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1. Introduction. Let T be a positive number, Ω be a bounded open subset in
R

N (N ≥ 2) with a Lipschitz boundary Γ, and q, σ, and σ̄ be numbers satisfying

q > N/2 + 1 and σ > σ̄ > N + 1.

Consider the parabolic system

∂y

∂t
+Ay + f(x, t, y) = 0 in Q,

∂y

∂nA
+ g(s, t, y, v) = 0 on Σ, y(0) = y0 in Ω(1.1)

(where Q := Ω×]0, T [, Σ := Γ×]0, T [, T > 0, v is a boundary control, y0 ∈ C(Ω), A
is a second order elliptic operator) and the following control and state constraints:

v ∈ Ṽad := {v ∈ Lσ(Σ) | v(s, t) ∈ V (s, t) for almost every (a.e.) (s, t) ∈ Σ} ,

Φ(y) ∈ C,(1.2)

∫
Σ

Ψi(s, t, y(s, t), v(s, t)) dsdt = 0, 1 ≤ i ≤ m0,

∫
Σ

Ψi(s, t, y(s, t), v(s, t)) dsdt ≤ 0, m0 + 1 ≤ i ≤ m.

(1.3)

(V is a measurable set-valued mapping from Σ with closed and nonempty values in
P(Rk), the set of all subsets of R

k, Ψ = (Ψ1, . . . ,Ψm), is a function with values in
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‡Université Paul Sabatier, UMR CNRS MIP, UFR MIG, 31062 Toulouse Cedex 4, France
(raymond@mip.ups-tlse.fr).
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PONTRYAGIN’S PRINCIPLE FOR LOCAL SOLUTIONS 1183

R
m, Φ is a continuous mapping from C(D) into C(D), C ⊂ C(D), D is a nonempty

compact subset of Q.) Let us consider the following class of optimal control problems:

(P) inf{J(y, v) | y ∈ W (0, T ) ∩ C(Q), v ∈ Vad, (y, v) satisfies (1.1), (1.2), (1.3)},
where Vad is a subset of Ṽad (to be stated precisely later), and the cost functional is
defined by

J(y, v) =

∫
Q

F (x, t, y(x, t)) dx dt+

∫
Σ

G(s, t, y(s, t), v(s, t)) ds dt+

∫
Ω

L(x, y(x, T ))dx.

We are mainly interested in optimality conditions for such problems, in the form of
Pontryagin’s principles. The existence of optimal solutions for (P) is a priori supposed.

In the case where Vad ≡ Ṽad, and Ṽad is a bounded subset in L∞(Σ) (the case of
bounded controls), Pontryagin’s principles for (P) have been obtained in [3, 9, 16, 17,
11, 25, 26, 4]. In this case the Pontryagin’s principle is of the form

HΣ(ȳ, v̄, p̄, ν̄, λ̄) = min
v∈Ṽad

HΣ(ȳ, v, p̄, ν̄, λ̄),(1.4)

where

HΣ(y, v, p, ν, λ) =

∫
Σ

[νG(s, t, y, v)− pg(s, t, y, v) + λΨ(s, t, y, v)] dsdt,

(ȳ, v̄) is an optimal solution, λ̄ is a multiplier associated with the mixed control-state
constraints (1.3), ν̄ is a multiplier of the cost functional, p̄ is the adjoint state (the
multiplier associated with the state constraints (1.2) only intervenes in the adjoint
equation satisfied by p̄). Notice that (1.4) can also be replaced by a pointwise Pon-
tryagin’s principle.

Observe that in [9, 16, 17, 11, 4] there is no mixed control-state constraint. Results
with mixed control-state constraint are obtained in [2].

As explained in [8, p. 595] and in [21], the case of unbounded controls, that is,

when Vad ≡ Ṽad is not bounded in L∞(Σ), leads to some difficulties. In this case
Pontryagin’s principles are more recent results [8, 10, 21].

Now consider a control set of the form

Vad = {v ∈ Ṽad | v satisfies (1.6)}(1.5)

with ∫
Σ

hi(s, t, v(s, t)) dsdt = 0, 1 ≤ i ≤ $0,

∫
Σ

hi(s, t, v(s, t)) dsdt ≤ 0, $0 + 1 ≤ i ≤ $,

(1.6)

where h = (h1, . . . , h�) is a function with values in R
�. Obviously control constraints

(1.6) can be considered as a particular case of mixed control-state constraints (1.3).
The corresponding Pontryagin’s principle for the problem (P), with the control set
Vad defined by (1.5), may be written in the form

HΣ(ȳ, v̄, p̄, ν̄, λ̄, λ̂) = min
v∈Ṽad

HΣ(ȳ, v, p̄, ν̄, λ̄, λ̂),(1.7)

where λ̂ is a multiplier for the control constraints (1.6).
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1184 E. CASAS, J.-P. RAYMOND, AND H. ZIDANI

The novelty of our paper is the following Pontryagin’s principle for the problem
(P) (Theorem 2.1):

HΣ(ȳ, v̄, p̄, ν̄, λ̄) = min
v∈Vad

HΣ(ȳ, v, p̄, ν̄, λ̄),(1.8)

when the control set Vad is defined by (1.5). Let us insist on the fact that the minimum

in (1.7) is stated with controls in Ṽad, while in (1.8) it is stated with controls in Vad.
Since Vad takes integral control constraints of isoperimetric type into account, the
result is of a different nature. As an application, we are able to prove a Pontryagin’s
principle (Corollary 2.2) for local solutions of (P) (local in the Lσ(Σ)-sense). To
our knowledge, this result is completely new. Control problems for semilinear elliptic
equations, with integral control constraints, are considered in [5], but the Pontryagin’s
principle for local solutions was not obtained there. Also we can deduce from (1.8) the
classical pointwise Pontryagin’s principle for local solutions in Lσ(Σ) of the previous
control problems; see Corollaries 2.3 and 2.4.

Let us finally mention that we deal with parabolic equations of the form (1.1),
where the coefficients of the operator A are not regular, and where the nonlinear
terms f(x, t, ·) and g(s, t, ·) are neither Lipschitz nor monotone with respect to y.
When g(s, t, ·, v) is Lipschitz and monotone such an equation is studied in [4] for
bounded controls. For unbounded controls, when g(s, t, ·, v) is neither Lipschitz nor
monotone, but when the coefficients of A are time independent and regular, (1.1) is
studied in [20, 21] by means of estimates on analytic semigroups. Here we combine
these different difficulties. Equation (1.1) and the adjoint state equation are studied
in section 3.

Our main results are stated in section 2. Section 4 is devoted to the study of the
metric space of the controls and to the existence of diffuse perturbations of controls.
These perturbations are the key for the proof of Pontryagin’s principle, which is done
in section 5.

2. Main results. We set Ω0 = Ω × {0} and ΩT = Ω × {T}. For every 1 ≤
τ ≤ ∞, the usual norms of the spaces Lτ (Ω), Lτ (Γ), Lτ (Q), Lτ (Σ) will be denoted by
‖.‖τ,Ω, ‖.‖τ,Γ, ‖.‖τ,Q, ‖.‖τ,Σ. For every t > 0, we define the norm ‖.‖Q(t) by ‖y‖2

Q(t) :=

‖y‖2
L2(0,t;H1(Ω)) + ‖y‖2

L∞(0,t;L2(Ω)). The Hilbert space W (0, T ;H1(Ω), (H1(Ω))′) =

{y ∈ L2(0, T ;H1(Ω)) | dy
dt ∈ L2(0, T ; (H1(Ω))′)}, endowed with its usual norm, will

be denoted by W (0, T ). We denote by Vad the set of admissible controls

Vad := {v ∈ Ṽad | v satisfies (1.6)}.
2.1. Assumptions.
(A1) The operator A is defined by

Ay(x, t) = −
N∑
i=1

Di

 N∑
j=1

(aij(x, t)Djy(x, t)) + ai(x, t)y(x, t)

+ N∑
i=1

(bi(x, t)Diy(x, t)),

the coefficients aij belong to L∞(Q), ai and bi belong to L2q(Q), and

Λ|ξ|2 ≤
N∑

i,j=1

aij(x, t)ξjξi for all ξ ∈ R
N and for a.e. (x, t) ∈ Q with Λ > 0.(2.1)

We make the following assumptions on f , g, F , G, L, Φ, Ψ.
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PONTRYAGIN’S PRINCIPLE FOR LOCAL SOLUTIONS 1185

(A2) For every y ∈ R, f(·, y) is measurable on Q. For almost every (x, t) ∈ Q,
f(x, t, ·) is of class C1 on R. The following estimates hold:

|f(x, t, 0)| ≤ M1(x, t), C0 ≤ f ′
y(x, t, y) ≤ M1(x, t)η(|y|),

whereM1 belongs to L
q(Q), η is a nondecreasing function from R

+ to R
+ and C0 ∈ R.

