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CONTROLS INSENSITIZING THE OBSERVATION OF A
QUASI-GEOSTROPHIC OCEAN MODEL∗
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Abstract. We consider a linear quasi-geostrophic ocean model with partially known initial
conditions. We search for controls that make the observation locally insensitive to the perturbations
of the initial data. Their existence is equivalent to the null controllability property for an associated
cascade Stokes-like system. Thanks to the presence of the Coriolis term, we are able to prove the
existence of such controls. Our strategy is the following. First, we prove a unique continuation
property for the adjoint of the state system that leads to approximate controllability; then, under
certain assumptions, an observability inequality is established for the adjoint. The proof is inspired
by the arguments leading to the unique continuation property. This inequality leads to the desired
null controllability result.
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1. Introduction and main results.

1.1. Incomplete initial data ocean model. Let Ω be a nonempty open
bounded and connected subset of R

2, with boundary Γ of class C2 and outwards unit
normal vector ν = ν(x). Let ω be a nonempty open subset of Ω, T > 0, Q = Ω×(0, T ),
and Σ = Γ × (0, T ). In this paper, we will consider a linear quasi-geostrophic ocean
model [1, 15, 16] described by the following equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut −A∆u + γu + (f0 + βx2) k ∧ u +
1

ρ0
∇p = T + h1ω in Q,

div u = 0 in Q,

u = 0 on Σ,

u(0) = u0 + τ û0 in Ω,

(1.1)

where u(x, t) and p(x, t), respectively, denote the velocity and the pressure of the
fluid at (x, t) = (x1, x2, t) ∈ R

2 ×R+. In this model, A represents the horizontal eddy
viscosity coefficient, γ is the bottom friction coefficient, ρ0 is the fluid density, and
(f0 +βx2)k∧u is the Coriolis term, with k∧u = (−u2, u1). In the right-hand side, 1ω
denotes the characteristic function of ω and T is a given source in L2(Q)2. The term
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‡Facultad de Ingenieŕıa, Universidad Católica de la Sant́ısima Concepción, Casilla 297, Con-
cepción, Chile (galina@ucsc.cl). This author’s work was supported by FONDAP in Applied Mathe-
matics, CONICYT Ph.D. grants, and CONICYT-INRIA cooperation agreements (Chile).
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CONTROLS INSENSITIZING AN OCEAN MODEL 1617

τ û0, where τ ∈ R, represents a small unknown perturbation of the initial velocity field
u0, and h = h(x, t) is a control function to be determined.

Notice that the Coriolis force is represented by a zero order coupling term in the
equations. It introduces a different behavior of the system depending on the direction
in space. To simplify the presentation of the results, we will assume that A= 1, γ = 1,
f0 = 1, β = 1, and ρ0 = 1.

We introduce the following spaces, which are usual in the analysis of Stokes sys-
tems:

H = {v ∈ L2(Ω)2 : div v = 0 in Ω, v · ν = 0 on Γ},
V = {v ∈ H1

0 (Ω)2 : div v = 0 in Ω}, W = H2(Ω)2 ∩ V.

Recall that

W ↪→ V ↪→ H ≡ H ′ ↪→ V ′ ↪→ W ′,

where the embeddings are dense and compact.
For any given u0, τ û0 ∈ H with ‖û0‖0,Ω = 1, any T ∈ L2(Q)2, and any h ∈

L2(ω × (0, T ))2, the linear system (1.1) possesses a unique solution (u, p), with u ∈
L2(0, T ;V )∩H1(0, T ;V ′) and p ∈ W−1,∞(0, T ;L2(Ω)). (p is unique up to an additive
distribution only depending on t.) This is easily proved by adapting the arguments of
[17] to the presence of a skew-symmetric Coriolis term in the equations. Notice that if
we had u0+τ û0 ∈ V , then the couple (u, p) would satisfy u ∈ L2(0, T ;W )∩H1(0, T ;H)
and p ∈ L2(0, T ;H1(Ω)).

We will be concerned with the search of controls such that the velocity measure-
ments over an observation set are either insensitive or almost insensitive to small
variations of the initial conditions. To do this, we will use insensitizing control theory.

1.2. Insensitizing controls and controllability. Let O be an open nonempty
subset of Ω and let us introduce the following functional, defined on the family of
solutions to (1.1):

Φ(u) =
1

2

∫ T

0

∫
O
|u(x, t)|2 dx dt.(1.2)

The notion of insensitizing controls was introduced by Lions [13]. In the context
of (1.1)–(1.2), it reads as follows.

Definition 1.1. We say that the control h ∈ L2(ω × (0, T ))2 is Φ insensitizing
if

d

dτ
Φ(u)

∣∣∣
τ=0

= 0 ∀û0 ∈ H with ‖û0‖0,Ω = 1.(1.3)

On the other hand, we say that h ∈ L2(ω × (0, T ))2 is Φ ε-insensitizing if∣∣∣∣ ddτ Φ(u)
∣∣∣
τ=0

∣∣∣∣ ≤ ε ∀û0 ∈ H with ‖û0‖0,Ω = 1.(1.4)

Of course, in (1.3) and in (1.4) u is, together with p, the solution to (1.1).
The Φ insensitizing (resp., Φ ε-insensitizing) controls h must be interpreted as

those leading to an observation Φ(u) that is locally independent (resp., almost inde-
pendent) at the initial perturbation τ û0. The existence of such controls is a pertinent
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1618 E. FERNÁNDEZ-CARA, G. C. GARCIA, AND A. OSSES

question, since it is realistic to assume that the true initial conditions for (1.1) are
unknown. In fact, as noticed in [13], it would be more convenient to search for Ψ
insensitizing (or Ψ ε-insensitizing) controls, where

Ψ(u) =
1

2

∫ T

0

∫
O
|curlu(x, t)|2 dx dt,

but this is beyond the scope of this article and will be the subject of future work.
It is easy to characterize the insensitivity (resp., ε-insensitivity) property in terms

of exact null controllability (resp., approximate controllability) of a related cascade
system. Indeed, let (ū, p̄) and (q, r) be the solutions of the following systems:⎧⎪⎪⎨⎪⎪⎩

ūt − ∆ū + ū + (1 + x2) k ∧ ū + ∇p̄ = T + h1ω in Q,
div ū = 0 in Q,
ū = 0 on Σ,
ū(0) = u0 in Ω,

(1.5)

⎧⎪⎪⎨⎪⎪⎩
−qt − ∆q + q − (1 + x2) k ∧ q + ∇π = ū1O in Q,
div q = 0 in Q,
q = 0 on Σ,
q(T ) = 0 in Ω.

(1.6)

Then the control h is Φ insensitizing (resp., Φ ε-insensitizing ) if and only if

q(0) = 0 (resp., ‖q(0)‖0,Ω ≤ ε).(1.7)

Indeed, in view of (1.2), condition (1.3) is equivalent to∫ T

0

∫
O
ū · uτ dx dt = 0

(
resp., (1.4) is equivalent to

∣∣∣∣ ∫ T

0

∫
O
ū · uτ dx dt

∣∣∣∣ ≤ ε

)
,

where ū is the solution of (1.5) and uτ is the solution of (1.1) differentiated with
respect to τ . Using the definition of (q, π) and integrating by parts, we obtain∫

Ω

q(0) · û0 dx = 0

(
resp.,

∣∣∣∣ ∫
Ω

q(0) · û0 dx

∣∣∣∣ ≤ ε

)
∀û0 ∈ H with ‖û0‖0,Ω = 1.

This is equivalent to (1.7). See [18] for more detail.
Notice that since ū ∈ L2(0, T ;V ), we also have q ∈ L2(0, T ;W )∩H1(0, T ;H) and

π ∈ L2(0, T ;H1(Ω)).
We are thus in the presence of a null controllability problem (resp., an approximate

controllability problem) for a cascade system, where the control h is not acting directly
in the system satisfied by q (the function we want to drive to zero after a time interval
of length T ) but indirectly, through ū1O .

1.3. Main results. There have been several recent results concerning the exis-
tence of insensitizing and ε-insensitizing controls for parabolic problems.

