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Abstract
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1 Introduction

The problem of controlling the output of a system so as to achieve asymptotic tracking of
prescribed trajectories and/or asymptotic rejection of disturbances is a central problem in
control theory. There are essentially three different possibilities to approach the problem:
tracking by dynamic inversion, adaptive tracking, tracking via internal models. Tracking by
dynamic inversion consists in computing a precise initial state and a precise control input
(or equivalently a reference trajectory of the state), such that, if the system is accordingly
initialized and driven, its output exactly reproduces the reference signal. The computation
of such control input, though, requires “perfect knowledge” of the entire trajectory to be
tracked as well as “perfect knowledge” the model of the controlled plant. Thus, this type of
approach is not suited in the presence of large uncertainties on plant parameters as well as
on the reference signal. Adaptive tracking can successfully handle parameter uncertainties,
but it still presupposes the knowledge of the entire trajectory which is to be tracked (to be
used in the design of the adaptation algorithm) and therefore this approach is not suited in
the problem of tracking unknown trajectories. Internal-model-based tracking on the other
hand, is able to handle simultaneously uncertainties in plant parameters as well as in the
trajectory which is to be tracked. It has been proven that, if the trajectory to be tracked
belongs to the set of all trajectories generated by some fixed dynamical system, a controller
which incorporates an internal model of such a system is able to secure asymptotic decay
to zero of the tracking error for every possible trajectory in this set and does it robustly
with respect to parameter uncertainties. This is in sharp contrast with the two approaches
mentioned above, where in lieu of the assumption that a signal is within a class of signals
generated by an exogenous system, one instead needs to assume complete knowledge of the
past, present and future time history of the trajectory to be tracked. It is for this reason
that the internal-model-based approach seems to be the best suited in problems of tracking
of unknown reference trajectories or rejecting unknown disturbances.

A generalized problem of tracking and asymptotic disturbance rejection is usually cast
as follows. A nonlinear system is given, modelled by equations of the form

ẋ = f(x, u, v)
y = k(x, v)
e = h(x, v)

with state x, control input u, measured output y, regulated output e. In this system, v is an
exogenous input, which represents actual disturbances as well as commands to be followed,
and it is assumed that, as a function time, v(t) can be seen as generated by a separate
autonomous dynamical system, called the exosystem. Generally speaking, the problem of
tracking and asymptotic disturbance rejection (sometimes also referred to as the generalized
servomechanism problem or the output regulation problem) is to design a controller so as to
obtain a closed-loop system in which:

• all trajectories are bounded, and
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• the regulated output e(t) asymptotically decays to 0 as t → ∞ .

The peculiar aspect of this design problem is the characterization of the class of all possible
exogenous inputs (disturbances as well commands) as the set of all possible solutions of a
fixed (finite-dimensional) differential equation. This can be seen as an intermediate choice
sitting between two extremes: the (pessimistic) case in which the design is required to obtain
certain goals in the presence of the worst possible exogenous input and the (optimistic) case
in which the controller is assumed to have access to the exogenous input v. In this design
problem, the controller does not have access to the exogenous input in real time, but the
latter is restricted to range over a “finite dimensional” set of functions (such as the set
of solutions of a fixed differential equation). The vector v may include constant uncertain
parameters, which have a trivial dynamics and hence can be viewed as solutions of a (trivial)
differential equation. In other words, in this setting, any source of uncertainty (about an
actual disturbance affecting the system, about an actual trajectory to be tracked, about
any unknown constant parameter in the plant or about any unknown constant parameter in
the exosystem itself) is treated as uncertainty in the initial condition of a fixed autonomous
finite dimensional dynamical system, which is then seen as source of all possible, constant
as well time-varying, uncertainties.

For linear multivariable systems this problem was addressed in very elegant geometric
terms by Davison, Francis, Wonham [6, 8, 7] and others. A nonlinear enhancement of this
theory, which uses a combination of geometry and nonlinear dynamical systems theory,
was presented in [13, 11, 10, 5] in the context of solving the problem near an equilibrium,
in the presence of exogenous signals which were produced by a Poisson stable system. In
particular, Huang showed how, by appropriately designing the internal model, the controlled
output could be steered to zero in spite of plant parameter uncertainties, thus extending to
the nonlinear setting one of the most remarkable features of internal-model-based design for
linear systems. Under suitable hypotheses, the (local) design methods presented in these
works have been extended [14, 12, 19] to the case of arbitrary large (but compact) sets of
initial data. A substantial limitation of classical internal model-based control (for linear as
well as nonlinear systems) is the sensitivity to parameters uncertainties in the exosystem.
This limitation, though, was later addressed and solved under convenient hypotheses in the
paper [20], where the possibility of using techniques of adaptive control to cope with unknown
parameters in the exosystem was successfully demonstrated.

In the recent paper [2], the problem in question has been posed in more general terms,
not tied, as all previous contributions were, to the existence of a privileged equilibrium
point about which the (local as well semi-global) analysis was conducted. The more general
foundations laid in this way make it possible to overcome certain restrictions of the earlier
theory, notably the assumption that the controlled plant has an asymptotically stable zero-
dynamics, which is replaced by the substantially weaker hypothesis that the latter possess
a compact attractor. Another major enhancement of this newer approach is a systematic
method for the design of nonlinear internal models (see [3]). The presence of parametric
uncertainties in the exosystem, however, is not explicitly addressed in these works.

The purpose of the present paper is to show how the problem of handling parametric
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uncertainties in the exosystem can be successfully addressed by means of a new approach
which reposes, on one hand, on the general non-equilibrium theory developed in [2] and, on
the other hand, on the theory of adaptive observers for nonlinear system pioneered in [1] and
[17]. The result obtained in this way is a totally new method for the synthesis of adaptive
internal models which substantially extends the adaptive regulation theory presented in [20],
by allowing nonlinear internal models and more general classes of controlled plants.

2 Output regulation and limit sets

The purpose of output regulation is to obtain a closed-loop system in which all trajectories
with initial conditions in a fixed (but otherwise arbitrary) compact set are bounded and the
regulated output converges to zero as time tends to infinity. As shown in [2], intimately
associated with this problem is the notion of limit set of a given bounded set of initial
conditions. For convenience of the reader, the notion in question is summarized as follows.

Consider an autonomous ordinary differential equation

ẋ = f(x) (1)

in which x ∈ R
n, t ∈ R, with f(x) a locally Lipschitz function. Let

φ : (t, x) 7→ φ(t, x)

define the flow of (1). Suppose the flow is forward complete. The ω-limit set of a subset
B ⊂ R

n, written ω(B), is the totality of all points x ∈ R
n for which there exists a sequence

of pairs (xk, tk), with xk ∈ B and tk → ∞ as k → ∞, such that

lim
k→∞

φ(tk, xk) = x .

In case B = {x0} the set thus defined, ω(x0), is precisely the ω-limit set, as defined by
Birkhoff, of the point x0. Note that, in general

⋃

x0∈B

ω(x0) ⊂ ω(B) ,

but the equality may not hold.
It is well-known that φ(t, x0), if is bounded in positive time, the set ω(x0) is non-empty,

compact, invariant, and
lim
t→∞

dist(φ(t, x0), ω(x0)) = 0 .

If B is not just the singleton {x0}, the following more general property holds. Recall that a
set A is said to uniformly attract a set B under the flow of (1) if for every ε > 0 there exists
a time t̄ such that

dist(φ(t, x), A) ≤ ε, for all t ≥ t̄ and for all x ∈ B.

Then the following holds (see [9, page 8]).
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Lemma 1 If B is a nonempty bounded set for which there is a compact set J which uniformly
attracts B (thus, in particular, if B is any nonempty bounded set whose positive orbit has
a bounded closure), then ω(B) is nonempty, compact, invariant and uniformly attracts B.
Moreover, if ω(B) ∈ int(B), then ω(B) is stable in the sense of Lyapunov.

