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A STUDY ON THE SPECTRUM OF THE SAMPLED-DATA
TRANSFER OPERATOR WITH APPLICATION TO ROBUST

EXPONENTIAL STABILITY PROBLEMS∗

TOMOMICHI HAGIWARA†

Abstract. This paper begins by studying some spectral properties of the transfer operators
of sampled-data systems described by applying the lifting technique. Through a “nonasymptotic”
characterization of the transfer operator, its spectrum is determined in terms of finite-dimensional
eigenvalue problems. Then, it is shown that a close connection with such eigenvalue problems
and the exponential stability condition can be exploited to study the robust internal (exponential)
stability problem of sampled-data systems. Since the transfer operator is relevant to input-output
characteristics, the relationship between input-output stability and internal stability is also discussed
in the context of sampled-data systems.
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1. Introduction. The widespread use of digital controllers has stimulated the
study of sampled-data systems with their intersample behavior taken into account,
and a lot of important results have been obtained since the late 1980s. Among them
are the studies on the H∞ control problem [1, 2, 3, 4] and robust stability problem
[5, 6, 7, 8, 9] of sampled-data systems, as well as the continuous-time lifting technique
[1, 2, 10] and the frequency response theory [11, 12]. In the studies of the H∞ control
and robust stability problems, L2-stability [13], L2-induced norm [14], and H∞ norm
[15] of sampled-data systems play important roles, and these notions can be dealt with
also in the frequency domain with the transfer operator [1, 2, 10, 11, 15] of sampled-
data systems. Also, another frequency-domain study has been conducted in [16, 17]
by introducing the notion of positive-real sampled-data systems, and some phase
properties of sampled-data systems were discussed. This study has been extended
in [18, 19], which lead to the positive-realness approach (or the passivity approach)
to the robust stability analysis of sampled-data systems. Transfer operators play an
important role also in such an approach.

Thus, it is important to study the properties of the transfer operators so that
the scope of the frequency-domain studies of sampled-data systems can be extended
further. In this paper, we focus on the spectrum of transfer operators, and clarify some
useful spectral properties. More specifically, we show that the spectrum of the transfer
operator can be characterized by means of finite-dimensional eigenvalue problems.
Then, it is demonstrated that such spectral analysis is indeed useful in the study
of sampled-data systems by applying it to the robust internal (exponential) stability
analysis of sampled-data systems. Furthermore, since the transfer operator is relevant
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314 TOMOMICHI HAGIWARA

to the input-output characteristics, we apply the results of the spectral analysis to
relate (robust) L2-stability and (robust) internal stability in the context of sampled-
data systems. The consequent result is not surprising, but to the best knowledge of the
author, studies relating robust L2-stability and robust internal stability in the context
of sampled-data systems are rare, with the study by the author and a colleague in [9]
being an exception. Nevertheless, that study in [9] is limited to the case of additive
and multiplicative perturbations, unfortunately, and it is quite hard to extend it to the
general case. The present paper shows that our spectral analysis provides a simple
and rigorous proof to relate these two stability notions. Here, it would be worth
mentioning that a similar problem of relating L2-stability and exponential stability
has been studied, e.g., in [20, 21] for a class of (ordinary type of) infinite-dimensional
systems, but those studies do not cover the present setting nor do our developments
here follow similar techniques to those employed therein.

The contents of this paper are as follows. In section 2, we review the notion of the
transfer operator Ĝ(z) of sampled-data systems with a slight but crucial extension
(i.e., its nonasymptotic characterization). This characterization allows us to introduce
some appropriate nonzero initial states to the study of the mapping defined by the
transfer operator, and makes it fairly easy to carry out the following discussions (e.g.,
the derivations of Theorem 5 and Proposition 7). In section 3, we study the spectral
properties of the transfer operators, and show that they are nearly as amenable as
those of compact normal operators, even though the transfer operators are generally
noncompact and nonnormal. Based on these properties, we further show that the
spectrum of the transfer operator Ĝ(z) can be characterized with finite-dimensional

eigenvalue problems for each z such that Ĝ(z) is well-defined. Section 4 applies the
spectral study in section 3 to the study of robust internal (exponential) stability of
sampled-data systems against perturbations. More specifically, subsection 4.1 stud-
ies the case where the perturbations are identities up to a real scalar constant, and
the basic result for this case is applied in subsection 4.2 to the study of robust in-
ternal stability of sampled-data systems with general perturbations. In particular,
we give a rigorous proof to the equivalence of robust L2-stability and robust inter-
nal stability when the nominal sampled-data system and perturbations are internally
stable; roughly speaking, we show that whatever robust internal stability/robust per-
formance problems we may consider in the sampled-data setting, the conditions in
the L2-stability context are enough to guarantee the robust stability/performance in
the internal stability context, provided that the perturbations belong to the class
of internally stable finite-dimensional LTI (linear time-invariant) or h-periodic sys-
tems (where h is the sampling period). Section 5 concludes the paper with some
remarks.

We use the following notation in this paper: λ(·) denotes the set of the eigenvalues
of a finite-dimensional matrix, while σ(·) denotes the spectrum of an operator. σle(·),
σre(·), and σe(·) denote the left essential, right essential, and essential spectrum,
respectively, [22]. Furthermore, whenever we refer to internal stability in what follows,
it means exponential stability.