Thus, in [2] the existence of ε-insensitizing controls for linear heat equations
with partially known initial and boundary conditions was established. The same
was also obtained for semilinear heat equations with globally Lipschitz-continuous
nonlinearities. Since then, it has been proved in [18] that insensitizing controls exist
for the same equations completed with zero initial data, under suitable assumptions

D
ow

nl
oa

de
d 

05
/2

0/
16

 to
 1

50
.2

14
.1

82
.1

69
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



CONTROLS INSENSITIZING AN OCEAN MODEL 1619

on the source term. In [3], the authors extended these results to other more general
(slightly superlinear) nonlinearities.

In this paper, we deal with the insensitizing and ε-insensitizing problems for the
case of the Stokes-type equations (1.1). Our results were sketched in [7]. These are
the first insensitivity results in the literature for equations of this type, as far as we
know.

We will assume that the following geometrical hypothesis is satisfied, as in the
previous references:

ω ∩ O 
= ∅.(1.8)

Our main results are the following.
Theorem 1.2. Let T > 0 and assume that (1.8) is satisfied. Then, for each

ε > 0 there exists a control h ∈ L2(ω × (0, T ))2 which is Φ ε-insensitizing.
Theorem 1.3. Under the assumptions of Theorem 1.2, if we also have u0 = 0

and ∫ T

0

∫
Ω

exp
(
Mt−4

)
T 2 dx dt < +∞(1.9)

for an appropriate constant M depending on Ω, ω, O, and T , then there exists a
control h ∈ L2(ω × (0, T ))2 which is Φ insensitizing.

It was proved in [18] for the linear heat equation that, in general, we cannot
expect the existence of insensitizing controls for nonvanishing initial data in L2(Ω)
when Ω \ ω 
= ∅. The proof of this result is based on a counterexample for which
the appropriate observability inequality fails when the initial data belong to L2(Ω).
Similar arguments could be used for Stokes systems. In view of this, it is reasonable
to impose in Theorem 1.3 that u0 = 0.

This paper is organized as follows. In section 2, we prove Theorem 1.2, where
we obtain a unique continuation result for an adjoint cascade system thanks to the
presence of the Coriolis term. In section 3, we prove Theorem 1.3. In this section,
we show that insensitizing controls do exist if an appropriate observability inequality
holds. We deduce this observability inequality in section 3.2 by means of an appro-
priate global Carleman inequality for the same adjoint cascade system. The proof of
this global Carleman inequality is given in section 3.1 and follows a chain of estimates
based on the steps of the unique continuation proof. At the end of this section and
to be self-contained, we give the proof of a standard global Carleman estimate for
Stokes-like systems that is needed in section 3.1. Finally, in section 4, we summarize
the key points of this article in some final remarks.

2. Proof of Theorem 1.2. We can assume without loss of generality that T = 0
and u0 = 0 in (1.5)–(1.6). It is well known that the existence of ε-insensitizing controls
for (1.5)–(1.6) is equivalent to a unique continuation property of the associate adjoint
system ⎧⎪⎪⎨⎪⎪⎩

φt − ∆φ + φ + (1 + x2) k ∧ φ + ∇θ = 0 in Q,
div φ = 0 in Q,
φ = 0 on Σ,
φ(0) = φ0 in Ω,

(2.1)

⎧⎪⎪⎨⎪⎪⎩
−zt − ∆z + z − (1 + x2) k ∧ z + ∇r = φ1O in Q,
div z = 0 in Q,
z = 0 on Σ,
z(T ) = 0 in Ω

(2.2)D
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1620 E. FERNÁNDEZ-CARA, G. C. GARCIA, AND A. OSSES

for a given φ0 ∈ H. This coupled system possesses a unique solution (φ, θ), (z, r),
with at least φ, z ∈ L2(0, T ;V )∩H1(0, T ;V ′) and θ, r ∈ W−1,∞(0, T ;L2(Ω)). (Again,
θ and r are unique up to a distribution depending only on t.)

Using (1.5)–(1.6) and (2.1)–(2.2) the following duality identity is easily deduced:∫ T

0

∫
ω

h · z dx dt =

∫
Ω

q(0) · φ0 dx ∀h ∈ L2(ω × (0, T ))2.

It is clear from this last identity that the set { q(0) : h ∈ L2(ω × (0, T ))2 } is dense in
H if the following unique continuation result holds.

Lemma 2.1. Assume (1.8). Let (φ, θ), (z, r) be the solution to (2.1)–(2.2) with
φ0 ∈ H. Then, if z = 0 in ω×(0, T ), we necessarily have z ≡ φ ≡ 0 and ∇r ≡ ∇θ ≡ 0
in Q.

Proof. This is a direct consequence of a more general unique continuation result.
To state this result precisely, let ω̃ = ω ∩ O 
= ∅ and let us set

C1(ω̃) = {(x1, x2) ∈ Ω : ∃x0
1 s. t. (x0

1, x2) ∈ ω̃}, Σ1(ω̃) = (Γ ∩ C1) × (0, T ).(2.3)

(C1(ω̃) is the horizontal component of ω̃.) We will prove that if φ = (φ1, φ2) is
together with θ, z, and r a solution of⎧⎨⎩

φt − ∆φ + φ + (1 + x2) k ∧ φ + ∇θ = 0 in Q,
div φ = 0 in Q,
φ1 = 0 on Σ1,

(2.4)

{
−zt − ∆z + z − (1 + x2) k ∧ z + ∇r = φ1ω̃ in Q,
div z = 0 in Q,

and z = 0 in ω̃ × (0, T ), then φ ≡ 0.
To prove this assertion, we divide the proof into two steps. Without loss of

generality, we can assume that ω̃ is connected; otherwise we would replace ω̃ by one
of its connected components.

In a first step, we deduce from the fact that z = 0 in ω̃ × (0, T ) that φ2 = 0 and
φ1 is constant if they are restricted to ω̃ × (0, T ). Thus, since z = 0 in ω̃ × (0, T ) we
notice that curlφ = 0 in ω̃ × (0, T ) by applying the curl operator in the equation of
z in (2.4). Using this fact, if we now apply the curl operator to the first equation in
(2.4), thanks to the presence of the Coriolis term we obtain that

curl ((1 + x2) k ∧ φ) = φ2 + div φ = φ2 = 0

in ω̃ × (0, T ). Now, since div φ = 0 and curlφ = 0 in ω̃ × (0, T ), we have ∇φ1 = 0 in
ω̃×(0, T ). Therefore φ1 is constant in ω̃×(0, T ) and we certainly obtain φ = (Const., 0)
in ω̃ × (0, T ).

In a second step, let us introduce

ψ =
∂φ

∂x1
, π =

∂θ

∂x1
(2.5)

and the coefficient matrix:

a =

[
1 −(1 + x2)

(1 + x2) 1

]
∈ L∞

loc(Q).(2.6)
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CONTROLS INSENSITIZING AN OCEAN MODEL 1621

Then we have {
ψt − ∆ψ + aψ + ∇π = 0 in Q,
divψ = 0 in Q,

(2.7)

(ψ, π) ∈ L2
loc(Q)2 ×D′(Q)(2.8)

with ψ = 0 in ω̃ × (0, T ). Here, we use a sharp uniqueness property for the Stokes
system (2.7) proved in [5] that says that, under the regularity determined by (2.6)
and (2.8), one has ψ ≡ 0 in Q. Now, from (2.5) we obtain ∂φi/∂x1 ≡ 0 for i = 1, 2 in
Q. Since div φ = 0 in Q we also have ∇φ2 = 0 in Q and, from the fact that φ2 = 0 in
ω̃ × (0, T ), we deduce that φ2 ≡ 0 in Q (recall that Ω is connected).

On the other hand, since ∂φ1/∂x1 = 0 in Q and φ1 = 0 on Σ1 , we see that φ1 = 0
in C1 × (0, T ). Finally we have φ = (φ1, φ2) = 0 in C1 × (0, T ), which is an open
subset of Q. We can conclude that φ ≡ 0 in Q using again the uniqueness property
of [5]. (We can also use here the weaker result proved in [4].)

