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Optimal energy decay rate for partially damped systems

by spectral compensation

Paola LORETI ∗ Bopeng RAO†

Abstract. We study the stability of weakly coupled and partially damped

systems by means of Riesz basis approach in higher dimension spaces. We

propose a weaker distributed damping that compensates the behaviour of the

eigenvalues of the system, therefore gives the optimal polynomial energy decay

rate for smooth initial data.

Key words. weaker damping, spectral compensation, optimal energy decay

rate, Riesz basis in higher dimension space.
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§1. Introduction. The aim of this paper, the results of which were announced

in [16], is to investigate the energy decay rate of the following weakly coupled

and partially damped system

(1.1)

{
ytt + Ay + Byt + au = 0,

utt + Au + ay = 0

where a is real number, A is a self-adjoint coercive operator and B a linear

bounded positive operator in a separated Hilbert space H. Assume furthermore

that the resolvent of A is compact in H. Then there exists an increasing sequence

µ2
n → +∞ and an orthonormal sequence en ∈ H such that

(1.2) Aen = µ2
nen, ∀n ≥ 1.

Write (1.1) as

(1.3)
d

dt




y

z

u

v


 =




z

−Ay − Bz − au

v

−Au − ay


 =: A




y

z

u

v


 .
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If a is small enough, it was shown in [4] that the equation (1.3) generates a

C0-semigroup of contractions on the Hilbert space

H = D(A
1
2 ) × H × D(A

1
2 ) × H.

Moreover, let

wn =
1√
2




0

0
en

iµn

en


 .

Then using (1.2) a straightforward computation gives

‖wn‖H = 1, ‖(iµn −A)wn‖2
H =

a2

2µ2
n

→ 0.

This shows that the resolvent of A is not uniformly bounded on the imaginary

axis. Following [7] and [18] (see also [15] for applications) the system (1.3) is

not uniformly stable in H.

Now assume that, and this is true in the case B = I, the spectrum of A has

asymptotic expansions

(1.4) λ±
1,n ∼ i ± µn − 1

2
, λ±

2,n ∼ i ± µn − a2

2µ2
n

.

Then the energy corresponding to the first branch of eigenvalues decays

exponentially and that one corresponding to the second branch of eigenvalues

decays only at the rate 1/t. Therefore the total energy decays at the rate 1/t.

Inspired by this remark, we look for a weaker damping operator for example

B = Aγ with γ < 0. In that case, we have the following asymptotic expansions

of the eigenvalues

(1.5)





λ±
1,n ∼ ±iµn − µ2γ

n

2 , λ±
2,n ∼ ±iµn − a2

2µ2γ+2
n

, 2γ + 1 > 0,

λ±
1,n ∼ ±iµn − µ2γ

n

2 , λ±
2,n ∼ ±iµn − µ2γ

n

2 , 2γ + 1 < 0

and the eigenvectors

e±1,n ∼ 1√
2




en

±iµn

en

0

0


 , e±2,n ∼ 1√

2




0

0
en

±iµn

en


 2γ + 1 > 0,(1.6)

e±1,n ∼ 1

2




en

±iµn

en
en

±iµn

en


 , e±2,n ∼ 1

2




en

∓iµn

−en
en

±iµn

en


 2γ + 1 < 0.(1.7)
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If 2γ + 1 > 0, then the real part of λ±
1,n is of order µ2γ

n and λ±
2,n is of order

1
µ2γ+2

n

. Therefore the energy corresponding to the first branch decays at the rate

t
1
γ , and that one corresponding to the second branch decays at the rate t−

1
γ+1 .

Since − 1
γ+1 > 1

γ , the total energy decays only at the rate t−
1

γ+1 . In this case

the eigenvectors e±1,n, e±2,n are asymptotically decoupled, and the two equations

of (1.1) are very weakly coupled or almost independent.

If 2γ + 1 < 0, then the real parts of λ±
1,n and λ±

2,n are of the same order µ2γ
n .

The total energy decays at the rate t
1
γ and achieves the maximum decay 1/t2

for 2γ + 1 = 0. In that case the eigenvectors e±1,n are well involved with the

eigenvectors e±2,n, and the two equations are really coupled.

The paper is organized as follows. In section 2, we establish a general result

on polynomial decay rate of energy by a spectral approach. Section 3 was

devoted to the study of the optimal decay rate of system (1.1) with a weaker

damping B = Aγ for γ < 0. Under a suitable framework, we can establish

the asymptotic expansions for the eigenvalues and the eigenvectors as in (1.6)-

(1.7). But these expansions couldn’t give, except in one-dimension, the desired

quadratical convergence for the usual Riesz basis approach. We will construct

a sequence of pairwise orthogonal subspaces. By this way, we reduced the

quadratical convergence to the Parseval equality. In order to obtain a Riesz

basis we only need some weaker asymptotic expansions on the subspaces. In

section 4, we give some examples of application.

There are many results concerning the polynomial decay rate. The majority

was obtained by spectral approaches ([9], [8], [23], [24]) or frequency domain

method ([5], [13], [14]). Others results were obtained by multiplier method

([4], [20], [21]). Also we mention [22] for a general formulation for partially

damped systems and [12] for exact controllability and observability for coupled

distributed systems.

§2. Optimal polynomial energy decay rate by spectral approach. We

give a spectral approach for the polynomial energy decay rate of C0-semigroups.

Theorem 2.1. Let S(t) be a C0 semigroup of contractions generated by the

operator A on a Hilbert space H. Let λk,n(1 ≤ k ≤ K) denote the k-th branch

of eigenvalues of A and {ek,n}1≤k≤K,n≥1 the system of eigenvectors which forms

a Riesz basis in H. Assume that for each 1 ≤ k ≤ K there exist a positive

sequence µk,n → +∞ as n → +∞ and two positive constants αk ≥ 0, βk > 0

such that

(2.1) Reλk,n ≤ − βk

µαk

k,n

and
∣∣Imλk,n

∣∣ ≥ µk,n, ∀n ≥ 1.
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Then for any u0 ∈ D(Aθ) with θ > 0, there exists a constant M > 0 independent

of u0 such that

(2.2) ‖S(t)u0‖2
H ≤ ‖Aθu0‖2

H
M

t2θδ
, ∀t > 0

where the decay rate δ is given by

(2.3) δ := min
1≤k≤K

1

αk
=

1

αl
.