2. Transfer operators of sampled-data systems. In this paper, we deal with
the sampled-data system Σ0 shown in Figure 1, where P denotes the continuous-
time generalized plant, Ψ the discrete-time controller, H the zero-order hold, and
S the ideal sampler. Solid lines represent continuous-time (vector) signals, while
dashed lines discrete-time (vector) signals. The underlying sampling period will be
denoted by h. We assume that the state-space representations of P and Ψ are given,
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Fig. 1. Open-loop sampled-data system Σ0.
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Fig. 2. Closed-loop sampled-data system ΣΔ.

respectively, by

dx

dt
= Ax + B1w + B2u

z = C1x + D11w + D12u(1)

y = C2x

and

ξk+1 = AΨξk + BΨyk

uk = CΨξk + DΨyk,(2)

where yk = y(kh) and u(t) = uk (kh ≤ t < (k + 1)h). In the following arguments,
we assume that Σ0 is internally (exponentially) stable [13, 23]. For lack of better
terminologies, we call Σ0 an open-loop sampled-data system, while if w is given as
w = Δz with some causal mapping Δ, then we call the resulting system a closed-loop
sampled-data system, which we denote by ΣΔ. Also, the corresponding input-output
mapping from [pT , qT ]T to [fT , zT ]T in Figure 2 will be denoted by GΔ in the
following, when it is well-defined. If GΔ maps L2 into L2, and if its L2-induced norm
is bounded, then GΔ is said to be L2-stable. In subsection 2.1, we review the lifted
description and transfer operator [1, 2, 10, 11, 15] of the open-loop sampled-data
system Σ0. Then, in subsection 2.2, a slightly different interpretation of the transfer
operators of sampled-data systems is given.
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316 TOMOMICHI HAGIWARA

2.1. Lifted description and transfer operators of sampled-data systems.
With a slight abuse of notation, the Hilbert space of square integrable vector functions
over the time interval [0, h) with the standard inner product will be denoted by K,
whatever the dimension of the vector may be. The Euclidean space with dimension
dim(x) will be denoted by Fx. We also define Fu and Fξ in a similar way, and we
further define F := Fx ⊕ Fξ. Now, introduce the following matrices Ad, Bd2, and
Cd2, and the operators B1, C1, D11, and D12:

Ad := exp(Ah), Bd2 :=

∫ h

0

exp(Aσ)B2dσ, Cd2 := C2(3)

B1 : K � w �→
∫ h

0

exp (A(h− σ))B1w(σ)dσ ∈ Fx(4)

C1 : Fx � x �→ z ∈ K, z(θ) = C1 exp (Aθ)x(5)

D11 : K � w �→ z ∈ K, z(θ) =

∫ θ

0

C1 exp (A(θ − σ))B1w(σ)dσ + D11w(θ)(6)

D12 : Fu � u �→ z ∈ K, z(θ) =

∫ θ

0

C1 exp (A(θ − σ))B2dσ u + D12u.(7)

Then, the lifted description of the sampled-data system Σ0 is given by

χk+1 = Aχk + Bŵk, ẑk = Cχk + Dŵk,(8)

where χk := [x(kh)T , ξTk ]T , and the associated transfer operator Ĝ(z) is defined by

Ĝ(z) := C(zI −A)−1B + D,(9)

where

A :=

[
Ad + Bd2DΨCd2 Bd2CΨ

BΨCd2 AΨ

]
: F → F , B :=

[
B1

0

]
: K → F

C :=
[
C1 D12

] [ I 0
DΨCd2 CΨ

]
: F → K, D := D11 : K → K.(10)

In (8) above, ŵ and ẑ denote, respectively, the lifted representations of w and z (see
the subsequent subsection for details). Note that A is a finite-dimensional matrix,

and that Ĝ(z) takes a value on the class of linear bounded operators on K for each z

unless z is an eigenvalue of A. The importance of Ĝ(z) lies in that it captures all the
intersample behavior (i.e., the aliasing phenomena) in Σ0 [1, 2, 10, 15, 11].

In the following, we assume dim(w) = dim(z) so that D11 is square, unless other-
wise stated explicitly. Also, with a slight abuse of notation1, the operator of multipli-
cation by the matrix D11 that maps w(·) ∈ K to z(·) = D11w(·) ∈ K is also denoted
by D11. Then, the operator D11 given in (6), known as the compression operator, can
be rewritten as D11 = D110+D11 with an obvious definition of D110, and accordingly,
D can also be rewritten as D = D0 +D11. Then, D0 is compact, so that D (and thus

Ĝ(z)) is compact if and only if D11 = 0 (see, e.g., [11]).

1It will be clear from the context whether D11 refers to the operator of multiplication or the
underlying matrix. However, it would be worthwhile mentioning that whenever we refer to σle(D11),
σre(D11), and σe(D11), we are talking about D11 viewed as an operator, because otherwise these
spectra are always empty.
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SPECTRUM AND ROBUST STABILITY OF SAMPLED-DATA SYSTEMS 317

2.2. Nonasymptotic input-output relations about EMP-signals. In this
subsection, we aim at giving a “nonasymptotic” characterization of the transfer op-
erator Ĝ(z). That interpretation is not surprising and only a slight modification of
the well known “asymptotic” interpretation of the transfer operator, and is largely a
review of the preliminary part of the arguments in [24], but does play an important
role in the subsequent arguments. As such, we review somewhat detailed descriptions
for this interpretation. To this end, let us begin by reviewing the lifting technique
used in the derivation of the lifted description of sampled-data systems. Given a (vec-
tor) signal w over the nonnegative time interval [0,∞), the lifting operation of w is
defined as

w �→ {ŵk}∞k=0,(11)

where ŵk is given by

ŵk(θ) = w(kh + θ) (0 ≤ θ < h, k = 0, 1, 2, · · ·).(12)