(We have denoted by f ′
y the partial derivative of f with respect to y, throughout what

follows we adopt the same kind of notation for other functions.)

(A3) For every (y, v) ∈ R
2, g(·, y, v) is measurable on Σ. For almost every (s, t) ∈

Σ and every v ∈ R, g(s, t, ·, v) is of class C1 on R. For almost every (s, t) ∈ Σ, g(s, t, ·)
and g′y(s, t, ·) are continuous on R × R. The following estimates hold:

|g(s, t, 0, v)| ≤ M2(s, t) + Λ1|v|, C0 ≤ g′y(s, t, y, v) ≤ (M2(s, t) + Λ1|v|)η(|y|),

where M2 belongs to Lσ(Σ), Λ1 > 0, C0 and η are as in (A2).

(A4) For every y ∈ R, L(·, y) is measurable on Ω. For almost every x ∈ Ω, L(x, ·)
is of class C1 on R. The following estimate holds:

|L(x, y)|+ |L′
y(x, y)| ≤ M3(x)η(|y|),

where M3 ∈ L1(Ω), η is as in (A2).

(A5) For every y ∈ R, F (·, y) is measurable on Q. For almost every (x, t) ∈ Q,
F (x, t, ·) is of class C1 on R. The following estimate holds:

|F (x, t, y)|+ |F ′
y(x, t, y)| ≤ M4(x, t)η(|y|),

where M4 ∈ L1(Q), η is as in (A2).

(A6) For every (y, v) ∈ R
2, G(·, y, v) is measurable on Σ. For almost every

(s, t) ∈ Σ and every v ∈ R, G(s, t, ·, v) is of class C1 on R. For almost every (s, t) ∈ Σ,
G(s, t, ·) and G′

y(s, t, ·) are continuous on R × R. The following estimates hold:

−M5(s, t)− Λ1|v|σ̄ ≤ G(s, t, 0, v) ≤ M5(s, t) + Λ1|v|σ,

|G′
y(s, t, y, v)| ≤ (M5(s, t) + Λ1|v|σ̄)η(|y|),

where M5 ∈ L1(Σ), Λ1 and η are as in (A3).

(A7) The function h = (h1, . . . , h�) is a Carathéodory function from Σ × R into
R

� satisfying

|hi(s, t, v)| ≤ M5(s, t) + Λ1|v|σ̄ for i = 1, . . . , $0,

−M5(s, t)− Λ1|v|σ̄ ≤ hi(s, t, v) ≤ M5(s, t) + Λ1|v|σ for i = $0 + 1, . . . , $;

Λ1 and M5 are the same as above.

(A8) The function Ψ = (Ψ1, . . . ,Ψm) is a Carathéodory function from Σ × R
2

into R
m. For almost every (s, t) ∈ Σ and every v ∈ R, Ψ(s, t, ·, v) is of class C1 on R.D
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1186 E. CASAS, J.-P. RAYMOND, AND H. ZIDANI

For almost every (s, t) ∈ Σ, Ψ′
y(s, t, ·) is continuous on R×R. The following estimates

hold:

|Ψi(s, t, 0, v)| ≤ M5(s, t) + Λ1|v|σ̄ for i = 1, . . . ,m0,

−M5(s, t)− Λ1|v|σ̄ ≤ Ψi(s, t, 0, v) ≤ M5(s, t) + Λ1|v|σ for i = m0 + 1, . . . ,m,

|Ψ′
iy(s, t, y, v)| ≤ (M5(s, t) + Λ1|v|σ̄)η(|y|) for i = 1, . . . ,m,

where Λ1,M5, η are as before. We also suppose that the function Φ : C(D) → C(D)
is of class C1, and that C ⊂ C(D) is a closed convex subset of finite codimension in
C(D), where D is a compact subset of Q.

2.2. Statement of the main result. We define the boundary Hamiltonian
function by

HΣ(y, v, p, ν, λ) =

∫
Σ

[νG(s, t, y, v)− pg(s, t, y, v) + λΨ(s, t, y, v)] dsdt

for every (y, v, p, ν, λ) ∈ C(Q) × Lσ(Σ) × Lσ′
(Σ) × R

1+m. (Here λ = (λ1, . . . , λm),
λΨ(s, t, y, v) =

∑m
i=1 λ

iΨi(s, t, y, v). Throughout the paper we adopt the same kind
of notation for scalar products in R

m.)
Theorem 2.1. If (A1)–(A8) are fulfilled and if (ȳ, v̄) is a solution of (P), then

there exist p̄ ∈ L1(0, T ;W 1,1(Ω)), ν̄ ∈ R, λ̄ ∈ R
m, µ̄ ∈ M(D) (the space of Radon

measures on D) such that

(ν̄, λ̄, µ̄) �= 0, ν̄ ≥ 0, for m0+1 ≤ i ≤ m, λ̄i ≥ 0, λ̄i

∫
Σ

Ψi(s, t, ȳ, v̄) dsdt = 0,(2.2)

〈µ̄, z − Φ(ȳ)〉D ≤ 0 for all z ∈ C,(2.3)



−∂p̄

∂t
+A∗p̄+ f ′

y(x, t, ȳ)p̄ = ν̄F ′
y(x, t, ȳ) + [Φ

′(ȳ)∗µ̄]|Q in Q,

∂p̄

∂nA∗
+ g′y(s, t, ȳ, v̄)p̄ = ν̄G′

y(s, t, ȳ, v̄) + λ̄Ψ′
y(s, t, ȳ, v̄) + [Φ

′(ȳ)∗µ̄]|Σ on Σ,

p̄(T ) = ν̄L′
y(x, ȳ(T )) + [Φ

′(ȳ)∗µ̄]|ΩT
on Ω,

(2.4)

p̄ ∈ Lδ′(0, T ;W 1,d′
(Ω)) for every (δ, d) satisfying

N

2d
+
1

δ
<
1

2
,(2.5)

HΣ(ȳ, v̄, p̄, ν̄, λ̄) = min
v∈Vad

HΣ(ȳ, v, p̄, ν̄, λ̄),(2.6)

where [Φ′(ȳ)∗µ̄]|Q is the restriction of [Φ′(ȳ)∗µ̄] to Q, [Φ′(ȳ)∗µ̄]|Σ is the restriction
of [Φ′(ȳ)∗µ̄] to Σ, and [Φ′(ȳ)∗µ̄]|ΩT

is the restriction of [Φ′(ȳ)∗µ̄] to ΩT , [Φ′(ȳ)∗µ̄] is

the Radon measure on D defined by z �−→ 〈µ̄,Φ′(ȳ)z〉M(D)×C(D) for z ∈ C(D), 〈·, ·〉DD
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PONTRYAGIN’S PRINCIPLE FOR LOCAL SOLUTIONS 1187

denotes the duality pairing between M(D) and C(D), A∗ is the formal adjoint of A,
that is,

A∗y(x, t) = −
N∑
i=1

Di

(
N∑
i=1

(aji(x, t)Djy(x, t)) + bi(x, t)y(x, t)

)
+

N∑
i=1

ai(x, t)Diy(x, t).

2.3. Pontryagin’s principles for local solutions. By definition, a local solu-
tion (ȳ, v̄) of (P) in Lσ(Σ) is a solution of the problem

(Pv̄,ε) inf{J(y, v) | y ∈ C(Q), v ∈ Ṽad, (y, v) satisfies (1.1)–(1.3), ‖v̄ − v‖σ,Σ ≤ ε}

for some ε > 0. The following Pontryagin’s principle for local solutions of (P) is a
direct consequence of Theorem 2.1.

Corollary 2.2. If (A1)–(A8) are fulfilled and if (ȳ, v̄) is a solution of (Pv̄,ε),
there then exist p̄ ∈ L1(0, T ;W 1,1(Ω)), ν̄ ∈ R, λ̄ ∈ R

m, µ̄ ∈ M(D) satisfying (2.2)–
(2.5) along with

HΣ(ȳ, v̄, p̄, ν̄, λ̄) = min
v∈Vad,‖v̄−v‖σ,Σ≤ε

HΣ(ȳ, v, p̄, ν̄, λ̄).

As a consequence of this corollary we can get the classical pointwise Pontryagin
principle for a local solution in Lσ(Σ) of the control problem

(P̃) inf{J(y, v) | y ∈ W (0, T ) ∩ C(Q), v ∈ Ṽad, (y, v) satisfies (1.1), (1.2), (1.3)}.