3 Class of systems and main assumptions

In this paper we discuss the design of output regulators for nonlinear systems modelled by
equations of the form

ż = f0(̺, w, z) + f1(̺, w, z, e1)e1
ė1 = e2

...
ėr−1 = er
ėr = q(̺, w, z, e1, . . . , er) + u
e = e1
y = col(e1, . . . , er) ,

(2)

with state (z, e1, . . . , er) ∈ R
n × R

r, control input u ∈ R, regulated output e ∈ R, measured
output y ∈ R

r, in which the exogenous (disturbance) input w ∈ R
s is generated by an

exosystem
ẇ = s(̺, w) . (3)

In this model, ̺ ∈ R
p is a vector of constant uncertain parameters, ranging over a fixed

compact set P . The vector ̺ is the aggregate of a finite set of uncertain parameters affecting
the controlled plant and another, possibly different, set of uncertain parameters affecting the
exosystem. These parameters may be regarded as “ trivial components” of an “ augmented”
exogenous input, but for the sake of clarity, and also consistency with some of the earlier liter-
ature, their role will be kept separate. Occasionally, throughout the paper, the “ augmented”
exosystem

˙̺ = 0
ẇ = s(̺, w)

(4)

will be rewritten in more compact form as

ẇ = s(w) , (5)

where w = col(̺, w).
The functions f0(·), f1(·), q(·), s(·) in (2) and (4) are assumed to be at least continuously

differentiable. The initial conditions of (2) range on a set Z × E, in which Z is a fixed
compact subset of Rn and E = {(e1, . . . , er) ∈ R

r : |ei| ≤ c}, with c a fixed number. The
initial conditions of the exosystem (5) range on a compact subset W of Rp × R

s. In this
framework the problem of output regulation is to design an output feedback regulator of the
form

ζ̇ = ϕ(ζ, y)
u = γ(ζ, y)
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such that for all initial conditions w(0) ∈ W and (z(0), e1(0), . . . , er(0)) ∈ Z ×E the trajec-
tories of the closed-loop system are bounded and limt→∞ e(t) = 0.

Augmenting (2) with (4) yields a system which, viewing u as input and e as output, has
relative degree r. The associated “augmented” zero dynamics, which is forced by the control

c(̺, w, z) = −q(̺, w, z, 0, . . . , 0) , (6)

is given by
˙̺ = 0

ẇ = s(̺, w)

ż = f0(̺, w, z) .

(7)

Occasionally, throughout the paper, we will find it convenient to rewrite the latter in
more compact form as

ż = f0(z) , (8)

having set z = col(̺, w, z). Accordingly, we set Z = W × Z and, with a mild abuse of
notation, we replace c(̺, w, z) by c(z) in (6).

In what follows, we retain three of the basic assumptions that were introduced in [2] and
express certain properties of the augmented zero dynamics (7). The assumptions in question
are the following ones:

Assumption (i) : the set W is a differential submanifold (with boundary) of Rp × R
s, and

W is invariant for (5). ⊳

Assumption (ii) : there exists a compact subset Z ofW×R
n which contains the positive orbit

of the set Z under the flow of (8), and ω(Z) is a differential submanifold (with boundary) of
W × R

n. Moreover there exists a number d1 > 0 such that

z ∈ W × R
n , dist(z, ω(Z)) ≤ d1 ⇒ z ∈ Z . ⊳

As a remark on the above hypotheses, note that, since the positive orbit of the set Z
under the flow of (8) is bounded, the set ω(Z), namely the ω-limit set of Z under the flow
of (8), is a nonempty, compact and invariant subset of W×R

n which uniformly attracts all
trajectories of (8) with initial conditions in Z. It can also be shown (as in [2]) that for every
w ∈ W there is z ∈ R

n such that (w, z) ∈ ω(Z). In what follows, for convenience, the set
ω(Z) will be simply denoted as A0.

The last condition in assumption (ii) implies that A0 is stable in the sense of Lyapunov.
The next hypothesis, which will be used in the last part of the paper, is that the set A0 is
locally exponentially attractive.

Assumption (iii) : There exist M ≥ 1, a > 0 and d2 ≤ d1 such that

z0 ∈ W × R
n , dist(z0,A0) ≤ d2 ⇒ dist(z(t, z0), A0) ≤ Me−atdist(z0, A0)
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in which z(t, z0) denotes the solution of (8) passing through z0 at time t = 0. ⊳

The results presented in [2], as essentially all previous results on output regulation,
relied upon the hypothesis that the set of all “feed-forward inputs capable to secure perfect
tracking” (that, is, the set of inputs of the form u(t) = c(z(t)), with z(t) a trajectory of the
restriction of (8) to A0) could be seen as a subset of the set of outputs of a suitable linear
system. The system in question was used to construct a (linear, as a matter of fact) internal
model. This assumption was weakened in [3], where a general method for the construction
of fully nonlinear internal models was presented, but the method in question did not allow
for the presence of uncertain parameters in the exosystem. In this paper we introduce a
different kind of hypothesis, leading to a somewhat more restricted class of internal models,
but which – in return – allows for uncertain parameters in the exosystem.

Assumption (iv) : there exist a positive integer d, a C1 map

τ : Z → R
d

z 7→ τ(z) ,

a C0 map
θ : P → R

q

̺ 7→ θ(̺) ,

an observable pair (A,C) ∈ R
d×d × R

1×d, and two C1 maps φ : R → R
d and Ω : R → R

d×q

such that the following identities (which we call immersion property)

∂τ

∂z
f0(z) = Aτ(z) + φ(Cτ(z)) + Ω(Cτ(z)) θ(̺) (9)

c(z) = C τ(z) (10)

hold for all z ∈ A0, ̺ ∈ P . ⊳

Remark. Without loss of generality (see [16, page 208]), we can assume throughout that
the matrices A and C in (11) have the form

A =













0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0













, C = ( 1 0 0 · · · 0 ) .

Furthermore, note that since the maps Ω(·) and φ(·) are continuously differentiable and the
relations (9) – (10) are supposed to hold over the compact set A0, it can be assumed without
loss of generality that functions φ(·) and Ω(·) have compact support. This being the case,
the functions in question can be assumed globally Lipschitz, i.e. there exist Lφ and LΩ such
that

|φ(s1)− φ(s2)| ≤ Lφ|s1 − s2|, |Ω(s1)− Ω(s2)| ≤ LΩ|s1 − s2|,
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for all s1, s2. ⊳

Remark. Note that Assumption (iv) can be rephrased by saying that for each initial
condition z(0) ∈ A0 of (8), there is a pair ξ(0), θ such that the control input u(t) = c(z(t))
(which is the unique input capable of keeping e(t) identically at zero) can be seen as output
of a system of the form

ξ̇ = Aξ + φ(y) + Ω(y)θ

θ̇ = 0

y = Cξ . ⊳

(11)

In the remaining part of this section we show that there is no loss of generality in ad-
dressing the simpler case in which the relative degree of (2) is r = 1. As a matter of fact
consider the change of variable

er 7→ ẽ := er + gr−1a0e1 + gr−2a1e2 + . . .+ gar−2er−1

where g is a positive design parameter and ai, i = 0, . . . , r − 2 , are such that all roots of
the polynomial λr−1 + ar−2λ

r−1 + . . . + a1λ + a0 = 0 have negative real part. This changes
system (2) into a system of the form

˙̃z = f̃0(̺, w, z̃) + f̃1(̺, w, z̃, ẽ)ẽ
˙̃e = q̃(̺, w, z̃, ẽ, g) + u

(12)

in which
z̃ = col(z, e1, . . . , er−1)

f̃0(̺, w, z̃) =













f0(̺, w, z) + f1(̺, w, z, e1)e1
e2
· · ·
er−1

−gr−1a0e1 − gr−2a1e2 − . . .− gar−2er−1













f̃1(̺, w, z̃, ẽ) =













0
0
· · ·
0
1













and

q̃(̺, w, z̃, ẽ, g) = q(̺, w, z, e1, . . . , er)− gr−1a0e2 − · · · − g2ar−3er−1

− gar−2[ẽ− gr−1a0e1 − gr−2a1e2 − . . .− gar−2er−1] .
(13)

Let the initial conditions of (12) range on a set of the form Z × Ze × Ẽ, in which Ze =
{(e1, . . . , er−1 : |ei| ≤ c} and Ẽ = {ẽ : |ẽ| ≤ c̃} with

c̃ ≥ (1 + gr−1a0 + gr−2a1 + . . .+ gar−2)c

(note the dependence on the choice of the ai’s and of g).
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Let system (12) be augmented with (4) and consider a regulation problem with regulated
output ẽ and measured output ỹ = ẽ. The system, viewed as a system with input u and
output ẽ, has relative degree 1 and its zero dynamics, forced by the control

c̃(̺, w, z̃) = −q̃(̺, w, z̃, 0, g) , (14)

is given by
˙̺ = 0
ẇ = s(̺, w)
˙̃z = f̃0(̺, w, z̃) .

