FINITE ELEMENT METHODS IN
LOCAL ACTIVE CONTROL OF SOUND

ALFREDO BERMUDEZ*, PABLO GAMALLO*, AND RODOLFO RODRIGUEZ?

Abstract. The active control of sound is analyzed in the framework of the mathematical theory
of optimal control. After setting the problem in the frequency domain, we deal with the state
equation, which is a Helmholtz partial differential equation. We show existence of a unique solution
and analyze a finite element approximation when the source term is a Dirac delta measure. Two
optimization problems are successively considered. The first one concerns the choice of phases and
amplitudes of the actuators to minimize the noise at the sensors location. The second one consists
in determining the optimal actuators placement. Both problems are then numerically solved. Error
estimates are settled and numerical results for some tests are reported.
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1. Introduction. Noise reduction is an important problem in acoustical and
environmental engineering. While passive methods are good for middle and high
frequencies, they are not efficient for low ones. However, the latter can be significantly
reduced by active control techniques. This is an old concept that has generated
increasing interest during the last years due to the development of fast digital signal
processors (DSP). It is based on the principle of destructive interference of waves: an
opposite pressure is generated by a secondary source to cancel an undesired noise. In
order to achieve a significant reduction, this source must produce, with great precision,
an equal amplitude but inverted replica of the noise to be canceled. Applications of
these techniques can be used, for instance, to reduce noise in aircrafts or cars.

Reference books on this subject are [3] and [11]. The general principles of active
control of noise was described in an early patent by Leug in 1936. A microphone
detects the undesired noise and provides an input signal to an electronic control
system. The transfer from the microphone to the loudspeaker is adjusted so that the
sound wave generated will destructively interfere the noise to be canceled.

In this paper we state the problem of active control of noise in the framework
of the optimal control theory of distributed systems and present its mathematical
and numerical analysis. For the sake of simplicity we consider that the noise to be
canceled has one single frequency, although it is also possible to control broad-band
or even non-periodic noises. Two problems are successively considered. In a first step
complex amplitudes are taken as control variables with the objective of minimizing the
pressure at some particular points in the domain. In a second step the loud-speakers
location is optimized with respect to the same objective function. A third step that
is not included here would consist in determining the microphones location in view of
minimizing the global noise, i.e., the norm of the pressure in the whole domain under
consideration rather than at some finite number of points.

The outline of the paper is as follows. In Section 2 we introduce the physical
problem and pose it in the framework of the optimal control theory. In Section 3
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we analyze the state equation. Although our main concern is when the inner source
terms are Dirac delta measures, to tackle this problem we analyze first the same
equation with data in L?. We prove existence and uniqueness of solution and analyze
its regularity, including some local W2 a priori estimates which are used in the
following section. In Section 4 we introduce a finite element method to approximate
the state equation. Once more we study first the case with L? data and then with
Dirac delta measures. In both cases we prove L? and pointwise error estimates. In
Section 5 we state an optimal control problem to determine the optimal amplitudes
of the actuators and show that it is well posed. Then we approximate it by using
the finite element approximation of the state equation introduced in the previous
section. Next, we prove an error estimate for the approximate optimal control. In
Section 6 we report some numerical results which confirm our theoretical assertions.
In Section 7 we study how to determine the optimal location of the actuators, again
in the framework of the optimal control theory. We prove existence of an optimal
control in this case and settle the optimality conditions. Finally, we report the results
of some numerical experiments.

2. Mathematical model. The optimal control problem. Let Q@ C R”"
(n =2 or 3) be a bounded, convex, 2D polygonal or 3D polyhedral domain enclosing
a non-dissipative acoustic fluid (i.e., inviscid, compressible, and barotropic). The
propagation of acoustic waves in this domain is modeled by the well known equation

1 9°P(z,t)

SR AP(z,t) = F(z,t) inQ,
c

where P is the pressure fluctuation, ¢ the sound speed, and F' an inner source term.
In our case, F' will correspond to the secondary source of noise produced by loud-
speakers, which will be the control variable. Moreover, there is a primary noise source
acting on a part I of the boundary of the domain, 02, which is modeled by

% =G(z,t) onTy,

where n is an outward unit normal vector to €. This means that normal displace-
ments are imposed on I}, = U}]:1 Flg , where F;, ... 7F&] denote the plane faces of Iy.
In practice, it corresponds to the effect of an external vibration source transmitted
to the enclosure €2 by the vibrations of some of the walls. Finally, we assume that
the rest of the boundary I, := 9Q\ T, = Ule sz is formed by damping plane walls
le, e ,I‘ZK characterized by a frequency-dependent wall impedance Z(w). We assume
that |T,| > 0 and |Ty| > 0, too.

In this paper we consider that G is a harmonic source with angular frequency
w € R, w # 0. Hence, the secondary source F' must be chosen also harmonic with the
same frequency, i.e.,

G(z,t) = Re [g(a:) efi“’t] , F(x,t) = Re [f(x) e*mt] ;

where g(x) and f(x) are complex functions which correspond to the respective com-
plex amplitudes. Actually, their modulus are the physical amplitudes while their
arguments are the phase angles. Since the model is linear, the stationary solution of
the wave equation is also harmonic with the same frequency:

P(z,t) = Re [p(z) e "]
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In such case, we are led to the following Helmholtz problem, whose solution is the
complex pressure amplitude:

w\ 2 .
~2p—(2)p = f in 0,
dp  iwp
o = ZwP ol (2.1)
g—z = g on I',

where p is the density of the fluid and Z(w) € C is the wall impedance which is given
by

The boundary condition on I', allows modeling the behavior of absorbing viscoelastic
materials covering the enclosure walls which are typically used as passive systems
to reduce low-frequency noise. The frequency-dependent coefficients a(w) and S(w)
are related to the viscous and elastic responses of the isolating material, respectively.
Both are strictly positive functions of the angular frequency w. However, in what
follows, we will only assume that S(w) # 0.

In our case, the secondary source f will be a linear combination of N Dirac delta

measures supported at some given points, yi,...,yy € 2 with complex amplitudes
U1, ...,un to be determined:
N
f=Y by, withu;€C,i=1,...,N. (2.2)
i=1

This amounts to considering loud-speakers as acoustic monopoles (see for instance
11]).
In order to state the noise active control as an optimal control problem, we make
the following choices:
o the state of the system is given by the pressure p(z) in the domain €;
e the control variable u is the vector of complex amplitudes of the loud-speakers
(actuators),

w:= (uy,...,uy) € CV,

which define the source term f in (2.1) by means of (2.2);

e the set of admissible controls is a convex closed set U,q C CV;

e the model of the system relating the control variable to the state is the
Helmholtz problem (2.1);

e the observation z is the set of pressure values at M microphones (sensors)
located at given points w1y, ..., wy € €,

Z(U) = (p(wl)a s 7p(wM)) € (CMa

where, for u € CV, p denotes the solution of problem (2.1) with f given by
(2.2); in the next section it will be shown that evaluating pressure at points
w; € ) makes sense as long as they do not coincide with the locations of the
actuators;
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e the cost function to be minimized depends on the observation and eventually
on the cost of the control itself, namely,

1 2 Vo2
J(w) =3 =@+ % lul (23)
where v > 0 is a weighting factor, and || - || denotes the Euclidean norm in

CN or CM,
Thus we are led to the following optimal control problem:
Find u°P € U,q such that

J(u®) = inf J(uw). (2.4)

u€U,q

Any solution u°P of this minimization problem will be called an optimal control.