Moreover if there exists a constant c1 > 0, c2 > 0 such that

(2.4) Reλl,n ≥ − c1

µαl

l,n

and
∣∣Imλl,n

∣∣ ≤ c2µl,n ∀n ≥ 1,

then the decay rate δ given in (2.3) is optimal.

Proof. Since {ek,n}1≤k≤K,n≥1 is a Riesz basis in H, any u0 ∈ D(Aθ) can be

written as

(2.5) u0 =

K∑

k=1

+∞∑

n=1

ak,nek,n.

Moreover there exist two constants C1 > 0, C2 > 0 such that

(2.6) C1

K∑

k=1

+∞∑

n=1

|ak,n|2 ≤ ‖u0‖2
H ≤ C2

K∑

k=1

+∞∑

n=1

|ak,n|2.

Using the expansion (2.5) and the continuity of the semigroup S(t), we get

(2.7) S(t)u0 =

K∑

k=1

+∞∑

n=1

ak,neλk,ntek,n.

Then using the first conditions of (2.1) and the second inequality of (2.6) into

(2.7), we obtain

(2.8) ‖S(t)u0‖2
H ≤ sup

1≤k≤K
sup
n≥1

( C2

µ2θ
k,n exp

(
2βkt

µ
αk
k,n

)
) K∑

k=1

+∞∑

n=1

|ak,n|2µ2θ
k,n.

On the other hand, the conditions of (2.1) imply that there exists a positive

constant C3 > 0 such that

(2.9)
K∑

k=1

+∞∑

n=1

µ2θ
k,n|ak,n|2 ≤ C3

K∑

k=1

+∞∑

n=1

|λk,n|2θ|ak,n|2 ≤ C3

C1
‖Aθu0‖2

H.
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Then inserting (2.9) into (2.8), we get

(2.10) ‖S(t)u0‖2
H ≤ sup

1≤k≤K
sup
n≥1

( C2C3

C1µ
2θ
k,n exp

(
2βkt

µ
αk
k,n

)
)
‖Aθu0‖2

H.

If αk = 0 for some 1 ≤ k ≤ K, since infn≥1 µk,n > 0, then it is easy to find a

constant Mk > 0 such that

(2.11)
1

µ2θ
k,n exp

(
2βkt

) ≤ Mk

t2θδ
, ∀n ≥ 1.

If αk > 0 for some 1 ≤ k ≤ K, then putting

t

µαk

k,n

=
1

x
, fk(x) = x

2θ
αk e

2βk
x

we rewrite

(2.12) µ2θ
k,n exp

(2βkt

µαk

k,n

)
= fk(x)t

2θ
αk .

Then a straightforward computation gives

f ′
k(x) = 2e

βk
x x

2θ
αk

−2
( θ

αk
x − βk

) {
> 0, x > αkβk

θ ,

< 0, x < αkβk

θ .

It follows that

(2.13) inf
x>0

fk(x) = fk

(αkβk

θ

)
=

(αkβk

θ

) 2θ
αk e

2θ
αk := M−1

k > 0.

Inserting (2.13) into (2.12) gives that

(2.14)
1

µ2θ
k,n exp

(
2βkt

µ
αk
k,n

) ≤ Mk

t
2θ
αk

, n ≥ 1.

Finally combining the cases (2.11) and (2.14), we get the polynomial energy

decay rate (2.2) with the constant M given by

(2.15) M =
C2C3

C1
max

1≤k≤K
Mk.

Now we consider the optimality of δ. To simplify the notations, we write

αl = α, µl,n = µn, λl,n = λn, el,n = en.
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Since µn → +∞, then for any ε > 0, we can find a subsequence, still denoted

by µn, such that

(2.16)

∞∑

n=1

1

µαε
n

< +∞.

Then putting

(2.17) u0 =

∞∑

n=1

C4

µ
(θ+αε/2)
n

en,

we see that u0 ∈ D(Aθ) due to the convergence (2.16). On the other hand,

thank to the second condition of (2.4), we can choose a constant C4 > 0 such

that ‖Aθu0‖H = 1. Now using the first condition of (2.4), we get

(2.18) ‖S(t)u0‖2
H =

∥∥∥
∞∑

n=1

C4e
λnten

µ
(θ+αε/2)
n

∥∥∥
2

H
≥ C1C

2
4

µ2θ+αε
m exp

(
2c1t
µα

m

) , ∀m ≥ 1.

Finally setting tm = µα
m in (2.18), we obtain that

(2.19) ‖S(tm)u0‖2
H ≥ C1C

2
4

e2c1µ2θ+αε
m

=
C1C

2
4

e2c1t2θδ+ε
m

, ∀m ≥ 1.

This means that the trajectory S(t)u0 decays slower than 1
t2θδ+ε on the time

sequence tm → +∞. Then for any ε > 0, we can’t expect the decay rate 1
t2θδ+ε

for all initial data u0 ∈ D(Aθ) and for all t > 0. The proof is thus complete.

Remark 2.1. If λk,n is an eigenvalue of algebraic multiplicity d > 1, then

the corresponding factor in (2.8) and (2.14) will be replaced by

|p(t)|2

µ2θ
k,n exp

(
2βkt

µ
αk
k,n

) ≤ Mk

t2θδ
,

where p(t) is a polynomial of degree d− 1 and Mk > 0 is a constant. Therefore,

Theorem 2.1 remains valid if the operator A admits a finite number of

algebraically multiple eigenvalues and the system of root vectors forms a

Riesz basis in H.

Remark 2.2. Theorem 2.1 is valid for all initial data u0 ∈ D(Aθ) with

θ > 0. This is different from an earlier result of Littman-Markus in [11] where

the initial data u0 should satisfy some stronger conditions.
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§3. Spectral compensation for weakly damped systems. Let A be a

densely defined closed self-adjoint operator in a Hilbert space H such that for

some positive constant c we have

(3.1) (Au, u) ≥ c‖u‖2
H , ∀u ∈ D(A).

