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1. Introduction. The aim of this paper is to study the existence of Nash equi-
librium points for a two-player nonzero-sum stochastic differential game. The game
is governed by a stochastic differential equation with two controls and two payoffs.

This problem can be found, for instance, in Friedman [7] and in a series of papers
by Bensoussan and Frehse [2], [3], [4]. All these papers make the assumption that
feedback is continuous.

We are interested in studying the problem assuming that the controls take values
in compact sets. In this case one cannot expect a Nash equilibrium among continuous
feedback, and the Hamiltonian functions associated with the game are nonsmooth.

We consider a simple multidimensional model problem taking two players, affine
dynamics, affine payoff functions, and compact control sets.

The loss of continuity of the feedback, due to the hard constraints, leads us to
consider a parabolic system strongly coupled by discontinuous terms. In fact, from
the usual necessary condition satisfied by the value of the Nash equilibrium feedback
in terms of the Hamilton–Jacobi theory, we reduce ourselves to studying the existence
of a sufficiently regular solution to a system of nonlinear parabolic equations which
contains the Heaviside graph. By this regularity result, we are able to construct Nash
equilibrium feedback whose optimality is proved by using the verification approach in
the sense of [2], [3], [4].

The motivation for studying games in compact control sets comes from stan-
dard nonlinear control theory; this seems a natural assumption in many applications.
In particular, Nash equilibria for nonzero-sum deterministic differential games were
recently studied by Olsder [12] and Cardaliaguet and Plaskacz [5].

2. Statement of the problem. Let Ω be a bounded smooth domain in RN .
Let X be a process which satisfies the following stochastic differential equation

dX(s) = f(s,X(s), u1(s,X(s)), u2(s,X(s)))ds + σ(s,X(s))dw,(2.1)

X(t) = x,(2.2)

s ∈ [t, T ], x ∈ Ω ⊂ RN .
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For each s, X(s) represents the state evolution of a system controlled by two players.
The ith player acts by means of a feedback control function ui : (t, T ) × RN → Ui ⊂
Rki , where i = 1, 2.

Let Ui :≡ {ui Borel-measurable applications (t, T )×RN → Ui ⊂ Rki}, i = 1, 2, be
the set of the control functions ui with values ui(s,X) in Ui. The term σ(s,X(s))dw
represents the “noise,” where w is an N -dimensional standard Brownian motion and
σ is an N×N matrix. We assume that σ does not depend on the control variables u1,
u2 and that σ and σ−1 are bounded and Lipschitz on X. The function f(s,X, u1, u2)
is called the dynamic of the game (2.1).

We refer to [7] for the definitions about stochastic processes, stochastic differential
equations and functional spaces.

A control function ui ∈ Ui will be called admissible if it is adapted to the filtration
defined on the probability space.

It is possible to prove, using Girsanov’s theorem, that, under convenient assump-
tions on f , for all (u1, u2) ∈ U1 × U2 admissible controls, there exists a unique weak
solution to the problem (2.1), (2.2) (see, for example, [4], [9], [6, Chapter 4]).

For any choice of admissible controls u1, u2 we have the following payoff functions:

Ji(t, x, u1, u2) = Etx

{∫ τ

t

li(s,X(s), u1(s,X(s)), u2(s,X(s)))ds + gi(T,X(T ))

}
,

i = 1, 2,(2.3)

where τ ≡ T ∧ inf{s ≥ t,X(s) /∈ Ω}, Etx is the expectation under the probability
Ptx, li and gi are prescribed functions (the assumptions will be specified later), and
X = X(s) is the unique weak solution of (2.1)–(2.2) corresponding to (u1, u2) ∈ U1×U2

admissible controls.
Each player wants to maximize his own payoff.
Definition 2.1. A pair of admissible controls (u1, u2) ∈ U1 × U2 is called the

Nash equilibrium point of the differential game (2.1)–(2.2), with payoff (2.3), if