Corollary 2.3. If (A1)–(A8) are fulfilled and if (ȳ, v̄) is a local solution of
(P̃) in Lσ(Σ), there then exist p̄ ∈ L1(0, T ;W 1,1(Ω)), ν̄ ∈ R, λ̄ ∈ R

m, µ̄ ∈ M(D)
satisfying (2.2)–(2.5) along with

HΣ(s, t, ȳ(s, t), v̄(s, t), p̄(s, t), ν̄, λ̄) = min
ξ∈V (s,t)

HΣ(s, t, ȳ(s, t), ξ, p̄(s, t), ν̄, λ̄)

for almost all (s, t) ∈ Σ, where

HΣ(s, t, y, ξ, p, ν, λ) = νG(s, t, y, ξ)− pg(s, t, y, ξ) + λΨ(s, t, y, ξ).

Proof. The pointwise Pontryagin’s principle stated in the corollary may be de-
rived from the integral Pontryagin’s principle of Corollary 2.2 by using the same
construction as in [21, proof of Theorem 2.1]. The idea in the proof of [21] is
to construct a pointwise perturbation vn of v̄ such that lim(s,t)→(s0,t0)vn(s, t) = ξ,
limnLN ({(s, t) ∈ Σ | vn(s, t) �= v̄(s, t)}) = 0, where ξ ∈ V (s0, t0), (s0, t0) ∈ Σ, LN

denotes the N -dimensional Lebesgue measure. We obtain the pointwise Pontrya-
gin’s principle by replacing v by vn in the integral Pontryagin’s principle of Corollary
2.2, by dividing by LN ({(s, t) ∈ Σ | vn(s, t) �= v̄(s, t)}) �= 0, and by passing to the
limit when n tends to infinity. The only difference with [21] is that vn must satisfy
‖v̄ − vn‖σ,Σ ≤ ε. Due to the condition limnLN ({(s, t) ∈ Σ | vn(s, t) �= v̄(s, t)}) = 0, it
is clear that this condition will be realized for n big enough.

Let us observe that integral control constraints can be studied in the framework of
the problem (P̃). Indeed, the mixed constraints (1.3) can include the integral control
constraints. Then Corollary 2.3 provides a Pontryagin’s principle for problems with
integral constraints on the control and the state, even with mixed integral constraints,
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1188 E. CASAS, J.-P. RAYMOND, AND H. ZIDANI

as well as pointwise constraints on the control and state too. The corresponding result
is stated in the following corollary.

Corollary 2.4. If (A1)–(A8) are fulfilled and if (ȳ, v̄) is a local solution of

(P̃) in Lσ(Σ), there then exist p̄ ∈ L1(0, T ;W 1,1(Ω)), ν̄ ∈ R, λ̄ ∈ R
m, λ̂ ∈ R

�, and
µ̄ ∈ M(D) such that

(ν̄, λ̄, λ̂, µ̄) �= 0, ν̄ ≥ 0, 〈µ̄, z − Φ(ȳ)〉D ≤ 0 for all z ∈ C,

λ̄i

∫
Σ

Ψi(s, t, ȳ, v̄) dsdt = 0 for 1 ≤ i ≤ m, λ̄i ≥ 0 for m0 + 1 ≤ i ≤ m,

λ̂i

∫
Σ

hi(s, t, v̄) dsdt = 0 for 1 ≤ i ≤ $, λ̂i ≥ 0 for $0 + 1 ≤ i ≤ $,



−∂p̄

∂t
+A∗p̄+ f̄ ′

y p̄ = ν̄F̄ ′
y + [Φ

′(ȳ)∗µ̄]|Q in Q,

∂p̄

∂nA∗
+ ḡ′y p̄ = ν̄Ḡ′

y + λ̄Ψ̄′
y + λ̂h̄+ [Φ′(ȳ)∗µ̄]|Σ on Σ,

p̄(T ) = ν̄L′
y(x, ȳ(T )) + [Φ

′(ȳ)∗µ̄]|ΩT
on Ω,

where f̄ ′
y stands for f̄ ′

y(x, t, ȳ), Ḡ
′
y for Ḡ′

y(s, t, ȳ, v̄), and the same convention is used
for other functions. Also, the following pointwise Pontryagin’s principle holds:

HΣ(s, t, ȳ(s, t), v̄(s, t), p̄(s, t), ν̄, λ̄, λ̂) = min
ξ∈V (s,t)

HΣ(s, t, ȳ(s, t), ξ, p̄(s, t), ν̄, λ̄, λ̂)

for almost all (s, t) ∈ Σ, where

HΣ(s, t, y, ξ, p, ν, λ̄, λ̂) = νG(s, t, y, ξ)− pg(s, t, y, ξ) + λ̄Ψ(s, t, y, ξ) + λ̂h(s, t, ξ).

3. State and adjoint equations.

3.1. State equation. Existence and regularity results for (1.1) and (2.4) rely
on estimates in C(Q) for solutions of linear equations of the form

∂y

∂t
+Ay + ay = φ− divξ in Q,

∂y

∂nA
+ by = ψ on Σ, y(0) = y0 in Ω.(3.1)

If assumption (A1) is satisfied, if (a, φ) ∈ Lq(Q) × Lq(Q), (b, ψ) ∈ Lσ̄(Σ) × Lσ̄(Σ),
the existence of a unique solution in C([0, T ];L2(Ω)) ∩ L2([0, T ];H1(Ω)) for (3.1) is
proved in [12, Chapter 3, Theorem 5.1] when ξ ≡ 0. The result can be extended to
(3.1) by the same method if the support of ξ is compact in Q and if ξ belongs to
Lδ(0, T, (Ld(Ω))N ) with d > 1, δ > 1, N/2d+ 1/δ < 1/2. Recall that a weak solution
in L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)) of (3.1) is a function y ∈ L2(0, T ;H1(Ω)) ∩
C([0, T ];L2(Ω)) satisfying

∫
Q

−y
∂z

∂t
+
∑
i,j

aijDjyDiz +
∑
i

(aiyDiz + biDiyz) + ayz

 dxdt+

∫
Σ

byz dsdt

=

∫
Q

[
φz +

∑
i

ξiDiz

]
dxdt+

∫
Σ

ψz dsdt+

∫
Ω

y(0)z(0) dx
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PONTRYAGIN’S PRINCIPLE FOR LOCAL SOLUTIONS 1189

for every z ∈ C1(Q) such that z(·, T ) = 0 on Ω. For linear equations with Dirichlet
boundary conditions

∂y

∂t
+Ay + ay = φ− divξ in Q, y = ψ on Σ, y(0) = y0 in Ω,

estimates of the form

‖y‖L∞(Q) ≤ C

(
‖φ‖q,Q + ‖ψ‖∞,Σ +

∑
i

‖ξi‖d,δ,Ω + ‖y0‖C(Ω)

)
(3.2)

are obtained in [12, Chapter 3, Theorem 7.1] for d > 1, δ > 1, N/2d + 1/δ < 1/2. In
this estimate the constant C depends on T,Ω, N,Λ, q, σ̄, δ, d,

∑
i ‖a2

i ‖q,Q,
∑

i ‖b2i ‖q,Q,
but also on ‖a‖q,Q. The case of Robin boundary conditions is considered in [4] to study
nonlinear equations of the form (1.1) when the function g(s, t, ·, v), in the boundary
condition, is monotone and Lipschitz, and when the boundary control v is bounded
[4, Theorem 5.1]. The case when the function g(s, t, ·, v) in (1.1) is neither Lipschitz
nor monotone (g satisfies (A3)), and when the control v belongs to Lσ̄(Σ), but when
the coefficients of the operator A are regular and independent of the time variable,
is studied in [19]. Estimates in C(Q) are obtained by semigroup techniques and
comparison principles [19, Proposition 3.3 and Theorem 3.1]. Here we emphasize the
fact that assumptions on the operator A are minimal (bounded leading coefficients,
unbounded coefficients of order zero), that we deal with nonhomogeneous boundary
conditions, and that source terms in the domain and in the boundary conditions are
unbounded.

Theorem 3.1. Under assumptions (A1)–(A3), if v ∈ Lσ̄(Σ), then (1.1) admits
a unique weak solution yv in W (0, T ) ∩ C(Q). This solution obeys

||yv||C(Q) ≤ C1(||v||σ̄,Σ + 1),

where C1 = C1(T,Ω, N,C0, q, σ̄). Moreover, the mapping v �−→ yv is continuous from
Lσ̄(Σ) into C(Q).