The signal w is called an EMP-signal of characteristic multiplier ζ [25] if its lifted
representation satisfies

ŵk(θ) = ŵ0(θ)ζ
k (0 ≤ θ < h)(13)

for some ŵ0 ∈ K and a complex number ζ, where EMP stands for “exponentially
modulated periodic.” In this case, let us denote the “initial function” ŵ0 of the EMP-
signal w by ŵ0 = INI(w). Conversely, let us denote by w = EMP(ŵ0) the operation
of constructing an EMP-signal w from the initial function ŵ0 according to (13) and
then (12). Note in these notations that we suppress the underlying characteristic
multiplier ζ for simplicity, and that INI(w)(θ) is nothing but w(θ) for 0 ≤ θ < h.

It is a fact [11] that the output z of Σ0 to the EMP-signal w = EMP(ŵ0) with
characteristic multiplier ζ 	∈ λ(A) tends to some EMP-signal z� of the same char-
acteristic multiplier ζ and that the initial function ẑ0 = INI(z�) of the asymptotic
response z� is given by

ẑ0 = Ĝ(ζ)ŵ0.(14)

Note carefully that ẑ0(θ) (0 ≤ θ < h) in (14) is generally different from the actual
response z(t) (0 ≤ t < h) of Σ0 for the zero initial state (given by z = Dŵ0), because
the actual response z is not exactly an EMP-signal over the entire nonnegative time
interval but it just tends to the EMP signal z� as t goes to infinity.

However, given any ŵ0 ∈ K, let us take ẑ0 given by (14) for ζ 	∈ λ(A), and let
us construct the EMP-signals w = EMP(ŵ0) and z = EMP(ẑ0) with characteristic
multiplier ζ. Then, it is easy to show that there exists an appropriate initial state
χ0 of Σ0 (to be more precise, χ0 is given by (ζI − A)−1Bŵ0) such that this EMP-
signal input w together with the initial state χ0 yields exactly the above-constructed
EMP-signal output z over the entire nonnegative time interval [0,∞). Conversely, it
is also easy to show that if under some initial state χ0, the output z of Σ0 to some
EMP-signal input w with characteristic multiplier ζ is exactly an EMP-signal with
the same characteristic multiplier over the whole nonnegative time interval [0,∞),
then ŵ0 = INI(w) and ẑ0 = INI(z) are related by (14).

Now, let us introduce the following definition.
Definition 1. The EMP-signals w and z with the same characteristic multiplier

are said to be consistent with the sampled-data system Σ0 if there exists an initial state
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318 TOMOMICHI HAGIWARA

χ0 of Σ0 such that the input w yields exactly the output z over the entire nonnegative
time interval [0,∞).

Then, the above arguments can be summarized as follows.
Lemma 2. Suppose that ζ 	∈ λ(A). The relation (14) holds if and only if the

EMP-signals w = EMP(ŵ0) and z = EMP(ẑ0) with characteristic multiplier ζ are
consistent with the sampled-data system Σ0.

3. Characterization of the spectrum of the transfer operator. The pur-
pose of this section is to give a method for determining the spectrum of Ĝ(ζ) for
ζ 	∈ λ(A). To give such a method, it is helpful to begin by studying some spectral

properties of Ĝ(ζ). This is done in subsection 3.1, while in subsection 3.2 we give a

method to determine σ(Ĝ(ζ)).

3.1. Preliminary considerations on the spectrum. Let λ(D11) denote the
set of the eigenvalues of the matrix D11. Then, it is easy to show that

σle(Ĝ(ζ)) = σre(Ĝ(ζ)) = σe(Ĝ(ζ)) = σle(D11)

= σre(D11) = σe(D11) = σ(D11) = λ(D11)(15)

(see, e.g., [22], in particular Proposition XI.4.2, and [26], in particular Corollary
XXIII.2.5). Since the essential spectrum is a subset of the spectrum, it follows that

λ(D11) is a subset of σ(Ĝ(ζ)) for any ζ 	∈ λ(A). Hence, to find all the points in the

spectrum of Ĝ(ζ), it is enough for us to construct a method to check if γ 	∈ λ(D11)

is a point in the spectrum of Ĝ(ζ). Thus, we assume γ 	∈ λ(D11) without loss of
generality.

Since D = D0 + D11, we have

γI − Ĝ(ζ) = (γI −D11)(I − Ĝγ(ζ)),(16)

where

Ĝγ(z) := (γI −D11)
−1

(
C(zI −A)−1B + D0

)
.(17)

Hence, by (16), it is obvious that γI − Ĝ(ζ) is invertible if and only if I − Ĝγ(ζ)

is. Since Ĝγ(ζ) is a compact operator because D0 is, it follows that γ 	∈ λ(D11) is a

point in the spectrum of Ĝ(ζ) if and only if Ĝγ(ζ) has an eigenvalue at 1. This is
an important step for the following discussion, while the following result will also be
useful.