J1(t, x, u1, u2) ≥ J1(t, x, u1, u2),(2.4)

J2(t, x, u1, u2) ≥ J2(t, x, u1, u2),(2.5)

for all (t, x) ∈ (0, T ) × Ω and for all (u1, u2) ∈ U1 × U2 admissible controls.
The functions

V1(t, x) :≡ J1(t, x, u1, u2), V2(t, x) :≡ J2(t, x, u1, u2)(2.6)

are a value of the Nash equilibrium point (u1, u2).
We define the pre-Hamiltonians Hi(t, x, p, u1, u2) : (0, T )×RN×RN×U1×U2 →

R, i = 1, 2:

H1(t, x, p, u1(t, x), u2(t, x)) :≡ p · f(t, x, u1(t, x), u2(t, x))(2.7)

+ l1(t, x, u1(t, x), u2(t, x)),

H2(t, x, p, u1(t, x), u2(t, x)) :≡ p · f(t, x, u1(t, x), u2(t, x))

+ l2(t, x, u1(t, x), u2(t, x)).

We set

a =
1

2
σσ∗

(σ∗ is the transpose of σ) to be the matrix with elements ah,k, h, k = 1, . . . , N .
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If the value functions V1, V2 ∈ C1,2, we can apply Itô’s formula; changing the
time variable (T − t → t), we get that V1, V2 solve, in ΩT :≡ (0, T )×Ω, the following
nonlinear parabolic system coupled by the Nash equilibrium problem:

∂V1(t, x)

∂t
−

N∑
h,k=1

ahk(t, x)
∂2V1(t, x)

∂xh∂xk
(2.8)

= max{u1∈U1}H1(t, x,∇xV1(t, x), u1(t, x), u2(t, x))

= H1(t, x,∇xV1(t, x), u1(t, x), u2(t, x)),

∂V2(t, x)

∂t
−

N∑
h,k=1

ahk(t, x)
∂2V2(t, x)

∂xh∂xk
(2.9)

= max{u2∈U2}H2(t, x,∇xV2(t, x), u1(t, x), u2(t, x))

= H2(t, x,∇xV2(t, x), u1(t, x), u2(t, x)),

u1(t, x) ∈ argmax{u1∈U1}H1(t, x,∇xV1(t, x), u1(t, x), u2(t, x)),(2.10)

u2(t, x) ∈ argmax{u2∈U2}H2(t, x,∇xV2(t, x), u1(t, x), u2(t, x)),(2.11)

V1 = g1(t, x), V2 = g2(t, x) on ∂pΩT ,(2.12)

where ∂pΩT :≡
(
(0, T ) × ∂Ω

)
∪
(
{t = 0} × Ω

)
. (Here and in the following we write,

for the sake of brevity, argmaxui∈Ui
Hi, which means argmaxui(t,x)∈Ui

Hi).
The functions

H1(t, x,∇xV1(t, x), u1(t, x), u2(t, x))

= max{u1∈U1}H1(t, x,∇xV1(t, x), u1(t, x), u2(t, x)),

H2(t, x,∇xV1(t, x), u1(t, x), u2(t, x))

= max{u2∈U2}H2(t, x,∇xV2(t, x), u1(t, x), u2(t, x))

are called the Hamiltonian functions associated with the game (2.1)–(2.3).
We want to outline here the classical procedure used in Friedman’s book [7] to

prove the existence of a Nash equilibrium point u1, u2.
1. Suppose that, for any fixed p ∈ RN , there exist u∗

1, u
∗
2 such that

u∗
1(t, x, p) ∈ argmax{u1∈U1}H1(t, x, p, u1(t, x), u∗

2(t, x)),

u∗
2(t, x, p) ∈ argmax{u2∈U2}H2(t, x, p, u

∗
1(t, x), u2(t, x))

are measurable in (t, x) ∈ ΩT and continuous in p.(2.13)

2. Solve the parabolic system

∂V1(t, x)

