of Fourier transforms of signals in L2(R+, R
n) endowed with the norm ‖x‖2

2
:=

1

2π

∫

∞

−∞
x∗(jω)x(jω)dω. By Parseval’s Theorem, it is isometrically isomorphic to L2(R+, R

n)
and, therefore, the two notations are not distinguished. RH∞ is the space of rational trans-
fer functions of stable linear, time-invariant, continuous time systems endowed with the norm
‖P‖∞ := sup

ω∈R σ̄[P (jω)], where σ̄ denotes the maximum singular value. Equivalently, ‖P‖∞ :=
sup{‖Pu‖H2

/‖u‖H2
: u ∈ H2, u 6= 0}. So by Paserval’s Theorem, the H∞-norm in the frequency

domain corresponds to the induced L2 norm in the time domain.
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It can be proved that {V(t1, · · · , tn; Ω) : ti ∈ R
+, n > 0,Ω ⊂ R,Ω open} forms a

subbase for a topology on ℜ. Moreover, the family of subsets

ℜ0 = {V(t1, · · · , tn; ε) := V(t1, · · · , tn; (−ε, ε)) : ε > 0, ti ∈ R
+, n > 0}

is a base for the neighborhood of f(t) ≡ 0 in ℜ under such a topology.
For each P ∈ NΓ(U ,Y) with coprime factorisation (N,D) and each V ∈ ℜ0, we

define

O(N,D;V ) =
{

P1 = N1D
−1
1 ∈ NΓ(U ,Y) : γ((D − D1, N − N1)

⊤) ∈ V
}

.

Obviously, P = ND−1 ∈ O(N,D;V ) for each V ∈ ℜ0. Moreover, we have the
following result:

Proposition 3.1. If ND−1 ∈ O(N1,D1;V1) ∩ O(N2,D2;V2), then there exist
V ∈ ℜ0 such that O(N,D;V ) ⊂ O(N1, V1) ∩ O(N2,D2;V 2).

Proof. We may suppose V1 = V(t1, · · · , tn; ε1), V2 = V(s1, · · · , sm; ε2) with ti > 0,
sj > 0, εk > 0 (i = 1, · · · , n, j = 1, · · · ,m, k = 1, 2). Then ε1 − γ((D − D1, N −
N1)

⊤)(ti) and ε2 − γ((D − D2, N − N2)
⊤)(sj) are all positive numbers. Let ε > 0

such that

ε < min

{

ε1 − γ((D − D1, N − N1)
⊤)(ti), i = 1, · · · , n,

ε2 − γ((D − D2, N − N2)
⊤)(sj), j = 1, · · · ,m.

}

If ÑD̃−1 ∈ O(N,D;V ) with V = V(t1, · · · , tn, s1, · · · , sm; ε), then

γ((D̃ − D1,Ñ − N1)
⊤)(ti) ≤ γ((D̃ − D, Ñ − N)⊤)(ti) + γ((D − D1, N − N1)

⊤)(ti)

< ε1 − γ((D − D1, N − N1)
⊤)(ti) + γ((D − D1, N − N1)

⊤)(ti) = ε1

for all i = 1, · · · , n. This gives ÑD̃−1 ∈ O(N1,D1;V1). Similarly, we can show
ÑD̃−1 ∈ O(N2,D2;V2). Therefore, ÑD̃−1 ∈ O(N1,D1;V1) ∩ O(N2,D2;V2) which
means O(N,D;V ) ⊂ O(N1,D1;V1) ∩ O(N2,D2;V2).

¿From the above result, it follows that a topology on NΓ(U ,Y) can be uniquely
determined by the base B, where

B = {O(N,D;V ) : ND−1 ∈ NΓ(U ,Y), V ∈ ℜ0},

and {O(N,D;V ) : ND−1 = P, V ∈ ℜ0} a local base of P . We denote this topology
by T and call it the pointwise (graph) topology (see the preceding footnote). The
following proposition provides alternative base for this topology.

Proposition 3.2. Let Q+ be the set of all positive rational numbers and

O′(N,D; r, ε) =
{

N1D
−1
1 ∈ NΓ(U ,Y) : γ((D − D1, N − N1)

⊤)(r) < ε
}

.

Then a base for the pointwise graph topology T is the family of subsets:

B
′ = {O′(N,D; r, ε) : ND−1 ∈ NΓ(U ,Y), r, ε ∈ Q+}.

Proof. Obviously B
′ ⊂ B. Suppose O(N,D;V ) ∈ B with V = V(t1, · · · , tn; ε).

Let r, ε1 ∈ Q such that r > max{t1, · · · , tn) and ε1 < ε. Then for each N1D
−1
1 ∈

O′(N,D; r, ε1), from Lemma 2.1 2), it follows

γ((D1 − D,N1 − N)⊤)(ti) ≤ γ((D1 − D,N1 − N)⊤)(t) < ε1 < ε
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for all i = 1, · · · , n. This means N1D
−1
1 ∈ O(N,D;V ) and, therefore, O′(N,D; r, ε) ⊂

O(N,D;V ). Hence B and B
′ are equivalent.

If we restrict our consideration to NL, from Lemma 2.1 4) and (3.1), we see

O′(N,D; r, ε) =
{

N1D
−1
1 : γ((D − D1, N − N1)

⊤)(r) < ε,N,D,N1,D1 ∈ RH∞

}

=
{

N1D
−1
1 : ‖(D − D1, N − N1)

⊤‖ <
ε

r
=: ε1, N,D,N1,D1 ∈ RH∞

}

= N (N,D; ε1),

hence we have
Corollary 3.3. The pointwise graph topology T in the category L is the same

as the graph topology TL.
Now we begin to consider the convergence of sequences under the pointwise topol-

ogy. The following result shows that any convergent sequence has only one limit.
Proposition 3.4. The pointwise graph topology T is Hausdorff. Therefore, the

limit point of a convergent sequence is unique.
Proof. Let P1 6= P2 be two distinct plants. Then there exist (N1,D1) ∈ rcf(P1),

(N2,D2) ∈ rcf(P2) with (D1, N1)
⊤ 6= (D2, N2)

⊤. This shows

ε := γ((D1 − D2, N1 − N2)
⊤)(r) > 0 for some r > 0.

Consider the neighbourhoods O(N1,D1; r, ε/3) of P1 and O(N2,D2; r, ε/3) of P2. If
there exists P = ND−1 ∈ O(N1,D1; r, ε/3) ∩ O(N2,D2; r, ε/3), since

γ((N1 − N2,D1 − D2)
⊤)(r) ≤ γ((N1 − N,D1 − D)⊤)(r) + γ((N2 − N,D2 − D)⊤)(r),

we see γ((N1 − N2,D1 − D2)
⊤)(r) < ε. This is a contradiction. Hence we have that

O(N1,D1; r, ε/3) ∩ O(N2,D2; r, ε/3) = ∅ which proves the proposition.

Suppose {Pn} ⊂ NΓ(U ,Y) is a sequence. We let Pn
T
−→ P denote the convergence

of the sequence {Pn}n≥1 to P under the graph topology T . From Proposition 3.2,

we see that Pn
T
−→ P means that, for any r > 0, ε > 0 and each coprime factorisation

ND−1 of P , there exist n0 > 0 and coprime factorisation NnD−1
n of Pn such that

NnD−1
n ∈ O(N,D; r, ε) for all n ≥ n0. Necessary and sufficient conditions for this

convergence are given below.
Theorem 3.5. The following statements are equivalent.

i) Pn
T
−→ P .

ii) For each (N,D) ∈ rcf(P ), there exists (Nn,Dn) ∈ rcf(Pn) such that

γ((Dn − D,Nn − N)⊤)(r) → 0 for each r > 0.

iii) There exists (N,D) ∈ rcf(P ) and, for each n, there exists (Nn,Dn) ∈ rcf(Pn)
such that

γ((Dn − D,Nn − N)⊤)(r) → 0 for all r > 0.