3. State equation. In this section we prove existence and uniqueness of solution
of the state equation and analyze its regularity, which will be used to study the optimal
control problem. Our goal is the Helmholtz equation with singular data because in
our case f is a linear combination of Dirac delta measures. However, we tackle this
problem by first analyzing the same equation with data in L?((2).

3.1. Data in L?(Q2). We consider the Helmholtz problem (2.1) with f € L?(Q)
and g € L?(T). Multiplying the first equation by a test function ¢ € H'(f2), taking
into account the boundary conditions, and using a Green’s formula, we obtain the
following weak formulation of (2.1):

Find p € H(Q) such that

_ wp _ w2 _
Vp-qu:v——/ pgdl — ( — /pqd:r
/Q Z(w) r, (c> Q

:/fqd:c+/ ggdl Vg e HY(Q). (3.1)
Q T

N

We denote by a,, the sesquilinear continuous form in H'() appearing in the left
hand side of this problem:

iw w2
oolpa) = [ Vp-Vade— 220 [ pgar—(2)" [ prds. poe @)
Q r, Q

It is clear that a,, is not positive definite and therefore the Lax-Milgram Lemma can
not be applied to show existence and uniqueness of solution. Instead, we show below
that a,, satisfies a Garding’s inequality. Then, according to Fredholm’s alternative,
uniqueness implies existence of solution.

To prove uniqueness we consider the homogeneous problem

FeHY Q) : au(fq)=0 VYge H(Q). (3.2)

Due to the damping viscous term (3 # 0 of the wall impedance Z, from the viewpoint
of physics, no solution p # 0 of problem (3.2) should be expected when w € R, w # 0.
Indeed, we have the following result.

LEmMA 3.1. If|T,| >0, w € R, w # 0, and 8 # 0, then p = 0 is the unique
solution of problem (3.2).
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Proof. Let p be a solution of (3.2). By choosing ¢ = p in (3.2) we obtain

w2

where A := [, |Vp|* dz, B := [, |p|° dT, and C = [, |p|” dz are real numbers. Then,
Z

the imaginary part must vanish too. Hence, for 8 # 0 and w # 0, we have B = 0

and, consequently, p = 0 on I',. Then, by taking test functions ¢ € C*°(2) in (3.2),

we obtain that p satisfies

. w\2 .
_Af) = (;) D in Q,
g—z = 0 on 012,
p =0 on I,.

According to these equations, if p £ 0, then it would be an eigenfunction of the Laplace
operator satisfying simultaneously Neumann and Dirichlet homogeneous conditions on
[,, which is not possible because of the Unique Prolongation Theorem. Thus p = 0
and we conclude the proof. O

On the other hand, the following lemma shows that the sesquilinear form a,,
satisfies a Garding’s inequality.

LEMMA 3.2. There exist strictly positive constants v and C,,, the latter depending
on w € R, such that

aw(q,q) + Co HQ||2L2(Q) 2 ||Q|\12Hl(ﬂ) Vg € H'(Q). (3.3)

Proof. For all ¢ € H'(Q) and w € R, we have

2
2 ap 2 w 2
Refo (0.0 = Nl = 57z bl = (1 57 ) Nl
w?

Thus, if @ <0, then (3.3) holds with v = 1 and C,, = 1 +w?/c?. Otherwise, from the
trace theorem (see for instance [2]), 3C' > 0 such that

1/2 1/2
lall 2,y < Cllall ey lalli,  Va € H'(Q).

Hence, Ve > 0 we have that

2
2 2 c 2
lallz2 ) < €llallz @) + I lallz20) Vo< H'(Q).
Then, the choice ¢ = (82 + o2 /w?) /(2ap) > 0 leads to

Re [au(0,0) + Cu llall3ay | = 7 llalfps o)

with v :=1/2 and C,, := 1+ w?/c? + C?/(8¢?). Therefore, since | - | > Re(-), we end
the proof. O

Now we are able to conclude the following existence, uniqueness, and regularity
of solution result for the Helmholtz problem given above. From now on C denotes a
strictly positive constant not necessarily the same at each occurrence.
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THEOREM 3.3. Letw € R, w #0, 3 #0, f € L3(Q) and g € L*(Ty). Then,
problem (3.1) has a unique solution p € H(2). Moreover, if 9y € HY2(T19),

j=1,...,J, then p € H*(Q) and the following estimate holds:

J
HPHH2(Q) <c ||f||L2(Q) + Z HgHHl/z(FK}) ‘ (3.4)

j=1
Proof. Uniqueness has been proved in Lemma 3.1. Because of Lemma 3.2 we know
that the problem satisfies Fredholm’s alternative (see for instance Theorem 6.5.15 of

[10]). Then, existence is a consequence of uniqueness. Moreover, because of the Open
Mapping Theorem,

12l gy < € [Ifll 2y + 19l 22y - (3.5)

Next, by testing (3.1) with functions ¢ € C*°(Q) we obtain that p satisfies

w2
—Ap+p = <1+02>p+f in ,
@ _ wp on I
o  Zw)?’ 2
Jp
n =9 on I.

Since the domain €2 is a convex 2D polygon or 3D polyhedron, the standard a priori
estimate for this Neumann problem (see [5] and [9]) yields

K J
Pl 20y < C | IPll 20y + 1 f 1l L2) + Z HPHHl/z(er) + Z Il gr/2rgy |
k=1 =1

where C is a constant independent of f, g, and p. Then, (3.4) is a direct consequence
of this inequality and (3.5). O

REMARK 1. The converity assumption on § is used only to obtain the estimate
(8.4) and the analogous one for the Green’s function (8.11) below. Similar results are
valid for smooth non-conver domains, too.

3.2. Dirac delta measures. Let us now consider the Helmholtz problem (2.1)
with homogeneous Neumann boundary data and inner source f = J, being the Dirac
delta measure supported at an inner point y € 2. Its solution is the Green’s function
GY € L*(Q) of problem (2.1):

WA 2
_AGY — (2 Yy — i
AG ( c) G Oy in Q,
oGY iwp
= E T .
o 7(0) G onT,, (3.6)
oGY
o 0 on I,

where the first equation must be understood in the sense of distributions.