∂t
−

N∑
h,k=1

ahk(t, x)
∂2V1(t, x)

∂xh∂xk

= H1(t, x,∇xV1, u
∗
1(t, x,∇xV1), u

∗
2(t, x,∇xV2)),(2.14)

∂V2(t, x)

∂t
−

N∑
h,k=1

ahk(t, x)
∂2V2(t, x)

∂xh∂xk

= H2(t, x,∇xV2, u
∗
1(t, x,∇xV1), u

∗
2(t, x,∇xV2)),

V1 = g1(t, x), V2 = g2(t, x) on ∂pΩT .
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3. Prove that the pair of functions (u1, u2) with values

u1(t, x) :≡ u∗
1(t, x,∇xV1(t, x)),

u2(t, x) :≡ u∗
2(t, x,∇xV2(t, x))

is a Nash equilibrium point (see Definition 2.1).
Therefore to obtain Nash equilibrium points for the associated stochastic differ-

ential game, we look for a “sufficiently regular” solution of system (2.14).
A similar procedure is used, in the elliptic case, by Bensoussan and J. Frehse [2],

[3], [4] to study systems of Bellman equations.
We want to emphasize that the results of Friedman and Bensoussan and J. Frehse

on the existence of classical solutions and of Nash equilibrium points are obtained
under the assumption that there exist some feedback

u∗
1 ∈ argmax{u1∈U1}H1(t, x, p, u1, u

∗
2), u∗

2 ∈ argmax{u2∈U2}H2(t, x, p, u
∗
1, u2)

that are continuous in p (see, for example, assumption (D) [7, section 17, p. 497]). If
we assume that the sets Ui, i = 1, 2, are compact, the assumption on the continuity
of the feedback can be too restrictive.

Weaker assumptions on the regularity of the feedback can be found in [8] and [9].
In this paper we consider a model problem with U1, U2 compact sets in R, affine

dynamics of the game, and affine payoff.
Let us list the assumptions:

U1 = U2 = [0, 1],(2.15)

f(x, u1(t, x), u2(t, x)) : Ω × U1 × U2 → RN ,(2.16)

f(x, u1(t, x), u2(t, x)) = f1(x)u1(t, x) + f2(x)u2(t, x),

fi(x) : Ω → RN , fi(x) ∈ C1(Ω), i = 1, 2,

li(x, u1(t, x), u2(t, x)) : Ω × U1 × U2 → R,(2.17)

li(x, u1(t, x), u2(t, x)) = li(x)ui(t, x), i = 1, 2,

li(x) : Ω → RN , li(x) ∈ C1(Ω), i = 1, 2,

gi(t, x) ∈ H1+α(ΩT ), α ∈ (0, 1), i = 1, 2,(2.18)

ahk(t, x) ∈ C2(ΩT ),

ν|ξ|2 ≤
N∑

h,k=1

ahk(t, x)ξhξk ≤ µ|ξ|2, ν, µ > 0,(2.19)

for all (t, x) ∈ ΩT and for all ξ ∈ RN .

Taking into account the affine structure of f and l in (2.16)–(2.17), the functions H1

and H2 in (2.7) become

H1(x, p, u1(t, x), u2(t, x)) =
(
p · f1(x) + l1(x)

)
u1(t, x) + p · f2(x)u2(t, x),

H2(x, p, u1(t, x), u2(t, x)) =
(
p · f2(x) + l2(x)

)
u2(t, x) + p · f1(x)u1(t, x).(2.20)
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From (2.15) and (2.20), for any fixed p, we have

u1(t, x) ∈ argmax{u1∈U1}H1(x, p, u1(t, x), u2(t, x))

= argmax{u1(t,x)∈[0,1]}
(
p · f1(x) + l1(x)

)
u1(t, x) + p · f2(x)u2(t, x)

= Heav
(
p · f1(x) + l1(x)

)
,(2.21)

where Heav(η) is the Heaviside graph defined as Heav(η) = 1 if η > 0, Heav(η) = 0 if
η < 0, and Heav(0) = [0, 1].