Let γ ≤ 0, and a be a small real number. We consider the following weakly

coupled equations

ytt + Ay + Aγyt + au = 0,(3.2)

utt + Au + ay = 0.(3.3)

In order to curry the explicit computation of the eigenvalues, we have chosen

the same operator A in the two equations of the system (3.2)-(3.3). The results of

this section complete and improve a recent work of Alabau-Cannarsa-Komornik

[4].

Define the Hilbert space

H = D(A
1
2 ) × H × D(A

1
2 ) × H

equipped with the equivalent inner product

〈(y, z, u, v), (f, g, p, q)〉H =(A
1
2 y, A

1
2 f) + (z, g) + (A

1
2 u, A

1
2 p) + (v, q)

+ a
(
(y, p) + (u, f)

)
.

Setting

D(A) = {w =(y, z, u, v)T ∈ H z, v ∈ D(A
1
2 ), y, u ∈ D(A)},

A




y

z

u

v


 =




z

−Ay − Aγz − au

v

−Au − ay




we can write the system (3.2)-(3.3) into an evolution equation

(3.4)
d

dt
w = Aw, w(0) = w0.

Under the condition (3.1), we can prove easily that A is a maximal dissipative

operator on H provided that a is small enough. Therefore A generates a C0-

semigroup of contractions on H (Theorem 1.4.3 in [17]). Moreover, setting the

energy by

E(t) =
1

2

(
‖A 1

2 y‖2 + ‖yt‖2 + ‖A 1
2 u‖2 + ‖ut‖2 + a(y, u) + a(u, y)

)
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then a straightforward computation gives that

d

dt
E(t) = −‖Aγyt‖2 ≤ 0.

Assume furthermore that the resolvent of A is compact in H. Then there

exists an increasing sequence µ2
n → +∞ and a orthonormal sequence en ∈ H

such that

(3.5) Aen = µ2
nen, ∀n ≥ 1.

Moreover the system {en}n≥1 forms a Hilbert basis on H.

Now let λ be an eigenvalue and (y, z, u, v) be the associated eigenvector of

the operator A. Then we have

(3.6)





z = λy,

−Ay − Aγz − au = λz,

v = λu,

−Au − ay = λv.

We will see in Proposition 3.3 that all eigenvectors of A are of the following

form

(3.7) y = αnen, z = λαnen, u = βnen, v = λβnen.

Inserting (3.7) into (3.6) we get

(3.8)

{
(λ2 + µ2

n + λµ2γ
n )αn + aβn = 0,

aαn + (λ2 + µ2
n)βn = 0

which has non trivial solution (αn, βn) 6= (0, 0) if and only if λ is a solution of

the equation

(3.9) (λ2 + λµ2γ
n + µ2

n)(λ2 + µ2
n) = a2.

Proposition 3.1. For each µn > 0, the corresponding eigenvalues λ±
1,n, λ±

2,n

of the system (3.2)-(3.3) satisfy the following asymptotic expansions.

I. If −1/2 < γ ≤ 0,

λ±
1,n = ±iµn − µ2γ

n

2
+ O

( 1

µn

)
,(3.10)

λ±
2,n = ±iµn − a2

2µ2γ+2
n

+ O
( 1

µ6γ+4
n

)
.(3.11)
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II. If γ < −1/2,

λ±
1,n = ±i

√
µ2

n + a − µ2γ
n

2
+ O(µ4γ+1

n ),(3.12)

λ±
2,n = ±i

√
µ2

n − a − µ2γ
n

2
+ O(µ4γ+1

n ).(3.13)

III. If γ = −1/2,

λ±
1,n = ±iµn − 1 ±

√
1 − 4a2

4µn
+ O

( 1

µ2
n

)
,(3.14)

λ±
2,n = ±iµn − 1 ∓

√
1 − 4a2

4µn
+ O

( 1

µ2
n

)
.(3.15)

Proof. Firstly, let λn be one of the four solutions of the equation (3.9). If

|λ2
n + µ2

n| ≤ 1, then it follows that

(3.16)
λn

µn
= ±i + O(µ−2

n ).

If |λ2
n + µ2

n| ≥ 1, then from the equation (3.9) we get

(λn

µn

)2

+
λn

µn
µ2γ−1

n + 1 = O(µ−2
n ).

It follows that

(3.17)
λn

µn
= ±i + O(µ2γ−1

n ).

Combining (3.16) and (3.17), we get

(3.18)
λn

µn
= ±i + O(µ2γ−1

n ) + O(µ−2
n ).

Next, solving the equation (3.9), we get

(3.19) 2(λ2 + µ2
n) = −λµ2γ

n ∓
√

λ2µ4γ
n + 4a2.

The symbol a ∼ b means that a − b → 0. In the following computations we

use many times the expansion
√

1 + z = 1 + z/2 + O(z2).
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Case I : −1/2 < γ ≤ 0. From (3.18), we have

(3.20) |λnµ2γ
n | ∼ µ1+2γ

n → +∞.

Using the asymptotic expansion (3.20) into (3.19), we get

(3.21)






λ2
1,n = −µ2

n − λ1,nµ2γ
n + O

(
1

µ2γ+1
n

)
,

λ2
2,n = −µ2

n +
a2

λ2,nµ2γ
n

+ O
( 1

µ6γ+3
n

)
.

It follows from (3.21) that

(3.22)





λ±
1,n = ±iµn ± iλ1,nµ2γ−1

n

2
+ O

( 1

µn

)
,

λ±
2,n = ±iµn ∓ ia2

2λ2,nµ2γ+1
n

+ O
( 1

µ6γ+4
n

)
.

In particular, we get

(3.23)






λ±
1,n = ±iµn + O(µ2γ

n ),

λ±
2,n = ±iµn + O

(
1

µ2γ+2
n

)
.