FEM IN ACTIVE CONTROL OF SOUND 7

It is simple to show that this problem has a unique solution. Indeed, let ®¥ be
the fundamental solution of the Helmholtz equation in the whole space; namely, the
solution of

—APY — (%)2 v =5, inR"

This fundamental solution is explicitly known (see for instance [6]):

1 .
Z}f()(%‘xfm)a ifn=2,
Yy o
Ar |z — y| ’

)

where, Yy denotes the zero-order second-kind Bessel function. It clearly satisfies
®Y € C*(R\ {y}) and ®Y|q € L*(Q). Then GY is a solution of (3.6) if and only if
GY = dY| + pY, with p¥ satisfying

2
—ApY — (£> pY = 0 in €,
‘ 0 0
pY wp wp Y
—-— = oY — T, .
om ~ z2w! Tz em e GY
opr 0% on T
on on N

The variational formulation of this problem consists in finding p¥ € H'(Q) such
that

v.q) = p_ gy _ 927 ’dI‘—/ 9P dr Vg e HY(Q 3.9
aw(p?, q) /F [Z(w) o | L nd q € H (Q), (3.9)
Z N

with a, as defined above. Then, the arguments in the proof of Theorem 3.3 allow us
to conclude that this problem has a unique solution and, hence, problem (3.6) too.
Moreover, these arguments also show that p¥ € H?(Q) and, furthermore,

L | ody
on

wp_ gy 9%
Z(w) on

(3.10)

K
1P* 2y < C | D
k=1 HY2(TE) =1

H1/2 (FKI)
Consequently pY is a continuous function and, hence, GY = ®Y 4 p¥ is continuous in
Q\{y}. This shows that evaluating the pressure at a point w € Q where a microphone
is located makes sense as long as w # y. Therefore, the control problem (2.4) is well-
posed whenever the sets of sensors and actuators locations do not intersect.
Furthermore, if d > 0 is such that By(y) := {x e R": |z —y| < d} CC , then
Y]] g2\ By (y)) 15 Pounded by a constant which depends on d. Thus, from the esti-

mate (3.10) we have that

1GY |12 (0 Bucw)) < 12 1200 Bucy)) + 1PV 1120y < € (3.11)

with C' depending on d, too.

To end this subsection we present an alternative characterization of the solution
of problem (3.6) obtained by transposition techniques. This will be used to prove
convergence in L?(Q) of the numerical scheme introduced in the following section.
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To this goal note that given g € L(f2), the adjoint problem to (3.6) reads

2
—Ar — (f) r = q in Q,
c
or wp
- = __Z T .
on Zw' (3.12)
g—; = 0 on I'y

In spite of the conjugate in the coefficient of the middle equation, Theorem 3.3 applies
to this problem since it has been proved with the only assumptions that w # 0 and
B # 0. Hence (3.12) has a unique solution which satisfies r € H?(2) and

||7"||H2(Q) <c ||q||L2(Q) : (3.13)

In what follows we prove that the solution G¥ of (3.6) is the unique function in
L?(Q) which satisfies

/ GYqdx = (6,,7) Vg€ L*(Q). (3.14)
Q
Indeed, standard computations (see for instance Chapter 2.2.4 of [7]) shows that
_ oV
(8,,7) = / oY <7Af - w—;F) dw +/ ov 2T 02N op,
Q ¢ 80 on on
On the other hand, integration by parts in (3.9) with r as a test function yields
j or oY
y—A*—“’—Q*)d—ﬂ/ Y 4 §Y) 7 dl / v L P25 ar =o.
,/Qp ( r CQT xz Z(OJ) [‘Z(p + )’l" + 20 pan+ 8nr 0
Then, by adding these two equations we obtain

] or
5,0y = [ QY (—AF — 97 dz— “”’J/ Y5 0 / y—:/ vgd
(0y, 1) /QG ( 7 CQT) T Z() FZGT + 8QG n QG qdzx,

where we have used the three equations of (3.12) for the last equality. Thus we
conclude (3.14).

3.3. Local W2 a priori estimates. The following lemma yields L> local a
priori estimates for the second derivatives of the solutions of problems (3.1) and (3.6).
These bounds will be used in the following section to obtain pointwise error estimates
for the finite element method proposed therein to solve these problems.

LEMMA 3.4. Let Dy and Dy be disjoint open subsets of  satisfying D; CC €2,
i=0,1. Let d > 0 be such that dist(D;,0Q) > d, i = 0,1, and dist(Dy, D1) > d.
Then:

1. For each y € Dy, the solution of problem (3.6) satisfies GY|p, € W?°°(Dy)
and there exists a constant C > 0 depending on d such that

||Gy||W2,oo(D1) <C Yy € Dyg.
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2. Let f € L?(Q) be such that supp(f) C Dg. Let g € L*(Ty) be such that
9|r1§ € HI/Q(FI{), j=1,...,J. Let p be the solution of problem (3.1). Then,

there exists a constant C' > 0 depending on d such that

J

1Plw2ee )y < C | Ifll2) + > 191 gr1/2(rg)
j=1

Proof. Consider the following subsets of Q: Dy := {m € R™ : dist(z, Dy) }
and D3 := {x € R™: dist(z, D) < g} Then, dist(D3,09Q) > § 4 and dlst(Do,Dg,) >
g. Let x be a C*° cut-off real function supported in Dj Such that x|p, = 1 and
X [ly172.00 () is bounded by a constant depending on d.

Given y € Dy, we write the solution of problem (3.6) in the form GY = ®Y|q + p?,
with ®¥ given by (3.7) and p¥ being the solution of (3.8). Explicit differentiation of
(3.7) shows that, for all y € Dy, since dist(y, D3) > 4, [2Y[|y12. (p,) 15 bounded by a
constant depending on d but not on y. So, to prove the first part of the theorem we
only need to estimate [|p¥[[y2. (p,)-

Given z € Dy, let G* be the solution of problem (3.6) with y substituted by z.
Then, we have

2 2
pY(2) = (6., xp¥) = <—AGZ - %Gz,xpy> = <GZ, —A(xp?) - °§—2xpy>,
and

2 2,
A (") — G’ =x (—Apy - ‘;’—zpy) —2Vx - Vp¥ — (Ax) p*
= —[2Vx - Vp¥ + (Ax) p¥].

Hence, supp ( —A(xpY) — ‘Z—jxpy) C supp (Vx) C D3\ Do, and thus
p'(z) = — / _ G*(2) [2Vx(x) - Vp¥(z) + Ax(z) p¥(2)] da.
D3\D2
Because of the symmetry of the involved operator, the Green’s function is symmet-

ric, i.e., G*(x) = G*(z) Vax,z € Q: x # z. Then, by differentiating the expression
above we obtain Yo € N,

DZp?(z) = —/ _ DRG*(x) [2Vx(2) - VP (2) + Ax(z) p¥(2)] da.
D3\D2
Consequently, by (3.11) and (3.10), we have Yo € N such that |af := Y, oy < 2,

|DZpY ()] < 1G*| (D3\Ds) ||X||W2»OO(D3\D2) ||pyHH1(D3\D2)

Z

k=

o
on

zwp

<C,

H1/2<r;> H1/2(T,)

with C' depending on d, but not on the particular point z € D;. Thus we conclude
the proof of the first part of the lemma.