Proof. ii) ⇒ i) and ii) ⇒ iii) are immmediate, we need only to prove i) ⇒ ii) and
iii) ⇒ ii).

i) ⇒ ii). Let r > 0 and P = ND−1 be given. According to the assumptions,
for each ε > 0 and n > 0 , there exists coprime factorisation Nn,εD

−1
n,ε of Pn and
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nε > 0 such that Nn,εD
−1
n,ε ∈ O(N,D; r, ε) for all n ≥ nε. Let ε = 1, 1/2, · · · , 1/2k, ·,

respectively, to obtain the corresponding integers nk := n1/2k . Define

Nn = Nn,1/2k and Dn = Dn,1/2k for nk ≤ n < nk+1.

Then NnD−1
n is a coprime factorisation of Pn and NnD−1

n ∈ O(N,D; r, 1/2k) for
n ≥ nk. Hence γ((Dn − D,Nn − N)⊤)(r) → 0.

iii) ⇒ ii). Suppose (Ñ , D̃) is an arbitrary coprime factorisation of P . Then by
Proposition 2.6, there exists stable operator U with Ñ = NU, D̃ = DU . Moreover,
(Ñn, D̃n) := (NnU,DnU) is a coprime factorisation of Pn due to the same proposition.
Using Lemma 2.1, we have

γ((D̃n − D̃, Ñn − Ñ)⊤)(r) ≤ γ((Dn − D,Nn − N)⊤)(γ(U)(r)).

The stability of U and the assumption ensure γ((D̃n−D̃, Ñn−Ñ)⊤)(r) → 0 as n → ∞
and, therefore, ii) has been established. This completes the proof.

Because the continuity of a mapping from a first-countable topological space to
another topological space can be described by the convergence of sequences, we have
shown:

Corollary 3.6. Let Λ be a first-countable topological space, Pλ : Λ → NΓ(U ,Y).
Then λ 7→ Pλ is continuous at λ = λ0 under the pointwise graph topology T if and
only if there exist coprime factorisations Pλ0

= N0D
−1
0 and Pλ = NλD−1

λ for each
λ ∈ Λ such that

γ((D0 − Dλ, N0 − Nλ)⊤)(r) → 0 for all r ≥ 0 as λ → λ0.

3.2. Weighted Graph Topology. In this section, we consider another topology
on the set NΓ(U ,Y), which will be related to a given function ω ∈ K∞ and a weighted
gain ‖ · ‖ω defined by

‖P‖ω = sup
r>0

γ(P)(ω(r))

r
for any signal operator P.

It is straightforward to prove that ‖ · ‖ω is a norm. Moreover, if ω(r) ≥ c1r with
c1 > 0 for all r > 0, then ‖P‖ω ≥ c1‖P‖; If P0 = 0, c2 > 0 and ω(r) ≤ c2r for all
r > 0, then ‖P‖ω ≤ c2‖P‖.

Let

Σ = {P : U → U × Y with ‖P‖ω < ∞},

It can be seen from the basic properties of γ that Σ is a linear space and, therefore,
(Σ, ‖ · ‖ω) is a normed space. The norm induces a corresponding topology on Σ, of
which a local base of open ball neighbourhoods of P ≡ 0 is denoted by B.

For each P ∈ NΓ(U ,Y) with coprime factorisation P = ND−1 and each V ∈ B,
we denote by

Oω(N,D;V ) =
{

N1D
−1
1 ∈ NΓ(U ,Y) : (D − D1, N − N1)

⊤ ∈ V
}

.

Obviously, P = ND−1 ∈ Oω(N,D;V ) for each V ∈ B. Moreover, we have
Proposition 3.7. If ND−1 ∈ Oω(N1,D1;V1)∩Oω(N2,D2;V2), then there exist

V ∈ B such that Oω(N,D;V ) ⊂ Oω(N1, V1) ∩ Oω(N2,D2;V2).
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Proof. We may suppose that Vi = {P ∈ Σ : ‖P‖ω < εi} with εi > 0, i = 1, 2.
Let

αi = sup
r>0

γ((D − Di, N − Ni)
⊤)(ω(r))

r
, i = 1, 2

and let ε be a positive number such that ε < min{ε1 − α1, ε2 − α2}. Then for each
ÑD̃−1 ∈ Oω(N,D; ε) and each r > 0, from the third property of γ, it follows

γ((D̃ − Di, Ñ − Ni)
⊤)(ω(r))

r
≤

γ((D̃ − D, Ñ − N)⊤)(ω(r))

r

+
γ((D − Di, N − Ni)

⊤)(ω(r))

r
< ε + αi, i = 1, 2.

Hence

sup
r>0

γ((D̃ − Di, Ñ − Ni)
⊤)(ω(r))

r
≤ ε + αi < εi − αi + αi = εi, i = 1, 2.

This implies ÑD̃−1 ∈ Oω(N1,D1; ε1) ∩ Oω(N2,D2; ε2) and, therefore, Oω(N,D; ε) ⊂
Oω(N1,D1; ε1) ∩ Oω(N2,D2; ε2).

Let

Bω = {Oω(N,D;V ) : ND−1 ∈ NΓ(U ,Y), V ∈ B}.

From the above result, it follows that a topology on NΓ(U ,Y) can be uniquely de-
termined with Bω its base. We denote this topology by Tω and call it the weighted
(graph) topology related to function ω. Obviously, Tωhas countable local base.

If P ∈ Σ is linear and ω(t) ≡ t, then from Lemma 2.1 4), we see ‖P‖ω = ‖P‖.
Therefore, if we restrict attention to NL, then for each P = ND−1 ∈ RH∞ and
V = {P : H2 → H2 ×H2, ‖P‖ω < ε}, we have

Oω(N,D;V ) = {N1D
−1
1 : ‖(N1 − N,D1 − D)⊤‖ < ε,N,D,N1,D1 ∈ RH∞}

and Oω(N,D;V ) = N (N,D; ε). This fact yields the following corollary.
Corollary 3.8. For ω(t) ≡ t and NΓ(U ,Y) = NL, the weighted graph topology

Tω is the same as the graph topology TL defined for NL(U ,Y).
¿From Proposition 3.7, we see that a sequence of operators {Pn}n≥1 converges to

P under this graph topology, denoted by Pn
Tω−−→ P , means that, for any ε > 0 and

each coprime factorisation ND−1 of P , there exist n0 > 0 and coprime factorisation
NnD−1

n of Pn such that ‖(Dn − D,Nn − N)⊤‖ω < ε for all n ≥ n0.
Using a method similar to the one used in Proposition 3.4, we can also prove that

the weighted topology is a Hausdorff topology. So a convergent sequence has unique
limit.

Theorem 3.9. Pn
Tω−−→ P if and only if for each coprime factorisation ND−1 of

P , there exists coprime factorisation NnD−1
n of Pn such that

sup
r>0

γ((Dn − D,Nn − N)⊤)(ω(r))

r
→ 0.

Proof. The proof is omitted for brevity as it follows the same reasoning as used
in the first part proof for Theorem 3.5.
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Two immediate corollaries are:

Corollary 3.10. If Pn
Tω−−→ P , then Pn → P under the pointwise graph topology

T .

Corollary 3.11. Let Λ be a first-countable topological space, Pλ : Λ → NΓ(U ,Y).
Then λ 7→ Pλ is continuous at λ = λ0 under a weighted graph topology Tω if and only
if for each coprime factorisations Pλ0

= N0D
−1
0 , there exist coprime factorisation

Pλ = NλD−1
λ for each λ ∈ Λ such that

γ((D0 − Dλ, N0 − Nλ)⊤)(r) → 0 for all r ≥ 0 as λ → λ0.

To conclude this section, we observe that given two functions ω1, ω2 ∈ K∞, each
generates a weighted graph topology Tω1

, Tω2
. If ω1(r) ≤ ω2(r) for all r ∈ R

+, then
‖P‖ω1

≤ ‖P‖ω2
for all P : U → U × Y. Therefore

Oω2
(N,D;V ) ⊂ Oω1

(N,D;V ) for all ND−1 ∈ NΓ(U ,Y), V ∈ B.

This implies the following comparison theorem.

Theorem 3.12. Suppose ω1, ω2 ∈ K∞ satisfying ω1(r) ≤ ω2(r) for all r > 0.
Then Tω2

is stronger than Tω1
, (ie. any sequence converging under Tω2

will converge
under Tω1

). Additionally, Tcω1
and Tω1

are equivalent for any c > 0 (i.e. they induce
the same convergence).