Proof. The proof relies on Theorem 3.2 (see [19]).
Theorem 3.2. Suppose that (A1) is satisfied, (a, φ) ∈ Lq(Q) × Lq(Q), (b, ψ) ∈

Lσ̄(Σ) × Lσ̄(Σ), and ξ belongs to (D(Q))N . If in addition a ≥ C0 a.e. in Q and
b ≥ C0 a.e. in Σ (for some C0 ∈ R), then the unique weak solution y of (3.1) belongs
to C(Q) and satisfies the following estimate:

‖y‖C(Q) ≤ C2

(
‖φ‖q,Q + ‖ψ‖σ̄,Σ +

∑
i

‖ξi‖Lδ(0,T ;Ld(Ω)) + ‖y0‖C(Ω)

)
,

where d > 1, δ > 1 satisfy N/2d+1/δ < 1/2 and the constant C2 only depends on T ,
Ω, N , C0, Λ, q, σ̄, δ, d,

∑
i ‖a2

i ‖q,Q,
∑

i ‖b2i ‖q,Q.
Remark 3.3. Notice that the constant C2 does not depend on ‖a‖q,Q and ‖b‖σ̄,Σ.

As in [12] (see the above estimate (3.2)), the assumption a ≥ C0 may be dropped out,
and in this case the constant C2 must be replaced by a constant also depending on
‖a‖q,Q. But the corresponding estimate cannot be used to treat nonlinear equations
of the form (1.1).

Proof. To prove this theorem, we need only to establish the L∞-estimate; the
rest is classical. We prove the L∞-estimate by using the so-called truncation method
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1190 E. CASAS, J.-P. RAYMOND, AND H. ZIDANI

as in [12, Chapter 3, proof of Theorem 7.1]. If y is a weak solution of (3.1), then we
have ∫

Ω

[y(x, t)z(x, t)− y(x, 0)z(x, 0)] dx

+

∫ t

0

∫
Ω

−y
∂z

∂t
+
∑
i,j

aijDjyDiz +
∑
i

(aiyDiz + biDiyz) + ayz

 dxdτ

+

∫ t

0

∫
Γ

byz dsdτ =

∫ t

0

∫
Ω

[
φz +

∑
i

ξiDiz

]
dxdτ +

∫ t

0

∫
Γ

ψz dsdτ

for every t ∈ [0, T ] and every z ∈ W 1,1
2 (Q). We establish only the upper bound

for y. (The lower bound can be obtained in the same way.) For k ≥ 0 we set
yk(x, t) = max(y(x, t)−k, 0). By using Steklov averagings, as in [12, p. 183], we prove
that

1

2

∫
Ω

[yk(x, t)2 − yk(x, 0)2] dx(3.3)

+

∫ t

0

∫
Ω

∑
i,j

aijDjy
kDiy

k +
∑
i

(aiyDiy
k + biDiy

kyk) + ayyk

 dxdτ

+

∫ t

0

∫
Γ

byyk dsdτ =

∫ t

0

∫
Ω

[
φyk +

∑
i

ξiDiy
k

]
dxdτ +

∫ t

0

∫
Γ

ψyk dsdτ

for every t ∈]0, T ]. Thus, it follows that

1

2

∫
Ω

yk(x, t)2 dx+

∫ t

0

∫
Ω

∑
i,j

aijDjy
kDiy

k + (a− C0 + Λ)yy
k

 dxdτ(3.4)

+

∫ t

0

∫
Γ

(b− C0)yy
k dsdτ = −

∫ t

0

∫
Ω

[∑
i

(aiyDiy
k + biDiy

kyk) + (C0 − Λ)yyk
]
dxdτ

−
∫ t

0

∫
Γ

C0yy
k dsdτ +

∫ t

0

∫
Ω

[
φyk +

∑
i

ξiDiy
k

]
dxdτ +

∫ t

0

∫
Γ

ψyk dsdτ

for every k > k̃ := ‖y0‖C(Ω). Since a − C0 ≥ 0 a.e. in Q, b − C0 ≥ 0 a.e. on Σ, and

yyk ≥ (yk)2 a.e. in Q, with (2.1) we obtain

‖yk(t)‖2
2,Ω + 2Λ‖yk‖2

L2(0,t;H1(Ω))(3.5)

≤ −2
∫ t

0

∫
Ω

[∑
i

(aiyDiy
k + biDiy

kyk) + (C0 − Λ)yyk
]
dxdτ

−2
∫ t

0

∫
Γ

C0yy
k dsdτ + 2

∫ t

0

∫
Ω

[
φyk +

∑
i

ξiDiy
k

]
dxdτ + 2

∫ t

0

∫
Γ

ψyk dsdτ
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PONTRYAGIN’S PRINCIPLE FOR LOCAL SOLUTIONS 1191

for every k > k̃. Set Ak(t) = {x ∈ Ω | y(x, t) > k}, Bk(t) = {s ∈ Γ | y(s, t) > k},
Qk(t) = {(x, τ) ∈ Ω×]0, t[| y(x, τ) > k}, Σk(t) = {(s, τ) ∈ Γ×]0, t[| y(s, τ) > k}. We
estimate the terms in the right-hand side of (3.5) by means of Young’s inequality and
we obtain

‖yk(t)‖2
2,Ω + Λ‖yk‖2

L2(0,t;H1(Ω))

≤ 3

Λ

∫ t

0

∫
Ak(τ)

[∑
i

((aiy)
2 + (biy

k)2) + (C0 − Λ)2y2

]
dxdτ +

3K2

Λ

∫ t

0

∫
Bk(τ)

C2
0y

2 dsdτ

+2

∫ t

0

∫
Ak(τ)

[
|φ||yk|+

∑
i

|ξi||Diy
k|
]
dxdτ + 2

∫ t

0

∫
Bk(τ)

|ψ||yk| dsdτ,

where K > 0 satisfies ‖ϕ‖2,Γ ≤ K‖ϕ‖H1(Ω) for all ϕ ∈ H1(Ω). Since y = yk + k in
Ak(τ) and Bk(τ) for a.e. τ , it follows that

‖yk(t)‖2
2,Ω + Λ‖yk‖2

L2(0,t;H1(Ω))

≤ 6

Λ

∫ t

0

∫
Ak(τ)

[∑
i

(a2
i + b2i ) + (C0 − Λ)2

]
((yk)2 + k2) dxdτ

+
6K2

Λ

∫ t

0

∫
Bk(τ)

C2
0 ((y

k)2 + k2) dsdτ + 2

∫ t

0

∫
Ak(τ)

[
|φ||yk|+

∑
i

|ξi||Diy
k|
]
dxdτ

+2

∫ t

0

∫
Bk(τ)

|ψ||yk| dsdτ

for every t ∈ [0, T ] and every k > k̃. With Hölder’s inequality we have

‖yk(t)‖2
2,Ω + Λ‖yk‖2

L2(0,t;H1(Ω))(3.6)

≤
(
K1(|Qk(t)|

1
q′ + |Qk(t)|) +K2|Σk(t)|

)
k2

+K1(|Qk(t)| 2
N+2 + |Qk(t)|

1
q′ − N

N+2 )‖yk‖2
2(N+2)

N ,Ω×]0,t[

+2‖φ‖q,Q|Qk(t)|
1
q′ − N

2(N+2) ‖yk‖ 2(N+2)
N ,Ω×]0,t[

+K2|Σk(t)| 1
N+1 ‖yk‖2

2(N+1)
N ,Γ×]0,t[

+ 2‖ψ‖σ̄,Σ|Σk(t)|
1
σ̄′ − N

2(N+1) ‖yk‖ 2(N+1)
N ,Γ×]0,t[

+
Λ

2
‖yk‖2

L2(0,t;H1(Ω)) +
2K3

Λ

(∫ t

0

|Ak(τ)|
δ(d−2)
d(δ−2) dτ

) δ−2
δ

,

where

K1 =
6

Λ

[∑
i

(‖a2
i ‖q,Q + ‖b2i ‖q,Q) + (C0 − Λ)2

]
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1192 E. CASAS, J.-P. RAYMOND, AND H. ZIDANI

K2 =
6K2

Λ
C2

0 and K3 =
∑
i

‖ξi‖2
Lδ(0,T ;Ld(Ω)),

|Qk(t)| denotes the (N + 1)-dimensional Lebesgue measure of Qk(t), |Σk(t)| denotes
theN -dimensional Lebesgue measure of Σk(t), and |Ak(τ)| denotes theN -dimensional
Lebesgue measure of Ak(τ). Notice that N(d−2)

2d + δ−2
δ > N

2 . Then there exists

r̃ > 2δ
δ−2 > 2 such that N(d−2)

2d + δ−2
δ > N

2
r̃(δ−2)

2δ > N
2 . For such an r̃ we have

1
r̃ (

N
2

δ
δ−2

d−2
d + 1) > N

4 . We define r > 2 by 1
r = 1

r̃
δ

δ−2
d−2
d < d−2

2d < 1
2 and we

obtain N
2r +

1
r̃ > N

4 . Thus the imbedding from L2(0, t;H1(Ω)) ∩ C([0, t];L2(Ω)) into
Lr̃(0, t;Lr(Ω)) is continuous; see [12, p. 75]. Observe that

|Qk(t)| 2
N+2 + |Qk(t)|

1
q′ − N

N+2 ≤ (t|Ω|) 2
N+2 +(t|Ω|) 1

q′ − N
N+2 , |Σk(t)| 1

N+1 ≤ (t|Γ|) 1
N+1 .