Remark 1. The method used in the second part of the proof of Lemma 2.1 leads
to the following uniqueness property in any dimension n. Let (φ, θ) be the solution of⎧⎨⎩

φt − ∆φ + aφ + ∇θ = 0 in Q,
div φ = 0 in Q,
φ = 0 on Σ1(ω),

(2.9)

where Q = Ω × (0, T ), Ω is a nonempty open bounded connected subset of R
n, ω is

an open nonempty subset of Ω, Σ1 and C1 are as defined in (2.3), and a ∈ L∞(Q). If
a is a function independent of x1 in Q and φ is independent of x1 in ω × (0, T ), then
φ vanishes in Q. Indeed, let us introduce ψ = ∂φ/∂x1, π = ∂θ/∂x1, which satisfy
a Stokes problem similar to (2.9), and this problem does not involve φ explicitly
since a is independent of x1. Now, from the uniqueness property in [5], ψ ≡ 0 in Q.
Consequently ∂φ/∂x1 = 0 in Q and φ = 0 on Σ1, so we have φ = 0 in C1 × (0, T ).
Using the unique continuation property in [5] once again, we obtain that φ ≡ 0 in Q.

Remark 2. The previous remark shows that the Coriolis term plays a crucial
role only in the first part of the proof of Lemma 2.1. In fact, the presence of the
Coriolis term allows us to prove that curlφ = 0 in ω̃ × (0, T ) implies that the second
component of φ vanishes in ω̃ × (0, T ). This will also be important in the deduction
of the Carleman inequality later.

Remark 3. In the proof of the previous lemma, it is not possible to use the
results of [4] concerning uniqueness properties of the Stokes system when one of the
components of φ vanishes in ω̃× (0, T ). This is because the results in [4] require that
the coefficient a, introduced in (2.6), satisfy a12 = 0.

3. Proof of Theorem 1.3. The proof of the existence of insensitizing controls
for (1.1), i.e., the exact null controllability for (1.5)–(1.6), relies on the following
observability result for the cascade adjoint system (2.1)–(2.2).

Proposition 3.1. Assume that ω∩O 
= ∅. There exist positive constants M and
K, depending only on Ω, ω, O, and T , such that the inequality∫ T

0

∫
Ω

exp
(
−Mt−4

)
|z|2 dx dt ≤ K

∫ T

0

∫
ω

|z|2 dx dt(3.1)

holds for every solution of (2.1)–(2.2) with φ0 ∈ H.
The proof of this result is based on a global Carleman inequality (see Theo-

rem 3.3), as will be seen in section 3.2. This Carleman inequality will be proved in
section 3.1.
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1622 E. FERNÁNDEZ-CARA, G. C. GARCIA, AND A. OSSES

Let us now give the proof of Theorem 1.3 using Proposition 3.1. Thus, let us
assume that (1.8) is satisfied, u0 = 0, and (1.9) holds with M being the constant
furnished by Proposition 3.1.

The approximate control h of minimal norm in L2(ω × (0, T ))2 corresponding to
u0 = 0, a source term T satisfying (1.9), and tolerance ε > 0 can be obtained by
minimizing in L2(Ω)2 the following convex functional [6, 14]:

Jε(φ0) =
1

2

∫ T

0

∫
ω

|z|2 dx dt +

∫ T

0

∫
Ω

T · z dx dt + ε‖φ0‖0,Ω.(3.2)

Thus, the minimum of Jε is attained at some φ̂0ε ∈ L2(Ω)2. We denote by (φ̂ε, θ̂ε),

(ẑε, r̂ε) the corresponding solution to (2.1)–(2.2) with φ0 = φ̂0ε; then the control
function defined as

hε = ẑε1ω(3.3)

is such that the associated solution (ūε, p̄ε), (qε, πε) to (1.5)–(1.6) with u0 = 0 satisfies
‖qε(0)‖0,Ω ≤ ε.

It is not difficult to see that

lim inf
‖φ0‖0,Ω→∞

Jε(φ0)

‖φ0‖0,Ω
≥ ε.

The proof of this inequality is classical; see [6]. It is implied by the unique continuation
property for the cascade adjoint system that we presented above (see Lemma 2.1).

Furthermore, the following optimality condition must be satisfied at φ̂0ε :∫ T

0

∫
ω

|ẑε|2 dx dt +

∫ T

0

∫
Ω

T · ẑε dx dt + ε‖φ̂0ε‖0,Ω = 0.(3.4)

By replacing (3.3) in (3.4), introducing the weight eMt−4

, and using (3.1) and Young’s
inequality, we easily deduce that∫ T

0

∫
ω

|hε|2 dx dt ≤ K2

∫ T

0

∫
Ω

exp(Mt−4)|T |2 dx dt.

Since {hε} is uniformly bounded in L2(ω × (0, T ))2, then up to a subsequence, still
denoted {hε}, we have

hε ⇀ h weakly in L2(ω × (0, T ))2,

ūε → ū strongly in L2(Q)2, and

qε → q strongly in L2(Q)2,

as ε → 0. Of course, we have denoted here by (ūε, p̄ε), (qε, πε) and (ū, p̄), (q, π)
the solutions to (1.5)–(1.6) associated with hε and h, respectively. Notice that
‖qε(0)‖0,Ω ≤ ε and consequently we have q(0) = 0. This ends the proof of Theo-
rem 1.3.

3.1. A global Carleman estimate. The goal of this section is to present an es-
timate of the Carleman kind for the solutions to the adjoint cascade system (2.1)–(2.2).
As mentioned above, this estimate will be crucial for the proof of Proposition 3.1.
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CONTROLS INSENSITIZING AN OCEAN MODEL 1623

Let us first introduce an open ball B0 such that B0 ⊂⊂ ω ∩ O and an auxiliary
function η0 ∈ C2(Ω) satisfying

η0(x) > 0 ∀x ∈ Ω, η0 = 0 on ∂Ω, |∇η0(x)| > 0 ∀x ∈ Ω \B0 .(3.5)

The existence of such a function is proved in [9].

Let us also introduce the weight functions

α(x, t) =
e2λ‖η0‖∞ − eλη0

t4(T − t)4
, α̂(t) = min

Ω
α(x, t), α∗(t) = max

Ω
α(x, t),

ϕ(x, t) =
eλη0

t4(T − t)4
, ϕ̂(t) = max

Ω
ϕ(x, t), ϕ∗(t) = min

Ω
ϕ(x, t).

The following property of the functions α∗ and α̂ will be needed later.

Lemma 3.2. For any a > 1 there exists λa > 0 such that

a α̂(t) > α∗(t) ∀λ > λa , ∀t ∈ (0, T ).

Proof. The proof is elementary. It suffices to notice that we have a(e2x − ex) >
e2x − 1 if a > 1 and x is sufficiently large.

The main result in this section is the following.

Theorem 3.3. Assume that ω ∩ O 
= ∅ and let the functions α, ϕ, α̂, and ϕ̂ be
as above. For each γ̂ ∈ (0, 1), there exist constants ŝ, λ̂, and Ĉ depending on Ω, ω,
O, T , and γ̂ such that one has∫ T

0

∫
Ω

e−2sα

(
1

sϕ
(|zt|2 + |∆z|2) + sλ2ϕ|∇z|2 + s3λ4ϕ3|z|2

)
dx dt

+

∫ T

0

∫
Ω

e−2sα

(
1

sϕ
(|φt|2 + |∆φ|2) + sλ2ϕ|∇φ|2 + s3λ4ϕ3|φ|2

)
dx dt

≤ Ĉ

∫ T

0

∫
ω

e−(1+γ̂)sα̂s63λ32ϕ̂ 67|z|2 dx dt(3.6)

for any s > ŝ and λ > λ̂ and for every solution (φ, θ), (z, r) to (2.1)–(2.2) associated
with initial data φ0 ∈ H.

The proof will be divided in several steps and will be given in the following
subsections. First, we will apply a global Carleman estimate for the Stokes system to
(2.1) and (2.2). This will lead to the estimate (3.10). Then, to deduce (3.6), we will
have to estimate the integral in the right-hand side of (3.10) containing φ in terms
of z. To this end, we will follow the steps of the proof of Lemma 2.1 in reverse order.