In particular we have the following corollary:

Corollary 3.13. The linear gain induces a graph topology (denoted by Tlg) on
NΓ(U ,Y). If c1r ≤ ω(r) ≤ c2r for all r ≥ 0, then Tω and Tlg are equivalent.

Hence it can be seen that the weighted graph topologies inherit the partial order
given by the natural partial order on the weights.

4. Metrizability. The question addressed in this section is simply whether the
nonlinear graph topologies introduced earlier can be sensibly metrized. In the linear
case it is well known that the answer is affirmative. We will show that useful metrics
can also be given for the weighted nonlinear graph topology. We will introduce a
number of metrics on specific subsets of N(U ,Y) and prove that some of them induce
the weighted graph topology.

Throughout this section, we suppose ω ∈ K∞ is a given function, ‖ · ‖ω is the
weighted gain and U ,Y, Us,Ys are defined as before. Every signal operator P (say)
is assumed to be causal and P (0) = 0.

4.1. The metric formulas. We define:

Q = {Q : Us → Us is stable with Q−1exist and also stable},

Q∗ = {Q : Us → Us is stable with Q−1 exist (bijective)},

Qs = {Q : Us → Us is stable and surjective}.

The subsets of signal operators we will consider are Nω(U ,Y) and Nnor(U ,Y) as
defined in the last section. Recall that

Nω(U ,Y) = {P ∈ N(U ,Y) : ‖(D,N)⊤‖ω < ∞ for all (N,D) ∈ rcf(P )},

Nnor(U ,Y) = {P ∈ Nω(U ,Y) : nrcf(P ) 6= ∅}.
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We now define seven functionals over the above sets:

d1(P1, P2) = max{~d1(P1, P2), ~d1(P2, P1)}, for P1, P2 ∈ Nω(U ,Y)

where ~d1(P1, P2) := sup
(N1,D1)∈rcf(P1)

inf
(N2,D2)∈rcf(P2)

‖(D1 − D2, N1 − N2)
⊤‖ω;

d2(P1, P2) = max{ ~d2(P1, P2), ~d2(P2, P1)} for P1, P2 ∈ Nnor(U ,Y),

where ~d2(P1, P2) = inf
Q∈Q
‖Q‖≤1

‖(D1 − D2Q,N1 − N2Q)⊤‖ω, (Ni,Di) ∈ nrcf(Pi), i = 1, 2;

d3(P1, P2) = max{ ~d3(P1, P2), ~d3(P2, P1)} for P1, P2 ∈ Nnor(U ,Y),

where ~d3(P1, P2) = inf
Q∈Q∗

‖Q‖≤1

‖(D1 − D2Q,N1 − N2Q)⊤‖ω, (Ni,Di) ∈ nrcf(Pi), i = 1, 2;

d4(P1, P2) = log(1 + max{~d4(P1, P2), ~d4(P2, P1)}) for any P1, P2 : U → Y

where ~d4(P1, P2) =







inf

{

‖I − Φ‖ω :
Φ is a surjective mapping from
Graph(P1) to Graph(P2),Φ(0) = 0

}

,

∞ if no such operator Φ exists;

d5(P1, P2) = log(1 + max{~d5(P1, P2), ~d5(P2, P1)}) for any P1, P2 : U → Y

where ~d5(P1, P2) =







inf

{

‖I − Φ‖ω :
Φ is a bijective mapping from
Graph(P1) to Graph(P2),Φ(0) = 0

}

,

∞ if no such operator Φ exists;

d6(P1, P2) = log(1 + max{ ~d6(P1, P2), ~d6(P2, P1)}) for P1, P2 ∈ Nnor(U ,Y),

where ~d6(P1, P2) = inf
Q∈Q∗

‖(D1 − D2Q,N1 − N2Q)⊤‖ω, (Ni,Di) ∈ nrcf(Pi), i = 1, 2;

d7(P1, P2) = log(1 + max{ ~d7(P1, P2), ~d7(P2, P1)}) for P1, P2 ∈ Nnor(U ,Y),

where ~d7(P1, P2) = inf
Q∈Qs

‖(D1 − D2Q,N1 − N2Q)⊤‖ω, (Ni,Di) ∈ nrcf(Pi), i = 1, 2.

Notice, when ω is the identity, d3 is closely related to the graph metric studied
in [20] for finite dimensional linear systems, whilst d5 is the gap metric defined in [7]

where ~d5 is extensively exploited for the robustness of stability of nonlinear systems.
In most cases, ~d5 can be replaced by ~d4 as shown in Lemma 6.1 later. The functionals
d6 and d7 are closely related to the Georgiou formula for the gap metric [4].

We will prove that d1, · · · , d7 are metrics on suitable sets of signal operators and
show relations between all seven functionals d1, · · · , d7 and their induced topologies.

The results developed in this section are as follows:

1. The weighted topology Tω on Nnor(U ,Y) can be metrized by graph metrics
d2, d3 provided cr ≤ ω(r);

2. The weighted graph topology can also be metrized by Georgiou and Smith’s
gap metrics d4, d5 provided r ≤ ω(r);

3. The graph metrics ~d2, ~d3 and gap metric ~d5 are equivalent to each other,
therefore, the graph metrics give the rise to the same robust stability margin
as the gap metric [7].

4. The gap metrics d4 and d5 can be equivalently expressed by the Georgiou-type
formulae, d7 and d6 respectively.

The following diagrams show the relations among the discussed topologies and (gap)
metrics that will be established.
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d1 ≥ d6, d2 ≥ d3 ≥ d6 = d5 ≥ d4 = d7

Diagram 1 : Metric Relations.

Td1

P4.1
≥ Tω

T4.4
= Td2

T4.7
= Td3

T4.4
= Td5

P4.6
= Td6

P4.6
≥ Td4

P4.6
= Td7

Tω

C3.10
≥ T

Diagram 2: Topological Relations.

Here, the letters ‘T’, ‘P’, ‘C’ represent ‘Theorem’, ‘Proposition’ and ‘Corollary’, re-
spectively, and Tdi

means the topology induced by di.

4.2. The gap metric d1. The first result is:
Proposition 4.1. d1(·, ·) is a metric on Nω(U ,Y), whose topology, Td1

, is
stronger than the weighted graph topology Tω.

Proof. From Lemma 2.1 and the definition of d1, it follows that to prove d1 is a
metric we need only to verify d1(P1, P2) = 0 implies P1 = P2.

In fact d1(P1, P2) = 0 implies that for each (N1,D1) ∈ rcf(P1),

inf
(N2,D2)∈rcf(P2)

‖(D1 − D2, N1 − N2)
⊤‖ω = 0.

So there exists a sequence {(N2,n,D2,n)} ⊂ rcf(P2) with ‖(D1−D2,n, N1−N2,n)⊤‖ω →
0 as n → ∞, from which it follows that, for each r > 0, γ((D1 − D2,n, N1 −

N2,n)⊤)(r) → 0 as n → ∞. By Theorem 3.5, Pn
T
−→ P and therefore P2 = P1.

Now we suppose Pn ∈ Nω(U ,Y) with d1(Pn, P ) → 0 as n → ∞. Then

sup
(N,D)∈rcf(P )

inf
(Nn,Dn)∈rcf(Pn)

‖(D − Dn, N − Nn)⊤‖ω → 0.

So, for each ND−1 ∈ rcf(P ), inf(Nn,Dn)∈rcf(Pn) ‖(D − Dn, N − Nn)⊤‖ω → 0 and

therefore there exists NnD−1
n ∈ rcf(Pn) such that ‖(Dn−D,Nn−N)⊤‖ω → 0 as n →

∞. This proves Pn
Tω−−→ P and hence Td1

is stronger than Tω.

4.3. The graph metrics d2 and d3. In this subsection, we will show that
both d2 and d3 are well-defined metrics on Nnor(U ,Y) and the topologies induced are
equivalent to the weighted graph topology Tω provided ω(r) ≥ cr with c > 0.