Let us choose t̄ > 0 small enough to have

K1((t̄|Ω|) 2
N+2 + (t̄|Ω|) 1

q′ − N
N+2 )‖y‖2

2(N+2)
N ,Ω×]0,t̄[

+K2(t̄|Γ|) 1
N+1 ‖y‖2

2(N+1)
N ,Γ×]0,t̄[

(3.7)

≤ 1

2
min

(
1,
Λ

2

)
‖y‖2

Q(t̄)

for every y ∈ L2(0, t̄;H1(Ω))∩C([0, t̄];L2(Ω)). Then from (3.6) and imbedding theo-
rems, it follows that

ν(‖yk‖ 2(N+2)
N ,Ω×]0,t̄[

+ ‖yk‖ 2(N+1)
N ,Γ×]0,t̄[

+ ‖yk‖Lr̃(0,t̄;Lr(Ω))) ≤(3.8)

≤ ‖y‖Q(t̄) ≤ K4

(
|Qk(t̄)|

1
2q′ + |Qk(t̄)| 12 + |Σk(t̄)| 12

)
k

+K4

(
|Qk(t̄)|

1
q′ − N

2(N+2) + |Σk(t̄)|
1
σ̄′ − N

2(N+1)

)
+K4

(∫ t̄

0

|Ak(τ)|
δ(d−2)
d(δ−2) dτ

) δ−2
2δ

,

for k > k̃, where ν > 0 depends on Λ, and where K4 depends on K1, K2, K3, ‖φ‖q,Q,
‖ψ‖σ̄,Σ, and Λ. Now, we set θ(k) = |Qk(t̄)|

N
2(N+2) + |Σk(t̄)|

N
2(N+1) + (

∫ t̄

0
|Ak(τ)| r̃r dτ) 1

r̃ .

Observe that, for every $ ≥ k ≥ 0, we have yk ≥ $ − k a.e. in Q�(t̄), a.e. on Σ�(t̄),
and a.e. in A�(τ) for a.e. τ ∈]0, t̄[; therefore

($− k)θ($) ≤ ‖yk‖ 2(N+2)
N ,Ω×]0,t̄[

+ ‖yk‖ 2(N+1)
N ,Γ×]0,t̄[

+ ‖yk‖Lr̃(0,t̄;Lr(Ω)).(3.9)

Taking k = 0 in the above inequality, with the definition of the function θ we first
obtain $θ($) ≤ K0 for all $ ≥ 0, where K0 = ‖y‖ 2(N+2)

N ,Ω×]0,t̄[
+ ‖y‖ 2(N+1)

N ,Γ×]0,t̄[
+

‖y‖Lr̃(0,t̄;Lr(Ω)). In particular, for $ = K0, this implies θ(K0) ≤ 1. On the other hand,
(3.8) and (3.9) give

($− k)θ($) ≤ K4

ν

(
|Qk(t̄)|

1
2q′ + |Qk(t̄)| 12 + |Σk(t̄)| 12(3.10)

+|Qk(t̄)|
1
q′ − N

2(N+2) + |Σk(t̄)|
1
σ̄′ − N

2(N+1)

)
k +

K4

ν

(∫ t̄

0

|Ak(τ)|
δ(d−2)
d(δ−2) dτ

) δ−2
2δD
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PONTRYAGIN’S PRINCIPLE FOR LOCAL SOLUTIONS 1193

for all $ ≥ k > max(K0, 1, k̃). Set

α1 =
N + 2

Nq′
, α2 =

N + 1

Nσ̄′ , α3 = r̃
δ − 2
2δ

, α = min(α1, α2, α3),

and observe that α > 1. Since θ(K0) ≤ 1, and since θ is a nonincreasing function,

we also have |Qk(t̄)| ≤ 1, |Σk(t̄)| ≤ 1, and
∫ t̄

0
|Ak(τ)| r̃r dτ ≤ 1 for all k ≥ K0. Thus it

follows that

|Qk(t̄)|
1

2q′ + |Σk(t̄)| 12 + |Qk(t̄)| 12

+|Qk(t̄)|
1
q′ − N

2(N+2) + |Σk(t̄)|
1
σ̄′ − N

2(N+1) +

(∫ t̄

0

|Ak(τ)| r̃r dτ
) δ−2

2δ

≤ 3θ(k)α.

From (3.10), we deduce

($− k)θ($) ≤ K5θ(k)
αk(3.11)

for every $ ≥ k > max(K0, 1, k̃). With the same arguments as in [12, Chapter 3, p.
186], still using (3.8), we finally obtain

‖y‖∞,Q ≤ K6,(3.12)

where K6 depends not only on T,Ω, N,C0,Λ, q, σ̄, δ, d,
∑

i ‖a2
i ‖q,Q,

∑
i ‖b2i ‖q,Q, but

also on K0, ‖y0‖C(Ω), ‖φ‖q,Q, ‖ψ‖σ̄,Σ, and
∑

i ‖ξi‖2
Lδ(0,T ;Ld(Ω)). The constant K6

depends on K0 = ‖y‖ 2(N+2)
N ,Ω×]0,t̄[

+ ‖y‖ 2(N+1)
N ,Γ×]0,t̄[

+ ‖y‖Lr̃(0,t̄;Lr(Ω)) ≤ C‖y‖Q(t̄).

By using the same trick as in (3.4), we can obtain an estimate of ‖y‖Q(t̄) depending
on T , Ω, N , C0, Λ, q, σ̄, δ, d,

∑
i ‖a2

i ‖q,Q,
∑

i ‖b2i ‖q,Q, ‖y0‖C(Ω),
∑

i ‖ξi‖2
Lδ(0,T ;Ld(Ω)),

‖φ‖q,Q, and ‖ψ‖σ̄,Σ, but independent of ‖a‖q,Q and ‖b‖σ̄,Σ. Since (3.1) is linear, the
estimate given in Theorem 3.2 can be easily deduced from (3.12).

3.2. Adjoint equation. Let (a, b) be in Lq(Q)×Lσ̄(Σ) with a ≥ C0 and b ≥ C0.
We consider the terminal boundary value problem

− ∂p

∂t
+A∗p+ ap = µQ in Q,

∂p

∂nA∗
+ bp = µΣ on Σ, p(T ) = µΩT

on Ω,(3.13)

where µ = µQ+µΣ+µΩT
is a bounded Radon measure on Q\Ω0, µQ is the restriction

of µ to Q, µΣ is the restriction of µ to Σ, and µΩT
is the restriction of µ to ΩT . A

function p ∈ L1(0, T ;W 1,1(Ω)) is a weak solution of (3.13) if

ap ∈ L1(Q), bp ∈ L1(Σ), aiDip ∈ L1(Q), and bip ∈ L1(Q) for i = 1, . . . , N,

∫
Q

p
∂y

∂t
+
∑
i,j

ajiDjpDiy +
∑
i

(aiDipy + bipDiy) + apy

 dxdt+

∫
Σ

bpy dsdt

=

∫
Q\Ω0

ydµ(x, t) for every y ∈ C1(Q) satisfying y(x, 0) = 0 on Ω.

As for elliptic equations [23], it is well known that (3.13) may admit more than
one solution. However, uniqueness is guaranteed if we look for solutions of (3.13)
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1194 E. CASAS, J.-P. RAYMOND, AND H. ZIDANI

satisfying some Green formula. (Such uniqueness results are proved in [1] for elliptic
equations and in [4] for parabolic equations.)

Theorem 3.4. Let µ be in Mb(Q \ Ω0) and let (a, b) be in Lq(Q) × Lσ̄(Σ)
satisfying a ≥ C0 a.e. in Q, b ≥ C0 a.e. Σ, for some C0 ∈ R. Equation (3.13) admits
a unique solution p in L1(0, T ;W 1,1(Ω)) satisfying∫

Q

p

{
∂y

∂t
+Ay + ay

}
dxdt+

∫
Σ

p

{
∂y

∂nA
+ by

}
dsdt = 〈y, µ〉Cb(Q\Ω0)×Mb(Q\Ω0)

for every y ∈ {y ∈ W (0, T ) ∩ C(Q) | ∂y
∂t + Ay ∈ Lq(Q), ∂y

∂nA
∈ Lσ̄(Σ), y(x, 0) =

0 on Ω}. Moreover p belongs to Lδ′(0, T ;W 1,d′
(Ω)) for every δ > 2, d > 2 satisfying

N
2d +

1
δ < 1

2 and we have

‖p‖Lδ′ (0,T ;W 1,d′ (Ω)) ≤ C4(δ, d)‖µ‖Mb(Q\Ω0)
,

where C4(δ, d) = C4(T,Ω, N,C0, q, σ̄, δ, d, ‖ai‖L2q(Q), ‖bi‖L2q(Q)), but C4 is indepen-
dent of a and b.