(15)

Consistently with the notation used for (7), the latter can be rewritten in more succinct form
as

˙̃z = f̃0(z̃) with z̃ = col(̺, w, z̃) . (16)

Suppose that a controller of the form

ζ̇ = ϕ(ζ, ỹ)
u = γ(ζ, ỹ)

(17)

has been found which solves the problem of output regulation thus defined. Then, it is
immediate to realize that the controller

ζ̇ = ϕ(ζ, er + g r−1 a0 e1 + g r−2 a1 e2 + . . .+ g ar−2 er−1)
u = γ(ζ, er + g r−1 a0 e1 + g r−2 a1 e2 + . . .+ g ar−2 er−1)

(18)

solves the problem of output regulation for the original plant (2). To this end note, first of
all, that (18) is an admissible controller for (2), because it is driven only by the components
e1, . . . , er of the measured output y of (2). Trivially, the composition of (2) with (18) differs
from the composition of (12) with (17) only by a linear change of coordinates, and for any
initial state of (2) in Z × E, the corresponding initial state of (12) is in Z × Ze × Ẽ. Thus
all trajectories of (2), controlled by (18), with initial conditions in Z ×E are bounded. The
trajectories in question are such that limt→∞ ẽ(t) = 0. But since

ė1 = e2
...

ėr−1 = −(gr−1a0e1 + gr−2a1e2 + . . .+ gar−2er−1) + ẽ

and the ai’s are coefficients of a Hurwitz polynomial, it is readily concluded that also
limt→∞ e1(t) = 0. Therefore (18) solves the problem of output regulation for the system
(2) .

In the light of these considerations, what is left to show in order to prove the desired claim
(namely the fact that there is no loss of generality in addressing the problem for systems
having relative degree 1) is that the zero dynamics (15) and the associated map (14) inherit,
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from (7) and (6), the appropriate properties which make the solution of the problem of
output regulation possible. Specifically, we will prove that if (7) and (6) satisfy assumptions
(i)-(iv) above, then (15) and (14) satisfy an identical set of assumptions, provided that the
parameter g is chosen sufficiently large. This is formalized in the next Lemma.

Lemma 2 Suppose that assumptions (i)-(iv) hold for (7) and (6). Set Z̃ = W × Z × Ze.
Then there exists g⋆ > 0 such that for all fixed g ≥ g⋆ the following hold:

(ii)′ there exists a compact subset Z̃ of W×R
n×R

r−1 which contains the positive orbit of the
set Z̃ under the flow of (16), and Ã0 := ω(Z̃) is a differential submanifold (with boundary)
of W × R

n × R
r−1. Moreover there exists a number d̃1 > 0 such that

z̃ ∈ W × R
n × R

r−1 , dist(z̃, Ã0) ≤ d̃1 ⇒ z̃ ∈ Z̃ .

(iii)′ there exist M̃ ≥ 1, ã > 0 and d̃2 ≤ d̃1 such that

z̃0 ∈ W×R
n×R

r−1 , dist(z̃0, Ã0) ≤ d̃2 ⇒ dist(z̃(t, z̃0), Ã0) ≤ M̃e−ãtdist(z̃0, Ã0)

in which z̃(t, z̃0) denotes the solution of (16) passing through z̃0 at time t = 0.

(iv)′ there exist a C1 map
τ̃ : Z̃ → R

d

z̃ 7→ τ̃ (z̃)

such that the immersion property 1

∂τ̃

∂z̃
f̃0(z̃) = Aτ̃(z̃) + φ(Cτ̃(z̃)) + Ω(Cτ̃ (z̃)) θ(̺)

c̃(z̃) = Cτ̃ (z̃)

holds for all z̃ ∈ Ã0, and ̺ ∈ P .

Proof. Consider the change of variable

x =









x1

x2
...

xr−1









:= D−1
g









e1
e2
...

er−1









with Dg =











1 0 . . . 0
0 g . . . 0
...

...
. . .

...
0 0 . . . gr−2











which transforms system (15) into

ż = f0(̺, w, z) + f1(̺, w, z, x1)x1

ẋ = gAx
(19)

1As above, with a mild abuse of notation we rewrite c̃(̺, w, z, e1, . . . , er−1) as c̃(z̃).
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where A is a Hurwitz matrix. Note that if g > 1, which we can assume without loss of
generality, (e1(0), . . . , er(0)) ∈ E implies x(0) ∈ Ze. System (19) augmented with (4) can be
regarded as a particular case of system (59) of the Appendix, to which Lemma 7 applies. In
particular by property (b) of the latter, there is a number g⋆ > 0 such that for all g ≥ g⋆

the positive orbit of Z× Ze under the flow of (4) – (19) is bounded. As a consequence, the
ω-limit set Ã0 of Z × Ze, is a nonempty, compact, invariant set which uniformly attracts
Z × Ze. We prove now that Ã0 = A0 × {0}. To this end note first of all that A0 × {0}
by construction is contained in Ã0. Moreover, x is necessarily 0 at any point of A0. In
fact suppose, by contradiction, that there is a point (z, x) of Ã0 with x 6= 0. As g > 0
and A is Hurwitz, it follows that the trajectory x(t) of (4) – (19) originating from (z, x) is
unbounded in backward time, which contradicts the fact that Ã0 is a compact invariant (in
particular in backward time) set. Finally, since A0 is the ω-limit set of Z under the flow of
(7), we can conclude that necessarily Ã0 = A0 × {0}. This in particular proves claim (ii)’.
Claim (iii)’, namely exponential attractivity of Ã0, is an easy consequence of property (a)
of Lemma 7 and of the fact that the lower subsystem of (19) is exponentially stable. To
prove claim (iv)’, note that (6), (13), (14) imply c̃(z̃)|Z×{0} = c(z) . From this claim (iv)’
immediately follows by assumption (iv), taking as τ̃(z̃) any differentiable function such that
τ̃(z̃)|A0×{0} = τ(z)|A0

. This completes the proof. ⊳

Motivated by the previous considerations and result, in what follows we focus our atten-
tion on the case in which r = 1, i.e. on the special case in which system (2) is a system of
the form

ż = f0(̺, w, z) + f1(̺, w, z, e1)e1
ė1 = q(̺, w, z, e1) + u
e = e1
y = e1

(20)

and we assume that assumptions (i) - (ii) - (iii) - (iv) hold.

4 The adaptive internal model

4.1 The structure of the regulator

The proposed regulator is a system of the form

u = ξ1 + v

ξ̇ = Aξ + φ(ξ1) + Ω(ξ1)θ̂ +H(X, ξ1)v −M(X)dzvℓ(θ̂)

˙̂
θ = β(X, ξ1)v − dzvℓ(θ̂)

Ẋ = FX +GΩ(ξ1)

(21)
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in which ξ1 denotes the first component of ξ, the matrix X is a (d− 1)× q matrix, M(X) is
a d× q matrix defined as

M(X) =

(

0
X

)

,

while the vectors H(X, ξ1), β(X, ξ1) and the matrices F,G have the form described below.
The function dzvℓ(·) is defined as

dzvℓ(col(s1, . . . , sq)) = col(dzℓ(s1), . . . , dzℓ(sq))

in which dzℓ(·) is any continuously differentiable function satisfying

dzℓ(x) =

{

0 if |x| ≤ ℓ
x if |x| ≥ ℓ+ 1

(22)

and the amplitude ℓ of the dead-zone is chosen so that

ℓ > max
̺∈P

|θ(̺)| .