Proposition 4.2. d2(·, ·) is a metric defined on Nnor(U ,Y).
Proof. First, we need to prove d2 is well-defined, that is, d2(P1, P2) is indepen-

dent of the choice of normalized coprime factorisations and is finite for all P1, P2 ∈
Nnor(U ,Y). So let Pi ∈ Nnor(U ,Y), (Ni,Di), (N̂i, D̂i) ∈ nrcf(Pi), i = 1, 2. By Propo-
sitions 2.6 and 2.7, there exist Qi ∈ Q (i = 1, 2) with ‖Qiu‖ = ‖Q−1

i u‖ = ‖u‖ (for all

u ∈ Us) such that D̂i = DiQi, N̂i = NiQi. Notice, for every stable operator A

‖AQ1‖ω ≤ sup
r>0

γ(A)(γ(Q1)(ω(r)))

r
= sup

r>0

γ(A)(ω(r))

r
= ‖A‖ω, (4.1)

so we have

inf
Q∈Q
‖Q‖≤1

‖(D̂1 − D̂2Q, N̂1 − N̂2Q)⊤‖ω = inf
Q∈Q
‖Q‖≤1

‖(D1Q1 − D2Q2Q,N1Q1 − N2Q2Q)⊤‖ω

≤ inf
Q̂∈Q̂
‖Q̂‖≤1

‖(D1 − D2Q̂,N1 − N2Q̂)⊤‖ω.
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Replacing Qi by Q−1
i , we see that the opposite inequality is also true and, therefore

inf
Q̂∈Q
‖Q̂‖≤1

‖(D1 − D2Q̂,N1 − N2Q̂)⊤‖ω = inf
Q∈Q
‖Q‖≤1

‖(D̂1 − D̂2Q, N̂1 − N̂2Q)⊤‖ω.

This shows the value of ~d2(P1, P2) is independent of the choice of normalized coprime

factorizations. Similarly, we can prove ~d2(P2, P1) is independent of the choice of
normalized coprime factorisations and hence so is d2. Also, for any Q ∈ Q with
‖Q‖ ≤ 1, we have

‖(D1 − D2Q,N1 − N2Q)⊤‖ω ≤ ‖(D1, N1)
⊤‖ω + ‖(D2, N2)

⊤‖ω ≤ 2 < ∞.

Hence d2 is well-defined.
Next we prove d2 is a metric.
Obviously d2 is symmetric and d2(P, P ) = 0 for any P ∈ Nnor(U ,Y). Conversely,

suppose d2(P1, P2) = 0 with P = N1D
−1
1 , P2 = N2D

−1
2 . Then for all n > 0, there

exist Qn ∈ Q such that ‖(D1 − D2Qn, N1 − N2Qn)⊤‖ω → 0 as n → ∞, from which
we have

γ((D1 − D2Qn, N1 − N2Qn)⊤)(r) → 0 for all r > 0 as n → ∞.

By Proposition 2.6, (N2Qn,D2Qn) is also a coprime factorisation of Pn ≡ P2 for each

n. From Theorem 3.5, it follows that P2 = Pn
T
−→ P1 in N(U ,Y), which implies

P1 = P2 since the pointwise graph topology is Hausdorff.
To prove the triangle inequality, we suppose NiD

−1
i are normalized coprime fac-

torisations for Pi with i = 1, 2, 3. Then for each ε > 0, there exists Q1, Q2 ∈ Q with
‖Q1‖ ≤ 1, ‖Q2‖ ≤ 1 such that

‖(D1 − D3Q1, N1 − N3Q1)
⊤‖ω ≤ ~d2(P1, P3) + ε,

‖(D3 − D2Q2, N3 − N2Q2)
⊤‖ω ≤ ~d2(P3, P2) + ε.

Since Q2Q1 ∈ Q, ‖Q2Q1‖ ≤ 1 and by using (4.1), we have

~d2(P1, P2) ≤ ‖(D1 − D2Q2Q1, N1 − N2Q2Q1)
⊤‖ω

≤ ‖(D1 − D3Q1, N1 − N3Q1)
⊤ + (D3Q1 − D2Q2Q1, N3Q1 − N2Q2Q1)

⊤‖ω

≤ ~d2(P1, P3) + ε + ‖(D3 − D2Q2, N3 − N2Q2)
⊤Q1‖ω

≤ ~d2(P1, P3) + ~d2(P3, P2) + 2ε ≤ d2(P1, P3) + d2(P3, P2) + 2ε.

Since ε is arbitrary, we see that ~d2(P1, P2) ≤ d2(P1, P3)+d2(P3, P2). By changing the
order of P1, P2 on the left hand side (they are arbitrary) and noticing that the right

hand side is symmetric, we have ~d2(P2, P1) ≤ d2(P1, P3)+d2(P3, P2). This proves the
triangle inequality and completes the proof.

Proposition 4.3. Suppose c > 0 and cr ≤ w(r) for all r ≥ 0. Then d3 is a
metric which is topologically equivalent to d2 on Nnor(U ,Y).

Proof. The proof for the well-definedness and the triangle inequality for d3 is
exactly the same as in Proposition 4.2.

Suppose d3(P1, P2) = 0. Hence there exists a sequence {Qn} ⊂ Q∗ satisfying

‖(D1 − D2Qn, N1 − N2Qn)⊤‖ω → 0 as n → ∞, (4.2)
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and therefore there exists n0 > 0 such that

sup
‖u‖≤ω(r)

‖(D1 − D2Qn, N1 − N2Qn)⊤u‖ <
c

2
r for all r > 0, n ≥ n0.

For any u ∈ Us, let r = ‖u‖/c. Then ‖u‖ ≤ cr ≤ ω(r) and therefore,

‖(D1 − D2Qn, N1 − N2Qn)⊤u)‖ <
c

2

‖u‖

c
=

1

2
‖u‖ for all u ∈ Us, n ≥ n0.

Since (N1,D1), (N2,D2) are normalized coprime factorisations, we see

‖Qnu‖ = ‖(D2, N2)
⊤Qnu‖ ≥ ‖(D1, N1)

⊤u‖ − ‖(D1 − D2Qn, N1 − N2Qn)⊤u)‖

≥ ‖u‖ −
1

2
‖u‖ =

1

2
‖u‖, for all u ∈ Us, n ≥ n0.

This means that ‖Q−1
n ‖ ≤ 2 and Q−1

n is stable for all n > n0. By Proposition 2.6, for
all n > n0, (N2Qn,D2Qn) is a coprime factorisation of P2. Also from (4.2), we see

γ((D1 − D2Qn, N1 − N2Qn)⊤)(r) → 0 for all r > 0, as n → ∞.

From Theorem 3.5, it follows that P2 ≡ Pn
T
−→ P1 in N(U ,Y), which implies P1 = P2.

Hence d3 is a well-defined metric on Nnor(U ,Y).
To prove the equivalence between d2 and d3, we first notice that d3 ≤ d2. This

yields that convergence under d2 implies convergence under d3. On the other hand, let
Pn, P ∈ Nnor(U ,Y) with (N,D) ∈ nrcf(P ), (Nn,Dn) ∈ nrcf(Pn) and d3(Pn, P ) → 0

as n → ∞. Then ~d3(P, Pn) → 0 which means

inf
Q∈Q∗

‖(D − DnQn, N − NnQn)⊤‖ω → 0 as n → ∞.

This shows that for each ε ∈ (0, c/2], there exists nε > 0 such that

‖(D − DnQn, N − NnQn)⊤‖ω < ε for all n ≥ nε. (4.3)

Without loss of generality, we may suppose that nε1
≤ nε2

if ε1 > ε2. By letting
ε = c/2, we see that there exists 0 < n0 ≤ nε such that, for each n ≥ n0, there is
Qn ∈ Q∗ satisfying

sup
‖u‖≤ω(t)

‖(D − DnQn, N − NnQn)⊤u‖ ≤
c

2
r for all r > 0, n ≥ n0.

Using the same method as used in the first part (just replace (N1,D1) by (N,D) and
(N2,D2) by (Nn,Dn), respectively), we can prove that Q−1

n is stable for n ≥ n0. So
from (4.3), it follows

~d2(P, Pn) ≤ ‖(D − DnQn, N − NnQn)⊤‖ω < ε for all n ≥ nε

and, therefore, ~d2(P, Pn) → 0 as n → ∞, Similarly, ~d2(Pn, P ) → 0 and, therefore,
d2(Pn, P ) → 0 as n → ∞. This completes the proof.