Lemma 3. If γ1 ∈ ∂σ(Ĝ(ζ)) and γ1 	∈ λ(D11), then γ1 is an isolated point of

σ(Ĝ(ζ)).
Proof. By (15), the assertion follows immediately from Theorem XI.6.8 of

[22].
Now, we are in a position to show the following result.
Theorem 4. σ(Ĝ(ζ)) \σe(Ĝ(ζ)) coincides with σp(Ĝ(ζ)) \σe(Ĝ(ζ)), where σp(·)

denotes the point spectrum (i.e., the set of the eigenvalues of an operator). Further-

more, every γ ∈ σp(Ĝ(ζ)) \ σe(Ĝ(ζ)) is an isolated point of σ(Ĝ(ζ)), and has finite
multiplicity.

Remark 3.1. The above assertion is well known for a compact operator and also
for a normal operator ([22, Proposition XI.4.6]), but Ĝ(ζ) is generally noncompact
and nonnormal. It is not hard to see that the assertion in particular implies that the
accumulation points of σ(Ĝ(ζ)) can exist only at σe(Ĝ(ζ)) = λ(D11), which consists
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SPECTRUM AND ROBUST STABILITY OF SAMPLED-DATA SYSTEMS 319

of finitely many points, and that σ(Ĝ(ζ)) \ σe(Ĝ(ζ)) (and thus σ(Ĝ(ζ)), too) is a
countable set. Hence, this proposition suggests that the properties of the spectrum
of Ĝ(ζ) are almost as amenable as that of a compact normal operator.

Proof of Theorem 4. Since σe(Ĝ(ζ)) = λ(D11), for the first assertion it is enough

to show that γ 	∈ λ(D11) belongs to σ(Ĝ(ζ)) only if it is an eigenvalue of Ĝ(ζ). To

show this, suppose that γ 	∈ λ(D11) is a point in σ(Ĝ(ζ)). Then, by the arguments

preceding Lemma 3, Ĝγ(ζ) has an eigenvalue at 1. This implies that there exists

some nonzero ŵ ∈ K such that (I − Ĝγ(ζ))ŵ = 0. Hence, it follows from (16) that

(γI − Ĝ(ζ))ŵ = 0, which implies that γ is an eigenvalue of Ĝ(ζ). This completes the
proof for the first assertion.

As for the second assertion, it is a direct consequence from [22, Corollary XI.2.4]

that γ ∈ σp(Ĝ(ζ)) \ σe(Ĝ(ζ)) (which we abbreviate as σp \ σe in what follows) has

finite multiplicity, since for γ 	∈ λ(D11) = σe(Ĝ(ζ)), γI−Ĝ(ζ) is Fredholm [22]. Thus,

it remains only to show that every γ ∈ σp \ σe is an isolated point of σ(Ĝ(ζ)). Let

γ ∈ σp \ σe. If γ ∈ ∂σ(Ĝ(ζ)), then the assertion follows immediately from Lemma 3.

If γ 	∈ ∂σ(Ĝ(ζ)), on the other hand, then γ ∈ σ(Ĝ(ζ)) is an interior point of σ(Ĝ(ζ)),

and thus there exists some ε-neighborhood of γ contained in σ(Ĝ(ζ)). This, together

with the compactness of σ(Ĝ(ζ)) means that we can take some number γ1 such that

γ1 ∈ ∂σ(Ĝ(ζ)) and at the same time γ1 is not an isolated point of σ(Ĝ(ζ)), where
such γ1 can always be taken so that γ1 	∈ λ(D11) since λ(D11) is only a finite set.

This contradicts Lemma 3, and hence γ 	∈ ∂σ(Ĝ(ζ)) cannot occur. This completes
the proof.

3.2. Reduction to a finite-dimensional eigenvalue problem. Theorem 4
tells us that in essence we have only to find the eigenvalues of the operator Ĝ(ζ) to
determine its spectrum. The purpose of this subsection is to give a result with which
we can characterize the eigenvalues of Ĝ(ζ) through a finite-dimensional eigenvalue
problem, and this is facilitated by the “nonasymptotic” characterization of the transfer
operator.

To this end, let us consider the closed-loop sampled-data system Σ1/γ (i.e., ΣΔ

with Δ set to 1
γ I in Figure 2), where γ is a nonzero complex number. Let ζ 	∈ λ(A),

and suppose that the responses of w and z in this closed-loop sampled-data system
under the input p = 0, q = 0 and some appropriate initial state χ0 = [x(0)T , ξT0 ]T

are exactly EMP-signals of characteristic multiplier ζ over the entire nonnegative
time interval. Then, it follows from Lemma 2 that (14) holds for ŵ0 = INI(w) and
ẑ0 = INI(z). On the other hand, from Figure 2 (recall that Δ = 1

γ I), it is obvious

that ŵ0 = 1
γ ẑ0. Hence we are led to

(γI − Ĝ(ζ))ŵ0 = 0.(18)

Thus, we can conclude that γ is an eigenvalue of Ĝ(ζ) if ŵ0 	= 0. This suggests that we
can determine the eigenvalues of the transfer operator of the open-loop sampled-data
system Σ0 by considering the responses of the closed-loop sampled-data system Σ1/γ .

Now, when q = 0, the continuous-time part of Σ1/γ is described by

dx

dt
= Aγx + B1γp + B2γu, z = C1γx + D11γp + D12γu, y = C2x,(19)
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320 TOMOMICHI HAGIWARA

where

Aγ :=A+B1(γI−D11)
−1C1, B1γ := γB1(γI−D11)

−1, B2γ :=B2+B1(γI−D11)
−1D12,

C1γ := γ(γI−D11)
−1C1, D11γ := γ(γI−D11)

−1D11, D12γ := γ(γI−D11)
−1D12.