This controller can be viewed as a “copy” of (11), corrected by an “innovation term”, aug-
mented with an “adaptation law” for θ̂ and with a “filter” which generates the “auxiliary
state” X . The additional input v, which is a “stabilizing control”, will eventually be taken
as v = −ky.

Following the theory of adaptive observers of [1] and [17], the functions H(X, ξ1), β(X, ξ1)
and the matrices F,G of (21) are chosen as follows. Define new variables

θ̃ = θ̂ − θ(̺)

η = ξ −M(X)θ̃ .
(23)

(note that η1 = ξ1) and observe that, in the new variables, the second equation of (21) reads
as follows (for convenience, we omit the arguments (X, ξ1) in H and β and the argument X
in M)

η̇ = A(η +Mθ̃) + φ(ξ1) + Ω(ξ1)(θ(̺) + θ̃) +Hv − Ṁθ̃ −Mβv

= Aη + [AM + Ω(ξ1)− Ṁ ]θ̃ + [H −Mβ]v + φ(ξ1) + Ω(ξ1)θ(̺) .
(24)

The third equation, instead, becomes trivially

˙̃θ = βv − dzvℓ (θ̃ + θ(̺)) .

The choices of H(X, ξ1), β(X, ξ1) and of F,G are meant to simplify the terms

[AM + Ω(ξ1)− Ṁ ]θ̃ + [H −Mβ]v

in the expression (24). First of all, note that choosing

H = Mβ +K

12



with K a constant vector (whose expression will be determined later), the second term
becomes equal to Kv. As for the first term, the idea is to impose that

[AM + Ω(ξ1)− Ṁ ]θ̃ = bβTθ̃

in which b is a d× 1 fixed vector. The identity in question holds if M satisfies

Ṁ = (A− bCA)M + (I − bC)Ω(ξ1)

and β is taken as
βT = CAM + CΩ(ξ1) .

In this way, the second equation of (21) takes the simplified form

η̇ = Aη + bβTθ̃ +Kv + φ(η1) + Ω(η1)θ(̺) , (25)

on which we will return later. To show that the required differential equation for M can be
enforced, pick a column vector b = col(1, b2, . . . , bd). Then, bearing in mind the definition of
M , it is easily realized that the required differential equation holds if the matrices F and G
in the differential equation for X have the form (see [17])

F =









−b2 1 · · · 0 0
· · · · · · ·

−bd−1 0 · · · 0 1
−bd 0 · · · 0 0









, G =









−b2 1 · · · 0 0 0
· · · · · · · ·

−bd−1 0 · · · 0 1 0
−bd 0 · · · 0 0 1









. (26)

In summary, the quantities H(X, ξ1), β(X, ξ1), F, G which appear in the controller (21)
are determined as follows: F and G are the matrices in (26), β(X, ξ1) is chosen as

β(X, ξ1) = [CA

(

0
X

)

+ CΩ(ξ1)]
T (27)

and H(X, ξ1) is chosen as

H(X, ξ1) =

(

0
X

)

[CA

(

0
X

)

+ CΩ(ξ1)]
T +K . (28)

The vector b, whose entries determine the choice of F and G and the parameter K, which
appears in the expression of H(X, ξ1), will be chosen later.

The controller thus defined determines a closed loop system which, in the coordinates
indicated above, can be written as (recall that e1 = e)

˙̺ = 0

ẇ = s(̺, w)

ż = f0(̺, w, z) + f1(̺, w, z, e)e

ė = q(̺, w, z, e) + η1 + v

η̇ = Aη + bβTθ̃ +Kv + φ(η1) + Ω(η1)θ(̺)

˙̃θ = βv − dzvℓ (θ̃ + θ(̺))

Ẋ = FX +GΩ(η1) ,

(29)
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where β is a function of X and η1. This system, viewed as a system with input v and output
e, has relative degree 1 and its zero dynamics are those of

˙̺ = 0

ẇ = s(̺, w)

ż = f0(̺, w, z)

η̇ = Aη −K[q(̺, w, z, 0) + η1] + bβTθ̃ + φ(η1) + Ω(η1)θ(̺)

˙̃
θ = −β[q(̺, w, z, 0) + η1]− dzvℓ (θ̃ + θ(̺))

Ẋ = FX +GΩ(η1) .

(30)

The intuition suggests that if the latter have convenient asymptotic properties, in particular
possess a locally exponentially stable compact attractor, an additional control of the form
v = −ke, (with large k > 0) should be able to solve the problem of output regulation. Thus,
in following subsection, the asymptotic properties of (30) will be studied.

4.2 Trajectories of (30) are bounded

In studying the asymptotic properties of this system, it is convenient to take advantage of
the “immersion” assumption (iii) introduced above. Specifically, suppose that the initial
conditions for ̺, w, z are taken in the set Z, a subset of a set Z which by hypothesis is
positively invariant for the subsystem formed by the top three equations of (30). Thus, for
any of such initial conditions and for any t ≥ 0, the function τ(̺, w(t), z(t)) is well defined
and it is legitimate to consider the change of variables

χ = η − τ(̺, w, z) .

This transforms system (30) in a system of the form (use here (9) and (10) which hold on
A0 ⊂ Z )

˙̺ = 0

ẇ = s(̺, w)

ż = f0(̺, w, z)

χ̇ = (A−KC)χ1 + bβTθ̃ +∆(χ1, τ1, θ) + e(̺, w, z)

˙̃θ = −βχ1 − dzvℓ (θ̃ + θ(̺))

Ẋ = FX +GΩ(χ1 + τ1) ,

(31)

in which
∆(χ1, τ1, θ) = φ(χ1 + τ1)− φ(χ1) + [Ω(χ1 + τ1)− Ω(χ1)]θ(̺)
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is a term which vanishes at χ1 = 0 and

e(̺, w, z) = K(c(̺, w, z)− τ1(̺, w, z)) + Aτ(̺, w, z)) + φ(τ1(̺, w, z)) + Ω(τ1(̺, w, z))θ(̺)

− ∂τ

∂z
f0(̺, w, z)−

∂τ

∂w
s(̺, w)

(32)
is a term vanishing on A0. In particular note that, since φ(y) and Ω(y) can be taken to be
globally Lipschitz and θ ranges over a compact set, there exists a number L such that

|∆(χ1, τ1, θ)| ≤ Lφ |χ1|+ LΩ|χ1| |θ| ≤ L|χ1|

for all χ1, τ1, θ.
The idea is now to choose the bi’s and K so that system (31) has certain desirable

asymptotic properties. To this end, let the bi be such that the polynomial

p(λ) = λd−1 + b2λ
d−2 + · · ·+ bd−1λ+ bd (33)

has d − 1 distinct roots with negative real part. As a consequence the matrix F in the
bottom equation of (31) is Hurwitz (and has distinct eigenvalues). This, in view of the
assumptions on the top three equations, suggests that the asymptotic properties of (31) are
entirely determined by those of the fourth and fifth equation.

As indicated in [17, Theorem 2.1], the appropriate choice for K in (25) is

K = Ab+ λb (34)

in which λ > 0. To see why this is the case note first of all that, using a little algebra, it is
not difficult to prove the following.

Lemma 3 Choose K as in (34) and set

T =

(

1 0
b̂ I

)

, b̂ = −









b2
·

bd−1

bd









.

Then

T (A−KC)T−1 =

(

−λ ĉ
0 F

)

, T b =

(

1
0

)

, CT−1 = C ,

in which ĉ = ( 1 0 · · · 0 ) and F is the matrix defined in (26).

¿From this fact, standard arguments can be invoked to claim boundedness of the trajec-
tories of (31). In fact, the following result holds.