Theorem 4.4. Suppose c > 0 and cr ≤ w(r) for all r ≥ 0. Then the topol-
ogy induced by either d2 or d3 is equivalent to the weighted graph topology Tω on
Nnor(U ,Y).
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Proof. By Proposition 4.3, we only need to show d3(Pn, P ) → 0 if and only if

Pn
Tω−−→ P , for any Pn, P ∈ Nnor(U ,Y).
First, suppose d3(Pn, P ) → 0. Then for every normalized coprime factorisation

P = ND−1, Pn = NnD−1
n , there exist Qn ∈ Q∗ such that

‖(D − DnQn, N − NnQn)⊤‖ω → 0 as n → ∞. (4.4)

Let (N̂ , D̂) be an arbitrary coprime factorisation of P . By Proposition 2.6, there
exists stable operator Q on Us, with Q−1 also stable, such that D̂ = DQ, N̂ = NQ,
from which we see

‖Q‖ω = ‖(D,N)⊤Q‖ω = ‖(D̂, N̂)⊤‖ω < ∞.

Write D̂n = DnQnQ, N̂n = NnQnQ . Then from (4.4), it follows that

|(D̂ − D̂n, N̂ − N̂n)⊤‖ω = ‖(D − DnQn, N − NnQn)⊤Q‖ω

≤ ‖(D − DnQn, N − NnQn)⊤‖‖Q‖ω

=
1

c
‖(D − DnQn, N − NnQn)⊤‖ω‖Q‖ω → 0 as n → ∞.

Using the same method as used in Proposition 4.3, we can prove that (N̂n, D̂n) is a

coprime factorisation of Pn for all large n. Hence from Theorem 3.9, we see Pn
Tω−−→ P .

Secondly, suppose Pn, P ∈ Nnor(U ,Y) with Pn
Tω−−→ P . Let (N,D) be a normal-

ized coprime factorisation of P . Then there exist coprime factorisations NnD−1
n of Pn

with ‖(D − Dn, N − Nn)⊤‖ω → 0 as n → ∞. Therefore, {‖(Dn, Nn)⊤‖} is bounded
and ‖(D − Dn, N − Nn)⊤‖ → 0. Hence

‖(Dn, Nn)⊤‖ → ‖(D,N)⊤‖ = 1 as n → ∞ (4.5)

and for each ε > 0, there exists nε > 0 such that

‖(D − Dn, N − Nn)⊤u‖ ≤ ε‖u‖ for all u ∈ Us, n > nε. (4.6)

Let N̂nD̂−1
n be a normalized coprime factorisation of Pn. Then there exists stable

operator Un on Us, where U−1
n exists and is stable, such that Dn = D̂nUn, Nn = N̂nUn.

Since ‖Unu‖ = ‖(D̂n, N̂n)⊤Unu‖ = ‖(Dn, Nn)⊤u‖ for any u ∈ Us, we see {‖Un‖ω} is
bounded and, from (4.5), it follows

‖Un‖ = ‖(D̂n, N̂n)⊤Un‖ = ‖(Dn, Nn)⊤‖ → 1 as n → ∞.

From (4.6), it follows that for each u ∈ Us and each n > nε

‖Unu‖ = ‖(Dn, Nn)⊤u‖ ≥ ‖(D,N)⊤u‖ − ‖(Dn − D,Nn − N)⊤u‖ ≥ (1 − ε)‖u‖,

which implies that ‖U−1
n u‖ ≤ 1

1−ε‖u‖ and therefore ‖U−1
n ‖ ≤ 1

1−ε . Since ‖U−1
n ‖ ≥

1/‖Un‖, we see ‖U−1
n ‖ → 1 as n → ∞.

Let Qnu = Unu/‖Un‖ for each u ∈ Us. Then ‖Qn‖ ≤ 1 and since Q−1
n =

U−1
n · ‖Un‖ exists and is stable, we have Qn ∈ Q∗. Also

‖(D̂nUn − D̂nQn, N̂nUn − N̂nQn)⊤‖ω = ‖(D̂n, N̂n)⊤(Un − Qn)‖ω

= ‖(Un − Qn)‖ω =

∣

∣‖Un‖ − 1
∣

∣

‖Un‖
‖Un‖ω → 0
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which implies

~d3(P, Pn) ≤ ‖(D − D̂nQn, N − N̂nQn)⊤‖ω

≤ ‖(D − D̂nUn, N − N̂nUn)⊤‖ω

+ ‖(D̂nUn − D̂nQn, N̂nUn − N̂nQn)⊤‖ω → 0 as n → ∞.

Similarly, for Q̃nu = U−1
n u/‖U−1

n ‖, we can prove

~d3(Pn, P ) ≤ ‖(D̂n − DQ̃n, N̂n − NQ̃n)⊤‖ω → 0 as n → ∞.

This shows d3(Pn, P ) → 0 and completes the proof.
We remark that the first part of the proof shows, in the case cr ≤ ω(r), that

Pn
Tω−−→ P in Nnor(U ,Y) if and only if there exist normalized coprime factorization

(N,D) of P and coprime factorisations (Nn,Dn) of Pn such that ‖(D − Dn, N −
Nn)⊤‖ω → 0 as n → ∞.

In the case of ω(r) = r and stability is taken to be in the sense of linear gain, the
above theorem shows that the graph topology induced by the linear gain is metrizable.

4.4. The gap metrics d4, d5, d6 and d7. In this subsection, we present the met-
ric properties of d4, · · · , d7 over the subset Nnor(U ,Y). In particular, the equivalence
between the weighted graph topology and the topologies induced by either d5 or d6

will be established.
Using the same method as used in [7], we can prove that d4, d5 are pseudo-metrics

on the set of signal operators from U to Y provided ω(r) ≥ r for all r > 0. Here
pseudo-metric means that d4(P1, P2) = 0 (resp. d5(P1, P2) = 0) does not necessarily
imply P1 = P2 unless extra conditions are imposed. Moreover, as in [7], they are
only “generalized” pseudo-metrics, which means that possibly (say) d5(P1, P2) = ∞
for some P1, P2. The following comparison results show that they both become well-
defined metrics if restricted to Nnor(U ,Y) (no extra condition required).

We first give a key lemma.
Lemma 4.5. Suppose Pi ∈ Nnor(U ,Y) with (Di, Ni) ∈ nrcf(Pi), i = 1, 2. Then

there exists a mapping Φ : Graph(P1) → Graph(P2) if and only if there exists a
mapping Q : Us → Us such that

Φ

(

D1

N1

)

u =

(

D2

N2

)

Qu, for all u ∈ Us. (4.7)

Moreover,
(i) Φ is surjective if and only if Q is surjective;
(ii) ‖Q‖ = ‖Φ‖ and γ(Φ)(r) = γ(Q)(r) for any r > 0 (so Φ stable if and only if

Q stable);
(iii) Φ is injective if and only if Q is injective;
(iv) ‖Q−1‖ = ‖Φ−1‖ =: ‖Φ−1|M2

‖ and γ(Φ−1)(r) = γ(Q−1)(r) for any r > 0;
(v) Φ is causal if and only if Q is causal, and Φ0 = 0 if and only if Q0 = 0.
Proof. Write Mi = Graph(Pi) for i = 1, 2.
Let Φ : M1 → M2 be a given mapping. Then, for any u ∈ Us, by Proposition

2.5, Φ(D1, N1)
⊤u ∈ M2 and therefore, there exists vu ∈ Us such that Φ(D1, N1)

⊤u =
(D2, N2)

⊤vu. Since (D2, N2)
⊤ is left invertible, such a point vu is unique. This yields

that the mapping

Qu = vu
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is well defined on Us and satisfies (4.7).
Conversely, let Q be a given mapping on Us. For any w ∈ M1, let Φw =

(D2, N2)
⊤QL1w where L1 is the left inverse of (D1, N1)

⊤ which is stable by the
definition of the coprime factorisation. Then, obviously, Φ is a well defined mapping
from M1 to M2 satisfying (4.7).