Proof. Due to Theorem 3.2, the proof of Theorem 3.3 follows the lines of the
proofs of Theorem 6.3 in [4] and of Theorem 4.2 in [18]. Since we improve the results
given in [4, 18], we sketch the main points of the proof. Let (hn)n be a sequence in
Cc(Q) (the space of continuous functions with compact support in Q), (kn)n be a
sequence in Cc(Σ), and ($n)n be a sequence in C(Ω) such that

‖hn‖L1(Q) = ‖µQ‖Mb(Q), ‖kn‖L1(Σ) = ‖µΣ‖Mb(Σ), ‖$n‖L1(Ω) = ‖µΩT
‖M(ΩT ),

limn

∫
Q

hnφdxdt = 〈φ, µQ〉Cb(Q)×Mb(Q),

limn

∫
Σ

knφdsdt = 〈φ, µΣ〉Cb(Σ)×Mb(Σ),

limn

∫
Ω

$nφdx = 〈φ, µΩ̄T
〉C(ΩT )×M(ΩT )

for every φ ∈ C(Q). Let (pn)n be the sequence in W (0, T ) defined by

−∂pn
∂t

+Apn + apn = hn in Q,
∂pn
∂nA

+ bpn = kn on Σ, pn(T ) = $n in Ω.

Due to Theorem 3.2, and by using the same arguments as in [4, 18], we can prove
that there exists a constant C5(δ, d) = C5(T,Ω, N,C0, q, σ̄, δ, d, ‖ai‖L2q(Q), ‖bi‖L2q(Q))
such that

‖pn‖Lδ′ (0,T ;W 1,d′ (Ω)) ≤ C5(δ, d)‖µ‖Mb(Q̄\Ω̄0)

for every (δ, d) satisfying N
2d +

1
δ < 1

2 . Since q > N
2 + 1 and σ̄ > N + 1, there exist

(δ1, d1), (δ2, d2), (δ3, d3) satisfying
N
2di

+ 1
δi

< 1
2 for i = 1, 2, 3, such that δ′1 ≥ q′,

d′∗1 =
Nd′

1

N−d′
1
≥ q′, δ′2 ≥ σ̄′, (N−1)d2d

′
2

(N−1)d2−d′
2
≥ σ̄′, δ′3 ≥ (2q)′, and d′3 ≥ (2q)′. Therefore

‖pn‖Lq′ (Q) ≤ C‖pn‖Lδ′
1 (0,T ;W

1,d′
1 (Ω))

≤ CC5(δ1, d1)‖µ‖Mb(Q̄\Ω̄0),D
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PONTRYAGIN’S PRINCIPLE FOR LOCAL SOLUTIONS 1195

‖pn‖Lσ̄′ (Σ) ≤ C‖pn‖Lδ′
2 (0,T ;W

1,d′
2 (Ω))

≤ CC5(δ2, d2)‖µ‖Mb(Q̄\Ω̄0),

‖pn‖L(2q)′ (0,T ;W 1,(2q)′ (Ω)) ≤ C‖pn‖Lδ′
3 (0,T ;W

1,d′
3 (Ω))

≤ CC5(δ3, d3)‖µ‖Mb(Q̄\Ω̄0).

Then, there exist a subsequence, still indexed by n, and p such that (pn)n converges to
p for the weak-star topology of Lδ′(0, T ;W 1,d′

(Ω)) for every (δ, d) satisfying N
2d +

1
δ <

1
2 . By passing to the limit in the variational formulation satisfied by (pn)n, we prove
that p is a solution of (3.13). The uniqueness can be proved as in [1, 4].

4. Technical results.

4.1. Metric space of controls. To apply the Ekeland variational principle, we
have to define a metric space of controls in such a way that the mapping v �−→ yv
be continuous from this metric space to C(Q). Due to Theorem 3.1, this continuity
condition will be realized if convergence in the metric space of controls implies con-
vergence in Lσ̄(Σ). In the case where boundary controls are bounded, convergence in
(Vad, d) (where d is the so-called Ekeland’s distance) implies convergence in Lσ̄(Σ).
This condition is no longer true for unbounded controls; see [10, p. 227]. To overcome
this difficulty, we proceed as in [5] and we define a new metric space in the following
way. Let ṽ be in Vad. (In section 5, ṽ will be an optimal boundary control that we
want to characterize.) For 0 < M < ∞, we define the set

Vad(ṽ,M) = {v ∈ Vad | ‖v − ṽ‖σ,Σ ≤ M} .

We endow the set Vad(ṽ,M) with the Ekeland metric

d(v1, v2) = LN ({(s, t) ∈ Σ | v1(s, t) �= v2(s, t)}).

Proposition 4.1. Let ṽ be in Vad. Let M > 0 and {(vn)n, v} ⊂ V (ṽ,M). If
(vn)n tends to v in (V (ṽ,M), d), then (vn)n tends to v in Lσ̄(Σ).

Proof. Since 1 ≤ σ̄ < σ, the proof is immediate if we notice that we have∫
Σ

|v − vn|σ̄ ds ≤ ‖v − vn‖σ̄σ,Σ(d(vn, v))
σ−σ̄
σ ≤ (2M)σ̄(d(vn, v))

σ−σ̄
σ .

Proposition 4.2. For every M > 0, we have that

(i) (Vad(ṽ,M), d) is a complete metric space;
(ii) the mapping which associates yv with v is continuous from (Vad(ṽ,M), d) into

C(Q);
(iii) the mappings v → J(yv, v) and v → ∫

Σ
Ψi(s, t, yv, v) dsdt are continuous

(respectively, lower semicontinuous) on (Vad(ṽ,M), d) for 1 ≤ i ≤ m0 (re-
spectively, m0 + 1 ≤ i ≤ m).

Proof. Claims (i) and (ii) are proved in [5], for control problems of elliptic equa-
tions; this proof can be repeated here with the obvious modifications. Contrary to
[4], [21], the mapping v → J(yv, v) is not necessarily continuous on the space of
“truncated controls” endowed with the Ekeland metric. We can prove only a lower
semicontinuity result. This result is stated in [5, Proposition 3.1] under the additional
assumption that G(s, t, y, ·) is convex. In fact we can prove the same result without
this convexity assumption. Let (vn)n be a sequence converging to v in (Vad(ṽ,M), d).
From Proposition 4.1 and Theorem 3.1 we know that (vn)n converges to v in Lσ̄(Σ)
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1196 E. CASAS, J.-P. RAYMOND, AND H. ZIDANI

and (yvn)n converges to yv uniformly on Q. With assumption (A6), with Fatou’s
lemma, and with Lebesgue’s dominated convergence theorem we have

liminfn

∫
Σ

G(s, t, 0, vn) dsdt ≥
∫

Σ

G(s, t, 0, v) dsdt,

limn

∫
Σ

∫ 1

0

G′
y(s, t, θyvn , vn)yvndθ dsdt =

∫
Σ

∫ 1

0

G′
y(s, t, θyv, v)yvdθ dsdt.

Therefore we obtain

liminfn

∫
Σ

G(s, t, yvn , vn) dsdt = liminfn

∫
Σ

G(s, t, 0, vn) dsdt

+limn

∫
Σ

∫ 1

0

G′
y(s, t, θyvn , vn)yvndθ dsdt

≥
∫

Σ

G(s, t, 0, v) dsdt+

∫
Σ

∫ 1

0

G′
y(s, t, θyv, v)yvdθ dsdt =

∫
Σ

G(s, t, yv, v) dsdt.

Following the same ideas, we can prove the continuity (for 1 ≤ i ≤ m0) or the lower
semicontinuity (for m0 + 1 ≤ i ≤ m) of v → ∫

Σ
Ψi(s, t, yv, v) dsdt.