Inserting (3.23) into (3.22) gives that

λ±
1,n = ±iµn − µ2γ

n

2
+ O

( 1

µn

)
,(3.24)

λ±
2,n = ±iµn − a2

2µ2γ+2
n

+ O
( 1

µ6γ+4
n

)
.(3.25)

Case II : γ < −1/2. From (3.18) we have

(3.26) |λnµ2γ
n | ∼ |µ1+2γ

n | → 0.

Using the asymptotic expansion (3.26) into (3.19), we have

(3.27)





λ2
1,n = −(µ2

n + a) − λ1,nµ2γ
n

2
+ O

(
µ4γ+2

n

)
,

λ2
2,n = −(µ2

n − a) − λ1,nµ2γ
n

2
+ O

(
µ4γ+2

n

)
.
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It follows from (3.27)

(3.28)





λ±
1,n = ±i

√
µ2

n + a ± iλ1,nµ2γ
n

2
√

µ2
n + a

+ O(µ4γ+1
n ),

λ±
2,n = ±i

√
µ2

n − a ± iλ1,nµ2γ
n

2
√

µ2
n − a

+ O(µ4γ+1
n ).

In particular, we get

(3.29)





λ±
1,n = ±i

√
µ2

n + a + O(µ2γ
n ),

λ±
2,n = ±i

√
µ2

n − a + O(µ2γ
n ).

Inserting (3.29) into (3.28) we have

(3.30)






λ±
1,n = ±i

√
µ2

n + a − µ2γ
n

2
+ O(µ4γ+1

n ),

λ±
2,n = ±i

√
µ2

n − a − µ2γ
n

2
+ O(µ4γ+1

n ).

Case III : γ = −1/2. From (3.18) we have

(3.31)
λ±

1,n

µn
∼ ±i + O

( 1

µ2
n

)
,

λ±
2,n

µn
∼ ±i + O

( 1

µ2
n

)
.

Using the asymptotic expansion (3.31) into (3.19), we have

(3.32)





λ2
1,n = −µ2

n ∓ i

2
(1 ±

√
1 − 4a2) + O

( 1

µ2
n

)
,

λ2
2,n = −µ2

n ∓ i

2
(1 ∓

√
1 − 4a2) + O

( 1

µ2
n

)
.

It follows from (3.32) that

λ±
1,n = ±iµn − 1 ±

√
1 − 4a2

4µn
+ O

( 1

µ3
n

)
,(3.33)

λ±
2,n = ±iµn − 1 ∓

√
1 − 4a2

4µn
+ O

( 1

µ3
n

)
.(3.34)

The proof is thus complete.
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If λ±
1,n, λ±

2,n are simple eigenvalues, then setting

β±
1,n = − a

(λ±
1,n)2 + µ2

n

α±
1,n,(3.35)

α±
2,n = −

(λ±
2,n)2 + µ2

n

a
β±

2,n(3.36)

in (3.8) we get

(3.37) e±1,n = α±
1,n




en

λ±
1,n

en

− aen

λ±
1,n

((λ±
1,n

)2+µ2
n)

− aen

(λ±
1,n

)2+µ2
n




, e±2,n = β±
2,n




− ((λ±
2,n

)2+µ2
n)en

aλ±
2,n

− ((λ±
2,n

)2+µ2
n)en

a

en

λ±
2,n

en




.

Now let us denote by Vn the eigen-space corresponding to the four eigenvalues

λ±
1,n, λ±

2,n :

Vn = Sp{e+
1,n, e+

2,n, e−1,n, e−2,n}.

From the expressions in (3.37), the subspaces {Vn}n≥1 are clearly pairwise

orthogonal in H. It is possible that the equation (3.9) has multiple solutions

for some special parameters µn, a. However for a small enough, the Rouché

theorem shows that the equation (3.9) admits at most a double solution for the

first branch of eigenvalues λ±
1,n = λ1,n, e±1,n = e1,n which satisfies the following

equation of derivation

(3.38) (2λ + µ2γ
n )(λ2 + µ2

n) + 2λ(λ2 + λµ2γ
n + µ2

n) = 0.

In that case, we look for the corresponding root vector ẽ1,n = (ỹn, z̃n, ũn, ṽn)

such that

(I − λ1,nA)ẽ1,n = e1,n

which involves that

(3.39)






z̃n − λ1,nỹn = en

λ1,n
,

−Aỹn − Aγ z̃n − aũn − λz̃n = en,

ṽn − λ1,nũn = − aen

λ1,n(λ2
1,n

+µ2
n)

−Aũn − aỹn − λṽn = − aen

(λ2
1,n + µ2

n)
.
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Setting

(3.40) ỹn = α1,nen, ũn = β1,nen

in (3.39) we get

(3.41)





z̃n = α1,nλ1,nen +
en

λ1,n
,

ṽn = β1,nλ1,nen − aen

λ1,n(λ2
1,n + µ2

n)

where the constants α1,n and β1,n satisfy

(3.42)





−(µ2 + λ1,nµ2γ + λ2
1,n)α1,n − aβ1,n =

2λ1,n + µ2γ

λ1,n
,

−aα1,n − (µ2 + λ2
1,n)β1,n = − 2a

λ2
1,n + µ2

n

.

Since λ1,n satisfies (3.9) and (3.38), the first equation of (3.42) can be reduced

to the second one. Therefore choosing

(3.43) α1,n =
2

λ2
1,n + µ2

n

, β1,n = 0.

in (3.40)-(3.41) we get the corresponding root vector

(3.44) ẽ1,n =




2
λ2
1,n

+µ2
n
en

(
2aλ1,n

λ2
1,n

+µ2
n

+ 1
λ1,n

)
en

0

− a
λ1,n(λ2

1,n
+µ2

n)
en




.

Accordingly, we modify the subspace Vn as

Vn = Sp{e1,n, e+
2,n, ẽ1,n, e−2,n}.

Once again, the expression (3.44) shows that the subspaces {Vn}n≥1 are still

pairwise orthogonal in H.