3.1.1. Step 1: A first direct Carleman estimate. Let I(s, λ; v) stand for
the quantity

I(s, λ; v) =

∫ T

0

∫
Ω

e−2sα

(
1

sϕ
(|vt|2 + |∆v|2) + sλ2ϕ|∇v|2 + s3λ4ϕ3|v|2

)
dx dt(3.7)

for any positive s and λ and any sufficiently regular function v = v(x, t). We then
have the following.
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1624 E. FERNÁNDEZ-CARA, G. C. GARCIA, AND A. OSSES

Lemma 3.4. For each γ1 ∈ (0, 1) there exist positive constants s1 , λ1, and C1 ,
depending on Ω, ω, O, T , and γ1 , with the following properties:

I(s, λ; z) ≤ C1

{∫ T

0

∫
B0

e−(1+γ1)sα̂s7λ4ϕ̂ 15/2|z|2 dx dt

+

∫ T

0

∫
B0

e−2sα̂(sλϕ̂)2|φ|2 dx dt(3.8)

+

∫ T

0

∫
O
e−2sα

(
(sϕ)1/2|φ|2 +

1

s3ϕ7/2
|φt|2

)
dx dt

}

and

I(s, λ;φ) ≤ C1

∫ T

0

∫
B0

e−(1+γ1)sα̂s7λ4ϕ̂ 15/2|φ|2 dx dt(3.9)

for any s > s1 and λ > λ1 and for every solution of (2.1)–(2.2) with φ0 ∈ H.
The proof of Lemma 3.4 is similar to the proof of other recent global Carleman

inequalities for the Stokes system. The main ideas are due to Imanuvilov [10, 11];
also see [8] for other related results. The proof is presented in the appendix.

Let us fix γ̂, with 0 < γ̂ < 1. We are now going to deduce several estimates that
hold for “sufficiently large s and λ.” By this we mean that they are satisfied for any
s > s̄ and any λ > λ̄, where s̄ and λ̄ are (large) positive constants depending only on
Ω, ω, O, T , and γ̂.

In what follows, C denotes a generic constant, not necessarily the same at each
occurrence, depending on Ω, ω, O, T , and (possibly) γ̂.

Let γ1 be given in (γ̂, 1). In view of Lemma 3.4 applied to γ1 , we get

I(s, λ; z) + I(s, λ;φ) ≤ C

∫ T

0

∫
B0

e−(1+γ1)sα̂s7λ4ϕ̂ 15/2(|z|2 + |φ|2) dx dt(3.10)

for s and λ large enough.
Indeed, the last two integrals in (3.8) can be absorbed by the left-hand side of

I(s, λ;φ), since

Cs−3ϕ−7/2 ≤ 1

2
(sϕ)−1 and C(sϕ)1/2 ≤ 1

2
s3ϕ3

for sufficiently large s.

3.1.2. Step 2: An estimate of φ in terms of curl φ. To simplify the nota-
tion, let us set a = 7 and b = 15/2. Then

I(s, λ; z) + I(s, λ;φ) ≤ C

∫ T

0

∫
B0

e−(1+γ1)sα̂saλ4ϕ̂ b(|z|2 + |φ|2) dx dt.(3.11)

We will denote by B1 , B2 , . . . a sequence of balls centered at the same point as
B0 and satisfying

B0 ⊂⊂ B1 ⊂⊂ · · · ⊂⊂ ω ∩ O.
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CONTROLS INSENSITIZING AN OCEAN MODEL 1625

It is not a restriction to assume that their common center is the origin. This will be
supposed in what follows for simplicity. We will consider some functions ξi ∈ C∞

0 (Bi)
satisfying

0 ≤ ξi ≤ 1, ξi(x) = 1 in Bi−1 ,

ξ
−1/2
i ∇ξi ∈ L∞(Ω), ξ

−1/2
i ∆ξi ∈ L∞(Ω).

(3.12)

(See [18] for a justification of the existence of these ξi.)
Since div φ = 0, φ = 0 on Σ, and Ω is connected, we can introduce the stream

function ψ satisfying

φ = curlψ ≡
(

∂ψ

∂x2
,− ∂ψ

∂x1

)
,

with ψ = 0 on one connected component of Σ and ∂ψ
∂n = 0 on Σ.

Let us set ρ1(t) = e−(1+γ1)sα̂saλ4ϕ̂b. Then we have∫ T

0

∫
B0

ρ1|φ|2 dx dt ≤
∫ T

0

∫
B1

ρ1ξ1|∇ψ|2 dx dt.

We will now give an estimate of the last integral in terms of |curlφ|2. To this end, let
us introduce the vorticity w, given by

w = curlφ =
∂φ2

∂x1
− ∂φ1

∂x2
.

Applying the curl operator to (2.1), we obtain⎧⎨⎩wt − ∆w + w − ∂ψ

∂x1
= 0 in Q,

∆ψ + w = 0 in Q.
(3.13)

To estimate |∇ψ|2, we multiply by ρ1ξ1ψ the second equation of (3.13). Then,
we integrate by parts with respect to the space variable x and we get∫ T

0

∫
B1

ρ1ξ1|∇ψ|2 dx dt =

∫ T

0

∫
B1

ρ1ξ1ψw dx dt +
1

2

∫ T

0

∫
B1

ρ1(∆ξ1)|ψ|2 dx dt.(3.14)

Notice that using I(s, λ;φ), we can get upper bounds for |ψ|2, |∇ψ|2, and |ψt|2.
Indeed, from the definition of α∗, ϕ∗, and ϕ̂, we have

I(s, λ;φ) ≥
∫ T

0

∫
Ω

e−2sα

(
1

sϕ
|∇ψt|2 + s3λ4ϕ3|∇ψ|2

)
dx dt

≥
∫ T

0

∫
Ω

e−2sα∗
(

1

sϕ̂
|∇ψt|2 + s3λ4(ϕ∗)3|∇ψ|2

)
dx dt

≥ C

∫ T

0

∫
Ω

e−2sα∗
(

1

sϕ̂
|ψt|2 + s3λ4(ϕ∗)3

(
|ψ|2 + |∇ψ|2

))
dx dt.(3.15)

Here we have used the fact that ψ = 0 on one of the connected components of Σ to
apply Poincaré’s inequality.
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1626 E. FERNÁNDEZ-CARA, G. C. GARCIA, AND A. OSSES

With this information, we will be able to absorb the first integral in (3.14). Indeed,
after using Young’s inequality, we can estimate this term as follows:∫ T

0

∫
B1

ρ1ξ1ψw dx dt ≤ δ

∫ T

0

∫
Ω

e−2sα∗
s3λ4(ϕ∗)3|ψ|2 dx dt

+Cδ

∫ T

0

∫
B1

e−2(1+γ1)sα̂+2sα∗
s2a−3λ4ϕ̂2b−3|w|2 dx dt.(3.16)

Now, if we introduce γ2 with 0 < γ2 < 2γ1 − 1, then (1 + 2γ1 − γ2)/2 > 1 and, from
Lemma 3.2, we see that (1+2γ1 −γ2)α̂/2 > α∗ for λ sufficiently large. Consequently,
it can be assumed that

−2(1 + γ1)α̂ + 2α∗ < −(1 + γ2)α̂

and we can replace e−2(1+γ1)sα̂+2sα∗
by e−(1+γ2)sα̂ in the last integral in (3.16):∫ T

0

∫
B1

ρ1ξ1ψw dx dt ≤ δ

∫ T

0

∫
Ω

e−2sα∗
s3λ4(ϕ∗)3|ψ|2 dx dt

+Cδ

∫ T

0

∫
B1

e−(1+γ2)sα̂s2a−3λ4ϕ̂ 2b−3|w|2 dx dt.(3.17)

Notice that if we had chosen γ1 sufficiently close to 1 before, then we would still
have the possibility of choosing γ2 satisfying γ̂ < γ2 < 2γ1 − 1.

On the other hand, by choosing δ sufficiently small, we can absorb the first term
in the right-hand side of (3.17) with I(s, λ;φ).

It remains in this step to estimate the last integral in (3.14). Assume that ξ1 has
been constructed as before but also satisfying

ξ1(x) =

⎧⎪⎨⎪⎩
1 in |x| < r0,

Ψ̂
(

|x|−r0
r1−a−r0

)
in r0 ≤ |x| ≤ r1 − a,

0 in |x| > r1 − a,

where ri denotes the radius of Bi , a is small enough, and Ψ̂ is a function satisfying
Ψ̂ ∈ C∞([0, 1]),

Ψ̂(0) = 1, Ψ̂(1) = 0, and Ψ̂(n)(0) = Ψ̂(n)(1) = 0 ∀n ≥ 1.

