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ABSTRACT. A standard class of finite dimensional control systems is consid-
ered, along with a state constraint set S and a target set ¥ C S. Under certain
geometric assumptions on S and a required S-constrained small time controllability
property, a proximal Hamilton-Jacobi characterization of the S-constrained minimal
time function to target ¥ is obtained.

1. INTRODUCTION

We shall consider a standard finite dimenisonal control system z(t) = f(z(t), u(t)),

u(-) € U, along with a state constraint z(t) € S and a target set ¥ C S. Our goal is
to provide, apparently for the first time, Hamilton-Jacobi (HJ) characterizations of the
S-constrained minimal time function with target ¥. The unconstrained (that is, S = R™)
form of this problem and related issues were settled in Wolenski and Zhuang [18]. There
it was shown that under mild hypotheses, the unconstrained minimal time function is
the unique function satisfying, among other properties, a proximal HJ equation on the
complement of ¥, along with a boundary condition which takes the form of a certain
proximal HJ inequality holding on ¥ itself. Other approaches to this issue, including
viscosity methods, as well as further references, can be found in the books by Bardi
and Capuzzo-Dolcetta [1] and Cannarsa and Sinestrari [2]. Of related interest are recent
results of Clarke [4], where the proximal HJ equation was reconsidered, but in the absence
of the aforementioned boundary condition. The solutions obtained to the proximal HJ
equation in this new global framework were studied, and shown to be associated with
geodesic trajectories.

As in [18] and [4], our methods here are based upon nonsmooth (proximal) monotonicity-
invariance considerations as developed in Clarke, Ledyaev, Stern and Wolenski [5], [7]. But
as will be seen, the imposition of a state constraint necessitates additional techniques. Of
particular interest is the role played by a required S-constrained small time controllabil-
ity hypothesis. Geometric sufficient conditions for the latter property will be provided as
well, in the concluding comments.

State constrained control problems have received attention in recent years. In Clarke,
Rifford and Stern [8], a state constrained Mayer problem was studied, and in Clarke and
Stern [9], the problem of state constrained stabilization was considered. In both these
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references, the emphasis was on the construction of feedback controls. In Clarke and Stern
[10], the value function of the state constrained problem studied in [8] was characterized
in proximal HJ terms; in this regard, see also Frankowska and Vinter [14] and Vinter [17].
As is the case in [10], the method here will rely upon state constrained trajectory tracking
properties developed in [8], and the proximal characterizations can be reframed, as they
were in [10], in the “constrained viscosity solution” framework introduced by Soner [16].
This will be remarked upon in the concluding comments.
We shall consider a control system of the form

z(t) = f(z(t),u(t)) a.e. (1)

The state trajectory x(-) evolves in R™ and control functions u(-) are Lebesgue measurable
functions v : R — U, where U C R™ is a compact control restraint set.

Hypotheses on the dynamics f : R™ x U — R" are as follows, and will be assumed to
hold throughout. (The Euclidean norm is denoted by || - ||.)

(F1) The function f is continuous and is locally Lipschitz in the state variable x, uniformly
for uw € U; that is, for each bounded set I' C R™, there exists Kt > 0 such that

[/ (2, w) = f(y,w)|| < Krllz —yl],
whenever (z,u) and (y,u) are in I' x U.

(F2) The function f satisfies a linear growth condition; that is, there exist positive num-
bers c1, co such that

1f (@, Wl < elle] +e2 V(z,u) € R xU.

(F3) The velocity set f(z,U) is convex for every z € R™.

Under (F1)-(F2), for every initial state « and every control function u(-), there exists
a unique trajectory z(t) = x(t; a, u(-)) defined for all ¢t > 0 and satisfying 2(0) = a. The
imposition of (F3) is needed in order to have available the familiar property of sequential
compactness of trajectories on compact time intervals, as is explained e.g. in [7]. See
the concluding comments concerning the validity of our results when f is only defined on
S x U, which is reasonable in S-constrained problems.

The next section provides a required result on S-constrained trajectory tracking. The
main result is presented in §3, while §4 contains concluding comments. Prior to pro-
ceeding, we refer the reader to [7] for all the basic definitions and facts from nonsmooth
analysis that will be required.