Proposition 3.2. Let E±
1,n, E±

2,n be the eigenvectors of the decoupled system

(corresponding to a = 0)

(3.45) E±
1,n =

1√
2




en

±iµn

en

0

0


 , E±

2,n =
1√
2




0

0
en

±iµn

en


 .
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Then the following relationship holds

(3.46) (e+
1,n, e+

2,n, e−1,n, e−2,n) = (E+
1,n, E+

2,n, E−
1,n, E−

2,n)Ln

where Ln is a 4 × 4 matrix such as

Ln =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 + O

( 1

µ2γ+1
n

)
2γ + 1 > 0,(3.47)

Ln =
1√
2




1 −1 0 0

1 1 0 0

0 0 1 −1

0 0 1 1


 + O

( 1

µ
min{2,−(2γ+1)}
n

)
2γ + 1 < 0,(3.48)

Ln =
√

2




√
a+

√
a− 0 0

ia√
a+

ia√
a−

0 0

0 0
√

a−
√

a+

0 0 − ia√
a−

− ia√
a+


 + O

( 1

µ2
n

)
2γ + 1 = 0(3.49)

where we have put

(3.50) a± =
1 ±

√
1 − 4a2

2
.

Proof. For 2γ + 1 > 0, using the asymptotic expansions (3.10)-(3.11), we

have

1

(λ±
1,n)2 + µ2

n

= O
( 1

µ2γ+1
n

)
,

1

λ±
1,n

=
1

±iµn
+ O(µ2γ−2

n ),(3.51)

(λ±
2,n)2 + µ2

n = O
( 1

µ2γ+1
n

)
,

1

λ±
2,n

=
1

±iµn
+ O

( 1

µ2γ+4
n

)
.(3.52)

Inserting (3.51)-(3.52) into (3.37) gives

e±1,n =
1√
2




en

±iµn

en

0

0


 + O

( 1

µ2γ+1
n

)
,(3.53)

e±2,n =
1√
2




0

0
en

±iµn

en


 + O

( 1

µ2γ+1
n

)
.(3.54)
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For 2γ + 1 < 0, using (3.12)-(3.13), we have

1

(λ±
1,n)2 + µ2

n

= −1

a
+ O(µ2γ+1

n ),
1

λ±
1,n

=
1

±iµn
+ O

( 1

µ3
n

)
(3.55)

1

λ±
2,n

=
1

±iµn
+ O

( 1

µ3
n

)
, (λ±

2,n)2 + µ2
n = a + O(µ2γ+1

n ).(3.56)

Inserting (3.55)-(3.56) into (3.37) gives

e±1,n =
1

2




en

±iµn

en
en

±iµn

en


 + O(µ2γ+1

n ) + O
( 1

µ2
n

)
,(3.57)

e±2,n =
1

2




en

∓iµn

−en
en

±iµn

en


 + O(µ2γ+1

n ) + O
( 1

µ2
n

)
,(3.58)

For 2γ + 1 = 0, using (3.14)-(3.15), we have

(λ±
1,n)2 + µ2

n = ∓ia± + O
( 1

µ2
n

)
,

1

λ±
1,n

=
1

±iµn
+ O

( 1

µ3
n

)
,(3.59)

(λ±
2,n)2 + µ2

n = ∓ia∓ + O
( 1

µ2
n

)
,

1

λ±
2,n

=
1

±iµn
+ O

( 1

µ3
n

)
.(3.60)

Inserting (3.59)-(3.60) into (3.37) gives

e±1,n =
√

a±




en

±iµn

en

− aen

a±µn
aen

±ia±


 + O

( 1

µ2
n

)
,(3.61)

e±2,n =
√

a∓




en

±iµn

en

− aen

a∓µn
aen

±ia∓


 + O

( 1

µ2
n

)
.(3.62)

The proof is thus complete.

Remark 3.1. If 2γ + 1 > 0, the leading term of the eigenvectors e±1,n and

e±2,n are decoupled. The system (3.2)-(3.3) is over-damped and ”essentially
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decoupled”. While if 2γ + 1 < 0, the leading term of e±1,n and e±2,n are well

well coupled. The system (3.2)-(3.3) is right-damped in that case. In particular,

when 2γ + 1 = 0 the parameter a appears explicitly in the leading term of the

matrix Ln.

Lemma 3.1. Let {Xn}n≥1 be a Riesz basis of subspaces in a Hilbert space

X and {Yn}n≥1 a Riesz sequence of subspace in X. Assume that there exist

a sequence of isomorphisms {Ln}n≥1 from Xn onto Yn and positive constants

m > 0, M > 0 independent of n such that

(3.63) m‖xn‖ ≤ ‖Lnxn‖ ≤ M‖xn‖, ∀xn ∈ Xn, ∀n ≥ 1.

Assume furthermore that for each n ≥ 1, there exists a Riesz basis

{fn,i}1≤l≤In
(In ≤ +∞) in Xn and positive constants c > 0, C > 0 independent

of n such that

(3.64) c

In∑

i=1

|αn,i|2 ≤ ‖xn‖2 ≤ C

In∑

i=1

|αn,i|2, ∀xn =

In∑

i=1

αn,ifn,i.

Then the sequence

(3.65) gn,i = Lnfn,i, ∀n ≥ 1, 1 ≤ i ≤ In,

forms a Riesz basis in X.

Proof. Since {Xn}n≥1 is a Riesz basis of subspaces in X, then for any x ∈ X

there exists a unique sequence {xn}n≥1 with xn ∈ Xn such that

(3.66) x =
∞∑

n=1

xn, c′
∞∑

n=1

‖xn‖2 ≤ ‖x‖2 ≤ C ′
∞∑

n=1

‖xn‖2.

This combining with (3.64) imply that the sequence {fn,i}n≥1,1≤i≤In
forms a

Riesz basis in X.

Now define the application L in X as following

(3.67) Lx =
∞∑

n=1

Lnxn, x =
∞∑

n=1

xn.

It is obvious that L is a linear application in X. Moreover, since {Yn}n≥1 is a

Riesz sequence of subspaces in X, we get

(3.68) c′′
∞∑

n=1

‖Lnxn‖2 ≤ ‖Lx‖2 ≤ C ′′
∞∑

n=1

‖Lnxn‖2.
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Combining (3.63), (3.66) and (3.68) we get

(3.69)
mc′′

C ′ ‖x‖2 ≤ ‖Lx‖2 ≤ MC ′′

c′
‖x‖2, ∀x ∈ X.