Analogously

u2(t, x) ∈ Heav
(
p · f2(x) + l2(x)

)
.(2.22)

From (2.20), (2.21), (2.22), the Hamiltonian functions assume the form

H1(x, p, u1(t, x), u2(t, x)) ≡ max{u1∈U1}H1(x, p, u1(t, x), u2(t, x))

=
(
p · f1(x) + l1(x)

)
+

+ p · f2(x)u2(t, x),(2.23)

H2(x, p, u1, u2) ≡ max{u2∈U2}H2(x, p, u1(t, x), u2(t, x))

=
(
p · f2(x) + l2(x)

)
+

+ p · f1(x)u1(t, x),(2.24)

where we denoted by (h)+ the positive part of the function h.
Taking, for any fixed p,

u∗
1(t, x, p) ∈ Heav

(
p · f1(x) + l1(x)

)
,(2.25)

u∗
2(t, x, p) ∈ Heav

(
p · f2(x) + l2(x)

)
,(2.26)

we have that u∗
1, u

∗
2 do not satisfy (2.13) because they are not continuous in p. Hence,

in this case, we cannot use the results of [7].
From (2.25), (2.26), the parabolic system (2.8), (2.9) becomes

∂V1

∂t
−

N∑
h,k=1

ahk
∂2V1

∂xh∂xk
∈
(
∇xV1 · f1(x) + l1(x)

)
Heav(∇xV1 · f1(x) + l1(x))

+ ∇xV1 · f2(x)Heav(∇xV2 · f2(x) + l2(x)) in ΩT ,(2.27)

∂V2

∂t
−

N∑
h,k=1

ahk
∂2V2

∂xh∂xk
∈
(
∇xV2 · f2(x) + l2(x)

)
Heav(∇xV2 · f2(x) + l2(x))

+ ∇xV2 · f1(x)Heav(∇xV1 · f1(x) + l1(x)) in ΩT ,(2.28)

V1(t, x) = g1(t, x), V2(t, x) = g2(t, x) on ∂pΩT .(2.29)

This is a uniformly parabolic system strongly coupled by the Heaviside graph con-
taining the first order derivatives of the unknown functions.

Equations (2.27) and (2.28) are to be interpreted in the following way:

∂V1

∂t
−

N∑
h,k=1

ahk
∂2V1

∂xh∂xk
=

(
∇xV1 · f1 + l1

)
h1(t, x) + ∇xV1 · f2h2(t, x),

∂V2

∂t
−

N∑
h,k=1

ahk
∂2V2

∂xh∂xk
=

(
∇xV2 · f2 + l2

)
h2(t, x) + ∇xV2 · f1h1(t, x),

h1(t, x) ∈ Heav(∇xV1 · f1(x) + l1(x)), h2(t, x) ∈ Heav(∇xV2 · f2(x) + l2(x)).
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Following the previous scheme, first we investigate the existence of a solution V1, V2

of (2.27)–(2.29). Next, if we find sufficient regularity, it will be possible to prove the
existence of a Nash equilibrium point.

In section 3 we provide an existence result for a solution V1, V2 in H1+α(ΩT ) ∩
W 1,2

q (ΩT ) of the system (2.27)–(2.29), and in section 4 we prove the existence of a
Nash equilibrium point.

3. Existence of a solution to the parabolic system. We give the following
definition.

Definition 3.1. (V1, V2) is a strong solution of the system (2.27)–(2.29) if
(a) V1(t, x), V2(t, x) ∈ H1+α(ΩT ) ∩W 1,2

q (ΩT ) for some α ∈ (0, 1), q > N + 2;
(b) equations (2.27)–(2.28) hold almost everywhere and (2.29) holds.
Theorem 3.2. Under assumptions (2.15)–(2.19), taking Heav(η) = 1 if η > 0,

Heav(η) = 0 if η < 0, and Heav(0) = [0, 1], there exists at least a strong solution
(V1, V2) of the parabolic system (2.27)–(2.29).