2. S-CONSTRAINED TRAJECTORY TRACKING
Geometric hypotheses on S are now posited, and will be assumed to hold throughout.

(S1) S is compact and wedged at each x € bdry(S), meaning that at each boundary point
x one has pointedness of N§ (z); that is, N§ () N {—N§ (z)} = {0}. Here N§ (x)
denotes the Clarke normal cone to S at z. (This is equivalent to T (z) having
nonempty interior for each x € bdry(S), where T (z) denotes the Clarke tangent
cone to S at x.)
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(S2) The following “strict inwardness” condition holds:

{Lréllrjl (¢, flz,u)) <0 YO0#C¢eNS(x), Vacbdry(S). (2)

The set S being wedged at x € bdry(S) is also referred to in the literature as epi-
Lipschitzness of S at x, since it is equivalent to S being locally linearly homeomorphic to
the epigraph of a Lipschitz function; see Rockafellar [15] and Clarke [3].

Remark 2.1.

(a) We will require the fact that when S is wedged at each of its boundary points, then
S is the closure of its interior.

(b) (S1)-(S2) are sufficient but not necessary for S to be weakly invariant; that is, for
any initial state a € S, there exists a control u(-) producing a trajectory z(t) =
2(t; o, u(+)) with 2(0) = o and z(t) € S for all ¢ > 0.

Given r > 0, an inner approzximation of S is given by
Sy i={r e S:dg(x) >r}.

Here S denotes the closure of the complement of S, and dr(-) denotes the Euclidean
distance function to a set I'. (Note that Sp = S.) The geometry of inner approximations
was studied in Clarke, Ledyaev and Stern [6], as well as in [8].

We will require the following S-constrained tracking result from the proofs of Propo-
sition 3.13 and Theorem 3.10 in [8].

Lemma 2.2. There exists a constant rq > 0 satisfying the following two properties:

(a) Given T > 0, there exists a constant M = M(T) > 0 such that the following
holds: Let o € S, a; € S, and let ug(-) be a control function on [0,T] producing a
trajectory which satisfies

x(t;ap,up(+)) € S Vtel0,T). (3)
Then there exists a control function u, (+) on [0, T which produces a trajectory which
satisfies
[t ar,ui () = 2(t; a0, uo ()| < Mllay — aol| Vit €[0,T] (4)
and
x(t;aq,ui(s)) € S, Vte|0,T]. (5)

(b) Given T > 0, there exists W = W(T') > 0 such that for any initial state « € int(S5),
if r € [0,7¢] is such that r < dg(o) and u(-) is a control function on [0, T] such that

z(t;a,u(-) € S Vi e[0,T], (6)
then there exists a control function @(-) on [0,T] such that
lz(t; o, a(r)) — z(t; a, u()|| < W Vit e [0,T], (7)

and
x(t;,u(r)) € S, Vtel0,T]. (8)



ON THE STATE CONSTRAINED MINIMAL TIME FUNCTION 4

3. THE S-CONSTRAINED MINIMAL TIME FUNCTION

Let ¥ be a closed subset of S, and denote by I's the set of a € S such that for some
control u(-) and some ¢ > 0 one has

z(t;a,u(-) € X

and
z(t;o,u(r)) €S Vte[o,d].

In other words, I's consists of those initial states in S which can be controlled in finite
time to the target ¥ along an S-constrained trajectory. Denote by 7(«) the infimal time
from an initial state a € I's to the target ¥ along such a trajectory. By a standard
sequential compactness of trajectories argument, the infimum is attained as a minimum.
We go on to define an extended real valued function 7" : R™ — [0, +00] as follows:

L T(Oé) if a €elg
T() '_{ 400 otherwise

T(-) is called the S-constrained minimal time function with respect to the target ¥. One
can show that T'(x) > 0 for all z € R™ and T'(a) = 0 if and only if a € ¥. Observe that
there are two ways for T'(«) to be non-finite:

(i) @« € S, but ¥ is not reachable from « via an S-constrained trajectory; that is,
a € S\FS

(i) a ¢ S.
Let us collect some basic properties of the functions T'(-) and ¢(-,-), where
g(t,z) =t +T(x).

We denote the set of strictly positive real numbers by Ry, and the complement of ¥ by
3.

(LSC) T(+) is lower semicontinuous at every a € R™; that is

T(a) < liminf T'(a).

o' —a

(SI) g(-,-) is strongly increasing on Ry X int(S). This means that for every a € int(S),
for every trajectory of (1) with 2(0) = «, one has g(¢, 2(t)) > T'(«) on [0, s] for every
s > 0 such that z(t) € int(S) on [0, s].

(WD) g(-,-) is weakly decreasing on Ry x 3€¢. This means that for every a € %€, there
exists a trajectory of (1) with z(0) = «, for which g(¢t,z(¢)) < T(«) on [0, s] for
every s > 0 such that z(¢) € X on [0, s].