Now we prove the other claims.
(i) First, we suppose Φ : M1 → M2 is given and surjective. Since (D1, N1)

⊤ :
Us → M1 is surjective, for any v ∈ Us there exists u ∈ Us with Φ(D1, N1)

⊤u =
(D2, N2)

⊤v. The left invertibility of (D2, N2)
⊤ and (4.7) show Qu = v. Therefore, Q

is surjective.
If Q is surjective on Us, then for any w ∈ M2, the surjectivity of (D2, N2)

⊤

implies the existence of u ∈ Us such that (D2, N2)
⊤Qu = w. Hence Φ(D1, N1)

⊤u = w
which shows that Φ is surjective.

(ii) From (4.7), we see

‖Qu‖ =

∥

∥

∥

∥

(

D2

N2

)

Qu

∥

∥

∥

∥

=

∥

∥

∥

∥

Φ

(

D1

N1

)

u

∥

∥

∥

∥

for all u ∈ Us. (4.8)

Since ‖u‖ = ‖(D1, N1)
⊤u‖,M1 = (D1, N1)

⊤Us, the conclusions follows.
(iii) From (4.7) and the left invertibility of (Di, Ni)

⊤(i = 1, 2), it follows

Φ is injective ⇔ Φw1 = Φw2 implies w1 = w2 for any w1, w2 ∈ M1

⇔ Φ

(

D1

N1

)

u1 = Φ

(

D1

N1

)

u2 implies u1 = u2 for any u1, u2 ∈ Us

⇔

(

D2

N2

)

Qu1 =

(

D2

N2

)

Qu2 implies u1 = u2 for any u1, u2 ∈ Us

⇔ Qu1 = Qu2 implies u1 = u2 for any u1, u2 ∈ Us

⇔ Q is injective .

(iv) Since ‖w‖ ≤ ‖Φ−1‖‖Φw‖ for any w ∈ M1, we have

‖u‖ =

∥

∥

∥

∥

(

D1

N1

)

u

∥

∥

∥

∥

≤ ‖Φ−1‖

∥

∥

∥

∥

Φ

(

D1

N1

)

u

∥

∥

∥

∥

= ‖Φ−1‖

∥

∥

∥

∥

(

D2

N2

)

Qu

∥

∥

∥

∥

= ‖Φ−1‖‖Qu‖

for any u ∈ Us. So ‖Q−1‖ ≤ ‖Φ−1‖. Similarly, for any w = (D1, N1)
⊤u ∈ M1,

∥

∥

∥

∥

(

D1

N1

)

u

∥

∥

∥

∥

= ‖u‖ ≤ ‖Q−1‖Qu‖ = ‖Q−1‖

∥

∥

∥

∥

(

D2

N2

)

Qu

∥

∥

∥

∥

= ‖Q−1‖

∥

∥

∥

∥

Φ

(

D1

N1

)

u

∥

∥

∥

∥

which gives the reverse inequality. Hence ‖Q−1‖ = ‖Φ−1‖.
For any r > 0, (4.8) and the surjectivity of Φ, (Di, Ni)

⊤ and Q yield

γ(Q−1)(r) = sup
‖Qv‖≤r

‖v‖ = sup
‖Φ(D1,N1)⊤v‖≤r

∥

∥

∥

∥

(

D1

N1

)

v

∥

∥

∥

∥

= sup
‖w‖≤r

‖Φ−1w‖ = γ(Φ−1)(r).

(v) Let L1, L2 be the associated operators to (D1, N1)
⊤, (D2, N2)

⊤ respectively.
By applying L2 to (4.7), we have Qu = L2Φ(D1, N1)

⊤. By the definition of Φ,
Φw = (D2, N2)

⊤QL1. So, the conclusions follow from the preassumptions on signal
operators. This completes the proof.

Proposition 4.6. ~d5(P1, P2) = ~d6(P1, P2), ~d4(P1, P2) = ~d7(P1, P2) for Pi ∈
Nnor(U ,Y), i = 1, 2.
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Proof. Let Q be a given stable bijective mapping on Us. Then there exists a
stable and bijective map Φ : M1 → M2 satisfying (4.7), for which

‖Φ − I‖ω = ‖(D1, N1)
⊤ − (D2, N2)

⊤Q‖ω. (4.9)

Therefore, ~d5(P1, P2) ≤ ‖(D1, N1)
⊤ − (D2, N2)

⊤Q‖ω and ~d5(P1, P2) ≤ ~d6(P1, P2) as
Q is arbitrary.

Since Φ1(D1, N1)
⊤u = (D2, N2)

⊤u is a bijective operator from M1 to M2 and
‖Φ1 − I‖ω < ∞, we have

~d5(P1, P2) = inf{‖Φ − I‖ω : Φ : M1 → M2 bijective ‖Φ − I‖ω < ∞}.

Notice that ‖Φ− I‖ω < ∞ implies the stability of Φ. So, given any bijective map Φ :
M1 → M2 with ‖Φ−I‖ω < ∞, by Lemma 4.5, there exists a stable, bijective mapping

Q on Us satisfying (4.7) and, therefore, (4.9). Hence ~d6(P1, P2) ≤ ‖Φ − I‖ω which

indicates that ~d6(P1, P2) ≤ ~d5(P1, P2). This proves that ~d6(P1, P2) = ~d5(P1, P2). The

equality ~d4(P1, P2) = ~d7(P1, P2) can be proved similarly.
Theorem 4.7. d5, d6 are well-defined metrics on Nnor(U ,Y) and the graph topol-

ogy Tω is equivalent to the topology induced by either d5 or d6, provided r ≤ ω(r) for
all r ≥ 0.

Proof. Using the same methods as in Propositions 4.2 and 4.3, we see that d6 is
well-defined and d6(P1, P2) = 0 if and only if P1 = P2 on Nnor(U ,Y). By Proposition
4.6, d5 satisfies the same property.

To prove the triangle inequality for d5, we suppose P1, P2, P3 ∈ Nnor(U ,Y) and
Φ1 : Graph(P1) → Graph(P2),Φi : Graph(P2) → Graph(P3) are bijective mappings.
Then Φ := Φ2Φ1 is a bijective mapping from Graph(P1) to Graph(P3) and Φ − I =
(Φ2 − I)Φ1 − I. So

‖Φ − I‖ω ≤ ‖Φ2 − I‖‖Φ1‖ω + ‖Φ1 − I‖ω ≤ ‖Φ2 − I‖ω‖Φ1‖ω + ‖Φ1 − I‖ω

≤ ‖Φ2 − I‖ω(‖Φ1‖ω − I)‖ + 1) + ‖Φ1 − I‖ω

and, therefore

d̂5(P1, P3) ≤ d̂5(P1, P2) + d̂5(P2, P3).

This means that d5 satisfies the triangle inequality. Hence d5 is a well-defined metric
on Nnor(U ,Y) and so is d6 because of Proposition 4.6.

Since d6 ≤ d3 and by Theorem 4.4, the convergence of sequence under Tω implies
the convergence under d6. Conversely, if d6(P, Pn) → 0 as n → ∞, then by using
the same method as in Theorem 4.4 (see the Theorem’s remark), we can prove that

Pn
Tω−−→ P . This shows the equivalence between Tω and the topology induced by either

d6 or d5.
Proposition 4.6 and Theorem 4.7 suggest that the two metrics d3 and d6 might

be equivalent (we already know that d6 ≤ d3). In fact, Georgiou [4] has proved
d3(P1, P2) ≤ 2d6(P1, P2) in the linear setting. In the nonlinear setting and in the case
where (D2, N2)

⊤ is incrementally stable, that is where

‖(D2, N2)
⊤‖△ := sup

{

‖(D2, N2)
⊤u1 − (D2, N2)

⊤u2‖τ

‖u1 − u2‖τ
: τ > 0, u1, u2 ∈ Us

}

< ∞,

this claim can be proved by exactly the same technique as in [4].
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Finally we consider the relationship between d1 and d6. For (Ni,Di) ∈ rcf(Pi), i =
1, 2, by Proposition 2.6, we have

inf
Q∈Q

∥

∥

∥

∥

(

D1

N1

)

−

(

D2

N2

)

Q

∥

∥

∥

∥

ω

= inf
(Ñ2,D̃2)∈rcf(P2)

∥

∥

∥

∥

(

D1

N1

)

−

(

D̃2

Ñ2

)∥

∥

∥

∥

ω

≤ ~d1(P1, P2).