Proof. Let us consider the approximating problems obtained by replacing the
Heaviside graph Heav(η) with smooth functions Hn:

Hn(η) ∈ C∞(R), Hn(η) ∈ L∞(R),

Hn(η) = 0 if η ≤ 0, Hn(η) = 1 if η ≥ 1

n
,

H ′
n ≥ 0,(3.1)

Hn(η) → Heav(η) in Lp(K), p > 1, K ⊂ R is any compact of R,

Hn(η) → Heav(η) in C0 outside a neighbourhood of η = 0.

We denote by V1n, V2n the solution of the problem

∂V1n

∂t
−

N∑
h,k=1

ahk
∂2V1n

∂xh∂xk
=

(
∇xV1n · f1 + l1

)
Hn(∇xV1n · f1 + l1)

+ ∇xV1n · f2Hn(∇xV2n · f2 + l2) in ΩT ,(3.2)

∂V2n

∂t
−

N∑
h,k=1

ahk
∂2V2n

∂xh∂xk
=

(
∇xV2n · f2 + l2

)
Hn(∇xV2n · f2 + l2)

+ ∇xV2n · f1Hn(∇xV1n · f1 + l1) in ΩT ,(3.3)

V1n = g1, V2n = g2 in ∂pΩT .(3.4)

From [11, Theorem 7.1, p. 596] on quasi-linear parabolic systems with smooth coef-
ficients, there exists an unique solution of problem (3.2)–(3.4), V1n(t, x), V2n(t, x) ∈
H2+α(ΩT ).

At this point, regarding the terms Hn(∇xV1n · f1 + l1) + f2Hn(∇xV2n · f2 + l2)
and Hn(∇xV2n · f2 + l2) + f1Hn(∇xV1n · f1 + l1) in (3.2)–(3.3) as bounded uniformly
on n, from [11, Theorem 9.1, p. 341], we find an uniform estimate in W 1,2

q :

‖V1n‖(2)
q,ΩT

+ ‖V2n‖(2)
q,ΩT

≤ C(‖Hn‖q,ΩT
, ‖g1‖(2−1/q)

q,∂pΩT
, ‖g2‖(2−1/q)

q,∂pΩT
) ≤ C,(3.5)

where C is independent of n and q > 1.
By means of an embedding theorem (see, for example, [11, Chapter 2, Lemma 3.3]),

taking q > N + 2, we obtain

|V1n|(1+α)
ΩT

+ |V2n|(1+α)
ΩT

≤ C, α = 1 − N + 2

q
,(3.6)

where C is independent of n.
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We can now extract two subsequences, which we denote again by V1n, V2n such
that

Vin → Vi in C0(ΩT ), i = 1, 2,(3.7)

∂Vin

∂xh
→ ∂Vi

∂xh
in C0(ΩT ), i = 1, 2, h = 1, . . . N.

From the weak precompactness of the unit ball of W 2,1
q , we have

∂Vin

∂t
⇀

∂Vi

∂t
weakly in L2(ΩT ), i = 1, 2,(3.8)

∂2Vin

∂xh∂xk
⇀

∂2Vi

∂xh∂xk
weakly in L2(ΩT ), i = 1, 2, h, k = 1, . . . N.

From (3.7), (3.8)

V1(t, x), V2(t, x) ∈ H1+α(ΩT ) ∩W 1,2
q (ΩT ), with α = 1 − N + 2

q
.(3.9)

Now we have to prove that V1, V2 solve (2.27)–(2.28) almost everywhere in ΩT .
From assumptions (3.1) and (3.8), the two sequences Hn(∇xV1n·f1+l1), Hn(∇xV2n·

f2+ l2) are uniformly bounded in L2(ΩT ), and hence we can extract two subsequences
such that

Hn(∇xV1n · f1 + l1) ⇀ h1(t, x) weakly in L2(ΩT ),(3.10)

Hn(∇xV2n · f2 + l2) ⇀ h2(t, x) weakly in L2(ΩT ).