Let us set

η(x) =

∫ x1

x̄1

∆ξ1(y1, x2) dy1

where for each x = (x1, x2) ∈ B̄1 we take x̄1 < x1 and (x̄1, x2) ∈ ∂B1. Notice that
∂η
∂x1

= ∆ξ1. It is also easy to see that Supp η ⊂ B̄1(0; r1 − a). And now, using the
first equation in (3.13), we observe that

1

2

∫ T

0

∫
B1

ρ1(∆ξ1)|ψ|2 dx dt =
1

2

∫ T

0

∫
B1

ρ1
∂η

∂x1
|ψ|2 dx dt

= −
∫ T

0

∫
B1

ρ1ηψ
∂ψ

∂x1
dx dt

= −
∫ T

0

∫
B1

ρ1ηψ(wt − ∆w + w) dx dt.(3.18)
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CONTROLS INSENSITIZING AN OCEAN MODEL 1627

Remark 4. Notice that we used the term ∂ψ
∂x1

in equation (3.13) to estimate |ψ|2
over B1. The term comes from Coriolis force and it is absent in the Stokes system.

We will now estimate this last integral in the right-hand side of (3.18). Concerning
the product ρ1ηψwt , we can integrate by parts with respect to time in B1 × (0, T )
and then apply Young’s inequality to deduce that∫ T

0

∫
B1

ρ1ηψwt dx dt = −
∫ T

0

∫
B1

(ρ1ηψtw + ρ′1ηψw) dx dt

≤ δ

∫ T

0

∫
Ω

e−2sα∗
(

1

sϕ̂
|ψt|2 + s3λ4(ϕ∗)3|ψ|2

)
dx dt

+ Cδ

∫ T

0

∫
B1

e−(1+γ2)sα̂(s2a+1λ8ϕ̂ 2b+1 + s2a−1λ4ϕ̂ 2b−1/2)|w|2 dx dt(3.19)

for sufficiently large s and λ.
To obtain this inequality, we first used that

|ρ′1| =
∣∣∣(e−(1+γ1)sα̂saλ4ϕ̂ b)t

∣∣∣ ≤ Ce−(1+γ1)sα̂sa+1λ4ϕ̂ b+5/4.

Then, we noticed that∫ T

0

∫
B1

ρ′1ηψw dx dt

≤ δ

∫ T

0

∫
Ω

e−2sα∗
s3λ4(ϕ∗)3|ψ|2 dx dt

+ Cδ

∫ T

0

∫
B1

e−2(1+γ1)sα̂+2sα∗
s2a−1λ4ϕ̂ 2b+5/2(ϕ∗)−3|w|2 dx dt,

and, finally, we took s and λ large enough to have

e−2(1+γ1)sα̂+2sα∗
ϕ̂ 2b+5/2(ϕ∗)−3 ≤ e−(1+γ2)sα̂ϕ̂ 2b−1/2.

We can simplify the estimate (3.19) by using the inequality

s2a−1ϕ̂ 2b−1/2 ≤ Cs2a+1ϕ̂ 2b+1,

which must hold for large s. Thus, we obtain∫ T

0

∫
B1

ρ1ηψwt dx dt

≤ δ

∫ T

0

∫
Ω

e−2sα∗
(

1

sϕ̂
|ψt|2 + s3λ4(ϕ∗)3|ψ|2

)
dx dt

+ Cδ

∫ T

0

∫
B1

e−(1+γ2)sα̂s2a+1λ8ϕ̂ 2b+1|w|2 dx dt.(3.20)

Notice that the first integral in the right-hand side of (3.20) also appears in (3.15)
and can be absorbed later by choosing δ small enough.

Let us now consider the term ρ1ηψ(∆w) in the last integral of (3.18). Let us
integrate by parts with respect to the space variable x, let us use the identity ∆ψ = w,
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1628 E. FERNÁNDEZ-CARA, G. C. GARCIA, AND A. OSSES

and let us apply Young’s inequality. Arguing as before, we obtain∫ T

0

∫
B1

ρ1ηψ(∆w) dx dt =

∫ T

0

∫
B1

ρ1

(
(∆η)ψw + 2∇η · ∇ψw + η|w|2

)
dx dt

≤ δ

∫ T

0

∫
Ω

e−2sα∗
s3λ4(ϕ∗)3(|ψ|2 + |∇ψ|2) dx dt

+ Cδ

∫ T

0

∫
B1

e−(1+γ2)sα̂s2a−3λ4ϕ̂ 2b−3|w|2 dx dt(3.21)

for any sufficiently large s and λ.
Finally, arguing in a similar way, we can also estimate the last term ρ1ηψw in

(3.18): ∫ T

0

∫
B1

ρ1ηψw dx dt ≤ δ

∫ T

0

∫
B1

e−2sα∗
s3λ4(ϕ∗)3|ψ|2 dx dt

+ Cδ

∫ T

0

∫
B1

e−(1+γ2)sα̂s2a−3λ4ϕ̂ 2b−3|w|2 dx dt.(3.22)

From (3.18) and (3.20)–(3.22), we find that

1

2

∫ T

0

∫
B1

ρ1(∆ξ1)|ψ|2 dx dt

≤ 3δ

∫ T

0

∫
Ω

e−2sα∗
(

1

sϕ̂
|ψt|2 + s3λ4(ϕ∗)3(|ψ|2 + |∇ψ|2)

)
dx dt

+ Cδ

∫ T

0

∫
B1

ρ2|w|2 dx dt,(3.23)

where

ρ2(t) = e−(1+γ2)sα̂s2a+1λ8ϕ̂ 2b+1.

Replacing the estimates (3.16) and (3.23) in (3.10), with δ > 0 sufficiently small, we
obtain

I(s, λ; z) + I(s, λ;φ) ≤ C

{∫ T

0

∫
B0

ρ1|z|2 dx dt +

∫ T

0

∫
B1

ρ2|curlφ|2 dx dt
}
.(3.24)

3.1.3. Step 3: An estimate of curl φ in terms of z. Let us apply the curl
operator to (2.2). For ζ = curl z, we obtain the following:

−ζt − ∆ζ + ζ − z2 = w1O in O × (0, T ).

Recall that ξ2 ∈ C∞
0 (B2) satisfies (3.12) and B1 ⊂⊂ B2 ⊂⊂ ω ∩ O. After multi-

plying the above equation by ρ2ξ2w, integrating by parts in Q, and using (3.13), it
follows that∫ T

0

∫
B2

ρ2ξ2|w|2 dx dt = −
∫ T

0

∫
B2

ρ2ξ2φ2ζ dx dt +

∫ T

0

∫
B2

ρ′2ξ2wζ dx dt

−
∫ T

0

∫
B2

ρ2((∆ξ2)wζ + 2(∇ξ2 · ∇w)ζ + ξ2wz2) dx dt.(3.25)
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CONTROLS INSENSITIZING AN OCEAN MODEL 1629

As before, we choose γ3 satisfying 0 < γ3 < 2γ2 − 1. Then, for sufficiently large λ we
have (1 + 2γ2 − γ3)α̂/2 > α∗ and, consequently,

−2(1 + γ2)α̂ + 2sα < −2(1 + γ2)α̂ + 2sα∗ < −(1 + γ3)α̂.

Notice once more that if γ1 is sufficiently close to 1, then we can choose γ3 in (γ̂, 1).
Now, proceeding as in the previous step, we see that∣∣∣∣∣

∫ T

0

∫
B2

ρ2ξ2φ2ζ dx dt

∣∣∣∣∣ ≤ δ

∫ T

0

∫
Ω

e−2sαs3λ4ϕ3|φ2|2 dx dt

+ Cδ

∫ T

0

∫
B2

ρ3
1

s4λ4ϕ̂ 4
ξ2
2 |ζ|2 dx dt

for any small δ > 0 (to be fixed later). Here, ρ3 stands for the function

ρ3(t) = e−(1+γ3)sα̂(t)s4a+3λ16ϕ̂ 4b+3(t).

We also have∫ T

0

∫
B2

ρ′2ξ2wζ dx dt ≤ δ

∫ T

0

∫
B2

ρ2ξ2|w|2 dx dt

+ Cδ

∫ T

0

∫
B2

ρ2s
2ϕ̂ 5/2ξ2|ζ|2 dx dt.

Furthermore, after separating the terms in the last integral in (3.25), we find that∣∣∣∣∣
∫ T

0

∫
B2

ρ2(∆ξ2)wζ dx dt

∣∣∣∣∣ ≤ δ

∫ T

0

∫
B2

ρ2ξ2|w|2 dx dt

+ Cδ

∫ T

0

∫
B2

ρ2
|∆ξ2|2
ξ2

|ζ|2 dx dt

and ∣∣∣∣∣
∫ T

0

∫
B2

ρ2(∇ξ2 · ∇w) ζ dx dt

∣∣∣∣∣ ≤ δ

∫ T

0

∫
Ω

e−2sα 1

sϕ
|∆φ|2 dx dt

+ Cδ

∫ T

0

∫
B2

ρ3|∇ξ2|2|ζ|2 dx dt.