For the second one, let f € L?(Q) with supp(f) C Dy. We proceed exactly as
above and use that

2 2
—A(xp) — % (xp) = x (—Ap - ‘;’—219) —2Vx Vp—Axp=—(2Vx:Vp+Axp),
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because of —Ap — ‘;’—jp = f and supp(f) Nsupp x = . Then we obtain from (3.11)
and Theorem 3.3,

|DZp(2)| <

/ | DSGH(2) 2Vx(x) - V¥ (x) + Ax() P ()] da
D3\D2

S NGl sr2(py\ 5oy X200 (DA 5 1PN 21 (D0 B
J

< C|Ifllzagy + 2 M9y VaeN": |a| <2,
j=1

with C' again depending on d but not on the particular point z € D;. Thus we
conclude the proof. 0

4. Numerical approximation of the state equation. For the construction
of the finite element spaces we consider a quasi-uniform family of shape-regular tri-
angulations {7}, of Q. More precisely, for each element T € 7;, (T" a 2D triangle
or a 3D tetrahedron) we associate two parameters: hr and pr. The first one denotes
the diameter of T" and the second one the diameter of the largest ball contained in 7.
We denote h := maxre7, hr and make the following hypothesis of regularity of the
triangulation: there exist positive constants o1 and oo such that

— < oy, iSO’Q, VTE’];L,Vh>O.
pT hr

We associate with each triangulation 7j, a finite element space V}, which consists
of functions globally continuous in {2 and linear on each element T' € 7,. Then, the
discrete problem associated with problem (3.1) is the following:

Find pn, € Vi, such that

aw (P, an) = (f,qn) +/ gqn dT' Yqu € V. (4.1)

In

Notice that this problem is well defined for f € L?(Q) as well as for f given by
(2.2), because the functions in V), are continuous.

4.1. Data in L?(Q). Again, to tackle the numerical approximation when the
source term is a Dirac delta measure, we consider first the problem with data in
L2().

Since a, is continuous and satisfies the Garding’s inequality (3.3), and the contin-
uous problem (3.1) has a unique solution, the following existence and approximation
result is readily obtained from [12].

THEOREM 4.1. Given f € L*(Q) and g € L*(T), let p be the solution of problem
(5.1). Then, there exists hg > 0 such that, for all h € (0, ho], problem (4.1) has a
unique solution pp. Moreover, if g|F§ € H1/2(F£), j=1,...,J, then the following
estimate holds:

J
Ip —thL2(Q) < Ch® ||f||L2(Q) + Z ||g||H1/2(rI§)

Jj=1

Since the observation z(w) consists of point values of the solution of problem
(3.1), a pointwise error estimate will be used in the following section to obtain an
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error bound for the approximate control. To this aim, we have the following result
which is a consequence of the interior maximum norm estimates proved in [13].
THEOREM 4.2. Given f € L?(2) such that supp(f) CC Q and g € L*(Ty) such
that g|F§ € HY2(TY), j = 1,...,J, let p be the solution of problem (3.1). Given
w € Q\ supp(f), let d > 0 be such that dist(w, Q) > d, dist(w,supp(f)) > d, and
dist(supp(f),9Q) > d. Let hg > 0 be such that, for all h € (0, hy], problem (4.1) has
a unique solution py,. Then, there exist strictly positive constants hy < hg and C, both
depending on d, such that the following pointwise error estimate holds Yh € (0, hq]:

J
1
() = om0 < €1 (1) (Wl + 2 Il
j=1

Proof. Let D := Bgs(w), D1 := Bgja(w), and Dy := Bg/p(w). Then Dy CC
and Do Nsupp(f) = 0, with dist(Ds, Q) > % and dist(Ds, supp(f)) > g.

Now, for h < hyg, since p and pj are solutions of (3.1) and (4.1), respectively,
Vg € Vy, with supp(gr) C Dy there holds

/QV(P—Ph)'V@h dx — (%)2/9(10—1%)% dr = 0.

Then, according to Theorem 5.1 in [13], there exist C' > 0 and h; > 0 such that
Vh € (0, h1] and Vgp, € V}, the following inequality holds:

1
=l < O (3) [1p = llmio + I =il

Because of Lemma 3.4 (Part 2) and the standard error estimate for the Lagrange
interpolation (see for instance [2]), if h < d/4, then

J
qhiIel;I;h lp— qhHLoo(D1 < On? ||p||W2~°°(D2 <C ||fHL2(Q) + Z ”gHHl/?(FI{I)
j=1

Thus, the theorem follows from the last two inequalities and Theorem 4.1. O

4.2. Dirac delta measures. We consider now problem (4.1) with ¢ =0 and f
being a Dirac delta measure:

GZ eV, aw(GZ, qh) = <5y,qh> Yan € Vh. (4.2)

This is a discretization of problem (3.6). Let us recall that it is well defined because
the functions in V}, are continuous. Then, by proceeding as in the previous subsection,
it can be shown that 3hg such that Vh € (0, hg], this problem has a unique solution.
Here and thereafter, hg denotes a maximum mesh-size not necessarily the same at
each occurrence.

To show convergence in L2(£2), we are going to use the scheme proposed for elliptic
problems in [14] (see also [4]). This scheme allows splitting the approximation error
into two parts: the first one due to the error in the approximation of the Dirac delta
measure by L?(Q) functions and the second one due to the approximation error of
the Helmholtz equation with data in L?().
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Consider the following auxiliary variational problem:
GeH'(Q): a,(C.q)=0ng VYo H (Q),

where 0, € L?() is an approximation of d, satisfying the following properties:

—_

- (On,qn) = / OnGn dr = qn(y) Van € V,
Q
Mol pagy < CRT2,
3. 116y = Onll g2y < CR*"72,
4. 0p = 0 outside the elements in which y lies.

A construction of such Jj, is given in [14].
We use the triangular inequality to separate the error in two terms:

[\

G — GZHL%Q) = HGU - é”m + ||é - GZHLQ

() (@)

From property 1 above we conclude that d, and ¢;, are identical functionals on Vj,.
Consequently G can be seen as a finite element approximation of G, too. Therefore,
from Theorem 4.1 and property 2 of d;,, we obtain the following approximation result
for h sufficiently small:

~ 2 2—n/2
G = Gl oy < CH2 0l < O

To estimate the remaining term, note that by property 4 above d; has its support
included in a certain set D CC €2, for h sufficiently small. Then, we can apply to G
the arguments of the transposition technique that allows us to prove (3.14). By so
doing, we obtain that Vq € L2(Q), if »r € H2(f2) is the solution of (3.12), then

/(Gy — &)= (6, — Snr)
Q
Hence, by taking ¢ = GY — G and using the a priori estimate (3.13), we have
~ 9 . =
HGy - GHLQ(Q) < H6U - 6hHH*2(Q) ||THH2(Q) < C H(SU - 6hHH*2(Q) HGJ - GHLz(Q)
Consequently, from property 3 of §, we have,
HGy - GHL2(Q) <C H(sy - 5h||H*2(Q) < Cch*m2.

Thus we have proved the following result.

THEOREM 4.3. Fory € Q let GY € L?(Q) be the solution of problem (3.6).
There exists hg > 0 such that, for all h € (0, hg], problem (4.2) has a unique solution
G} . Moreover, there exists a strictly positive constant C' such that the following error
bound holds:

IG¥ — Gl 2y < CHZ2.