We now show that hi(t, x) ∈ Heav(∇xVi · fi + li) almost everywhere i = 1, 2. To do
this let us consider the following sets:

Pi :≡ {(t, x) ∈ ΩT : ∇xVi(t, x) · fi(x) + li(x) > 0},

Ni :≡ {(t, x) ∈ ΩT : ∇xVi(t, x) · fi(x) + li(x) < 0},

Zi :≡ {(t, x) ∈ ΩT : ∇xVi(t, x) · fi(x) + li(x) = 0},

i = 1, 2.

From (3.7), we have that, for a sufficiently large n, ∇xVin(t, x) · fi(x) + li(x) > 0 for
all (t, x) ∈ Pi. Hence, from (3.1), we obtain that

Hn(∇xVin(t, x) · fi(x) + li(x)) → 1 = Heav(∇xVi(t, x) · fi(x) + li(x))

for all (t, x) ∈ Pi, i = 1, 2.
Analogously, in Ni, for a sufficiently large n, ∇xVin(x, t) · fi(x) + li(x) < 0, and

hence

Hn(∇xVin(x, t) · fi(x) + li(x)) ≡ 0 = Heav(∇xVi(x, t) · fi(x) + li(x))

for all (t, x) ∈ Ni, i = 1, 2.



STOCHASTIC GAMES WITH DISCONTINUOUS FEEDBACK 1229

In Zi, from the assumptions on Hn (see (3.1)), we have that 0 ≤ hi ≤ 1 almost
everywhere, and hence

h1(t, x) ∈ Heav(∇xV1(t, x) · f1(x) + l1(x)) almost everywhere in ΩT ,(3.11)

h2(t, x) ∈ Heav(∇xV2(t, x) · f2(x) + l2(x)) almost everywhere in ΩT .(3.12)

At this point, from (3.7), (3.8), (3.10), (3.11), (3.12), we obtain that V1, V2 satisfy
(2.27)–(2.28) almost everywhere in ΩT and from the regularity of the functions V1,
V2, we have that V1(t, x) = g1(t, x), V2(t, x) = g2(t, x) for all (t, x) ∈ ∂pΩT .

Remark 3.1. If we choose W (η) ∈ Heav(η), we are not able to solve the problem

∂V1

∂t
−

N∑
h,k=1

ahk
∂2V1

∂xh∂xk
=

(
∇xV1 · f1 + l1

)
W (∇xV1 · f1 + l1)

+ ∇xV1 · f2 W (∇xV2 · f2 + l2),(3.13)

∂V2

∂t
−

N∑
h,k=1

ahk
∂2V2

∂xh∂xk
=

(
∇xV2 · f2 + l2

)
W (∇xV2 · f2 + l2)

+ ∇xV2 · f1 W (∇xV1 · f1 + l1),(3.14)

because we cannot exclude that meas{(t, x) ∈ ΩT : ∇xVi · fi(x) + li(x) = 0} > 0, i =
1, 2. Hence we cannot prove that

Hn(∇xVin · fi + li) ⇀ W (∇xVi · fi + li), i = 1, 2,

but only that

Hn(∇xVin · fi + li) ⇀ hi ∈ Heav(∇xVi · fi + li), i = 1, 2.

4. Existence of a Nash equilibrium point. We now prove the following.
Theorem 4.1. Suppose that the assumptions of Theorem 3.2 hold. Let (V1, V2)

be a strong solution of the parabolic system (2.27)–(2.29); then any admissible control
(u1, u2) such that

u1(t, x) ∈ Heav(∇xV1(t, x) · f1(x) + l1(x)),(4.1)

u2(t, x) ∈ Heav(∇xV2(t, x) · f2(x) + l2(x))(4.2)

is a Nash equilibrium point for the stochastic differential game (2.1)–(2.2) with payoff
(2.3).