(20)

Hence, by also letting p = 0, the lifted description of this closed-loop “autonomous”
sampled-data system Σ1/γ (i.e., without an external input) is given by

χk+1 = Aγχk, ẑk = Cγχk,(21)

where Aγ and Cγ are, respectively, given by A and C in (10) with A, B2, C1, and D12

replaced by Aγ , B2γ , C1γ , and D12γ in (20), respectively. Note that Aγ is nothing
but the state transition matrix of the “discrete-time equivalent” of Σ1/γ .

We are in a position to state the following theorem.
Theorem 5. Given a complex number γ 	∈ λ(D11) and a complex number ζ 	∈

λ(A), the operator Ĝ(ζ) has an eigenvalue at γ if and only if ζI−Aγ is not invertible.
Proof. We first establish the assertion assuming γ 	= 0. Let us first prove the

sufficiency. Suppose that ζI −Aγ is not invertible.
Then, by the first equation in (21), the system Σ1/γ has a nontrivial solution of

the form

χk = χ0ζ
k(22)

for some nonzero initial state χ0. Hence, by the second equation in (21), we can see
that z is an EMP-signal with characteristic multiplier ζ. Since w = 1

γ z, it follows that

w is also an EMP-signal with the same characteristic multiplier (carefully note that
w and z could be both zero at this stage of our discussion). Thus, by the arguments
preceding this theorem, we are led to (18). Therefore, it remains only to show that
ŵ0 	= 0. To show this, suppose the contrary. Then, w = 0 so that Σ1/γ is essentially
nothing but Σ0 with w = 0. Then, the existence of the nontrivial solution (22)
contradicts the assumption that ζ 	∈ λ(A).

To prove the necessity, suppose that Ĝ(ζ)ŵ0 = γŵ0 for some ŵ0 	= 0. Then,
letting ẑ0 := γŵ0, Lemma 2 implies that the EMP-signals w = EMP(ŵ0) and z =
EMP(ẑ0) = γw with characteristic multiplier ζ are consistent with the open-loop
sampled-data system Σ0, so that these two EMP-signals can be represented as the
responses of w and z in the closed-loop autonomous (i.e., p = 0, q = 0) system Σ1/γ

for some appropriate initial state χ0. Furthermore, since w 	= 0 is an EMP-signal, it
follows readily that the discrete-time signal ŵk(θ) is represented as ŵ0(θ)ζ

k, which
is not identically zero as a sequence in k at least for some θ ∈ [0, h) (note that
the “sampling” of ŵk(·) at θ is well defined since the signal w is well behaved as a
response of the autonomous sampled-data system Σ1/γ). Thus, from a basic property
of discrete-time systems, it must be true that ζ is an eigenvalue of the transition
matrix of the discrete-time equivalent of Σ1/γ viewed at every sampling period h,
which is given by Aγ . This completes the proof for the case of γ 	= 0.

Finally, let us consider the case of γ = 0 (note that D11 is invertible in this case by

the assumption γ 	∈ λ(D11)). In this case, it is enough to consider Ĝ(ζ) + αI (α 	= 0)
and study the condition for it to have an eigenvalue at α. Noting that considering
Ĝ(ζ) + αI instead of Ĝ(ζ) is nothing but replacing D11 with D11 + αI (for which
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α 	∈ λ(D11 + αI)), and observing the form of Aγ and B2γ given in (20), it is easy to
see that the statement is valid even when γ = 0.

Summarizing the arguments in this section, it follows that Theorems 4 and 5,
together with (15), give a method to determine the spectrum of Ĝ(ζ) for each ζ 	∈
λ(A). That is, every point in λ(D11) belongs to σ(Ĝ(ζ)), and the remaining points
in the spectrum can be found by searching for γ such that ζI −Aγ is not invertible2.

Since the spectral radius of Ĝ(ζ) is no larger than ‖Ĝ(ζ)‖, it is enough to consider

the disk {γ : |γ| ≤ ‖Ĝ(ζ)‖} in such a search. An easily computable upper bound

for ‖Ĝ(ζ)‖ can be obtained by an obvious extension of Theorem 1 of [27] (i.e., this
theorem holds even if |ζ| 	= 1) when D11 = 0; if D11 	= 0, a simple upper bound is
obtained from a triangle inequality in which the upper bound is increased by ‖D11‖.
These considerations give a basis for the numerical computation of σ(Ĝ(ζ)), but we
do not pursue numerical studies in this paper. Instead, we advance our study to
demonstrate the importance of our spectral analysis for theoretical studies such as
the stability and robust stability problems of sampled-data systems.

Remark 3.2. We point out that most of the discussions in this section carries
over, without essential difficulties, to the case where the generalized plant P is a
finite-dimensional linear continuous-time h-periodic (FDLCP) system and Δ is an
internally stable FDLCP system, where h is the sampling period; the only nontrivial
point will be the treatment of the essential spectrum. However, it is not hard to see
that (15) still holds with λ(D11) replaced by

λ[0,h](D11) := {λ | the set of t ∈ [0, h] such that |det(λI −D11(t))| < γ has

nonzero measure whenever γ > 0} ,(23)

which follows from section XXIII.2 of [26]. Thus, the arguments in this section still
apply mutatis mutandis. The only point that requires some more careful arguments
will be the isolatedness assertion in Theorem 4, since σe(Ĝ(ζ)) = λ[0,h](D11) can now
form a closed curve; thus the arguments in the proof of Theorem 4 are not enough
to establish the isolatedness of some eigenvalues within the essential spectrum radius.
Fortunately, however, the isolatedness property is not relevant for Theorem 5, which
will be used as a major tool in the following section which demonstrates the usefulness
of the spectral analysis in this section.