4.2. Existence of diffuse perturbations. Let ṽ be an admissible control, and
let v1 and v2 be in Vad(ṽ,M). A diffuse perturbation of v1 by v2 is a family of functions
(vρ)ρ>0 defined by

vρ(s, t) =

{
v1(s, t) on Σ \ Eρ,
v2(s, t) on Eρ,

where Eρ is a measurable subset of Σ satisfying some conditions. Such perturbations
are used to derive Pontryagin’s principles from the Ekeland variational principle.
In the case of bounded controls (when Vad(ṽ,M) ≡ Vad) the use of this kind of
perturbations goes back to Yao [24, 25] and Li [13] (see also [17, 11, 26, 14]). Some
variants have been developed in [4] for bounded controls, and in [21] for unbounded
controls. In [5] we have investigated the case of unbounded controls with integral
control constraints. Here we prove that the diffuse perturbations defined in [21] may
be extended to derive a Pontryagin’s principle for problems with integral coupled
control-state constraints. Before proving the existence of such diffuse perturbations
let us state an auxiliary lemma analogous to Lemma 3.2 of [5].

Lemma 4.3. Let ρ be such that 0 < ρ < 1. For every v1, v2, v3 ∈ Vad, there exists
a sequence of measurable sets (En

ρ )n in Σ such that

LN (En
ρ ) = ρLN (Σ),(4.1) ∫

En
ρ

|vi − v3|σ dsdt = ρ

∫
Σ

|vi − v3|σ dsdt for i = 1, 2,(4.2) ∫
En

ρ

h(s, t, vi) dsdt = ρ

∫
Σ

h(s, t, vi) dsdt for i = 1, 2,(4.3)

1

ρ
χEn

ρ
⇀ 1 weakly-star in L∞(Σ) when n tends to infinity,(4.4)
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PONTRYAGIN’S PRINCIPLE FOR LOCAL SOLUTIONS 1197

where χEn
ρ

is the characteristic function of En
ρ .

Proof. We follow the ideas of [21, Lemma 4.1]. Let us take a sequence (ϕn)n
dense in L1(Σ). For n ≥ 1 we define fn ∈ (L1(Σ))n+2�+3 by

fn = (1, ϕ1, . . . , ϕn, |v1 − v3|σ, |v2 − v3|σ, h(·, ·, v1), h(·, ·, v2)).

Thanks to Lyapunov’s convexity theorem, for every n ≥ 1 and every ρ ∈ (0, 1), there
exists a measurable subset En

ρ ⊂ Σ satisfying∫
En

ρ

fn dsdt = ρ

∫
Σ

fn dsdt.

As in [21], it is easy to prove that (4.1)–(4.4) hold for the sequence (En
ρ )n.

Theorem 4.4. Let ρ be such that 0 < ρ < 1. For every v1, v2, v3 ∈ Vad, there
exists a measurable subset Eρ ⊂ Σ such that

LN (Eρ) = ρLN (Σ),(4.5) ∫
Σ\Eρ

|v1 − v3|σ dsdt+
∫
Eρ

|v2 − v3|σ dsdt

= (1− ρ)

∫
Σ

|v1 − v3|σ dsdt+ ρ

∫
Σ

|v2 − v3|σ dsdt,
(4.6)

∫
Σ\Eρ

h(s, t, v1) dsdt+

∫
Eρ

h(s, t, v2) dsdt

= (1− ρ)

∫
Σ

h(s, t, v1) dsdt+ ρ

∫
Σ

h(s, t, v2) dsdt,

(4.7)

yρ = y1 + ρz + rρ with lim
ρ→0

1

ρ
||rρ||C(Q̄) = 0,(4.8)

J(yρ, vρ) = J(y1, v1) + ρ[J ′
y(y1, v1)z + J(y1, v2)− J(y1, v1)] + o(ρ),(4.9) ∫

Σ

Ψ(s, t, yρ, vρ) dsdt(4.10)

=

∫
Σ

(
Ψ(s, t, y1, v1) + ρ[Ψ′

y(s, t, y1, v1)z +Ψ(s, t, y1, v2)−Ψ(s, t, y1, v1)]

)
dsdt+ o(ρ),

where vρ is the control defined by

vρ(s, t) =

{
v1(s, t) on Σ \ Eρ,
v2(s, t) on Eρ,

(4.11)

yρ, y1 are the solutions of (1.1) corresponding, respectively, to vρ and to v1, z is the
weak solution of

∂z

∂t
+Az + f ′

y(x, t, y1)z = 0 in Q,

∂z

∂nA
+ g′y(s, t, y1, v1)z = g(s, t, y1, v1)− g(s, t, y1, v2) on Σ,

z(0) = 0 in Ω.

(4.12)
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1198 E. CASAS, J.-P. RAYMOND, AND H. ZIDANI

Proof. Using Lemma 4.3, the proof is similar to the one of Theorem 4.1 in [21]
and the one of Theorem 3.4 in [4]. The relation (4.10), which does not appear in our
previous papers, is deduced with the help of (4.4) and (4.8).

5. Proof of Pontryagin’s principle.

5.1. Penalized problem. Following [15, 16], since C(D) is separable, there
exists a norm | · |C(D), which is equivalent to the usual norm ‖ · ‖C(D) such that

(C(D), | · |C(D)) is strictly convex, andM(D), endowed with the dual norm of | · |C(D)

(denoted by | · |M(D)), is also strictly convex; see [7, Corollary 2, p. 148 or Corollary

2, p. 167]. We define the distance function to C (for the new norm | · |C(D)) by

dC(ϕ) = inf
z∈C

|ϕ− z|C(D).

Since C is convex, then dC is convex and Lipschitz of rank 1, and we have

lim sup
ρ↘0,

ϕ′→ϕ

dC(ϕ′ + ρz)− dC(ϕ′)
ρ

= max{〈ξ, z〉M(D)×C(D) | ξ ∈ ∂dC(ϕ)}(5.1)

for every ϕ, z ∈ C(D), where ∂dC is the subdifferential in the sense of convex analysis
(see [6]). Therefore, for a given ϕ ∈ C(D) we have

(5.2)

〈ξ, z − ϕ〉M(D)×C(D) + dC(ϕ) ≤ dC(z) for all ξ ∈ ∂dC(ϕ) and for all z ∈ C(D),

|ξ|M(D) ≤ 1 for every ξ ∈ ∂dC(ϕ).

Moreover it is proved in [16, Lemma 3.4] that, since C is a closed convex subset of
C(D), for every ϕ �∈ C, and every ξ ∈ ∂dC(ϕ), then |ξ|M(D) = 1. Since ∂dC(ϕ) is
convex in M(D) and (M(D), | · |M(D)) is strictly convex, if ϕ �∈ C, then ∂dC(ϕ) is a
singleton and dC is Gâteaux-differentiable at ϕ.

Let (ȳ, v̄) be an optimal solution of (P). Consider the penalized functional

Jk(y, v) =


[(

J(y, v)− J(ȳ, v̄) +
1

k2

)+
]2

+ (dC(Φ(y)))
2

+

m0∑
i=1

[∫
Σ

Ψi(s, t, y, v) dsdt

]2
+

m∑
i=m0+1

[(∫
Σ

Ψi(s, t, y, v) dsdt

)+
]2


1
2

.

We easily verify that (ȳ, v̄) is a 1
k2 -solution of the penalized problem

(PM
k ) inf{Jk(y, v) | y ∈ W (0, T ) ∩ C(Q), v ∈ Vad(v̄,M), (y, v) satisfies (1.1)}

for every M > 0 and every k > 0. For every k > 0, we set Mk = k( 1
2σ̄− 1

2σ ) and we
denote by (Pk) the penalized problem (PMk

k ).

5.2. Proof of Theorem 2.1. Step 1. For every k ≥ 1, the metric space
(Vad(v̄,Mk), d) is complete; see Proposition 4.2. Let us prove that the functional
v �−→ Jk(yv, v) is lower semicontinuous on this metric space. Since the mappings
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PONTRYAGIN’S PRINCIPLE FOR LOCAL SOLUTIONS 1199

v → J(yv, v) and v → ∫
Σ
Ψi(s, t, yv, v) dsdt (m0 + 1 ≤ i ≤ m) are lower semi-

continuous on (Vad(ṽ,Mk), d), it is clear that v → (
J(yv, v)− J(ȳ, v̄) + 1

k2

)+
and

v → (∫
Σ
Ψi(s, t, yv, v) dsdt

)+
(m0 + 1 ≤ i ≤ m) are also lower semicontinuous on

(Vad(ṽ,Mk), d) because r → r+ is a nondecreasing continuous mapping from R into
R

+. On the other hand, the mappings v → ∫
Σ
Ψi(s, t, yv, v) dsdt (1 ≤ i ≤ m0) are

continuous on (Vad(ṽ,Mk), d). Since the mappings r → r2 and r → r
1
2 are nonde-

creasing and continuous from R
+ into R

+, then v → Jk(yv, v) is lower semicontinuous.
Due to Ekeland’s variational principle, for every k ≥ 1, there exists vk ∈ Vad(v̄,Mk)
such that

d(vk, v̄) ≤ 1

k
and Jk(yk, vk) ≤ Jk(yv, v) +

1

k
d(vk, v) for every v ∈ Vad(v̄,Mk).(5.3)