It follows that L is an isomorphism in X. Thus the sequence {gn,i}n≥1,1≤i≤In
,

being the image of the Riesz basis {fn,i}n≥1,1≤i≤In
by the isomorphism L, forms

a Riesz basis in X. This achieves the proof.

Proposition 3.3. Let γ ≤ 0 and a be a real number small enough. Then

the system of eigenvectors {e+
1,n, e+

2,n, e−2,n, e−2,n}n≥1 of A forms a Riesz basis in

H. In particular, all eigenvectors of A are of the form (3.7).

Proof. For all n ≥ 1 let

(3.70) Wn = Sp{E+
1,n, E+

2,n, E−
2,n, E−

1,n}.

It is clear that {Wn}n≥1 forms a Hilbert basis of subspaces and {Vn}n≥1 is

a Hilbert sequence of subspaces in H. The condition (3.64) is trivial since

E+
1,n, E+

2,n, E−
2,n, E−

2,n is a Hilbert basis in the subspace Wn. Let Ln be defined

as in (3.46). Following Proposition 3.2, Ln has a constant leading term which

is invertible. This together with the fact that Ln is invertible for all n ≥ 1

imply the condition (3.63). Then applying Lemma 3.1, we get that the system

of eigenvectors {e+
1,n, e+

2,n, e−2,n, e−2,n}n≥1 forms a Riesz basis in H. In particular,

all eigenvectors of A are of the form (3.7). The proof is thus completed.

Remark 3.2. There were many papers based on Riesz approach for which

the essential part is to show that the sequence of the root vectors is quadratically

close to known Riesz basis. This approach requires a very long calculation and

is limited to one-dimensional problems (see [7] and the successions).

The idea of Proposition 3.3 lies in constructing the pairwise orthogonal

subspaces Vn without the eigenvectors e+
1,n, e+

2,n, e−1,n, e−2,n being orthogonal. By

this way, we reduced the quadratical convergence to the Parseval equality. In

order to get the condition (3.64), we need only some asymptotic expansions

such as (3.47)-(3.49) which do not give any quadratical convergence.

To fix the idea, we consider the case where A := −∆ is the Laplacian on a

bounded open set Ω ⊂ R
N with the homogeneous Dirichlet boundary condition

as in Example 4.1. Following a classical result of Agmon (Theorem 14.6 in [2]),

we know that µn ∼ n1/N . Let 2γ + 1 > 0, then the series of general term

(3.71) ‖e±k,n − E±
k,n‖ = O

( 1

n(2γ+1)/N

)



18

converges in l2 if and only if N < 2(2γ+1). This is never true if−1/2 < γ ≤ −1/4

even in one-dimension. In the best case γ = 0 which corresponds to the usual

damping yt, the series of general term (3.71) converges in l2 if and only if

N < 2. This confirms that the quadratical convergence could be expected only

in one-dimension.

Theorem 3.1. Let γ ≤ 0 and a be a real number small enough. Then for all

y0, z0 ∈ D(A) and y1, u1 ∈ D(A
1
2 ) the energy of the system (3.2)-(3.3) has the

following polynomial decay rate

(3.72) E(t) ≤ C(‖Ay0‖2
H + ‖Au0‖2

H + ‖A 1
2 y1‖2

H + ‖A 1
2 u1‖2

H)
1

tδ(γ)
, ∀t > 0

where

(3.73) δ(γ) =





1
γ+1 , 2γ + 1 > 0,

− 1
γ , 2γ + 1 < 0,

2, 2γ + 1 = 0.

Proof. Following Proposition 3.1, the eigenvalues of A satisfy the asymptotic

expansions (2.1) with

(3.74)






α1 = −2γ, α2 = 2(γ + 1), δ = 1
γ+1 , 2γ + 1 > 0,

α1 = α2 = −2γ, δ = 1
−γ , 2γ + 1 < 0,

α1 = α2 = 1, δ = 2, 2γ + 1 = 0.

On the other hand, following Proposition 3.3 the system of eigenvectors of A
forms a Riesz basis in H. Then applying Theorem 2.1, we get the polynomial

energy decay rate (3.72)-(3.73). The proof is thus achieved.

The following theorem gives the repartition of energy within the two equations

of the system (3.2) -(3.3).

Theorem 3.2. Assume the same conditions as in Theorem 3.1. Let

w0 ∈ D(A) be an initial data and

E1(t) =
1

2
(‖A 1

2 y(t)‖2
H + ‖z(t)‖2

H),(3.75)

E2(t) =
1

2
(‖A 1

2 u(t)|2H + ‖v(t)‖2
H).(3.76)

be the corresponding energy of the first equation, respectively the second

equation. Then the following estimates hold

E1(t) ≤ C‖Aw0‖2 1

t2
, E2(t) ≤ C‖Aw0‖2 1

t
1

γ+1

, 2γ + 1 > 0,(3.77)

E1(t) ≤ C‖Aw0‖2 1

t
1

−γ

, E2(t) ≤ C‖Aw0‖2 1

t
1

−γ

, 2γ + 1 ≤ 0.(3.78)
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Proof. Developing e±1,n, e±2,n on the basis E±
1,n, E±

2,n, we get

(3.79) e±1,n = α±
1,nE±

1,n + α±
2,nE±

2,n, e±2,n = β±
1,nE±

1,n + β±
2,nE±

2,n.

Writing

(3.80) w0 =
∞∑

n=1

a±
1,ne±1,n +

∞∑

n=1

a±
2,ne±2,n,

then we have

w(t) =
∞∑

n=1

a±
1,neλ±

1,n
te±1,n +

∞∑

n=1

a±
2,neλ±

2,n
te±2,n(3.81)

=

∞∑

n=1

(a±
1,nα±

1,neλ±
1,n

t + a±
2,nβ±

1,neλ±
2,n

t)E±
1,n

+

∞∑

n=1

(a±
1,nα±

2,neλ±
1,n

t + a±
2,nβ±

2,neλ±
2,n

t)E±
2,n.