In this last estimate we have used that |∇w|2 = |∆φ|2. Finally,∣∣∣∣∣
∫ T

0

∫
B2

ρ2ξ2wz2 dx dt

∣∣∣∣∣ ≤ δ

∫ T

0

∫
B2

ρ2ξ2|w|2 dx dt + Cδ

∫ T

0

∫
B2

ρ2ξ2|z2|2 dx dt.

In view of (3.25) and all these inequalities, we obtain∫ T

0

∫
B2

ρ2ξ2|curlφ|2 dx dt

≤ δ

1 − 3δ

∫ T

0

∫
Ω

e−2sα

(
1

sϕ
|∆φ|2 + s3λ4ϕ3|φ2|2

)
dx dt

+Cδ

∫ T

0

∫
B2

(
ρ2|z2|2 + ρ3ξ̄2|curl z|2

)
dx dt(3.26)

for some ξ̄2 ∈ C∞
0 (B2).
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1630 E. FERNÁNDEZ-CARA, G. C. GARCIA, AND A. OSSES

It remains to estimate the previous integral of ρ3ξ̄2|curl z|2. Arguing as above,
we see that∫ T

0

∫
B2

ρ3ξ̄2|curl z|2 dx dt ≤ 2

∫ T

0

∫
B2

ρ3ξ̄2|∇z|2 dx dt

= −2

∫ T

0

∫
B2

ρ3(∇ξ̄2 · ∇z + ξ̄2(∆z))z dx dt

≤ δ

∫ T

0

∫
Ω

e−2sα

(
sλ2ϕ|∇z|2 +

1

sϕ
|∆z|2

)
dx dt

+ Cδ

∫ T

0

∫
B2

ρ4|z|2 dx dt,(3.27)

where

ρ4(t) = e−(1+γ4)sα̂s8a+7λ32ϕ̂ 8b+7

for some γ4 satisfying 0 < γ4 < 2γ3 − 1. For the reasons stated above, it is clear that
γ4 can be assumed to satisfy γ̂ < γ4 < 1.

Choosing δ > 0 small enough and replacing the estimates (3.26) and (3.27) in
(3.24), we obtain

I(s, λ; z) + I(s, λ;φ) ≤ C

∫ T

0

∫
ω

ρ4|z|2 dx dt(3.28)

for all large s and λ. Taking into account the definition of ρ4 , that γ4 > γ̂, a = 7,
and b = 15/2, we see that (3.6) holds.

This ends the proof of Theorem 3.3.

3.2. Proof of Proposition 3.1. Let us now give the proof of the observability
inequality (3.1) for solutions of system (2.1)–(2.2), which relies on the above result.
First, we observe that from the continuous dependence of the solution of (2.2), we
have ∫ T

T/2

∫
Ω

|z|2 dx dt ≤ C

∫ T

T/2

∫
O
|φ|2 dx dt,(3.29)

and from classical energy estimates for system (2.1), using the fact that (k∧φ) ·φ = 0,
we obtain an energy decreasing property:

‖φ(t + T/4)‖2
0,Ω ≤ C‖φ(t)‖2

0,Ω ∀t ∈ (T/4, 3T/4) .

If we integrate the last inequality over the time interval (T/4, 3T/4) and change the
integral variable t → t + T/4 on the left-hand integral, we can easily deduce that∫ T

T/2

∫
Ω

|φ|2 dx dt ≤ C

∫ 3T/4

T/4

∫
Ω

|φ|2 dx dt,(3.30)

where C is independent of φ.
In what follows, we will fix s, λ, and γ̂ as in Theorem 3.3, depending on Ω, ω, O,

and T , such that (3.6) is satisfied.
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CONTROLS INSENSITIZING AN OCEAN MODEL 1631

Let us first prove that there exist positive constants M , C1 such that∫ T/2

0

∫
Ω

exp(−Mt−4)|z|2 dx dt +

∫ T

T/2

∫
Ω

|φ|2 dx dt ≤ C1

∫ T

0

∫
ω

|z|2 dx dt.(3.31)

For this estimate, let us first notice that for some constants M and C, one has

e−2sα(x,t)ϕ(x, t)3 ≥ Ce−Mt−4 ∀(x, t) ∈ Ω × (0, T/2);

this is easy to see, in view of the definitions of α and ϕ. Now, using (3.6), we get∫ T/2

0

∫
Ω

exp(−Mt−4)|z|2 dx dt ≤ 1

s3λ4
I(s, λ; z)

≤ CK

∫ T

0

∫
ω

e−(1+γ̂)sα̂s63ϕ̂ 67|z|2 dx dt,

and since the weight e−(1+γ̂)sα̂ϕ̂ 67 is bounded, we can estimate the first term in the
left-hand side of (3.31). On the other hand, to obtain an estimate of φ in terms of z,
let us recall the inequality (3.6). Since e−2sαt−12(T − t)−12 is bounded from below
far from t = 0 and t = T , in view of (3.30), we have∫ T

T/2

∫
Ω

|φ|2 dx dt ≤
∫ 3T/4

T/4

∫
Ω

|φ|2 dx dt

≤ C

∫ 3T/4

T/4

∫
Ω

e−2sαs3λ4ϕ3|φ|2 dx dt ≤ C

∫ T

0

∫
ω

e−(1+γ̂)sα̂ϕ̂ 67|z|2 dx dt.

As before, from the fact that e−(1+γ̂)sα̂ϕ̂ 67 is bounded, we are able to estimate the
second term in the left-hand side of (3.31).

Finally, the desired observability inequality (3.1) is obtained using the energy
estimate (3.29) and (3.31):∫ T

0

∫
Ω

exp(−Mt−4)|z|2 dx dt ≤
∫ T/2

0

∫
Ω

exp(−Mt−4)|z|2 dx dt +

∫ T

T/2

∫
Ω

|z|2 dx dt

≤ C

(∫ T/2

0

∫
Ω

exp(−Mt−4)|z|2 dx dt +

∫ T

T/2

∫
Ω

|φ|2 dx dt
)

≤ C

∫ T

0

∫
ω

|z|2 dx dt.

Appendix. Proof of Lemma 3.4. Let us recall that this proof is given for
the sake of completeness, but it is essentially an adaptation to our framework of the
arguments presented in [8] and [11]. Let us consider the system⎧⎪⎪⎨⎪⎪⎩

−zt − ∆z + z − (1 + x2) k ∧ z + ∇r = φ1O in Q,
div z = 0 in Q,
z = 0 on Σ,
z(T ) = 0 in Ω,

(3.32)

where φ ∈ L2(0, T ;W ) ∩H1(0, T ;H).
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1632 E. FERNÁNDEZ-CARA, G. C. GARCIA, AND A. OSSES

Recall that B0 is an open ball satisfying B0 ⊂⊂ ω ∩O and the auxiliary function
η0 satisfies η0 ∈ C2(Ω),

η0(x) > 0 ∀x ∈ Ω, η0 = 0 on ∂Ω, |∇η0(x)| > 0 ∀x ∈ Ω \B0 .

We will need an additional open ball B00 ⊂⊂ B0 , such that we still have

|∇η0(x)| > 0 ∀x ∈ Ω \B00 .

We will divide the proof of Lemma 3.4 into several steps.
Step 1. Following [8], we apply some well-known Carleman estimates for the heat

equation to (3.32). Thus, there exist constants s0 , λ0, and C > 0 depending on Ω,
ω, and T such that for every λ > λ0 and s > s0 , the following estimate holds:

I(s, λ; z) ≤ C

{∫ T

0

∫
B00

e−2sαs3λ4ϕ3|z|2 dx dt

+

∫ T

0

∫
Ω

e−2sα
(
|∇r|2 + |(1 + x2)k ∧ z|2 + |φ1O|2

)
dx dt

}
.(3.33)

Recall that the definitions of I(s, λ; z) and the weights α and ϕ are given in section 3.1.
Of course, we can choose s large enough to absorb the previous term |(1+x2)k∧z|2

with the left-hand side (3.33). We then have

I(s, λ; z) ≤ C

{∫ T

0

∫
B00

e−2sαs3λ4ϕ3|z|2 dx dt

+

∫ T

0

∫
Ω

e−2sα|∇r|2 dx dt +

∫ T

0

∫
O
e−2sα|φ|2 dx dt

}
(3.34)

for any λ > λ0 and any s > s01 .
Step 2. To estimate the pressure gradient ∇r in (3.34), we first apply the diver-

gence operator to (3.32), i.e., we write

∆r(t) = div((1 + x2)k ∧ z)(t) in Ω, t ∈ (0, T ),(3.35)

and then we use the following result by Imanuvilov and Puel [12], which is satisfied
by weak solutions to second order elliptic equations.