Note that in (SI) and (WD), infinite values of T'(-) and g(-,-) are possible. In par-
ticular, in (SI), note that if a trajectory in int(S) exits I'g, it cannot re-enter I's while
remaining in S. Property (LSC) readily follows from a sequential compactness of trajecto-
ries argument. The strong increase property (SI) is a straightforward consequence of the
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Principle of Optimality, while the weak decrease property (WD) is due to the existence
of S-constrained time-optimal trajectories from any startpoint « where T'(«) is finite;
that is, « € T's. (Startpoints for which T(«) = 400 trivially satisfy the weak decrease
condition.)

We now introduce the lower Hamiltonian h : R™ x R® — R by

h(z,p) := min (p, f(2,u)), 9)

where (-, ) denotes the standard inner product.

The next lemma provides proximal characterizations of (SI) and (WD) in terms of
proximal HJ inequalities. It follows in a straightforward manner from Exercise 4.6.4(a)
and Proposition 4.6.5 in [7].

Lemma 3.1.
(i) Property (SI) is equivalent to

h(z,0pT(z))+1>0 Vazeint(S). (10)

(ii) Property (WD) is equivalent to

h(x,0pT(z))+1<0 VzeX. (11)

Here Op denotes the proximal subdifferential; recall that for an extended real-valued
lower semicontinuous function w : R™ — (—o0,+00] and a point z where w(x) < 400,
¢ € Opw(x) if and only if there exists o = o(x,n) such that

w(y) —w(z) +olly -l > (C.y — )
for all y near . Thus (10) says that
h(z,()+1>0 V¢e€0opT(x), Vuzeint(s),

and (11) says that
h(z,{)+1<0 VY¢e€dpT(x), Ve

These inequalities hold vacuously when the proximal subdifferentials involved are empty,
as is the case when T'(x) = 400, but emptiness is not precluded even when T'(x) is finite.
Note also that (10) and (11) together are equivalent to T'(-) satisfying

hz,0pT(z)) +1=0 Vz e {int(S)}\X, (12)
h(z,0pT(z))+1>0 Vze {int(S)}NX, (13)

and
hMz,0pT(z)) +1 <0 Vo e {bdry(S)}\X. (14)

We require the following definition, where the open unit ball is denoted
B:={zeR":|z|| <1}
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Definition 3.2. A function ¢ : R” — (—o00, +00] is said to be (X, S)-continuous provided
that there exist v, > 0 and a function w, : [0,7,] — [0, +00) such that limgjow,(s) =0
and ¢(z) < wy(ds(x)) for all x € SN {X + ~,B}.

In the absence of a state constraint (i.e. S = R™), the minimal time function being
(X, R™)-continuous is often referred to as small time controllability. Accordingly, when
the S-constrained minimal time function 7'(-) is (¥, S)-continuous, then we say that S-
constrained small time controllability holds.

Remark 3.3. Results concerning the small time controllability property in the absence of
a state constraint may be found in [18], [1] and [2]. “Classical” trajectory tracking based
on Gronwall’s lemma features in these discusssions. Specifically, one has the following
facts:

(a) Small time controllability is equivalent to T'(-) being continuous on an open neigh-
borhood of ¥. Specifically, on such a neighborhood one has

T(x) = T(y)| < wr((lz—yl)- (15)

(b) When small time controllability holds, then I', the set of startpoints controllable to
Y., is open, and small time controllability is equivalent to the minimal time function
T'(-) being continuous on T'.

In the state constrained case presently being considered, one can employ the tracking
result of Lemma 2.2(a) in order to obtain the following analogs of (a) and (b):

(a’) S-constrained small time controllability is equivalent to T'(-) being continuous on
SN {2+ B} for some v > 0. Specifically, on such a set, (15) holds.

(b’) When S-constrained small time controllability holds, the set I'g is open relative to
S, and small time controllability is equivalent to the minimal time function 7'(-)
being continuous on I'g.

The preceding remarks are not required in the following main result.