4. Application to robust internal stability problems. In [16, 17], the
positive-realness notion was introduced to sampled-data systems and some phase
properties of sampled-data systems were also addressed. A more advanced study on
the positive-realness of sampled-data systems was pursued, and the positive-realness
gap index ρmin was introduced in [18, 19]. It was also shown in [19] that this index
plays an important role in the positive-realness approach (or the passivity approach)
to the stability analysis of sampled-data systems. In this section, we first review the
above-mentioned study in [19] briefly, and then show that our study in the preceding
sections has an important application to such or more general stability and robust
stability analysis.

In subsection 4.1, we deal with the gain margin analysis problem of sampled-
data systems and derive some useful results by applying the spectral analysis in the

2It would be possible to determine the multiplicity of γ as an eigenvalue of Ĝ(ζ) by considering
the geometric multiplicity of ζ as an eigenvalue of ζI −Aγ , if we introduce some sort of controllabil-
ity/observability conditions. However, we do not pursue this direction in this paper.
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preceding section (in particular, Theorem 5). Then, such results will be applied in
subsection 4.2 to give a result about robust stability of sampled-data systems.

4.1. Gain margin analysis for internal stability in the sampled-data
context. The transfer operator Ĝ(z) of the internally stable sampled-data system
Σ0 is said to be strongly positive-real [19] if there exists a positive number ε such that

Ĝ(z) + Ĝ(z)∗ ≥ εI (∀|z| ≥ 1).(24)

The transfer operator Ĝ(z) is not strongly positive-real, in general, but we can consider
the following number:

ρmin := inf
ρ>0

{
Ĝ(z) + ρI is strongly positive-real

}
≥ 0.(25)

This number is called the positive-realness gap index for Σ0, and plays an important
role in the stability analysis as shown in [19]; one important result shown about this
index is that for k > 0, the (negative feedback) closed-loop sampled-data system Σ−k

(i.e., ΣΔ with Δ set to −kI), or to be more precise, the input-output mapping G−k

is L2-stable if 0 < k < kPR
max, where

kPR
max := 1/ρmin.(26)

By a suitable construction of the generalized plant P , this “gain margin analysis
problem” in the context of sampled-data control can represent a sort of stability-
radius analysis problem with respect to the uncertainties in the physical parameters
of the plant, and as such, to compute kPR

max is quite important. In [19], an efficient
finite-dimensional state-space method for the computation of ρmin and thus kPR

max

was given. Furthermore, an iterative procedure was given to compute the number
kmax(≥ kPR

max), which is defined as the largest k̄ such that Σ−k (k > 0) is internally
stable for all k < k̄. However, in the derivation of that procedure, the following
result was used without proof ; we now give its proof by applying the spectral analysis
results in the preceding section so that the procedure for computing kmax given in
[19] is validated rigorously.

Proposition 6. If Σ0 is internally stable, then Σ−k is internally stable for all
k ∈ (0, kPR

max).
Proof. Now, suppose the contrary. Then, by the definition of internal stability

[13, 23], there exists some k� ∈ (0, kPR
max) such that the state transition matrix of Σ−k�

has an eigenvalue on or outside the unit circle, say at ζ�. Therefore, it follows from
the definition of Aγ that if we put −ρ� := −1/k�, then ζ�I − A−ρ� is not invertible
where |ζ�| ≥ 1. Here, note that

ρ� > ρmin ≥ 0(27)

since 0 < k� < kPR
max by the assumption. Thus, by the properties of strongly positive-

real transfer operators [19], we have D11 +DT
11 + 2ρ�I > 0. This in particular implies

that −ρ� 	∈ λ(D11). Summarizing the above arguments and applying Theorem 5, we

are led to the conclusion that Ĝ(ζ�) has an eigenvalue at −ρ�. This in particular

implies that Ĝ(ζ�) + Ĝ(ζ�)∗ + 2ρ�I 	> 0. Since |ζ�| ≥ 1, it follows that Ĝ(z) + ρ�I
is not a strongly positive-real transfer operator, and hence ρ� ≤ ρmin. This clearly
contradicts (27). Hence, we have established that Σ−k is internally stable for all
k ∈ (0, kPR

max).
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It would be worthwhile mentioning that the above proposition can be extended
to Σk (k > 0) by considering −Ĝ(z) instead and redefining ρmin and thus kPR

max

accordingly.
Next, we claim Proposition 7 given below, which plays a crucial role in the robust

stability analysis in the following subsection.
Proposition 7. Suppose that Σ0 is internally stable. Then, for each fixed k, Σk

is internally stable if and only if Gk is L2-stable.
Remark 4.1. This proposition does not say that an (open-loop) sampled-data

system is internally stable if and only if it is L2-stable, an assertion (the sufficiency
part) that is obviously false; note that this proposition deals only with such (closed-
loop) sampled-data systems that can arise from an internally stable sampled-data
system. Note also that the condition 1/k 	∈ λ(D11), which is the well-posedness
condition of Σk and at the same time the well-definedness condition for Gk, is implicit
in the proposition. To be more precise, if we say that Σk is internally stable or L2-
stable, it in particular means that 1/k 	∈ λ(D11). Further, note that this proposition
shows in particular that kmax,L2

= kmax, where kmax,L2
denotes the largest number k̄

such that Gk is L2-stable whenever 0 < k < k̄, while kmax has been defined similarly
but in terms of internal stability. It should be stressed, however, that the assertion
of the above proposition holds even if k > kmax, as long as Σk or Gk is stable for
such k.