Lemma 3.5. Let us set β(x) = eλη0(x) and let v ∈ H1(Ω) be a solution of

∆v = div h in Ω,(3.36)

where h ∈ L2(Ω)2. Then there exist positive constants τ2 , λ01, and C such that∫
Ω

e2τβ |∇v|2 dx ≤ C

{
τ

∫
Ω

e2τββ|h|2 dx + τ1/2e2τ‖g‖2
1/2,∂Ω

+ τ2λ2

∫
B00

e2τββ2|v|2 dx +

∫
B00

e2τβ |∇v|2 dx
}

(3.37)

for any τ > τ2 and any λ > λ01 , where g = v|∂Ω.
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CONTROLS INSENSITIZING AN OCEAN MODEL 1633

In particular, we have the following for r(t) and g(t) = r(t)|∂Ω :∫
Ω

e2τβ |∇r(t)|2 dx ≤ C

{
τ

∫
Ω

e2τββ|(1 + x2)k ∧ z(t)|2 dx

+ τ1/2e2τ‖g(t)‖2
1/2,∂Ω + τ2λ2

∫
B00

e2τββ2|r(t)|2 dx

+

∫
B00

e2τβ |∇r(t)|2 dx
}
.(3.38)

To estimate the last integral in (3.38), let us introduce an open set B01 such that
B00 ⊂⊂ B01 ⊂⊂ B0 and a function ξ01 ∈ C2

0(B01) such that

0 ≤ ξ01 ≤ 1 and ξ01 = 1 in B00 .

Integrating by parts, it follows from (3.35) that∫
B00

e2τβ |∇r(t)|2 dx ≤
∫
B01

e2τβξ01|∇r(t)|2 dx

= −
∫
B01

e2τβξ01 div((1 + x2)k ∧ z)(t)r(t) dx

−1

2

∫
B01

e2τβ∇ξ01 · ∇|r(t)|2 dx−
∫
B01

ξ01∇e2τβ · ∇|r(t)|2 dx.

Integrating again by parts, applying Young’s inequality, and taking into account that
|∆(e2τβξ01)| ≤ Cτ2λ2β2e2τβ for some positive constant C, after some straightforward
computations we deduce that∫

B00

e2τβ |∇r(t)|2 dx ≤ C

{
τ2λ2

∫
B01

e2τββ2|r(t)|2 dx +

∫
B01

e2τβ |z(t)|2 dx
}
.

Replacing this inequality in (3.38), we obtain the following for each t ∈ (0, T ):∫
Ω

e2τβ |∇r(t)|2 dx ≤ C

{
τ

∫
Ω

e2τββ|z(t)|2 dx

+ τ1/2e2τ‖g(t)‖2
1/2,∂Ω

+ τ2λ2

∫
B01

e2τββ2|r(t)|2 dx
}
.

Now, let us put τ = s/(t4(T−t)4) and let us choose s > s02 = max(s01 , τ2(T/2)8).
Then τ > τ2 . Let us multiply by exp(−2s exp(2λ‖η0‖∞)/(t4(T − t)4)) the previous
inequality and let us integrate with respect to t in (0, T ). This leads to the estimate∫ T

0

∫
Ω

e−2sα|∇r|2 dx dt ≤ C

{∫ T

0

∫
Ω

e−2sαsϕ|z|2 dx dt

+

∫ T

0

e−2sα∗
(sϕ∗)1/2‖g(t)‖2

1/2,∂Ω dt

+

∫ T

0

∫
ω1

e−2sα(sλϕ)2|r|2 dx dt
}
,(3.39)

where α∗ and ϕ∗ were introduced in section 3.1.
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1634 E. FERNÁNDEZ-CARA, G. C. GARCIA, AND A. OSSES

The first term in the right-hand side of (3.39) can be absorbed by the left-hand
side I(s, λ; z) in (3.33) for s large enough. Hence, we obtain

I(s, λ; z) ≤ C

{∫ T

0

∫
ω0

e−2sαs3λ4ϕ3|z|2 dx dt +

∫ T

0

e−2sα∗
(sϕ∗)1/2‖g(t)‖2

1/2,∂Ω dt

+

∫ T

0

∫
ω1

e−2sα(sλϕ)2|r|2 dx dt +

∫ T

0

∫
O
e−2sα|φ|2 dx dt

}
(3.40)

for any λ > λ01 and any s > s03 .
Step 3. Step 3 estimates the norm of the trace of the pressure on the boundary.

To this end, we introduce three new functions:

χ(t) = e−sα∗(t)(sϕ∗(t))1/4, z̃ = χ(t)z, r̃ = χ(t)r.

From (3.32), we see that (z̃, r̃) satisfies⎧⎪⎪⎨⎪⎪⎩
−z̃t − ∆z̃ + z̃ + ∇r̃ = −χ′z + χ(1 + x2) k ∧ z + χφ1O in Q,
div z̃ = 0 in Q,
z̃ = 0 on Σ,
z̃(T ) = 0 in Ω.

Using the continuity of the trace operator and standard a priori estimates for the
pressure, we deduce that∫ T

0

‖r̃(t)‖2
1/2,∂Ω dt ≤

∫ T

0

‖r̃(t)‖2
1,Ω dt

≤ C

{∫ T

0

∫
Ω

e−2sα∗
s5/2(ϕ∗)3|z|2 dx dt

+

∫ T

0

∫
O
e−2sα∗

(sϕ∗)1/2|φ|2 dx dt
}
.

We have used here that |χ′(t)|2 ≤ Ce−2sα∗
s5/2(ϕ∗(t))3 for all t ∈ (0, T ). We thus

obtain a new estimate from (3.40):

I(s, λ; z) ≤ C

{∫ T

0

∫
B00

e−2sαs3λ4ϕ3|z|2 dx dt +

∫ T

0

∫
B01

e−2sα(sλϕ)2|r|2 dx dt

+

∫ T

0

∫
O
e−2sα(sϕ)1/2|φ|2 dx dt

}
(3.41)

for any λ > λ01 and any s > s04 .
Step 4. It remains to estimate the local term in the right-hand side of (3.41)

containing |r|2 in terms of z and φ.
Assume that the pressure r has been normalized in such a way that∫

B01

r(t) dx = 0 ∀t ∈ (0, T ).

Then there exists C > 0 such that∫
B01

|r(t)|2 dx ≤ C

∫
B01

|∇r(t)|2 dx ∀t ∈ (0, T )
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CONTROLS INSENSITIZING AN OCEAN MODEL 1635

and also ∫ T

0

∫
B01

e−2sα(sλϕ)2|r|2 dx dt ≤ C

∫ T

0

∫
B01

e−2sα̂(sλϕ̂)2|∇r|2 dx dt,

where the functions α̂ = α̂(t) and ϕ̂ = ϕ̂(t) were introduced in section 3.1.
From (3.32), we see that∫ T

0

∫
B01

e−2sα̂(sλϕ̂)2|∇r|2 dx dt ≤ C

{∫ T

0

∫
B01

e−2sα̂(sλϕ̂)2(|z|2 + |φ|2) dx dt

+

∫ T

0

∫
B01

e−2sα̂(sλϕ̂)2(|zt|2 + |∆z|2) dx dt
}
.

Therefore, in view of (3.41), we obtain

I(s, λ; z) ≤ C

{∫ T

0

∫
B01

e−2sα̂
(
s3λ4ϕ̂ 3|z|2 + (sλϕ̂)2|φ|2

)
dx dt

+

∫ T

0

∫
B01

e−2sα̂(sλϕ̂)2(|zt|2 + |∆z|2) dx dt

+

∫ T

0

∫
O
e−2sα(sϕ)1/2|φ|2 dx dt

}
.(3.42)

Step 5. The rest of the proof deals with the estimates of the local integrals
containing |∆z|2 and |zt|2. First, we will be concerned with |∆z|2.