This gives a direct relation between d1 and d6 as below.
Proposition 4.8. For Pi ∈ Nnor(U ,Y) with (Di, Ni) ∈ nrcf(Pi), i = 1, 2,

~d1(P1, P2) ≥ ~d6(P1, P2) and, therefore, d1(P1, P2) ≥ d6(P1, P2).

5. Robustness of Stability of Nonlinear Feedback Systems. The impor-
tance of graph topology in the linear case is well known. In this section, we will show
that it may also play a significant role in the nonlinear case by considering the system
described by the configuration of Figure 5.1.

u0

u1 y1

P

C y0
u2 y2

−

+

+

−

Fig. 5.1. Standard Feedback Configuration.

In this configuration, ui ∈ U , yi ∈ Y for i = 0, 1, 2, and both the plant P and
compensator C are, in general, causal and nonlinear. We suppose all systems in this
section are well-posed, that is, for each (u0, y0)

⊤ ∈ Us ×Ys, there exist unique signals
u1, u2 ∈ U and y1, y2 ∈ Y such that

u0 = u1 + u2, y0 = y1 + y2, y1 = Pu1, u2 = Cy2.

and the feedback operator

HP,C : Ws → W ×W :

(

u0

y0

)

7→

((

u1

y1

)

,

(

u2

y2

))

is causal. Here, Ws = Us×Ys,W = U×Y. The feedback stability of this system is the
requirement that HP,C is stable in a suitable sense. We are concerning the robustness
problem: when is HPλ,C stable given that HP,C is stable and Pλ is a perturbation to
P?

In [7], this problem has been studied using a gap metric. Particularly, in the case
where the linear gain is considered, it is proved that if HP,C is gain stable and Pλ

is close enough to P in the sense of gap metric, then HPλ,C is gain stable. Similar
results are also given when HP,C is (gf)-stable with super-linear growth. However in
the (gf)-stability case, the notion of convergence was not made explicit as no topology
was indicated. In this paper, we consider the robustness of (gf)-stability when the
convergence of Pλ to P is in the sense of any of the two graph topologies defined in
the previous sections.

We suppose Λ is a topological space and for each λ ∈ Λ, Pλ is a perturbation to the
nominal plant P = Pλ0

. Define M = Graph(P ),Mλ = Graph(Pλ),N = Graph(C),
and let ΠM//N be the parallel projection which maps (u0, y0)

⊤ to (u1, y1)
⊤ and
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ΠN//M = I −ΠM//N . It is known that HP,C is (gf)-stable (resp. gain stable) if and
only if ΠM//N is (gf)-stable (resp. gain stable), see [7].

A signal operator F : U → Y is said to be causally extendable if, for each
u ∈ U , y = Fu and each τ > 0, there exists uτ ∈ Dom(F ) such that Tτ (u, y)⊤ =
Tτ (uτ , yτ )⊤ with yτ = Fuτ . Henceforth, we suppose that P,C and each Pλ are
causally extendable.

Lemma 5.1. Suppose Φ is a surjective mapping from M to Mλ, Then, for any
z ∈ Ws and any τ > 0, there exists xτ ∈ Ws such that

Tτz = Tτxτ + Tτ (Φ − I)ΠM//NTτxτ and TτΠMλ//N z = TτΦΠM//NTτxτ .

Proof. Let HPλ,Cz = (z1, z2) with z1 = (u1, Pλu1)
⊤, z2 = (Cy2, y2)

⊤ for some
u1 ∈ U , y2 ∈ Y. Then z = z1 + z2 and ΠMλ//N z = z1. By the causal extendability,
for each τ > 0, there exist zτ

1 ∈ Mλ, zτ
2 ∈ N such that Tτz1 = Tτzτ

1 , Tτz2 = Tτzτ
2 .

Since Φ is surjective from M to Mλ, there exists zτ
3 ∈ M with Φzτ

3 = zτ
1 . Write

xτ = zτ
3 + zτ

2 . Then xτ ∈ Ws and ΠM//Nxτ = zτ
3 ,ΠN//Mxτ = zτ

2 . Hence

Tτz = Tτz1 + Tτz2 = Tτzτ
1 + Tτzτ

2 = TτΦzτ
3 + Tτzτ

2

= TτΦΠM//Nxτ + TτΠN//Mxτ = TτΦΠM//NTτxτ + TτΠN//MTτxτ

= Tτ (Φ − I)ΠM//NTτxτ + Tτxτ

and

TτΠMλ//N z = Tτz1 = TτΦzτ
3 = TτΦΠM//Nxτ = TτΦΠM//NTτxτ .

For our main results, we will always require that the nominal plant satisfies a
k-coercive condition as stated below, note that this assumption will be not imposed
on the perturbed plant Pλ.

Definition 5.2. A signal operator P : U → Y is said to be k-coercive, with
k ∈ K∞, if P has a coprime factorisation (N,D) such that

‖(D,N)⊤u‖ ≥ k(‖u‖) for all u ∈ Us; (5.1)

Notice that P is k-coercive if and only if

‖Lw‖ ≤ k−1(‖w‖), for all w ∈ Graph(P ), (5.2)

where L is the associated operator of (N,D). Hence any operator P with coprime
factors is γ(L)−1-coercive, where L is the associated operator of a coprime factori-
sation, since (5.2) always holds with k−1(r) = γ(L)(r). It is of interest to observe
that a linear operator with coprime factors is always k-coercive with k(r) = cr, c > 0.
Also note that if P has a normalized coprime factorisation, then P is 1-coercive and,
therefore, c-coercive for any c > 0.

In the case when k(r) = cr is linear, (5.2) is required by James etc [10] in their
definition of (right) coprime factorisation, while (5.1) is required by Verma [18] in
one of his definitions and exploited for the stability of another system in the sense of
linear gain.
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Proposition 5.3. Suppose that the nominal plant P is k-coercive and λ 7→ Pλ

is continuous at λ0 under a weighted topology Tω with w ∈ K∞. Then, for each λ,
there exists a surjective mapping Φλ : M → Mλ such that

sup
r>0

γ(I − Φλ)(k(ω(r)))

r
→ 0, as λ → λ0. (5.3)

Proof. Let ND−1 be the coprime factorisation of P = Pλ0
satisfying the coercive

condition (5.1). From Corollary 3.11, it follows that Pλ has coprime factorisation
NλD−1

λ such that

sup
r>0

γ((D − Dλ, N − Nλ)⊤)(ω(r))

r
→ 0, as λ → λ0. (5.4)

For each λ > 0 and each u ∈ Us, let

Φλ((Du,Nu)⊤) = ((Dλu,Nλu)⊤). (5.5)

Φλ is a well defined, causal and surjective mapping from M to Mλ since Φλw =
((Dλ, Nλ)⊤Lw) with L the left inverse of (D,N)⊤.

Now let r > 0, (Du,Nu)⊤ ∈ M with u ∈ Us and ‖(Du,Nu)⊤‖ ≤ k(w(r)). From
(5.1), it follows that ‖u‖ ≤ w(r), which implies

‖((D − Dλ)u, (N − Nλ)u)⊤‖ ≤ sup
‖v‖≤w(r)

‖((D − Dλ)v, (N − Nλ)v)⊤‖.

Therefore

γ(I − Φλ)(k(w(r))) = sup
(Du,Nu)⊤∈Dom(I−Φλ)

‖(Du,Nu)⊤‖≤k(w(r))

‖((D − Dλ)u, (N − Nλ)u)⊤‖

≤ sup
‖v‖≤w(r)

‖((D − Dλ)v, (N − Nλ)v)⊤‖

= γ((D − Dλ, N − Nλ)⊤)(w(r)). (5.6)

By (5.4), we see (5.3) holds.

Remark. From (5.3), we see that ‖I − Φλ‖k◦ω → 0 which implies ~δ(P, Pλ) →
0 under a new weighted function ω1 = k ◦ ω. However, we cannot show whether
~δ(Pλ, P ) → 0 unless each Pλ is also k-coercive. Also notice here the l.a.c. assumption
was not imposed. So (5.3) does not implies Pλ → P under d4.