Lemma 4 Suppose assumptions (i), (ii), (iv) hold. There is a number λ∗ such that, if
λ ≥ λ∗, all trajectories of (31) are bounded.
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Proof. First of all, recall that, by assumption (ii), (̺, w(t), z(t)) ∈ Z for all t ≥ 0, where
Z is a compact set. Thus, looking at the expression (32) of e(̺, w, z), it is seen that there
exist a number ē (depending on the design parameter λ because the latter appears in K)
such that

|e(̺, w(t), z(t))| ≤ ē ∀ t ≥ 0 . (35)

Observe also that, so long as trajectories of (31) exist on some interval [0, T ], |X(t)| is
bounded, by a number which only depends on |X(0)| (because |Ω(·)|, having compact sup-
port, is bounded by some fixed number). As a consequence, also |β(t)| is bounded, again by
a number which only depends on |X(0)|. Thus, system (31) cannot have finite escape times.

This being the case, to prove the Lemma it remains to show that also χ and θ̃ are
bounded. To this end, let χ be partitioned as χ = col(χ1, χ2), in which χ2 is a (d − 1) × 1
vector and change χ2 into

ζ = b̂χ1 + χ2 .

In this way, the fourth and fifth equations of system (31) are changed into

χ̇1 = −λχ1 + ĉζ + βTθ̃ + C∆(χ1, τ1, θ) + Ce(̺, w, z)

ζ̇ = Fζ + ( b̂ I )∆(χ1, τ1, θ) + ( b̂ I )Ce(̺, w, z)

˙̃
θ = −βχ1 − dzvℓ(θ̃ + θ(̺)) .

(36)

With this in mind, choose for (36) the Lyapunov function

V (χ1, ζ, θ̃) = χ2
1 + ζTPζ + θ̃Tθ̃ , (37)

in which P is the positive definite solution of PF + FTP = −I. This yields

V̇ = −2λχ2
1 + 2χ1ĉζ + 2χ1β

Tθ̃ + 2χ1C∆(χ1, τ1, θ) + 2χ1Ce(̺, w, z)

−|ζ |2 + 2ζTP ( b̂ I )∆(χ1, τ1, θ) + 2ζTP ( b̂ I )Ce(̺, w, z)

−2θ̃Tβχ1 − 2θ̃Tdzvℓ(θ̃ + θ(̺))

≤ −2λχ2
1 − |ζ |2 − 2θ̃Tdzvℓ(θ̃ + θ(̺)) + L1|χ1|2 + L2|χ1| |ζ |

+L3|χ1||e(̺, w, z)|+ L4|ζ ||e(̺, w, z)|

(38)

in which Li, i = 1 . . . , 4 are suitable positive constants. By completing the squares and using
(35), we obtain

V̇ ≤ −(2λ− L1 +
1

2
L2
2)χ

2
1 −

1

2
|ζ |2 − 2θ̃Tdzvℓ(θ̃ + θ(̺)) + L3|χ1|ē+ L4|ζ |ē . (39)

Bearing in mind the definition (22) and the choice of ℓ, observe that

θ̃Tdzvℓ(θ̃ + θ(̺)) ≥ 0 for all θ̃ ∈ R
q and ̺ ∈ P . (40)
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It is also easy to check that for any δ >
√
q(2ℓ+ 1) there is a positive number c1 such that

|θ̃| ≥ δ ⇒ 2θ̃Tdzvℓ(θ̃ + θ(̺)) ≥ c1|θ̃|2 for all θ̃ ∈ R
q and ̺ ∈ P . (41)

Pick a value of λ large enough so that λ̄ := 2λ− L1 − L2
2/2 > 0. Inequality (39), in view of

property (41), yields

|θ̃| ≥ δ ⇒ V̇ ≤ −c2|(χ1, ζ, θ̃)|2 + c3|(χ1, ζ, θ̃)|ē

in which c2 = min{λ̄, 1
2
, c1} and c3 = 3max{L3, L4}. From this, it is seen that

|θ̃| ≥ δ and |(χ1, ζ, θ̃)| >
c3
c2

ē ⇒ V̇ < 0 . (42)

Property (40), on the other hand, yields

V̇ ≤ −c2|(χ1, ζ)|2 + c3|(χ1, ζ)| ē
from which it is seen that

|(χ1, ζ)| >
c3
c2

ē ⇒ V̇ < 0 . (43)

We show now that a combination of (42) and (43) yields the desired result, namely the
boundedness of (χ1(t), ζ(t), θ̃(t)). As a matter of fact set

r :=

√

δ2 +
(c3
c2

ē
)2

and note that, since

|(χ1, ζ, θ̃)| > r ⇒ |(χ1, ζ, θ̃)| >
c3
c2
ē

and
|(χ1, ζ, θ̃)| > r ⇒ |(χ1, ζ)| >

c3
c2
ē or |θ̃| > δ ,

relations (43) and (42) imply

|(χ1, ζ, θ̃)| > r ⇒ V̇ < 0 .

From this, bearing in mind the fact that V (χ1, ζ, θ̃) is a quadratic form, the result follows
by standard arguments. ⊳

We can therefore draw the following conclusion about system (30). Let the initial condi-
tions η(0), θ̃(0), X(0) be taken in fixed compact sets H, Θ, X. 2 Then, the positive orbit of
the set

B = Z×H×Θ×X

under the flow of (30) is bounded. As a consequence ω(B), the ω-limit set of B under the flow
of (30), is a non-empty, compact and invariant set, which uniformly attracts all trajectories
of (30) with initial conditions in B.

2Recall that θ̃(t) = θ̂(t) − θ(̺) and η(t) = ξ(t) − β(X(t), ξ1(t))θ̃(t). Thus, to establish boundedness of

trajectories when ξ(0), θ̂(0) and X(0) are taken in fixed compact sets it suffices to consider the case in which
θ̃(0), η(0) and X(0) are taken in fixed compact sets.
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4.3 The limit set of (30)

We proceed now to investigate the structure of the set ω(B). To this end, we look at the
equivalent system (31), we note that the three top equations are independent of the bottom
ones and we rewrite them in compact form as in (8) (and consistently we rewrite the term
e(̺, w, z) as e(z) and τ(z, w, ̺) as τ(z)). In particular, because of the special triangular
structure of (31), we note that if (z, χ, θ̃, X) is a point of ω(B), necessarily z is a point in
the ω-limit set of Z under the flow of (8), that is, z is a point of A0. This implies that on
ω(B) we have e(z) = 0 and thus system (31) simplifies as

ż = f0(z)

χ̇ = (A−KC)χ+ bβTθ̃ +∆(χ1, τ1, θ)

˙̃
θ = −βχ1 − dzvℓ(θ̃ + θ(̺))

Ẋ = FX +GΩ(χ1 + τ1(z)) .

(44)

What we will be able to prove in the following is that on points of ω(B) necessarily χ = 0,
θ̃ = 0 and the value of X is entirely determined by the properties of the system

ż = f0(z)

Ẋ = FX +GΩ(τ1(z)),
(45)

in which τ1(z) is the obvious abbreviated notation for τ1(z, w, ̺). To this end, though, an
extra hypothesis is needed, which will be explained after having shown an interesting feature
of the system in question.

Lemma 5 The graph of the map

σ : A0 → R
(d−1)×q

z 7→
∫ 0

−∞

e−FsGΩ(τ1(z(s, z)))ds

is invariant for (45).

Proof. Let z(t, z0) denote the solution of (8) passing through z0 at time t = 0 and note that,
if z0 ∈ A0, then z(t, z0) ∈ A0 for all t (thus, in particular, since A0 is compact, |z(t, z0)| is
bounded by a number which depends only on A0). Then, since F is a Hurwitz matrix, the
map σ(·) is well defined. As simple calculation shows that

σ(z(t, z0)) = eFtσ(z0) +

∫ t

0

eF (t−s)GΩ(τ1(z(s, z0)))ds .

This shows that
graph(σ) = {(z, X) : z ∈ A0, X = σ(z)}
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is invariant for (45). ⊳

Remark. Consider the restriction of (45) to A0 × R
(d−1)×q. Since the graph of σ(·) is

invariant for (45), changing X into X̃ = X − σ(z), yields

ż = f0(z)

˙̃X = FX̃ .

We see from this that the solution X(t) of (45) passing through X0 at time t = 0 can be
expressed as

X(t) = eFt[X0 − σ(z0)] + σ(z(t, z0)) . ⊳ (46)

We introduce now an additional hypothesis, reminiscent of the classical hypothesis of
persistence of excitation.