Proof of Proposition 7. Let us begin with the necessity part. It is not hard
to see by the inspection of the procedure for computing kmax given in [19] that the
set of k for which Σk is internally stable is a subset of those k for which Σk is L2-
stable3. Hence, the necessity assertion follows immediately. (Instead of this proof

that is based on the transfer operator Ĝ(z) and the spectral analysis results in the
preceding section as a whole, an alternative proof is also possible in which we use
the well-known fact that an internally stable sampled-data system is L2-stable under
mild conditions [13, 23].)

To show the sufficiency part, we assume that Σk is not internally stable for some
k (i.e., ζI − Aγ with γ := 1/k is not invertible for some |ζ| ≥ 1), and show that Gk

is not L2-stable. Here, it is enough to assume 1/k 	∈ λ(D11), because otherwise Gk is
not L2-stable as stated in Remark 4.1.

Since ζ 	∈ λ(A) by the internal stability assumption of Σ0, it follows from Theo-

rem 5 that Ĝ(ζ)ŵ0 = γŵ0 for some ŵ0 	= 0. Hence by Lemma 2, there exists an ap-
propriate initial state χ0 = χ� of Σ0 such that w = EMP(ŵ0) and z = γEMP(ŵ0) are
consistent with Σ0 (the corresponding characteristic multiplier for the EMP signals is
ζ throughout the proof). Now, let us denote by z� the response of z in Σ0 when its ini-
tial state is χ0 = χ� and its input is w = 0. Note that z� ∈ L2 by the internal stability
of Σ0, which is well known, e.g., in the context of sampled-data H2 problem [23]. Also,
by linearity, it follows immediately that Σ0 yields the response z = γEMP(ŵ0) − z�

when the initial state is χ0 = 0 and the input is w = EMP(ŵ0). Hence, it is easy to
see that ΣΔ with Δ = (1/γ)I yields f = w = EMP(ŵ0), z = γEMP(ŵ0) − z�, and
e = γEMP(ŵ0) when the initial state is χ0 = 0 and the inputs are p = 0 ∈ L2 and

3In a sense, a direct application of the arguments in [19] is limited only to k ∈ [0, kmax]. However,
if Σk is internally stable for some k = k� �∈ [0, kmax], then we can readily introduce a modified
generalized plant Pk� such that Σk can be viewed as Σ�

k′ (and thus Σk� can be viewed as the open-
loop sampled-data system Σ�

0 ), where k′ = k− k� and Σ�
k denotes Σk with P replaced by Pk� (this

idea of introducing a modified generalized plant is quite similar to that employed in the procedure
for computing kmax; see [19] for details). Hence, we can repeat the same arguments on Σ�

k , which
implies that the assertion can be established even for those k around k� �∈ [0, kmax].
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q = z� ∈ L2. Noting that none of these f , w, z, and e belong to L2 since |ζ| ≥ 1, we
can conclude that Gk is not L2-stable.

Remark 4.2. Even though it can be seen that Proposition 6 is implied by Proposi-
tion 7, it should be noted that the independent proof of Proposition 6 is indispensable.
This is because in the proof of Proposition 7, we have referred to the procedure for
computing kmax stated in [19], which in turn has been validated rigorously by the
very proof of Proposition 6.

4.2. Robust internal stability of sampled-data systems. Now, we are in
a position to demonstrate the significance of Proposition 7, not merely in justifying
the arguments of [19] about the computation of kmax through Proposition 6. More
specifically, we give the following theorem about robust stability of the sampled-data
system ΣΔ, which clarifies the relationship between robust L2-stability and robust
internal (exponential) stability.

Theorem 8. Consider the closed-loop sampled-data system ΣΔ shown in Fig-
ure 2, where we assume that D11 is possibly nonsquare and Δ ∈ Δ for some set Δ of
(possibly nonsquare) finite-dimensional linear time-invariant (FDLTI) internally sta-
ble systems, and suppose that Σ0 is internally stable. Then, ΣΔ is internally stable
for all Δ ∈ Δ if and only if GΔ is L2-stable for all Δ ∈ Δ.

Proof. The assertion is almost just a direct consequence from Proposition 7, but
we need some careful arguments.

Let us begin with the sufficiency proof. Consider the (series-connected) open-loop
sampled-data system Σ0Δ, and observe that it can be represented as the open-loop
sampled-data system shown in Figure 1 with the generalized plant P replaced by
PΔ := P diag[Δ, I] (for which the “D11 matrix” is square and thus the preceding
arguments apply). Also, by the internal stability assumptions, Σ0Δ is internally
stable. Thus, this reformation corresponds to replacing Σ0 and Δ by Σ0Δ and 1,
respectively, if we interpret it in the closed-loop sampled-data system in Figure 2; let
us denote by G′

Δ the corresponding input-output mapping of thus reformed closed-
loop sampled-data system. Since GΔ is L2-stable for each Δ ∈ Δ, it is straightforward
to show that G′

Δ is also L2-stable for each Δ ∈ Δ. Thus, applying Proposition 7 with
k = 1 leads to the assertion.