Next, we prove an error estimate for |GY(w) — GJ (w)|, for w # y. This will be
used in the following section to obtain an error bound for the approximate control. A
similar result with the explicit dependence of the constant of the estimate on |w — y|
has been proved in Theorem 6.1(i) of [13], but for a coercive second-order linear



FEM IN ACTIVE CONTROL OF SOUND 13

operator with homogeneous Neumann boundary conditions on a smooth domain. The
additional hypotheses of this theorem were used only to obtain an explicit estimate for
the corresponding Green’s function (see (4.9) of this reference). However, to the best
of the authors’ knowledge, such estimate is not available for our Helmholtz problem
with mixed Neumann-Robin boundary conditions on a convex polyhedron. Instead,
we will use the local maximum norm a priori estimate proved in Lemma 3.4 (Part 1)
to obtain a similar result, although without making explicit the dependence of the
constant of the estimate on |w — y|.

THEOREM 4.4. Let y € Q and GY € L*(Q) be the solution of problem (3.6). Let
ho > 0 be such that Vh € (0, ho] problem (4.2) has a unique solution Gj. Givenw € ,
w #£ vy, let d > 0 be such that |w — y| > d, dist(w, 9Q) > d, and dist(y, Q) > d. Then,
there exist strictly positive constants hy < hg and C, both depending on d, such that,
Vh € (0, hq],

|G¥ (w) — GY(w)| < Ch®In <]11> ,

Proof. The proof is essentially identical to that of Theorem 6.1(i) of [13]. Thus,
we only include here its main steps and emphasize those which differ in our case.

Let Dy := Bgs(w), Dy := Bgja(w) and D' := By/4(y). Then dist(Dy, D')
Applying Theorem 5.1 in [13] we know that there exist constants C' > 0 and h,
both depending on d, such that Vh € (0, h1] and Vg, € Vy,

d
g
0,

1
6(w) - G| < O (1) (167 = Loy + 167 = Gl )

The first term in the right-hand side can be bounded by using Lemma 3.4 (Part 1)
and the standard error estimate for the Lagrange interpolation (see for instance [2]);
namely, if h < d/4, then

. 2 2
q}}g]f}h 1GY = aull L (p,) < CR7NIGY 2o (p,) < Ch7
For the second term, we apply the same duality argument as in the proof of

Theorem 6.1(i) of [13]. By doing so, we can repeat all the steps of this proof with the
exception of the following one: Given g € C§°(D1), let

reWhe(Q):  au(s,r) = / sqdz, Vs e Wh(Q);
Q

it has to be proved that ||7{|y 2. (p) < C llqllp(p,)- We do it in our case by repeating
the arguments in the proof of Lemma 3.4 (Part 2).
The rest of the proof runs essentially as that of Theorem 6.1(i) of [13]. O

5. Optimal amplitudes of actuators. Numerical methods. From now on

we assume that the primary source g is such that g‘l—}z‘] € HYX(IY), j = 1,....,J,
and the secondary source is given by (2.2) in terms of the control variable u =
(ug,...,uy) €CN: f:= Zé\iluiéyi, withy; € Q,i=1,...,N.

Let p be the solution of problem (2.1) with such f. Due to the linearity of the
Helmholtz equation p can be written in terms of the control variable as follows:

N
p=po+» uGY, (5.1)

i=1
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where pg is the pressure field arising from the primary source g without any control;
more precisely, po is the solution of problem (2.1) for w = 0 (i.e., f = 0). In its
turn, G¥ is the solution of problem (3.6) with y = y;, ¢ = 1,..., N. This corresponds
to the pressure field when the system is only excited by the i*" loud-speaker with
unit amplitude, excluding the effect of the primary source. Note that according to
Theorem 3.3 and (3.11), it makes sense to evaluate p at points w € Q, w # y;,
i=1,...,N.

Let wy,...,wpy € 2 be such that {y1,...,yn} and {wq,...,wp} are disjoint.
To prove existence of an optimal control is an easy task because the control space is
finite-dimensional. It relies upon the fact that the mapping giving the observation
from the control, namely,

cN — M
u —  z(u) = (p(w),...,p(wn))

is affine (and then continuous). The mapping z(u) is the so-called transfer function,
which establishes the relation between controls and observations.

Therefore, the cost function (2.3) is quadratic. The first term of the cost function
is convex since the observation z(w) is affine and the second one is strictly convex
when v > 0. Therefore, it is clear that the function J is strictly convex under any of
the two following assumptions:

o >0,
e v >0 and z(u) is one-to-one,
in which case there exists a unique optimal control.

We notice that z(u) is one-to-one if and only if the observations corresponding to
each single actuator are linearly independent. Obviously this can happen only if the
number of microphones is greater or equal than the number of loud-speakers: M > N.

To write the control problem in matrix form, we introduce the vectors,

2o := (po(w1), ..., po(war)) € CY,
Z; = (Gyl(wl),,Gyl(wM)) E(CM, i=1,...,N.

Note that according to Theorem 3.3 and (3.11), respectively, there hold

J
lzoll < Cllglrery,  and =l <G i=1...N.  (52)
j=1

The observation z can be written in terms of the control variable u € CV and
the observations zg, 21, ..., 2y in the following way:

N
z(u) =z + Zuizi.
i=1

Then, the cost function becomes

N
Zo + Z Ui Z4
i=1
N

N
1
= 5 2820 + 2Re (Z ’ELZ‘ZEZO> + Z Uy (2223' + I/(;ij)
=1

i,j=1

2
v 2
—||lu

+ 5 lul

J(u)

1
2
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Let us define the matrix Z € CV*Y and the vector d € CV by
(Z)ij = 2z{z;, 4,j=1,...,N,
(d), == z{zo, i=1,...,N.
Then, the optimal control problem (2.4) is equivalent to the following quadratic pro-

gramming problem:
Find u°?P € U,q such that

1
s = int a7 4 vnu e 2me (wia) + o]

Although the cost function is defined in a finite dimensional space, it involves the
solution of a partial differential equation which has to be approximated by means of
some discretization process as, for instance, the finite element method described in
Section 4. This leads to approximate observations and thereby to an approximate
cost function.

Similar definitions hold for the approximate observations. Given u € CV, let

zh(u) = (ph(wi), e ,ph(’U)M)) S cM,
where py, is the solution of the discrete problem (4.1) with f defined by (2.2) as above.
Let z;, € CM be defined by
zon := (pon(w1), - .., pon(war)) € CM,
zin = (GY(w1),....,GY(wy)) €CM, i=1,...,N,
where poy, is the solution of problem (4.1) for v = 0 (i.e., f = 0), and G} is the

solution of the discrete problem (4.2) for y = y;, i = 1,..., N. Then, z,(u) € CM is
given by

N
zr(u) == zop + Zuizih.
i=1

Let Z, € V>N and dj, € CV be defined by
(Zh)ij = Zghzjhy ,j=1,...,N,
(dh)¢ = Z:'hZOha t1=1,...,N.