Assumption (v) : Consider the map ϕ : A0 → R
q×1 defined as

ϕ : z 7→ β(σ(z), τ1(z))

It is assumed that for any initial condition z0 ∈ A0 the identity

γTϕ(z(t, z0)) = 0, for all t ∈ R

implies γ = 0. ⊳

Remark. In other words, the assumption of “persistency of excitation”, in the present con-
text, is spelled as follows: for any initial condition z0 ∈ A0, the q outputs of the autonomous
system

ż = f0(z)

ϕ = β(σ(z), τ1(z))

are linearly independent functions, on the entire time axis. ⊳

Under this hypothesis, the set ω(B) assumes a very simple structure. As a matter of
fact, the following result holds.

Lemma 6 Suppose that, in addition to assumptions (i), (ii), (iv), also assumption (v) holds.
Then the values of χ and θ̃ on any point of ω(B) are necessarily zero.

Proof. By contradiction, suppose a point p = (z, χ0, θ̃0, X) with either χ0 6= 0 or θ̃0 6= 0 is
in ω(B). Since ω(B) is compact and invariant, in particular in backward time, the backward
trajectory of (44) starting at this point is bounded. Along this trajectory, the function

V (t) := V (χ1(t), ζ(t), θ̃(t))

19



in (37) satisfies V (t) ≤ C for all t ≤ 0, for some C > 0. Moreover, since e(z) = 0 on ω(B),
the same computations indicated in the proof of Lemma 4 show that

V̇ (t) ≤ −(2λ− L1 −
1

2
L2
2)|χ1(t)|2 −

1

2
|ζ(t)|2 − 2θ̃(t)dzvℓ(θ̃(t) + θ(̺))

in which L1 and L2 are the same constants introduced in the proof of Lemma 4. From this,
using property (40), it turns out that if λ ≥ λ⋆ (where λ⋆ is the same as in Lemma 4) then
V (t) is non-increasing along trajectories. As consequence, since V (t) is bounded, that there
must exist a finite number Vα such that

lim
t→−∞

V (t) = Vα .

The trajectory in question is attracted, in backward time, by its own α-limit set α(p), which,
as it is well known, is nonempty, compact and invariant. Moreover, by definition, the function
V (χ1, ζ, θ̃) has the same value Vα at any point of α(p).

Now, as in the classical proof of LaSalle’s invariance principle, pick an initial condition
p̂ in the set α(p) and consider the corresponding trajectory of (44), which remains in α(p)
for all times. Along such trajectory, V (t) is constantly equal to Vα and hence

χ1(t) = 0, ζ(t) = 0, dzvℓ(θ̃(t) + θ(̺)) = 0 for all t ∈ R.

Entering these constraints in (44), and observing that the vector b is nonzero, it is seen that
necessarily

θ̃Tβ = 0

˙̃
θ = 0

Ẋ = FX +GΩ(τ1(z)) .

The second condition shows that θ̃(t) is a constant, say θ̃∗, along such trajectory. The third
condition, says that X(t) is a solution of

Ẋ = FX +GΩ(τ1(z))

Now, since F is Hurwitz and has distinct eigenvalues (because so are the roots of the poly-
nomial (33)), it is seen from (46) that X(t) is bounded for t ≤ 0 only if X(0) = σ(z(0)),
where σ(·) is the map introduced in Lemma 5, in which case X(t) = σ(z(t)). Since X(t) has
to be bounded because α(p) is compact, it follows that X(t) is necessarily equal to σ(z(t)).
This being the case, bearing in mind the expression of β and the definition of the map ϕ(·),
the first condition shows that necessarily

(θ̃∗)Tϕ(z(t)) = 0, for all t ∈ R.

Thus, in view of the assumption of persistency of excitation, it follows that θ̃∗ = 0. It is seen
in this way that (χ1, ζ, θ̃) = (0, 0, 0) at any point of α(p), and this proves that Vα = 0. But
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this is a contradiction, because V (t) is non-increasing along trajectories and V (0) is strictly
positive, if either χ0 6= 0 or θ̃0 6= 0. ⊳

To complete the analysis, it remains to determine the values of X on points of ω(B).
Knowing that χ1 = 0 on any of such points, it follows from the previous analysis and in
particular from Lemma 5 that X = σ(z). Altogether, bearing in mind how system (30) and
system (44) are related, the following conclusion holds.

Proposition 1 Under the assumptions (i),(ii),(iv) and (v) the set ω(B) is the graph of a
continuous map defined on A0. Any point of ω(B) is a point (z, η, θ̃, X) in which z ∈ A0

and
η = τ(z), θ̃ = 0, X = σ(z) .

4.4 Exponential attractivity of the limit set of (30)

Finally, we prove that the set ω(B) is also locally exponentially attractive for the trajectories
of the zero dynamics (30) of system (29), if so is the set A0 for the trajectories of (8). This
fact is formalized in the next proposition.

Proposition 2 Suppose that, in addition to assumptions (i)-(ii)-(iv) and (v), also assump-
tion (iii) holds. Then ω(B) is locally exponentially attractive for (30).

Proof. Consider again the equivalent system (31), let the compact notation ż = f0(z) be
used for the first three equations and let the variables (χ1, ζ), introduced in the proof of
Lemma 4, replace χ. Let σ̄ : Z → R

(d−1)×q be any continuously differentiable map which
agrees on A0 with the map σ introduced in Lemma 5, and change X into X̃ = X − σ(z). In
this way, the last equation of (31) is transformed into an equation of the form

˙̃X = FX̃ +Q(z) +R(χ1, z)

in which

Q(z) = F σ̄(z) +GΩ(τ1(z))−
∂σ̄

∂z
f0(z)

is a (matrix-valued) function vanishing on A0 while

R(χ1, z) = G[Ω(χ1 + τ1(z))− Ω(χ1)]

is vanishing for χ1 = 0 for all z ∈ Z. Let X̃i, Qi(z), Ri(χ1, z) denote the i-th columns
of X̃, Q(z), R(χ1, z). Setting x = col(χ1, ζ, θ̃, X̃1, . . . , X̃q), system (31) can be conveniently
rewritten as

ż = f0(z)
ẋ = g(z,x) + ν(z)
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in which

ν(z) =



















Ce(z)
(

b̂ I
)

e(z)

0
Q1(z)

...
Qq(z)



















is a vector of functions vanishing on A0. Observing that g(z, 0) = 0, set

A(z) =
∂g

∂x
(z, 0)

and consider the expansion
g(z,x) = A(z)x+ h(z,x) .

The matrix A(z) is the matrix

A(z) =

















−λ + r1(z) ĉ βT(σ(z), τ1(z)) 0 · · · 0
r2(z) F 0 0 · · · 0

−β(σ(z), τ1(z)) 0 0 0 · · · 0
r31(z) 0 0 F · · · 0

· · · · · · · ·
r3q(z) 0 0 0 · · · F

















in which

r1(z) = C

[

∂∆

∂χ1

]

χ1=0

r2(z) =
(

b̂ I
)

[

∂∆

∂χ1

]

χ1=0

r3i(z) =

[

∂Ri

∂χ1

]

χ1=0

.

Moreover, by construction, the vector h(z,x) is such that

lim
|x|→0

|h(z,x)|
|x| = 0,

uniformly in z (as the latter ranges over a compact set). In this way, system (31) is rewritten
as

ż = f0(z)
ẋ = A(z)x+ h(z,x) + ν(z) .

(47)

With this in mind, consider now the auxiliary system

ż = f0(z)
ẏ = A(z)y

(48)

with initial conditions (z(0),y(0)) in the compact set Z×Y where Y = {y : |y| ≤ c}, with
c > 1. Arguments identical to those used in the proof of Lemma 4 and Lemma 6 make it
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possible to claim the existence of a λ⋆ > 0 such that for all λ > λ⋆ the trajectories (z(t),y(t))
are bounded in positive time and that

ω(Z×Y) = A0 × {0} .