Similarly, for the pointwise continuity, we have
Proposition 5.4. Suppose that P is k-coercive and λ 7→ Pλ is continuous at λ0

under the pointwise topology T . Then, the mapping Φλ : M → Mλ defined in (5.5)
is surjective and that γ(I − Φλ)(r) → 0 for each r > 0, as λ → λ0.

Henceforth, we define the map Φλ to be as in Proposition 5.3 or 5.4 and give
robustness results under each graph topology. The following results follow as conse-
quences of Proposition 5.3 or 5.4 and the results of [7]; however, we give the entire
proofs for completeness. First, we consider the case when weighted topology is in-
volved.

Theorem 5.5. Suppose P is k-coercive and HP,C is (gf)-stable. If λ 7→ Pλ is
continuous at λ0 under a weighted topology Tω with ω ∈ K∞ and for all r > 0

γ(ΠM//N )(r) ≤ k(w(r)), (5.7)
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then, for any n > 0, there exists a neighbourhood Vn of λ0 such that HPλ,C is (gf)-
stable for λ ∈ Vn and

γ(ΠMλ//N )(r) ≤ γ(ΠM//N )

(

n + 1

n
r

)

+
1

n
r.

Proof. Let τ > 0, r > 0 and z ∈ W be given with ‖z‖τ ≤ r. By Proposition 5.3,
for each λ, there exists a surjective mapping Φλ : M → Mλ satisfying (5.3). From
Lemma 5.1, it follows that for each λ, there exists xτ

λ ∈ Ws such that

Tτxτ
λ = Tτz − Tτ (Φλ − I)ΠM//NTτxτ

λ, TτΠMλ//N z = TτΦλΠM//NTτxτ
λ. (5.8)

By (5.3) and the properties of γ, there exists a neighbourhood Vn of λ0 such that

γ(Φλ − I)(γ(ΠM//N )(‖xτ
λ‖τ ))

‖xτ
λ‖τ

≤
γ(Φλ − I)(k(w(‖xτ

λ‖τ )))

‖xτ
λ‖τ

<
1

n + 1

for all n > 0 and λ ∈ Vn. So, from (5.8), it follows that

‖xτ
λ‖τ ≤ ‖z‖τ + ‖(Φλ − I)ΠM//NTτxτ

λ‖τ

≤ ‖z‖τ + γ(Φλ − I)(γ(ΠM//N )(‖xτ
λ‖τ ))) ≤ ‖z‖τ +

1

n + 1
‖xτ

λ‖τ ,

which implies ‖xτ
λ‖τ ≤ (n + 1)‖z‖τ/n ≤ (n + 1)r/n for all λ ∈ Vn. By (5.8), we have

TτΠMλ//N z = TτΦλΠM//NTτxτ
λ = TτΠM//NTτxτ

λ + Tτ (Φλ − I)ΠM//NTτxτ
λ

and therefore

‖ΠMλ//N z‖τ ≤ ‖ΠM//NTτxτ
λ‖τ + ‖(Φλ − I)ΠM//NTτxτ

λ‖τ

≤ γ(ΠM//N )

(

n + 1

n
r

)

+
1

n + 1
‖xλ‖τ ≤ γ(ΠM//N )

(

n + 1

n
r

)

+
1

n
r.

Since τ is arbitrary, γ(ΠMλ//N )(r) ≤ γ(ΠM//N )
(

n+1
n r

)

r + 1
nr < ∞ for λ ∈ V0.

We remark that condition (5.7) can be replaced by the weaker condition:

γ(ΠM//N )(r) ≤ k(cw(r)) with c > 0

since P is also kc-coercive due to the remark made after Definition 5.2. This claim
is also supported by Theorem 3.12 from which we see that λ 7→ Pλ is also continuous
at λ0 under a weighted topology Tcω, so the ω in (5.7) can be replaced by cω. This
replacement gives a weaker bound for γ(ΠM//N )(r).

In the case of the pointwise topology, we have:
Theorem 5.6. Suppose that P is k-coercive, HP,C is (gf)-stable and λ 7→ Pλ is

continuous at λ0 under the pointwise topology T . If, for each λ, Tτ (Φλ − I)ΠM//N is
continuous and compact as a mapping from any subset Sr = {w ∈ W : supτ>0 ‖w‖τ ≤
r} to W, then for each r > 0, there exists a neighbourhood Vr of λ0 in Λ such that
γ(HPλ,C)(r) < ∞ for all λ ∈ Vr. Here Φλ is defined as in (5.5).

Proof. Let r > 0 and w ∈ W be given with ‖w‖τ ≤ r. Consider the operator

Aλ : Aλx = w + (Φλ − I)ΠM//Nx, x ∈ W.
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Since HP,C is stable, γ(ΠM//N )(k) < ∞ for all k > 0. Using Proposition 5.3, we see
there exists a neighbourhood Vr of λ0 such that

‖(Φλ − I)ΠM//Nx‖τ ≤ γ(Φλ − I)
(

γ(ΠM//N )(2r)
)

< r (5.9)

for all x ∈ S2r and λ ∈ Vr. This implies ‖Aλx‖τ < ‖w‖τ + r < 2r for all x ∈ S2r.
Due to our assumption, we may suppose that Aλ is continuous and compact on S2r.
From Schauder’s fixed point theorem, it follows that there exists xλ ∈ S2r such that

xλ = w + (Φλ − I)ΠM//Nxn for λ ∈ Vr,

ie.

w = ΠN//Mxλ + ΦλΠM//Nxλ.

Since ΠN//Mxλ ∈ N ,ΦλΠM//Nxλ ∈ Mλ and the perturbed system is well-posed,
we have

ΠMλ//Nw = ΦλΠM//Nxλ = ΠM//Nxλ + (Φλ − I)ΠM//Nxλ

and therefore

‖ΠMλ//Nw‖τ = ‖ΠM//Nxλ‖τ + ‖(Φλ − I)ΠM//Nxλ‖τ

≤ γ(ΠM//N )(2r) + γ(Φλ − I)
(

γ(ΠM//N )(2r)
)

≤ γ(ΠM//N )(2r) + r.

Hence γ(ΠMλ//N )(r) ≤ γ(ΠM//N )(2r) + r < ∞ for λ ∈ Vr.
With the technical assumption of compactness of Tτ (Φλ − I)ΠM//N , this result

states the boundedness of HPλ,C(u0, y0)
⊤ for ‖(u0, y0)

⊤‖ ≤ r and λ sufficiently close
to λ0. Obviously, if the neighbourhood Vr for (5.9) is independent of r, that is, if

γ(Φλ − I)
(

γ(ΠM//N )(2r)
)

< r, for all λ sufficiently close to λ0

hold for all (large) r, then HPλ,C would be (gf)-stable.

6. Conclusions. The main contributions of this paper are as follows. Natural
generalisations of the graph topology w.r.t. to a gain function notion of stability for
nonlinear systems in a general normed signal space setting were defined. Convergence
in the graph topology was shown to have a natural application in robust stability
results. Various metrizations of the graph topologies were given; in particular it
was shown that the generalisations of the gap metric given by [7] and the natural
generalisation of the graph metric both induce the graph topology when the stability
notion is that of an (unweighted) induced gain, subject to certain assumptions on
local asymptotic completeness and the existence of normalized coprime factorisations.
Weaker results have been derived for the more general cases (including the weighted
case). Georgiou-type formulas [4] have been derived and are shown to be equivalent
to other alternative formulations of the gap metric.

There are many directions for future work. An important topic is the extension
of the above results to the ν-gap setting; in particular the investigation of a co-
prime factor characterisation of the underlying induced topology of the nonlinear
generalisations of the ν-gap. A more fundamental area for future research concerns the
investigation of the continuity of the closed loop response w.r.t. to gap perturbations
to the loop, probably involving greater regularity assumptions [7]. A final area of
worthy future study concerns the explicit study of the numerical computation of the
gap, possibly based on the Georgiou-type formula’s, but with additional regularity
assumptions on the minimiser Q, perhaps allowed by greater regularity assumptions
on P and C. In this regard, nonlinear generalisations of the commutant lifting theory
may be the appropriate tool.
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