The orthogonality of E±
1,n, E±

2,n implies

E1(t) =
1

2

∞∑

n=1

|a±
1,nα±

1,neλ±
1,n

t + a±
2,nβ±

1,neλ±
2,n

t|2,(3.82)

E2(t) =
1

2

∞∑

n=1

|a±
1,nα±

2,neλ±
1,n

t + a±
2,nβ±

2,neλ±
2,n

t|2.(3.83)

If 2γ + 1 > 0, then from (3.47) we get

(3.84) α±
1,n = O(1), α±

2,n = O
( 1

µ2γ+1
n

)
, β±

1,n = O
( 1

µ2γ+1
n

)
, β±

2,n = O(1).

Inserting (3.84) into (3.82)-(3.83), we get

E1(t) ≤ C
∞∑

n=1

( |µna±
1,n|2

µ2
neµ2γ

n t
+

|µna±
2,n|2

µ4γ+4
n e

a2t

µ
2γ+2
n

)
(3.85)

E2(t) ≤ C

∞∑

n=1

|µna±
1,n|2

µ4γ+4
n eµ2γ

n t
+

|µna±
2,n|2

µ2
ne

a2t

µ
2γ+2
n

.(3.86)

Using the estimate for any θ > 0, α > 0

(3.87) µ2θ
n e

t
µα

n ≥ Ct
2θ
α
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in (3.85)-(3.86), it follows that

E1(t) ≤ C‖Aw0‖2
( 1

t
1

−γ

+
1

t2

)
≤ C‖Aw0‖2 1

t2
,(3.88)

E2(t) ≤ C‖Aw0‖2
( 1

t
2(γ+1)

−γ

+
1

t
1

γ+1

)
≤ C‖Aw0‖2 1

t
1

γ+1

.(3.89)

If 2γ + 1 ≤ 0, then from (3.48)-(3.49) we get

(3.90) α±
1,n = O(1), α±

2,n = O(1), β±
1,n = O(1), β±

2,n = O(1).

Inserting (3.90) into (3.82)-(3.83) we get

(3.91) E1,2(t) ≤ C
∞∑

n=1

(|µna±
1,n|2 + |µna±

2,n|2)
1

µ2
neµ2γ

n t
.

Then using (3.87) into (3.91) gives we get (3.78). The proof is thus complete.

Comments on theorems 3.1 and 3.2. From (3.73) we see that the

decay rate δ(γ) is an increasing function for −∞ < γ ≤ −1/2, decreasing for

−1/2 ≤ γ ≤ 0 and achieves the maximum 2 at γ = −1/2. The best decay rate

δ = 2 occurs for γ = −1/2.

If 2γ + 1 > 0, the system (3.2)-(3.3) is over-damped in the sense that the

eigenvectors e±1,n are asymptotically decoupled from the eigenvectors e±2,n. In

that case, the interferences between the two equations are very weak and the

wave propagates almost independently in the two equations. The energy of the

first equation E1(t) decays more quickly than the energy E2(t) of the second

equation.

If 2γ + 1 ≤ 0, the system (3.2)-(3.3) is right-damped in the sense that the

eigenvectors e±1,n are involved with the eigenvectors e±2,n. In that case the

damping applied to the first equation is well transmitted to the second equation

and the system is really coupled. Consequently, the energies E1(t), E2(t) of the

two equations decay at the same rate. This balanced repartition of energies

within the two equations is due to the compensation of real parts of the two

branches of the eigenvalues.

A stronger damping Aγyt does not necessarily give a better total decay rate

of energy. A good damping should provide a compensation of the real parts

of the two branches of eigenvalues and carry the transmission of the damping

from one equation to another. This can be done by means of suitably weaker

damping.
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We believe that the spectrum compensation is a natural phenomenon for

partially damped distributed systems. It seems interesting to consider coupled

systems with different operators A1, A2 as in [4]. Indeed the same results could

obtained without essential difficulty in the case A2 = A2
1 or other similar

situations(see [1], [3] for example). But in general we can no long calculate

explicitly the eigenvalues as in Proposition 3.1.

§4. Examples of application. Let Ω ⊂ R
n a bounded open set with smooth

boundary Γ. We denote by ‖ ·‖0,Ω, ‖ ·‖1,Ω, ‖ ·‖2,Ω · · · the norms of the Sobolev’s

spaces L2(Ω), H1(Ω), H2(Ω) · · · respectively.

Example 4.1. Let us consider the system of weakly coupled wave equations

(4.1)






ytt − ∆y + (−∆)−1/2yt + au = 0 in Ω,

utt − ∆u + ay = 0 in Ω,

y = u = 0 on Γ

where a ∈ R is small enough, and where (−∆)−1/2 is a linear continuous

operator from L2(Ω) onto H1
0 (Ω).

Defining the operator A in L2(Ω) by

(4.2) A = −∆ with D(A) = H2(Ω) ∩ H1
0 (Ω),

we easily check that A is a densely defined closed self-adjoint operator with

compact resolvent in L2(Ω). Then applying Theorem 3.1 we get the following

optimal polynomial energy decay rate

‖y(t)‖2
1,Ω + ‖yt(t)‖2

0,Ω + ‖u(t)‖2
1,Ω + ‖ut(t)‖2

0,Ω(4.3)

≤ c

t2

(
‖y0‖2

2,Ω + ‖z0‖2
1,Ω + ‖u0‖2

2,Ω + ‖v0‖2
1,Ω

)

for all smooth initial data

(4.4)

{
y(x, 0) = y0(x) ∈ H2(Ω) ∩ H1

0 (Ω), yt(x, 0) = z0(x) ∈ H1
0 (Ω),

u(x, 0) = u0(x) ∈ H2(Ω) ∩ H1
0 (Ω), ut(x, 0) = v0(x) ∈ H1

0 (Ω),

If we have taken a stronger damping yt as it was done in [4], instead of 1/t2

we could only get 1/t as the energy decay rate for the same initial data.