Then the approximate cost function can be written
1 v 17 _
() = 5 lzn)|® + 4 Jul? = 3 [@'(Z0 + vIyu+ 2Re (a'dy) + z0n]]

These definitions lead us to the following discrete optimal control problem:
Find w;® € Unq such that

1
Jn(uP) = inf - [at(zh +vI)u + 2Re (a'dy) + ||z0hu2] : (5.3)

u€U,q

The argument w;” where the minimum is attained is expected to be an approx-
imation of the optimal control u°?. Our next goal is to obtain an estimate for this
approximation. To this aim, we denote

od:=d—dy and 0Z =27 — Zy,.
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LEMMA 5.1. There exists strictly positive constants C' and hy such that for all
h € (0, hg| the following inequalities hold:

J
1 1
foa < 2 (1) Yllallaneyy 1621 < Cim ().
Jj=1

Moreover, if Z is positive definite, then so is Zy, for h small enough.
Proof. First we settle an error estimate for the observations zg, z1,...,2zny. We
denote the corresponding errors by

(;ZiS:Zih*Zi, Z:O,,N

From Theorem 4.2, for h small enough we have

M 1/2 N
I620ll = [Z Ipo(ew) —p0h<wk>|2] <0 () S lallaveqy,
k=1 j=1

whereas from Theorem 4.4,

M 1/2 1
624l = Z|Gyi<wk>—ez"<wk>2] <o (y).

k=1

Therefore, if h is small enough,

N ) 1/2
||6d|| = [Z ‘zgzi — (20 +620)" (2 + 82)) ]
i=1

IA

N 1/2
> lzoll 1623l + 1820l 123l + ll5zoll ||5zi|)21
i=1

J
1
< Ch?1n (h) Z ||g||H1/z(p§) ,
j=1

the last inequality because of (5.2).

The error bound for ||§Z]| is proved essentially in the same way. Furthermore,
since Zj converges to Z, if Z is positive definite, then for h small enough Zj is
positive definite too. O

As an immediate consequence of the above lemma we have existence and unique-
ness of solution of the discrete optimal control problem, for h sufficiently small.

COROLLARY 5.2. Let us assume that v > 0 or v > 0 and z(u) is one-to-one.
Then, there exists hg > 0 such that, for all h € (0, hg], problem (5.3) has a unique
solution.

To obtain a bound for ||u°® —w;”||, we prove first the following a priori error
estimate for the solution of a variational inequality subject to data perturbations.

LEMMA 5.3. Let Uaq be a convex subset of CN, b € CN, and A € CN*N ¢
positive definite Hermitian matriz. Let o > 0 be such that

' Av > aljv]? Ve eCV.
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Let 6b € CN and A € CN*N be such that ||§A|| < a. Letu € Uqaq and (u+0u) € Uag
be the solutions of the following variational inequalities:

Re [(’D — @) (Au + b)} >0 Yo e Uy, (5.4)
Re { [0 — (w+0u)]" [(A+5A) (u+ou) + (b+ 5b)]} >0 WYoe U (55)
Then

[dul| < 16 [l + [|50]1) - (5.6)

bt
a— oAl
Furthermore, if Usqa 2 0 and |0A| < O with 0 < 6 < 1, then

ol < g7 (L 151+ 1w ) 5:7)

Proof. By taking v =u + Ju in (5.4) and v = u in (5.5) we obtain
Re [&ﬁ (Au + b)} >0,
Re {féjut (A +0A) (u+ du) + (b+ 5b)]} > 0.
By adding these inequalities we obtain
Re (57utA§u) < Re {75_11} DA (u+ du) + 6b]} .
Then, since A is Hermitian and positive definite we have
o [6ul]* < 5u' Adu = Re (5u' Adw) < [[ou] (15A]| 5wl + [5A] |u] + 5]
and, therefore,
(a—[0A[) [[ou] < [I6A [Jll + (|50 -

Hence, for |0 A|| < «, we obtain (5.6). Moreover, if ||§A]| < 8 with 0 < 6 < 1, then

gy (1641l + L8] 53)

On the other hand, if Uyq 3 0, then we can take v = 0 in (5.4) and we obtain
Re[—u' (Au + b)] > 0. Then

[du]| <

adul® < @t Au = Re (@' Au) < Re (—a'b) < ||dul ||db]|.

Hence, [[du|| < ||0b|| /o, and (5.7) follows from this inequality and (5.8). Thus we
conclude the proof. O

From the above lemma and the error estimates of Lemma 5.1 it is easy to prove
the following result.

THEOREM 5.4. Let us assume that v > 0 or v > 0 and z(u) is one-to-one. If
Uaa 2 0, then there exist C > 0 and hg > 0 such that, for all h € (0, hy),

J
. 1
|u%P — ulP|| < Ch?In (h> > Mgl -
j=1
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Proof. Let du := u;” — u°?. The exact and the approximate optimal controls
satisfy the variational inequalities

Re{(@ —a°®)' [(Z + vI) u® er]} >0 Vo€ Uy,
Re {(v —wP) [(Z + v +6Z) (u + du) + (d+ 5d)]} >0 Vo€ U
Since Z + vI is a Hermitian positive definite matrix, let a > 0 be such that
o(Z +vlv > a|v))® Yo € Un.

According to Lemma 5.1, for h sufficiently small ||0Z| < «/2. Then, we can apply
Lemma 5.3 to the variational inequalities above and we obtain

||

o 2
=l < 2 (2 jozy + oay).

Thus, we conclude the proof from this inequality, (5.2), and Lemma 5.1. O

REMARK 2. The assumption made on the admissible set, Uyq 2 0, to prove the
error estimate of this theorem is not restrictive at all in practice. It just means that
a vanishing control is also admissible.

6. Numerical results. In this section we present some numerical results for a
3D test. In order to assess the effect of the control we use the following measure of
attenuation:

J(u®P
Attenuation (dB) = —10log;, [(u)} .
The data of the test are the following:

o the domain is Q = [0,1]m X [0,1]m x [0, 1] m;
e the physical parameters are w = 680s™', ¢ = 340ms~!, and p = 1kgm~3;

e the amplitude of the primary source of noise is g(x,y,0) = e kgm 2572 on
the wall z = 0;

e there is one loud-speaker located at y; = (%, %, %) m;

e there are two microphones at wy = (%, %, é) m and we = (%, %, %) m;

e on the wall z = 1, the acoustic impedance is Z = (102+3407)x 10> kgm~2s71;

o the rest of the walls are perfectly rigid;

e the admissible set of controls is U,q = C and the weighting factor is v = 0.

The optimal control has been computed for several meshes which have been ob-
tained by uniformly refining the coarse mesh shown in Figure 6.1.

Then, a more accurate value of the optimal control has been determined by ex-
trapolating the controls computed on these meshes. This more accurate value has been
used to compute the relative errors of the real and imaginary parts of the computed
controls. These errors are shown in Figure 6.2, where it can be clearly observed that
the order of convergence is essentially O(h?) as predicted by the theoretical results.