Proof. The existence of a strong solution (V1, V2) of the parabolic system (2.27)–
(2.29) is stated by Theorem 3.2.

To prove that ui(t, x) ∈ Heav(∇xVi(t, x) · fi(x) + li(x)), i = 1, 2, are the values of
a Nash equilibrium point, as in Definition 2.1, we have to show that

J1(t, x, u1, u2) ≥ J1(t, x, u1, u2),

J2(t, x, u1, u2) ≥ J2(t, x, u1, u2)(4.3)

for all (u1, u2) ∈ U1 × U2 admissible controls.
Let us denote

v1(t, x) :≡ J1(t, x, u1, u2),(4.4)

v2(t, x) :≡ J2(t, x, u1, u2).
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Using a generalization of Itô’s formula applied to functions in W 1,2
q (see, for example,

[1, Theorem 4.1, p. 126]), we have that the couple (v1, v2) solves the following parabolic
system (here and in the following we omit, for the sake of brevity, the dependence on
the variables (t, x)):

∂v1

∂t
−

N∑
h,k=1

ahk
∂2v1

∂xh∂xk
= H1(x, t,∇xv1, u1, u2)(4.5)

= (∇xv1f1 + l1)u1 + ∇xv1f2u2 in ΩT ,

∂v2

∂t
−

N∑
h,k=1

ahk
∂2v2

∂xh∂xk
= H2(x, t,∇xv2, u1, u2)(4.6)

= (∇xv2 · f2 + l2)u2 + ∇xv2f1u1 in ΩT ,

v1 = g1(t, x), v2 = g2(t, x) on ∂pΩT .(4.7)

From (4.1), (4.2), we have

∂v1

∂t
−

N∑
h,k=1

ahk
∂2v1

∂xh∂xk
∈ (∇xv1 · f1 + l1)Heav(∇xV1 · f1 + l1)

+ ∇xv1 · f2Heav(∇xV2 · f2 + l2) in ΩT ,(4.8)

∂v2

∂t
−

N∑
h,k=1

ahk
∂2v2

∂xh∂xk
∈ (∇xv2 · f2 + l2)Heav(∇xV2 · f2 + l2)

+ ∇xv2 · f1Heav(∇xV1 · f1 + l1) in ΩT ,

v1 = g1(t, x), v2 = g2(t, x) on ∂pΩT .(4.9)

Let us now fix (u1, u2) ∈ U1 × U2 admissible controls and denote

w1(t, x) :≡ J1(t, x, u1, u2),(4.10)

w2(t, x) :≡ J2(t, x, u1, u2).

The couple (w1, w2) solves the following parabolic system:

∂w1

∂t
−

N∑
h,k=1

ahk
∂2w1

∂xh∂xk
= H1(x, t,∇xw1, u1, u2)(4.11)

= (∇xw1f1 + l1)u1 + ∇xw1f2u2 in ΩT ,

∂w2

∂t
−

N∑
h,k=1

ahk
∂2w2

∂xh∂xk
= H2(x, t,∇xw2, u1, u2)(4.12)

= (∇xw2 · f2 + l2)u2 + ∇xw2f1u1 in ΩT ,

w1 = g1(t, x), w2 = g2(t, x) on ∂pΩT ,(4.13)

w1, w2 ∈ W 1,2
q (ΩT ).

From the expressions (2.20) of H1, H2, taking into account (2.10), (2.11), we have
that, for any p fixed,

(pf1 + l1)u1(t, x) ≤ (pf1 + l1)u1(t, x),(4.14)

(pf2 + l2)u2(t, x) ≤ (pf2 + l2)u2(t, x).