Let us introduce a function ξ0 ∈ C4
0(B0) such that

0 ≤ ξ0 ≤ 1 and ξ0 = 1 in B01 .

Let us set ẑ(x, t) = e−sα̂ϕ̂ ξ0∆z(T−t). We want to estimate the norm ‖ẑ‖L2(B01×(0,T ))2 .
Following the arguments in [8] (see Step 4), we can deduce that∫ T

0

∫
B01

e−2sα̂(sλϕ̂)2|∆z|2 dx dt =

∫ T

0

∫
B01

s2λ2|ẑ|2 dx dt

≤ C

(∫ T

0

∫
B0

e−2sα̂s4λ2ϕ̂ 9/2|z|2 dx dt +

∫ T

0

∫
B0

e−2sα̂(sλϕ̂)2|φ|2 dx dt
)
.

(3.43)

Thus, from (3.42) we have

I(s, λ; z)

≤ C

(∫ T

0

∫
B0

e−2sα̂s4λ4ϕ̂ 9/2|z|2 dx dt +

∫ T

0

∫
B0

e−2sα̂(sλϕ̂)2|φ|2 dx dt

+

∫ T

0

∫
B01

e−2sα̂(sλϕ̂)2|zt|2 dx dt +

∫ T

0

∫
O
e−2sα(sϕ)1/2|φ|2 dx dt

)
.(3.44)

Step 6. Now we want to estimate |zt|2. Due to the regularity properties of φ, we
can use here a more straightforward argument than in [8], where the right-hand side
belongs only to L2(Q)2.
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1636 E. FERNÁNDEZ-CARA, G. C. GARCIA, AND A. OSSES

First, notice that∫ T

0

∫
B01

e−2sα̂(sλϕ̂)2|zt|2 dx dt ≤ δ

∫ T

0

∫
B01

e−2sα 1

sϕ
|zt|2 dx dt

+ δ

∫ T

0

∫
B01

e−2sα∗ 1

s3(ϕ∗)7/2
|ztt|2 dx dt

+Cδ

∫ T

0

∫
B01

e−4sα∗+2sα∗
s7λ4ϕ̂ 15/2|z|2 dx dt.

This is easily obtained by integrating by parts in time. We will later choose δ > 0
small enough.

We have the following auxiliary result.
Lemma 3.6. Let (z, r) be the solution of (3.32). Then the following estimate

holds: ∫ T

0

∫
Ω

e−2sα∗ 1

s3(ϕ∗)7/2
|ztt|2 dx dt

≤ C

(
I(s, λ; z) +

∫ T

0

∫
O
e−2sα∗

(
1

sϕ∗ |φ|
2 +

1

s3(ϕ∗)7/2
|φt|2

)
dx dt

)
.(3.45)

Proof. Multiply (3.32) by e−2sα∗
s−2(ϕ∗)−9/4ztt and integrate in Q. Noticing that∣∣∣(e−2sα∗

(ϕ∗)−9/4)t

∣∣∣ ≤ Ce−2sα∗
s(ϕ∗)−1,

after some computations we deduce that∫ T

0

∫
Ω

e−2sα∗ 1

s2(ϕ∗)9/4
|∇zt|2 dx dt

≤ C

{∫ T

0

∫
Ω

e−2sα∗ 1

sϕ∗ (|z|2 + |zt|2) dx dt

+

∫ T

0

∫
Ω

e−2sα∗
s(ϕ∗)1/4|∇z|2 dx dt +

∫ T

0

∫
O
e−2sα∗ 1

sϕ∗ |φ|
2 dx dt

}

+
1

2

∫ T

0

∫
Ω

e−2sα∗ 1

s3(ϕ∗)7/2
|ztt|2 dx dt.(3.46)

On the other hand, if we compute the time derivative of (3.32) and then we
multiply the result by e−2sα∗

s−3(ϕ∗)−7/2ztt , we find that∫ T

0

∫
Ω

e−2sα∗ 1

s3(ϕ∗)7/2
|ztt|2 dx dt

≤
∫ T

0

∫
Ω

e−2sα∗ 1

s2(ϕ∗)9/4
|∇zt|2 dx dt(3.47)

+C

(∫ T

0

∫
Ω

e−2sα∗ 1

sϕ∗ |zt|
2 dx dt +

∫ T

0

∫
O
e−2sα∗ 1

s3(ϕ∗)7/2
|φt|2 dx dt

)
.

From (3.46) and (3.47), we see that (3.45) holds.
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In view of this lemma, we have∫ T

0

∫
B01

e−2sα̂(sλϕ̂)2|zt|2 dx dt

≤ Cδ

(
I(s, λ; z) +

∫ T

0

∫
O
e−2sα∗

(
1

sϕ∗ |φ|
2 +

1

s3(ϕ∗)7/2
|φt|2

)
dx dt

)

+Cδ

∫ T

0

∫
B01

e−4sα∗+2sα∗
s7λ4ϕ̂15/2|z|2 dx dt.

If we assume that γ1 < 1, then (3−γ1)/2 > 1, and from Lemma 3.2 we deduce that
(3 − γ1)α̂/2 > α∗ for sufficiently large λ, say, λ > λ02 . Consequently, −4α̂ + 2α∗ <
−(1 + γ1)α̂ and∫ T

0

∫
B01

e−2sα̂(sλϕ̂)2|zt|2 dx dt

≤ Cδ

(
I(s, λ; z) +

∫ T

0

∫
O
e−2sα∗

(
1

sϕ∗ |φ|
2 +

1

s3(ϕ∗)7/2
|φt|2

)
dx dt

)

+Cδ

∫ T

0

∫
B01

e−(1+γ1)sα̂s7λ4ϕ̂15/2|z|2 dx dt

for any λ > λ02 and any s > s04 .

From (3.44) and this estimate, choosing δ > 0 small enough, we find

I(s, λ; z)

≤ C

{∫ T

0

∫
B0

e−(1+γ1)sα̂s7λ4ϕ̂15/2|z|2 dx dt +

∫ T

0

∫
B0

e−2sα̂(sλϕ̂)2|φ|2 dx dt

+

∫ T

0

∫
O
e−2sα

(
(sϕ)1/2|φ|2 +

1

s3(ϕ∗)7/2
|φt|2

)
dx dt

}

for all λ > λ02 and s > s04 .

Obviously, this yields (3.8). The proof of (3.9) is very similar and in fact much
simpler, since the left-hand side of (2.1) is zero.

Thus, we have proved Lemma 3.4 for λ1 = λ02 and s1 = s04 (two parameters
depending on Ω, ω, O, and T ).

4. Some final remarks. The geometrical hypothesis ω ∩ O 
= ∅ is required to
prove the existence of both ε-insensitizing and insensitizing controls. In the first case,
this assumption is used to prove a unique continuation property (Lemma 2.1). In
the case of insensitizing controls, it is used to prove an observability inequality. The
problem is completely open when ω ∩ O = ∅ (see [18]).

The existence of insensitizing controls is guaranteed by the null controllability
property of a cascade system of quasi-geostrophic equations (1.5)–(1.6). In this case,
the control acts indirectly on one variable through the other one. Of course, this
controllability property is stronger than the null controllability of a single quasi-
geostrophic system.
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To prove the null controllability property of the cascade system, there are two
main difficulties.

First is the need for a unique continuation result for the adjoint system
(2.2)–(2.1). The presence of the Coriolis term permits us to relate the second compo-
nent of the velocity and its associated vorticity, and this is a key point in the proof
of uniqueness (see Remark 2).

The second problem is the need for an observability inequality for the adjoint.
This inequality comes from an appropriate (global) Carleman estimate. The main
idea is to estimate φ in terms of curlφ in a ball contained in ω ∩O in the right-hand
side of (3.10). This is possible again due to the presence of the Coriolis term (in fact,
our method does not work in the case of the usual Stokes equations). We rewrite the
system using the stream function and the vorticity and we see that the Coriolis term
leads to an expression of the horizontal derivative of the stream function in terms of
the vorticity. In this way, we are able to avoid estimates of pressure terms, which
are in general very hard to deduce (see the appendix in section 3). Moreover, the
weight in the right-hand side of (3.10) is larger than the weight in the left-hand side.
Accordingly, the terms in the right cannot be absorbed directly as in the case of the
heat equation (see [18]) and this fact requires some additional work.
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