Theorem 3.4. Let (F1)-(F'3), (S1)-(S2) hold, and assume that S-constrained small time
controllability holds. Then there is a unique lower semicontinuous extended real val-
ued function ¢(-) which is (3, S)-continuous, bounded below on R™, identically 0 on %,
identically +o0 on X¢, and satisfies

h(z,0pp(z)) +1=0 Vaz c {int(S)}\%, (16)

h(z,0pp(x))+1>0 Vae {int(S)}NX, (17)
and

h(z,0pp(x))+1 <0 Vzebdry(S)\X. (18)

That function is the S-constrained minimal time function T'(-).
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In order to understand the role played by S-constrained small time controllability
and (X, S)-continuity in this result, suppose that ¥ C bdry(S), and note that then the
indicator function of ¥, namely

4o ifxg¢X
‘P(‘”){ 0 ifzreyx

will always satisfy the conditions set out in the theorem; in particular (16)-(18) hold
vacuously. Therefore there is no hope of uniqueness holding in general, without further
conditions.

Proof of the theorem: That T(-) satisfies the stated conditions has already been ex-
plained. Hence the uniqueness assertion remains to be verified. To this end, let ¢ be as
in the statement of the theorem. The proof will follow from the verification of two claims:

Claim 1: T(o) < p(a) Vo € S.

To see this, note that (16) and (18) imply that the function g(¢,a) = t + () is
weakly decreasing on R x 3¢. We only need to consider e € S\, since if a € ¥ we have
T(a) = p(a) = 0. Furthermore, we can assume that ¢(a) < +o00, for otherwise the claim
is trivially true.

Now, for a € S\X with ¢(a) < 400, weak decrease implies that for some trajectory
of (1) with 2(0) = a, one has

t+ p(z(t) < o(a) (19)

as long as x(t) ¢ X. Since ¢(-) is globally bounded below and ¢(«) is finite, we conclude
that the trajectory eventually enters ¥. Then T'(a) < 400 and

t+p(a(t) < pla) Viel0,T(a)). (20)

Upon invoking the lower semicontinuity of ¢(-), we then have

< lng%(lg)f[t + e ((x(t)))]
< (o),

proving the claim.
Claim 2: T(o) > (o) Vo € S.

Let us first consider the case where o € int(S). Without loss of generality, we can
assume that o € I'g, for otherwise T'(«) = +00 and the claim will be trivial. Let z(-) be an
S-constrained time-optimal trajectory of (1) to target 3, with z(0) = a. By the tracking
result of Lemma 2.2(a), there exists W = W(T'(«)) > 0 such that for each sufficiently
small 7 > 0 there exists an S,-constrained trajectory z,(-) of (1) on the interval [0, T ()]
with z,.(0) = a and

[z (T () = 2(T())|| < rW. (21)
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Then
2.(T(a)) € S+ rWB, (22)

where B denotes the closure of the unit ball B.
In view of (16)-(17), the function ¢(-) is strongly increasing on int(.S). Consequently

T(a) + ¢z (T(a))) = ¢(a). (23)

Since ¢(-) is (¥, S)-continuous, (22) implies that the term ¢(z,(T(«))) can be made
arbitrarily small by decreasing r, and we deduce that

T(a) > o(a). (24)

It remains to consider the case where o € bdry(S). Again, we can assume that T'(«)
is finite, and we consider an S-constrained time-optimal trajectory z(-) of (1) to target
¥, with 2(0) = a. In view of Remark 2.1(a), there exists a sequence {a;} in the interior
of S, such that a; — S. From the preceding argument, we have that

T(ai) = p(a) (25)

foreach:=1,2,....
By the tracking result of Lemma 2.2(b), there exists M = M (T(«)) > 0 such that for
each ¢ there is a trajectory z;(-) of (1) for which z;(0) = «,

[z(t) — z:(t)[| < Mlla; —al| Ve [0,T(x)] (26)
and
xzi(t)eS Vte|0,T(a). (27)
Since z(T(a)) € ¥, we have z;(T(a)) € ¥+ M||a;; — a|| B, and therefore the S-constrained
small time controllability assumption, inequality (25), and the preceding case yield

T(a) +wr(Mlla; —al)) = T(a;) > () (28)

for each i. Since wy(M||a; — a]) — 0 as i — 400 and ¢(-) is lower semicontinuous, we
obtain T(«) > p(a), as required. O

4. CONCLUDING COMMENTS
4.1. Sufficient conditions for S-constrained small time controllability. It is
possible to replace the S-constrained small time controllability hypothesis in Theorem
3.4 by stronger geometric hypotheses. Specifically, we introduce the following condition,
in which projy(z) denotes the set of closest points in ¥ to x, and NZ'(z) denotes the
proximal normal cone to S at z; see [7].