STOCHASTIC GAMES WITH DISCONTINUOUS FEEDBACK 1231

Consider now the functions z1 :≡ v1 − w1, z2 :≡ v2 − w2. From systems (4.5)–(4.7)
and (4.11)–(4.13) we have

∂z1

∂t
−

N∑
h,k=1

ahk
∂2z1

∂xh∂xk
= (∇xv1 · f1 + l1)u1 + ∇xv1 · f2u2

− (∇xw1 · f1 + l1)u1 −∇xw1 · f2u2 in ΩT ,(4.15)

∂z2

∂t
−

N∑
h,k=1

ahk
∂2z2

∂xh∂xk
= (∇xv2 · f2 + l2)u2 + ∇xv2 · f1u1

− (∇xw2 · f2 + l2)u2 −∇xw2 · f1u1 in ΩT ,

z1 = z2 = 0 on ∂pΩT .

Taking into account (4.14), we obtain

∂z1

∂t
−

N∑
h,k=1

ahk
∂2z1

∂xh∂xk
≥ (∇xv1 · f1 + l1)u1 + ∇xv1 · f2u2

− (∇xw1 · f1 + l1)u1 −∇xw1 · f2u2

= ∇xz1 ·
(
f1u1 + f2u2

)
in ΩT ,(4.16)

∂z2

∂t
−

N∑
h,k=1

ahk
∂2z2

∂xh∂xk
≥ (∇xv2 · f2 + l2)u2 + ∇xv2 · f1u1

− (∇xw2 · f2 + l2)u2 −∇xw2 · f1u1

= ∇xz2 ·
(
f2u2 + f1u1

)
in ΩT ,(4.17)

z1 = z2 = 0 on ∂pΩT .

Equations (4.16), (4.17) are no longer coupled and the terms f1u1 +f2u2, f2u2 +f1u1

are known and bounded. Hence we can apply an extension of the maximum principle
to parabolic equations whose coefficients are in L∞ (see, for example, [10, Chapter 7]),
obtaining

z1(t, x) ≥ 0, z2(t, x) ≥ 0 in ΩT .(4.18)

Taking into account (4.4) and (4.10), from (4.18) we obtain (4.3), i.e., the result.
Remark 4.1. The results proved in section 3 and 4 hold true even if we take

M > 2 players and if we take the functions f and l linear and dependent explicitly on
t, i.e.,

f(t, x, u1, u2) = f1(t, x)u1 + f2(t, x)u2 + f3(t, x),

l1(t, x, u1, u2) = l1(t, x)u1 + h1(t, x),

l2(t, x, u1, u2) = l2(t, x)u2 + h2(t, x).

The only difference is the appearance in (2.27)–(2.28), as source terms, of the functions
f3(t, x) + h1(t, x) and f3(t, x) + h2(t, x), respectively.
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Remark 4.2. In [12], Olsder studied the Nash equilibria of the following nonzero-
sum deterministic differential game with open-loop bang-bang controls:

ẋ = (1 − x)u1 − xu2,

with payoff

J1 =

∫ T

t

(c1x− u1) ds, J2 =

∫ T

t

(c2(1 − x) − u2) ds,

and controls subject to

0 ≤ ui(t) ≤ 1.

Because of the hard constraints, also in this case, the optimal controls contain Heavi-
side functions.

Remark 4.3. If we change the control sets taking U1 = U2 = [−1, 1], as done in
[5] in the deterministic case, the optimal feedback equilibria are

u1 ∈ sign
(
p · f1 + l1

)
,

u2 ∈ sign
(
p · f2 + l2

)
,

where sign(η) = 1 if η > 0, sign(η) = −1 if η < 0, and sign(0) = [−1, 1].
The Hamiltonian functions take the form

H1(x, p, u1, u2) =
∣∣p · f1(x) + l1(x)

∣∣ + p · f2(x)u2,

H2(x, p, u1, u2) =
∣∣p · f2(x) + l2(x)

∣∣ + p · f1(x)u1,

and also in this case our method can be applied.
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