Example 4.2. Now we consider the system of weakly coupled plate equations

(4.5)






ytt + ∆2y + (∆2)−1/2yt + au = 0 in Ω,

utt + ∆2u + ay = 0 in Ω,

y = ∂y
∂n = u = ∂u

∂n = 0 on Γ
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where a ∈ R is small enough, and where (∆2)−1/2 is a linear continuous operator

from L2(Ω) onto H2
0 (Ω).

Defining the operator A in L2(Ω) by

(4.6) A = ∆2 with D(A) = H4(Ω) ∩ H2
0 (Ω),

we check easily all the conditions of Theorem 3.1. Then for any smooth initial

data

(4.7)

{
y(x, 0) = y0(x) ∈ H4(Ω) ∩ H2

0 (Ω), yt(x, 0) = z0(x) ∈ H2
0 (Ω),

u(x, 0) = u0(x) ∈ H4(Ω) ∩ H2
0 (Ω), ut(x, 0) = v0(x) ∈ H2

0 (Ω),

we have

‖y(t)‖2
2,Ω + ‖yt(t)‖2

0,Ω + ‖u(t)‖2
2,Ω + ‖ut(t)‖2

0,Ω(4.8)

≤ c

t2

(
‖y0‖2

4,Ω + ‖z0‖2
2,Ω + ‖u0‖2

4,Ω + ‖v0‖2
2,Ω

)
.

Similarly if we have taken a stronger feedback control yt as it was done in [4],

we could only get 1/t as the energy decay rate for the same initial data.

In [4] more general systems with different operator A1, A2 were considered

under an artificial condition D(A
j/2
2 ) ⊂ D(A1), j ≥ 2 which restricts the

applications to the distributed systems of the same kind boundary conditions

(see examples 6.1-6.5 in [4]). The following example shows that the above

mentioned condition is not necessary and the polynomial energy decay rate

should be true for more general coupled systems.

Example 4.3. Consider the following system of compactly coupled and

partially damped Euler-Bernoulli beam equations

(4.8)






ytt + yxxxx + byt + aux + y = 0, 0 < x < π

utt + uxxxx − ayx = 0, 0 < x < π,

yx(0) = yxxx(0) = yx(π) = yxxx(π) = 0,

u(0) = uxx(0) = u(π) = uxx(π) = 0.

Putting

V = {y ∈ H2(0, π), y′(0) = y′(π) = 0}, W = {u ∈ H2(0, π), u(0) = u(π) = 0}

we define the energy space

H = V × L2(0, π)× W × L2(0, π).
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It is easy to prove that the system (4.8) generates a C0-semigroup of contractions

on the space H for b > 0 and a small enough. Moreover, setting the energy

(4.9) E(t) =
1

2

∫ π

0

(|y|2 + |yxx|2 + |yt|2 + |uxx|2 + |ut|2 − ayxu − auyx)dx,

we have

(4.10)
d

dt
E(t) = −b

∫ π

0

|yt|2dx ≤ 0.

Now we consider the associated eigen-problem

(4.11)






λ2y + yxxxx + bλy + aux + y = 0 0 < x < π

λ2u + uxxxx − ayx = 0 0 < x < π,

yx(0) = yxxx(0) = yx(π) = yxxx(π) = 0,

u(0) = uxx(0) = u(π) = uxx(π) = 0.

Let

(4.12) y = αn cos nx, u = βn sin nx

be an eigenfunction. Then λ must satisfy the system

(4.13)

{
αn(λ2 + bλ + n4 + 1) − aβnn = 0,

βn(λ2 + n4) + αnan = 0

which has non trivial solution if and only if

(4.14) (λ2 + n4)(λ2 + bλ + n4 + 1) + a2n2 = 0.

Proceeding as in Proposition 3.1, we find easily that

λ±
1,n = ±in2 − b

2
+ O

( 1

n2

)
(4.15)

λ±
2,n = ±in2 − a2

2bn2
+ O

( 1

n6

)
.(4.16)

Then for λ = λ±
1,n, taking

α±
1,n =

1√
2
, β±

1,n = − an

(λ±
1,n)2 + n4

α±
1,n = O

( 1

n

)

in (4.12) we get the corresponding eigenvector

(4.17) e±1,n =
1√
2




cos nx
±in2

cos nx

0

0


 + O

( 1

n

)
, ∀n ≥ 1.
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For λ = λ±
2,n, taking

β±
2,n =

1√
2
, α±

1,n = −
(λ±

1,n)2 + n4

an
β±

2,n = O
( 1

n

)

in (4.12) we get the corresponding eigenvector

(4.18) e±2,n =
1√
2




0

0
sin nπx
±in2

sin nπx


 + O

( 1

n

)
, ∀n ≥ 1.

Using the same procedure as in Proposition 3.3, we can prove that the

system {e±1,n, e±2,n}n≥1 form a Riesz basis in H. But in the one-dimensional

case, the Riesz basis property is evident because the eigenvectors e±1,n, e±2,n are

quadratically closed to a Hilbert basis due to the expansions (4.17)-(4.18),

therefore form a Riesz basis in H (Theorem 4.2.3 in [6] and Theorem 4.1 in [19]

for the original idea on the eigenvalues of lower frequence). Moreover, (4.15)-

(4.16) show that the eigenvalues of the system (4.11) satisfy the condition (2.1)

with µ1,n = µ2,n = n2 and α1 = 0, α2 = 1. Then applying Theorem 2.1, we get

the following polynomial energy decay rate

(4.20) E(t) ≤ C(‖y0‖2
4 + ‖z0‖2

2 + ‖u0‖2
4 + ‖v0‖2

2)
1

t2
, ∀t > 0.

for the solution of the system (4.8) with smooth initial data y0 ∈ H4(0, π) ∩
V, u0 ∈ H4(0, π) ∩ W and z0 ∈ V, v0 ∈ W .

Remark 4.1. The coupling terms ayx, aux do not appear in the expression

(4.10). Nevertheless the energy decays at the rate 1/t2 instead of 1/t for the

system coupled through the displacements ay, au.
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