As a matter of fact note that, by assumption, the trajectories z(t) are such that z(t) ∈ Z
for all t ≥ 0. As far as the trajectories y(t) are concerned, consider the candidate Lyapunov
function

U(y) = V (χ1, ζ, θ̃) +

q
∑

i=1

X̃T
i PX̃i

where V (χ1, ζ, θ̃) is the function defined in (37) and P is the positive definite solution of
PF+FTP = −I. The time derivative of U(y(t)) along the solutions of (48) can be estimated
as

U̇ = − 2(λ− r1(z))χ
2
1 + 2ĉχ1ζ + 2χ1β

T(σ(z), τ1(z))θ̃ − |ζ |2 + 2ζTPr2(z)χ1

− 2θ̃Tβ(σ(z), τ1(z))χ1 −
∑q

i=1 |X̃i|2 +
∑q

i=1 2X̃
T
i Pr3i(z)χ1

≤ − 2(λ− r̄1)χ
2
1 − |ζ |2 −

∑q

i=1 |X̃i|2

+2 ĉ |χ1| |ζ |+ 2 r̄2 |P | |ζ | |χ1|+
∑q

i=1 2 r̄3 |P | |X̃i| |χ1|

in which r̄i = max
z∈Z |ri(z)|, i = 1, 2 and r̄3 = max

z∈Z,i=1,...,q |r3i(z)|. Standard arguments
can be used to show that a large value of λ renders U̇ non positive, from which boundedness
of y(t) follows. Moreover the same arguments of the proof of Lemma 6 can be repeated to
show that, under the condition of persistence of excitation expressed by Assumption (v),
points on ω(Z×Y) of (48) are necessarily characterized by y = 0, from which it follows that
ω(Z×Y) = A0 × {0} .

We show now that A0 × {0} is locally exponentially attractive for (48). To this end, let
z(t, z0) and y(t,y0) denote the solution pair of (48) passing through z0 and, respectively,
y0 at time t = 0. Recall (see section 2) that A0 × {0} attracts the set Z × Y uniformly.
Therefore, since |y| ≤ dist((z,y),A0 × {0}), for any ε > 0 there exists Tε > 0 such that

|y(t,y0)| ≤ ε for all t ≥ Tε and all (z0,y0) ∈ Z×Y. (49)

With this in mind, let δ be such that dist(z0,A0) ≤ δ implies z(t, z0) ∈ Z for all t ≥ 0,
which is always possible, since A0 is stable in the sense of Lyapunov for the upper equation
of (48). Pick any z0 within a δ-distance from A0 and regard the bottom equation of (48) as
a time-varying linear system

ẏ = A(z(t, z0))y . (50)

Pick a pair t ≥ t0 ≥ 0 and let Φ(t, t0, z0) denote the associated state transition matrix
(which, of course, depends on the pick of z0). By construction, the i-th column φi(t, t0, z0)
of Φ(t, t0, z0) is the solution of (50) which satisfies φi(t0, t0, z0) = vi, where vi is a vector in
which all entries are zero but the i-th one, which is equal to 1. Consider now again (48) with
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initial conditions z(0) = z(t0, z0) and y(0) = vi (note that (z(t0, z0),vi) ∈ Z × Y). Since
(48) is time invariant, we observe that y(t,vi) = φi(t + t0, t0, z0) for all t ≥ 0. Thus, by
appealing to (49), it is deduced that, for any ε, there exists Tε such that

|φi(t+ t0, t0, z0)| ≤ ε for all t ≥ Tε

and all z0, so long as that dist(z0,A0) ≤ δ. This, in turn, by standard results (see e.g. [18,
page 92], implies the existence of positive numbers M and a (independent of z0) such that

|Φ(t, t0, z0)| ≤ Me−a(t−t0) for all t ≥ t0 ≥ 0 , (51)

and all z0, so long as that dist(z0,A0) ≤ δ.
By a classical converse Lyapunov theorem (see Theorem 3.12 in [15]), we deduce from (51)

the existence of a continuously differentiable and symmetric function P̄ (t), of a continuous
and symmetric function Q(t) and of constants c1, c2 and c3 such that

dP̄ (t)

dt
+ P̄ (t)A(z(t, z0)) +AT(z(t, z0))P̄ (t) = −Q(t)

with
0 < c1I ≤ P̄ (t) ≤ c2I and Q(t) ≥ c3I > 0

for all t ≥ 0.
Bearing in mind this result, we return now to the lower subsystem of (47) which can be

more conveniently seen as a time-varying nonlinear system

ẋ = A(z(t, z0))x+ h(z(t, z0),x) + ν(z(t, z0)) . (52)

In particular note that, as far as the term h(z(t, z0),x) is concerned, for any ǫ > 0 there is
δǫ > 0 such that

|x| ≤ δǫ ⇒ |h(z(t, z0),x)| ≤ ǫ|x|
for all t ≥ 0 and all z0 ∈ Z. Moreover note that, by Assumption (v), there exist positive
numbers Mz, az and d such that, for any z0 satisfying dist(z0,A0) ≤ d, the following bound
holds

dist(z(t),A0) ≤ Mze
−azt dist(z0,A0) , (53)

for all t ≥ 0. From this and from the definition of ν(·) (and in particular from the fact that
ν(·) is differentiable and vanishes on A0) it follows that there is a constant γ > 0 such that

|ν(z(t, z0))| ≤ γdist(z(t),A0) ≤ γMze
−azt dist(z0,A0) ,

for all t ≥ 0 and all z0 satisfying dist(z0,A0) ≤ d. Consider now the candidate Lyapunov
function W (x, t) = xTP̄ (t)x, whose time derivative along the solution of (52) yields

Ẇ (x, t) = −xTQ(t)x + 2xTP̄ (t)h(z(t, z0),x) + 2xTP̄ (t)ν(z(t, z0))

≤ −c3|x|2 + 2c2|x||h(z(t, z0),x)|+ 2c2|x||ν(z(t, z0))|
≤ −c3|x|2 + 2c2|x||h(z(t, z0),x)|+ 2c2|x|γMze

−azt dist(z0,A0) .

24



Picking ǫ ≤ c3
4c2

and δǫ accordingly, it follows that

|x(t)| ≤ δǫ ⇒ Ẇ (x(t), t) ≤ −c3
2
|x(t)|2 + 2c2γMz |x(t)| e−azt dist(z0,A0)

⇒ Ẇ (x(t), t) ≤ − c3
4c2

W (x(t), t) + 4
(c2γMz)

2

c3
e−2azt [dist(z0,A0)]

2 .

¿From this, standard arguments can be invoked to claim the existence of positive numbers
rx < δǫ, rz < d, Ax, Ay, λx, ,λz such that that if |x0| < rx and dist(z0,A0) ≤ rz then the
trajectory x(t) of (52) can be bounded as

|x(t)| ≤ Axe
−λxt|x0|+ Aze

−λztdist(z0,A0) .

This proves the Lemma. ⊳

5 Adaptive output regulation

We return now to the closed loop system obtained from the interconnection of (20), (4)
and (21). As mentioned before, this system, viewed as a system with input v and output
e = e1 has relative degree 1. To put it in “normal form”, we use, instead of (23), the change
variables

θ̃ = θ̂ − θ(ρ)− βx

η = ξ −M [θ̂ − θ(ρ)]−Kx .
(54)

This, after some simple algebra and some obvious rearrangement of terms, yields a system
of the form

˙̺ = 0

ẇ = s(̺, w)

ż = f0(̺, w, z) + f1(̺, w, z, e)e

η̇ = Aη + bβTθ̃ −K[q(̺, w, z, 0) + η1] + φ(η1) + Ω(η1)θ + δ1(̺, w, z, e,X, η1) e

˙̃
θ = −β[q(̺, w, z, 0) + η1] + δ2(̺, w, z, e,X, η1) e− dzvℓ(θ̃ + θ(̺))

Ẋ = FX +GΩ(η1) + δ3(η1, e) e

ė = −[q(̺, w, z, 0) + η1] + ϑ(̺, w, z, e)e+ v .