For h = 1/24, the computed attenuation is 0.75 dB. The modulus of the complex
pressure fields on the plane containing the actuator and the two sensors are shown in
Figures 6.3 and 6.4. The first one corresponds to the system without control, whereas
the second one shows the pressure with the optimal control.
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Finally Figure 6.5 shows the local attenuation field computed on the same plane:
Att(w) = ~101ogyq [[pn(w)?/[pon(w)[?].

In this case, it can be observed that there exist zones where the noise is reinforced;
that is, where primary and secondary sources interfere in a constructive way. This
happens for instance in the location of the first sensor. Indeed, the noise level without
control is low around this sensor and too high around the other one (see Figure 6.3).
Thus, to obtain a minimum of the cost functional, the optimal amplitude of the
actuator is such that it produces a noise reinforcement in the first sensor. Anyway,
the comparison of Figures 6.3 and 6.4 shows that the global attenuation has been
significant in the whole domain, except for the vicinity of the actuator.

7. Optimal location of actuators. In the previous sections the position of
both, sensors (microphones) and actuators (loud-speakers), were given. Then we have
used the complex amplitudes of the actuators as the unique control variable and have
determined their optimal values with the objective of minimizing the pressure level
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Fic. 6.4. Modulus of the pressure field with control (h =1/24m).

at those points where the sensors were located. Now we assume that the positions
of the actuators can also be chosen in certain subsets of the domain and we will try
to determine those that minimize the same objective function as above, when the
complex amplitudes are optimal with respect to these positions. This is the most
important problem when a system of active control of sound has to be implemented
to reduce noise in an enclosure. It can also be formulated as an optimal control
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Fic. 6.5. Attenuation field (h = 1/24m).

problem.
In this case the control variables are the complex amplitudes (modulus and phases)
and the positions of the actuators,

u:(ul,...,uN)e(CN and y:(yl,...,yN)eQN,

respectively, which define the secondary source by means of (2.2).

We consider the set of admissible controls Uasg x Yaq C CV x QN where U,q € CV
and Yaq CC (Q\ {wy,...,wy})" are closed convex subsets.

The observation z(u,y) is again the set of pressure values at the microphones
locations wy, ..., wp; € Q. The transfer function is now:

Uad X Y;d — CM
(u,y) | — Z(’U,,y) = (p(wz)7’p(wM))

where, for each admissible set of values of the control variables, u € U,q and y € Yaq,
p denotes again the solution of the state equation (2.1) with f given by (2.2). Notice
that the sensors locations are excluded of the domain of admissible locations for the
actuators, to ensure the continuity of the transfer function.

The cost function is given again by

1 2 VU 2
Ty = syl + % ul

and, then, the optimal control problem is as follows:
Find (u°P,y°P) € Uyg X Yaq such that

J(uP, y°P) = inf J . 7.1
(u e ) (uay)elgadxyad <U7y) ( )
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The difficulty now is that the dependency of the state with respect to the addi-
tional control variables (the positions of actuators) is no longer affine. Thus the cost
function may have many local minima and therefore gradient-like methods are not
suitable to solve the problem. In practice, the number of feasible locations is typically
finite and hence the optimization problem becomes an integer programming problem.
In these cases one can use, for instance, genetic or simulated annealing algorithms.
Once the optimal locations have been determined it will be possible to improve them
in some given neighborhoods by performing a local minimization using the gradient
of the cost function with respect to the location of the actuators. As we will see below
the first order optimality conditions allow computing the gradient of the cost function
through an adjoint state.

7.1. Existence of an optimal control. Optimality conditions. We recall
that the pressure field defining the observations can be written in terms of the control
variables by means of (5.1): p = po +Z —, u;GY. Then, the transfer function is affine
with respect to u although it is nonlinear with respect to y.

Therefore, the optimal control problem (7.1) has a solution as a direct consequence
of the following facts:
the function J(u,y) is continuous in Uuq X Yad,

e the set Y,q is compact,
e U,.q is a closed set, and
o J(u,y) — oo when ||u| — 0o Vy € Yaq.

In what follows we deduce the optimality condition for a local minimum of the
cost function J(u,y) given by (7.1). We notice that in the present case J is convex
with respect to the amplitudes w but not with respect to the actuators positions y.
Therefore, this optimality condition will be necessary but not sufficient.

The cost function can be written explicitly in terms of the control variables as
follows:

M M N
1 2 14 2 1 y7 v 2
y)=§Z|p(wk)| + 5 llul 252 po(wg) ZuG wy) +§Z|Ui|
k=1 k=1 i=1
This function is differentiable in CV x (Q\ {wy, ..., wM})N. Hence, it is well known

that if it attains a local minimum in the convex subset U,q X Yaq at (u°P,y°P), then
the following inequality holds:

DJ(u®,yP)(u —u®,y—y®) >0  VY(u,y) € Uaq X Yaq.

Since J depends on the complex variables uq,...,uy, some care must be taken
to compute its differential. Indeed, by using that

D (% ||'u||2> (6v) = Re ("0v) = Re (53;%) Vw,6v € CM or CV,

straightforward computations lead to

N M
Do, )(5 {ZZ[ ol ]HZUM} r2)

i=1 k=1

and

DyJ(u,y)(dy) = Re

N M
S plu) Vi) a%] | 3

1=1 k=1
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V(u,y) € Uaq X Yaq, ¥ou € CV, and Véy € (R™)V. As a consequence of all this we
obtain the optimality condition of the following theorem.

THEOREM 7.1. If (u°P,y°P) € U, X Yaq is a solution of the control problem
(7.1), then it satisfies

Re {Z > { ) (a; — @;®) + p(wi)Vy,plwy) - (yi — y?p)]

1 k=1

+VZ’LLOP 7Op } >0 V(U,’y) € Upq X Yaq.

Standard duality arguments can be used to compute the gradient of the cost
function. To this aim, given (u,y) € U,q X Yaq, we recall the state equation:

w2 a
“Ap— (f) - 0, in Q,
D Z) P ; U; 0y, in
op wp (7.4)
gy _ T .
on Z(w) P otz
Jp
ain = g on FN’
and introduce the adjoint state equation:
w2 M
—Ar — (Z) r = ;p W) 0w, in Q,

or iwp (7.5)

=z - _Z r .

on Z(w) ot

or

ai’n/ = 0 on FN7

with p being the solution of the state equation (7.4). Then we have the following
result.