To show the necessity, we also consider the closed-loop sampled-data system ΣΔ

with Σ0 and Δ replaced by ΔΣ0 and 1, respectively, and denote by G′′
Δ the corre-

sponding input-output mapping. Applying Proposition 7 with k = 1, it follows readily
that both G′

Δ and G′′
Δ are L2-stable. In view of the linearity of Σ0 and Δ (and thus

the mapping GΔ), it is not hard to show that L2-stability of G′
Δ and G′′

Δ implies that
of GΔ.

This completes the proof.
Remark 4.3. If we recall Remark 3.2, it is not hard to see that Proposition 7 and

Theorem 8 still hold even when P (and/or Δ) is a finite-dimensional linear continuous-
time h-periodic system. Also, concerning Figure 2, a typical interpretation is that P22

(the subsystem from u to y) denotes the nominal plant, while the perturbed (actual)
plant is represented by the upper LFT (linear fractional transformation) Fu(P,Δ) =:
P22Δ. Since uncontrollable/unobservable modes do not affect internal (exponential)
stability if and only if they are stable, this theorem in particular says that

(i) any robust stability condition such as the small-gain condition in particular
guarantees that no unstable pole/zero cancellations can occur within P22Δ,
irrespectively of Δ belonging to the perturbation set Δ that the condition
takes care of,
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and it is obvious that

(ii) the discrete-time controller Ψ internally (exponentially) stabilizes any sta-
bilizable detectable plants whose minimal realization coincides with that of
P22Δ for some Δ in the corresponding Δ.

In particular, (ii) implies that Ψ could internally stabilize also a lower-order plant
than the generalized plant (because of stable pole/zero cancellations via Δ), even
though this might not be necessarily clear in the above arguments where we treated
Δ in such a way that it has an independent state from the nominal plant.

One important perturbation set Δ is the set of norm-bounded LTI perturbations,
for which the small-gain condition can be very conservative [6, 8]. To get around
such conservatism, a necessary and sufficient condition has been derived [6, 8] in
the L2-stability context. The above theorem guarantees that such a necessary and
sufficient condition is indeed necessary and sufficient for robust internal stability; this
has already been shown for special perturbations (i.e., additive and multiplicative
perturbations), including the case of unstable perturbations [9]. The above theorem
in particular extends the previous results to the case of general perturbation structures
but with stable perturbations.

To state the importance of this theorem more generally and precisely, we can
rephrase it in the following way: whatever allowable perturbation sets/structures we
may consider (for example, LTI/h-periodic perturbations, full-block/block-diagonal
structures, real-parametric/dynamical perturbations, norm-bounded/unbounded per-
turbations, connected/nonconnected perturbation sets, convex/nonconvex perturba-
tions with respect to the origin4, and so on, as well as their arbitrary combinations),
considering robust L2-stability is enough to ensure robust internal stability; once a
condition for robust L2-stability under such FDLTI stable perturbations is established
somehow, the condition automatically guarantees robust internal stability. It would
also be worth stressing that the theorem applies even to such cases where some part
of the perturbations are fictitious and introduced just for the robust performance
analysis/synthesis (so that they do not affect internal stability) while the remaining
part of the perturbations does represent the plant uncertainty, as in the main loop
theorem. Robust internal stability is obviously guaranteed by robust L2-stability even
in such cases with robust performance taken into consideration.

5. Conclusion. In this paper, we first gave a nonasymptotic characterization of
the transfer operator Ĝ(z) of sampled-data systems, so that some appropriate nonzero

initial states can be introduced into the study of the transfer operator Ĝ(z). Based
on such a characterization, we then studied the spectral properties of the transfer
operator Ĝ(z). More specifically, it was shown that the properties of the spectrum

of Ĝ(z) are nearly as amenable as those of compact normal operators, in spite of the

generally noncompact and nonnormal nature of Ĝ(z), and that the spectrum can be
characterized with finite-dimensional eigenvalue problems. Exploiting a close relation
with the eigenvalue problems and the condition for internal stability of sampled-data
systems, we further extended our arguments on the spectral analysis of Ĝ(z) to the
robust internal stability analysis of sampled-data systems. To summarize the results
very concisely, what we have shown is that robust L2-stability and robust internal
(exponential) stability are equivalent irrespective of the perturbation structures/sets
to be considered, if the nominal sampled-data system is internally stable, if the

4We say here that Δ is convex with respect to the origin if Δ ∈ Δ implies kΔ ∈ Δ for all
k ∈ [0, 1].
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perturbations are either finite-dimensional LTI or h-periodic, and if the perturba-
tions are internally stable. Although we confined our input-output stability notion to
L2-stability in this paper, it is not hard to see that Proposition 7 and thus Theorem 8
hold even if L2-stability is replaced by Lp-stability, where 1 ≤ p < ∞. Hence, a
solid theoretical basis is established for the robust stabilization/performance design
for sampled-data systems even when it is carried out only under such input-output
stability conditions as in [6]. Finally, it will be worthwhile mentioning that all the
results in section 4 can be specialized to the continuous-time setting without any
changes (since a continuous-time system can always be embedded into the class of
sampled-data systems), and can readily be generalized to the discrete-time setting.
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