(55)

in which δ1(·), δ2(·), δ3(·) and ϑ(·) are continuously differentiable functions of their arguments.
A more succinct form can be obtained setting w as in section (3) and

x = col(η, θ̃, X1, . . .Xq) ,
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(where Xi denotes the i-th column of X) in which case, the system in question can be
rewritten in the form 3

ẇ = s(w)

ż = f0(w, z) + f1(w, z, e)e

ẋ = g0(w, z,x) + g1(w, z,x, e)e

ė = h(w, z,x) + k(w, z,x, e)e+ v .

(56)

In this notation, the set of equations

ẇ = s(w)

ż = f0(w, z)

ẋ = g0(w, z,x)

(57)

is a succinct version for the set of equations (30), whose asymptotic properties have been
analyzed in the previous section. More precisely, under the hypotheses introduced earlier,
the positive orbit of Z × Ξ × Θ × X under the flow (57) is bounded and all trajectories
uniformly converge to the compact invariant set ω(B) described in Proposition 1. Moreover,
the function h(w, z,x), which is a succinct version of the quantity −[q(̺, w, z, 0) + η1] in
(55), vanishes on the set ω(B). With this in mind we are now in the position to formulate
the final result of the paper which states that the controller (21) completed with

v = −ke (58)

solves the problem of output regulation if k is chosen sufficiently large.

Proposition 3 Consider system (20) with exosystem (4). Let W, Z, E be fixed compact sets
of initial conditions, for which the assumptions (i)-(iv) indicated in section 3 are supposed to
hold. Suppose, in addition, that assumption (v) introduced in section 4.3 holds. Consider the
controller (21) completed with (58) and initial conditions in a fixed compact set K. Then,
there exists a number k∗ > 0 such that if k ≥ k∗ the positive orbit of W×Z ×E ×K in the
closed loop system is bounded and e(t) → 0 as t → ∞.

Proof. The result directly follows from Proposition 4 of Appendix A. In particular it is easy
to check that system (56) – (58) can be viewed as a system of the form (59), the role of x in
(59) being played here by the one-dimensional variable e. The properties established for (57)
and the fact that h(w,z,x) vanishes on ω(B) show that all the assumptions of Proposition 4
are satisfied. Thus, the desired result follows by taking a large value of k. ⊳

Remark. The previous Proposition indicates that the proposed controller (21) completed
with (58) solves the problem of output regulation for the relative degree one system (20).

3With a minor abuse of notation we have replaced f0(̺, w, z) and f1(̺, w, z, e) by f0(w, z) and, respec-
tively, f1(w, z, e).
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Bearing in mind the discussion at the end of section 3, though, it follows that a controller
of the form (21), completed with

v = −k(er + gr−1a0e1 + gr−2a1e2 + . . .+ gar−2er−1) ,

is able to solve the problem of output regulation for the original plant (2), if g is large
enough. In this respect, it is worth stressing that the assumptions under which the proposed
controller solves the problem need only to be checked on the original system (2) and not
necessarily on the transformed, relative degree one, system (12). As a matter of fact, we have
already shown, in Lemma 2, that assumptions (i) through (iv) on system (2) imply identical
properties on system (12). For the sake of coherence, it remains to show that the fulfilment
of assumption (v) on system (2) implies the fulfillment of the corresponding assumption on
system (12). But this is a trivial matter, in view of the fact that the assumption in question
is determined (once the matrices A, C, F , G and the map Ω(·) have been fixed) only by the
restriction of τ1(z) to the invariant set A0. As shown in the proof Lemma 2, the map τ̃(z̃)
which makes assumption (iv) satisfied for (12) is such that τ̃(z̃) = τ(z) for z̃ = (z, 0) and
z ∈ A0, and therefore, if system (2) has the property (v), an identical property holds for the
transformed system (12). ⊳

Appendix

A A small-gain property

Consider a system of the form

˙̺ = 0
ẇ = s(̺, w)
ż = f0(̺, w, z) + ℓ(̺, w, z, x)
ẋ = q0(̺, w, z) + r(̺, w, z, x) + gAx

(59)

in which (̺, w, z, x) ∈ R
p × R

s × R
n × R

m. Let the functions f0(·), q0(·), g(·), ℓ(·), s(·) be
continuously differentiable and, moreover, let ℓ(̺, w, z, 0) = 0 and r(̺, w, z, 0) = 0 for all
(̺, w, z) ∈ R

p × R
s × R

n. A is a given Hurwitz matrix and g is a positive number. As in
section 3, let P ⊂ R

p, W ⊂ R
s, Z ⊂ R

n denote compact sets of initial conditions for ̺, w,
z, set z = col(̺, w, z) and Z = P ×W × Z. Suppose that the autonomous system

˙̺ = 0
ẇ = s(̺, w)
ż = f0(̺, w, z) ,

(60)

with initial conditions in the compact set Z, satisfies assumptions (i), (ii), (iii) of section 3
and, coherently with the abbreviated notation used throughout the paper, set A0 = ω(Z).
The following lemma presents describes some relevant properties of (59), proven [4], which
instrumental in proving the desired results.
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Lemma 7 Consider system (59) under the assumptions specified above, with initial condi-
tions in Z×X with X ⊂ R

m a compact set. Then the following holds:

(a) there exist positive numbers d, M , a and γ such that if

dist(z(0),A0) ≤ d and |x(t)| ≤ d for all t ≥ 0

then
dist(z(t),A0) ≤ Me−atdist(z(0),A0) + γ max

τ∈[0,t]
|x(τ)| for all t ≥ 0.

(b) for all ǫ > 0 there exist g⋆ > 0 and T > 0 such that for all g ≥ g⋆ the positive orbit of
Z×X under the flow of (59) is bounded and

dist(z(t),A0) ≤ ǫ , |x(t)| ≤ ǫ for all t ≥ T.

The previous lemma provides the tools needed to study the asymptotic behavior of the
system (59) under the additional hypothesis that the function q0(̺, w, z) vanishes on A0

(or, what is the same, that A0 × {0} is invariant for (59)). This is specified in the next
proposition.

Proposition 4 Consider system (59) under the assumptions specified above and assume, in
addition, that q0(̺, w, z) = 0 for all (̺, w, z) ∈ A0. Then for any compact set X there exists
g⋆1 > 0 such that, for all g ≥ g⋆1, the positive orbit of Z×X under the flow of (59) is bounded
and lim

t→∞
x(t) = 0.

Proof. The proof is an easy consequence of the results of Lemma 7 and of the small gain
theorem. As a matter of fact, pick ǫ ≤ d and set

Sǫ = {(z, x) ∈ R
p+s+n × R

m : dist(z,A0) ≤ ǫ , |x| ≤ ǫ}

From property (b), it is seen that if g ≥ g⋆, any initial condition in Z × X produces a
trajectory of (59) which is bounded in forward time and satisfies (z(t), x(t)) ∈ Sǫ for all
t ≥ T . From property (a), it is seen that

dist(z(t− T ),A0) ≤ Me−a(t−T )dist(z(T ),A0) + γ max
τ∈[T,t−T ]

|x(τ)|

for all t ≥ T . Note that the differentiable function r(̺, w, z, x), which vanishes for x = 0,
can be estimated as

|r(̺, w, z, x)| ≤ α|x|
for all (z, x) ∈ Sε, while the differentiable function q0(̺, w, z) which vanishes on A0, can be
estimated as

|q0(̺, w, z)| ≤ β dist(z,A0)
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for all z ∈ Sε. Now, let P > 0 denote the solution of PA + ATP = −I and by λ and λ̄
respectively the smallest and largest eigenvalue of P . Standard arguments can be used to
show that, for all t ≥ T ,

|x(t)| ≤
√

λ̄

λ
e−

λg

4λ̄
(t−T )|x(T )|+ 4β

λg

|P | max
τ∈[T,t−T ]

dist(z,A0)

where λg = g − 2|P |α. Hence the result follows by classical small gain arguments if g⋆1 ≥ g⋆

is picked so that the small gain condition

λg⋆
1
> 4β|P |γ

is fulfilled. This completes the proof of Proposition 4. ⊳
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