(S3) There exist §; > 0, dz > 0 such that the following holds: For each
x € SNXN{X+ 6 B}, there exists u(x) € U for which

(n, f(z,u(x))) <0 ¥V 0#neNE(z), (29)

and
(x =y, f(z,u(z))) < —dflz -yl VO0#y e projs(v). (30)
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Intuitively, condition (S3) says that at each point z in S which is near but exterior to X,
there exists a velocity f(x,u(x)) which “points into S” (this is (29)) while simultaneously
“pointing towards ¥ (this is (30)). The “proximal aiming” technique of [5], [7] and Clarke
and Wolenski [11] can now be brought to bear, whereby one shows that all limiting Euler
solutions z(-) of the initial value problem

#(t) = fx(t),u(z(?), «(0)=acSN{X+aB},

are bona fide trajectories of the control system (1) which remain in S and, for some
v1 >0, 2 > 0, satisfy T(«a) < y1ds(a).

The foregoing comments show that we can take wr(z) = 7z, in the notation of Defin-
ition 3.2. Then by Remark 3.3(a’), T(-) is Lipschitz on S N {¥ + v3B} for some 73 > 0.
Similarly to Remark 3.3(b’), one can then invoke Lemma 2.2(b) in order to conclude that
T(-) is Lipschitz on I'g.

A variant of Theorem 3.4 ensues.

Corollary 4.1. Let (F1)-(F3) and (S1)-(S3) hold. Then there is a unique lower semicon-
tinuous extended real valued function (-) which is (X, S)-continuous, bounded below on
R™, identically 0 on ¥, identically +o0c on 3¢, and satisfies

h(z,0pp(z)) +1=0 Vaz c {int(S)}\%, (31)

h(z,0pp(x))+1>0 Vae {int(S)}NX, (32)
and

h(z,0pp(x)) +1<0 Yz e bdry(S)\. (33)

That function is the S-constrained minimal time function T(-). Furthermore, T(-) is
Lipschitz on I'g.

4.2. Constrained viscosity formulation.
Given a lower semicontinuous extended real valued function w : R™ — (—o0, +00], we
denote the Dini subderivate at = in the direction v by

Dw(z;v) := liminf wiz + tut) — w(m)
t10

The D-subdifferential (or viscosity subdifferential) of w(-) at x is the set
Opw(z) :=={¢ € R" : ((,v) < Dw(z;v) Vv € R"}.

Similarly to remarks made in [10], Theorem 3.4 and Corollary 4.1 hold true if 9p is
replaced by dp in the statement, because the P- and D-subdifferentials approximate one
another in a suitable sense. This in turn rests upon a theorem of Subbotin; see Proposition
3.4.5 in [7]. By Proposition 3.4.12 in [7], the Op-form of the theorem can in turn be put
into “constrained viscosity” terms, in Soner’s terminology [16]; see also [1]. Specifically,
(16) can be replaced by the condition

h(z,¢'(x)) +1=0 Vze {int(S)}\, (34)

for any g € C*(R™) such that ¢ — g has a local minimum at z. Furthermore, conditions
(17) and (18) have analogous constrained viscosity reformulations.
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4.3. S-Restricted dynamics. Suppose that the dynamics are specified only for z €
S; that is, f : S x U — R"™. Such a restricted domain can be expected in control problems
where the state in S-constrained. Again, similarly to [10], it can be shown that Theorem
3.4 remains true if (F1)-(F3) are replaced by the following two conditions:

(G1) The function f is continuous on S x U and is Lipschitz in the state variable z,
uniformly for u € U; that is, there exists K such that

1f (@, u) = fy, w)]| < K|z —yl],
whenever (z,u) and (y,u) are in S x U.

(G2) The velocity set f(z,U) is convex for every x € S.

We can extend f from S x U to R™ x U as follows: Let f; denote the ifh component
function of f, i =1,2,...,n. For each fixed u € U, define a function z — f;(x,u) on R"
as follows.

filw,u) = min{fi(y,v) + Klly — z||}.
yeS

Then z — fz(x, u) agrees with f;(z,u) on S, and is globally Lipschitz of rank K. We then
extend f componentwise by setting f;(z,u) = f;(z,u) for every (z,u) € R x U. The
resulting function f : R™ x U — R" is continuous on R™ x U and is globally Lipschitz of
rank K in the state variable z, uniformly for u € U; that is,

1f (2, w) = f(y, W) < Klle =yl

whenever (z,u) and (y,u) are in R™ x U. The global Lipschitz condition on the extended
dynamics implies the linear growth condition needed for the global extendability of solu-
tions, and possible nonconvexity of the velocity sets f(z,U) for ¢ S does not cause a
problem.
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