THEOREM 7.2. Let (u,y) € Uag X Yaq, and (du,dy) € CN x (R")N. Let p be
the solution of of the state equation (7.4) and r be the solution of the adjoint state
equation (7.5). Then,

D,J(u,y) {Z r(y;) + vugl 5u1},

and

DyJ(u,y)(du) = Re

=1

N
> wVr(y:) - 5%] :

Proof. Let G*¥* be the solution of problem (3.6) with y = wy, & = 1,..., M.
Then
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On the other hand, from (5.1), for wy, £ y;, it =1,..., N, k=1,..., M,

Op 0 . _
%(Twik) = u; [po wy) Zusz‘ (wg 1 = G¥ (wr) = G (i)

and
vyzﬁ(wk) = aivyi Gyi (wk) = aivewk (y1)7

where we have used the symmetry of GY(w) with respect to y and w in Q.
Consequently, from (7.2) and (7.3) we have

N M N
Dy J(u,y) Re{zz (wy,)G™* ( yl)éul —&—VZuzéuz}

i=1 k=1 i=1

and

N M
DO plw)w VG (y;) - Sy

i=1 k=1

DyJ(u,y)(0y) = Re = Re

N
> wVr(y:) - 5%1 :

=1

Thus we conclude the proof. O

As a consequence of this theorem, we can write the optimality condition of prob-
lem (7.1) in terms of the the solution p of the state equation and the solution r of the
adjoint state equation. Thus we obtain the following Euler’s inequality:

N
Re (Z { Ire?) +ved®) (@ — a”) + 5P Vr(y®) - (v = 5) }) >0

i=1
V(u7y) € Uuq X Yaq.

7.2. Numerical experiments. In this section we present two numerical tests.
The goal of the first one is to show that many local minima can actually arise. It is
a one-dimensional problem and, then, the Helmholtz equation becomes

d’p w2
B -y e
dp wp
_ = t =
dx Z(w)p awr=a
- _ atz =10
dz 7 -

This 1D equation can be easily solved when the secondary source is a linear combi-
nation of Dirac delta measures,

N
f:Zuiéy“ u; € C, y; € (a,b), i=1,...,N.

i=1

Thus, we can determine the corresponding optimal amplitudes and then the optimal
value of the cost function.
First, we consider the following data:
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the domain is the segment [0, 1] m;

the physical parameters are p = 1kgm™3, ¢ = 340ms™!, and w = 187005 ';
the amplitude of the primary source is ¢ = 1kgm 252 at 2 = 1 m;

the wall impedance at £ = 01is Z =34 x 107 +34 x 103 ikgm~2s71;

there is one actuator located at any point in the segment Y,q = [0.4, 0.6] m;
there are 4 sensors at the points w; = 0.15m, we = 0.25m, wz = 0.65m, and
wy = 0.85m;

the admissible set of amplitudes is U,q = C and the weighting factor is v = 0.
each position of the actuator in Y,q, we compute the optimal amplitude and

represent the corresponding value of the cost function. Figure 7.1 shows this function.
We observe several local minima. Furthermore, in this case, the values of J at all these

minima

are the same and correspond to maximum values of the optimal amplitude.

0.7

L 7. 4
0.6 /- X 7 \ N

051 ~ ? . N

041 J -

021

0.1

I I I I
0.44 0.46 0.48 0.5 0.52

0 I I I I
0.4 0.42 0.54 0.56 0.58 0.6

Fic. 7.1. J and uep as functions of the loud-speaker position (w = 18700s71).

Second, we analyze the system as the angular frequency decreases. Figures 7.2

and 7.3

show similar graphs for w = 78205~ ! and w = 17005~ !, respectively.

0 I I I I I I I I I
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

Fic. 7.2. J and uop as functions of the loud-speaker position (w = 7820s71).
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051 B
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0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

Fi1c. 7.3. J and uop as functions of the loud-speaker position (w = 1700 s’l).

We observe in Figure 7.2 that the local minima of the cost functional do not
necessarily coincide with local maxima of the optimal amplitude.

We also notice that the number of local minima diminishes with the angular
frequency. For instance, in the case of Figure 7.3, J has only one minimum in the
interval Yoq = [0.4, 0.6] m.

Figure 7.4 shows the corresponding graph for the same frequency w = 1700s~1!,
when the admissible set of locations for the actuator is the whole domain of the
problem: Y,q = [0,1]m. In this case it can be seen that, as expected, complete
attenuation is attained as the actuator gets close to the primary source at x = 1.

8

FiG. 7.4. J and uop as functions of the loud-speaker position (w = 1700571, Yoq = [0,1]m).

The second test corresponds to a three-dimensional enclosure. We use the simu-
lated annealing algorithm (see for instance [1]) to determine the optimal location of
loud-speakers among a given finite number of feasible ones.

The data of the test are the following:

e domain Q =[0,1]m x [0,1]m x [0,1] m;
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physical parameters p = 1kgm™3, ¢ = 340ms™!, and w = 1360s™!;
wall impedance at z = 1m, Z = (102 + 3404) x 10> kgm=2s~};
primary source at wall z = 0 with amplitude g(z,y,0) = e kgem~2s~2;
the rest of the walls are perfectly rigid;
we have to locate 8 actuators and consider 16 possible locations which are
shown in Table 7.1;
e there are 10 sensors and their positions are shown in Table 7.2;
e admissible set of amplitudes U,q = C® and weighting factor v = 0.
We have used a mesh like that of Figure 6.1 for h = 1/24 m.

TABLE 7.1
Possible actuator locations.

Sensor positions.

Coordinates (m) | Coordinates (m) | Coordinates (m) | Coordinates (m)
(0.1,0.1,0.1) (0.5,0.4,0.1) (0.5,0.1,0.3) (0.8,0.8,0.3)
(0.9,0.9,0.1) (0.5,0.6,0.1) (0.5,0.9,0.3) (0.6,0.4,0.4)
(0.1,0.9,0.1) (0.1,0.5,0.3) (0.5,0.5,0.3) (0.4,0.6,0.4)
(0.9,0.1,0.1) (0.9,0.5,0.3) (0.2,0.2,0.3) (0.6,0.6,0.4)

TABLE 7.2

Coordinates (m) | Coordinates (m)
(0.2,0.2,0.6) (0.5,0.1,0.8)
(0.2,0.8,0.6) (0.1,0.5,0.8)
(0.8,0.2,0.6) (0.5,0.9,0.8)
(0.8,0.8,0.6) (0.7,0.5,0.6)
(0.9,0.5,0.8) (0.3,0.5,0.8)

The attenuation is computed again by

J(ulP, y°P
Attenuation (dB) = —101log;, (W)

J(0,y)

Notice that J(0,y) is the value of the cost function with no control, and hence it
does not depend on y. In Table 7.3 we show the attenuation obtained for different
executions of the simulated annealing algorithm. We also include the value obtained
with the exhaustive search, i.e., by computing the cost function for all of the possible
(186) = 12870 configurations.

TABLE 7.3
Simulated annealing: number of iterations and optimal attenuation.

No. of Iterations Attenuation (dB)
569 73.7
599 73.7
710 73.7
785 73.7
800 68.6
1201 73.7
1498 73.7
[ 12870 (exhaustive) | 73.7 ]

REMARK 3. Some experiments show that the use of a basis consisting of rigid
cavity vibration modes can be more efficient in terms of computer effort (CPU time
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and memory) than the purely finite element technique introduced in this paper. This
is due to the fact that the number of vibration modes needed to obtain accurate results
for low frequencies (which is the typical case in active control of sound) is not large.
Then the time to calculate these first modes by solving the corresponding eigenvalue
problem by finite element methods, together with that to solve the Helmholtz problems
in this small vibration modes basis, can be significantly less than the time needed to
solve the same number of Helmholtz problem in the large finite element basis. This
approach will be reported elsewhere.
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