(yk and yv are the solutions of (1.1) corresponding, respectively, to vk and v.) Let v0

be in Vad. Let k0 be large enough so that v0 belong to Vad(v̄,Mk) for every k ≥ k0.
Observe that, for the above choice of Mk, (vk)k tends to v̄ in Lσ̄(Σ). Let us check
this. Denote by Σk the set of points (s, t) ∈ Σ where vk(s, t) �= v̄(s, t). From (5.3) we
know that LN (Σk) ≤ 1/k. Then∫

Σ

|v̄ − vk|σ̄dsdt =
∫

Σk

|v̄ − vk|σ̄dsdt ≤ ‖v̄ − vk‖σ̄σ,ΣLN (Σk)
1− σ̄

σ

≤ M σ̄
k k

σ̄
σ−1 = k

1
2 ( σ̄

σ−1) −→ 0 when k → +∞.
(5.4)

Step 2. Theorem 3.1 gives the existence of measurable sets Ek
ρ ⊂ Σ, such that

LN (Ek
ρ ) = ρLN (Σ),∫

Σ\Ek
ρ

|vk − v̄|σ dsdt+
∫
Ek

ρ

|v0 − v̄|σ dsdt

= (1− ρ)

∫
Σ

|vk − v̄|σ dsdt+ ρ

∫
Σ

|v0 − v̄|σ dsdt,

(5.5)

∫
Σ\Ek

ρ

h(s, t, vk) dsdt+

∫
Ek

ρ

h(s, t, v0) dsdt

= (1− ρ)

∫
Σ

h(s, t, vk) dsdt+ ρ

∫
Σ

h(s, t, v0) dsdt,

(5.6)

∫
Σ

(Ψ(s, t, ykρ , v
k
ρ)−Ψ(s, t, yk, vk)) dsdt

= ρ

∫
Σ

(Ψ′
y(s, t, yk, vk)zk +Ψ(s, t, yk, v0)−Ψ(s, t, yk, vk)) dsdt+ o(ρ),

(5.7)

ykρ = yk + ρzk + rkρ , lim
ρ→0

1

ρ
‖rkρ‖C(Q) = 0,(5.8)

J(ykρ , v
k
ρ) = J(yk, vk) + ρ∆Jk + o(ρ),(5.9)

where vkρ is defined by

vkρ(s, t) =

{
vk(s, t) on Σ \ Ek

ρ ,
v0(s, t) on Ek

ρ ,
(5.10)D
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1200 E. CASAS, J.-P. RAYMOND, AND H. ZIDANI

ykρ is the state corresponding to vkρ , zk is the weak solution of

∂zk
∂t

+Azk + f ′
y(x, t, yk)zk = 0 in Q,

∂zk
∂nA

+ g′y(s, t, yk, vk)zk = g(s, t, yk, vk)− g(s, t, yk, v0) on Σ,

zk(0) = 0 in Ω,

and

∆Jk =

∫
Q

F ′
y(x, t, yk(x, t))zk(x, t) dxdt+

∫
Σ

G′
y(s, t, yk(s, t), vk(s, t))zk(s, t) dsdt

+

∫
Σ

[G(s, t, yk(s, t), v0(s, t))−G(s, t, yk(s, t), vk(s, t))] dsdt+

∫
Ω

L′
y(x, yk(T ))zk(T ) dx.

On the other hand, for every k > k0 and every 0 < ρ < 1, due to (5.5) and (5.6), vkρ
belongs to Vad(v̄,Mk). If we set v = vkρ in (5.3), it follows that

lim
ρ→0

Jk(yk, vk)− Jk(y
k
ρ , v

k
ρ)

ρ
≤ 1

k
LN (Σ).(5.11)

Taking (5.1), (5.7), (5.9), and the definition of Jk into account, we obtain

− νk∆Jkλk

∫
Σ

[
Ψ(·, yk, v0)−Ψ(·, yk, vk) + Ψ′

y(·, yk, vk)zk
]
dsdt(5.12)

−〈µk,Φ
′(yk)zk〉D ≤ 1

k
LN (Σ),

where

λi
k =

∫
Σ
Ψi(s, t, yk, vk) dsdt

Jk(yk, vk)
for 1 ≤ i ≤ m0,

λi
k =

(∫
Σ
Ψi(s, t, yk, vk) dsdt )

+

Jk(yk, vk)
for m0 + 1 ≤ i ≤ m,

νk =
(J(yk, vk)− J(ȳ, v̄) + 1

k2 )
+

Jk(yk, vk)
, µk =


dC(Φ(yk))∇dC(Φ(yk))

Jk(yk, vk)
if Φ(yk) �∈ C,

0 otherwise.

For every k > 0, we consider the weak solution pk of

−∂pk
∂t

+A∗pk + f ′
y(x, t, yk)pk = νkF

′
y(x, t, yk) + [Φ

′(yk)∗µk]|Q,

∂pk
∂nA∗

+ g′y(·, yk, vk)pk = νkG
′
y(·, yk, vk) + λkΨ

′
y(·, yk, vk) + [Φ′(yk)∗µk]|Σ,

pk(T ) = νkL
′
y(x, yk(T )) + [Φ

′(yk)∗µk]|ΩT
,

(5.13)
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PONTRYAGIN’S PRINCIPLE FOR LOCAL SOLUTIONS 1201

where [Φ′(yk)∗µk]|Q, [Φ′(yk)∗µk]|Σ, and [Φ′(yk)∗µk]|Ω̄T
have the same meaning as in

Theorem 2.1. By using the Green formula of Theorem 3.4, we obtain

νk

∫
Q

F ′
y(x, t, yk)zk dxdt+ νk

∫
Σ

G′
y(s, t, yk, vk)zk dsdt+ νk

∫
Ω

L′
y(x, yk(T ))zk(T ) dx

+λk

∫
Σ

Ψ′
y(s, t, yk, vk)zk dsdt+ 〈µk,Φ

′(yk)zk〉D

=

∫
Q

pk

(
∂zk
∂t

+Azk + f ′
y(x, t, yk)zk

)
dxdt+

∫
Σ

pk

(
∂zk
∂nA

+ g′y(s, t, yk, vk)zk

)
dsdt

=

∫
Σ

pk[g(s, t, yk, vk)− g(s, t, yk, v0)] dsdt.

With this equality, (5.12), and the definition of ∆Jk, we have∫
Σ

[νkG(s, t, yk, vk) + λkΨ(s, t, yk, vk)− pkg(s, t, yk, vk)] dsdt(5.14)

≤
∫

Σ

[νkG(s, t, yk, v0) + λkΨ(s, t, yk, v0)− pkg(s, t, yk, v0)] dsdt+
1

k
LN (Σ)

for every k ≥ k0.
Step 3. Notice that ν2

k +
∑

i(λ
i
k)

2 + |µk|2M(D)
= 1. Then there exist an element

(ν̄, λ̄, µ̄) in R
1+m × M(D) with ν̄ ≥ 0 and λ̄i ≥ 0 for m0 + 1 ≤ i ≤ m, and a

subsequence, still denoted by (νk, λk, µk)k, such that

(νk, λk) −→ (ν̄, λ̄) in R
1+m, µk ⇀ µ̄ weak-star in M(D).

From Theorem 3.4, we obtain the estimate

‖pk‖Lδ′ (0,T ;W 1,d′ (Ω)) ≤ C4(δ, d)
{
‖F ′

y(·, yk)‖1,Q + ‖G′
y(·, yk, vk)‖1,Σ +

‖L′
y(·, yk(T ))‖1,Ω + |λk|‖Ψ′

y(., yk, vk)‖1,Σ + |µk|M(D)‖Φ′
y(yk)‖L(C(D);C(D))

}
for every (δ, d) satisfying N

2d +
1
δ < 1

2 , where L(C(D);C(D)) denotes the space of
linear continuous mappings from C(D) to C(D).

Since the sequences (νk)k, (λk)k, (µk)k, (yk)k, and (vk)k are bounded, respec-
tively, in R, R

m, M(D), C(Q), and in Lσ̄(Σ), the sequence (pk)k is bounded in
Lδ′(0, T ;W 1,d′

(Ω)). Then there exist p̄ ∈ Lδ′(0, T ;W 1,d′
(Ω)) and a subsequence, still

denoted by (pk)k, such that (pk)k weakly converges to p̄ in Lδ′(0, T ;W 1,d′
(Ω)) for

every (δ, d) satisfying N
2d +

1
δ < 1

2 . By using the same arguments as in [21], we can
prove that p̄ is the weak solution of (2.4).

Step 4. Recall that (vk)k tends to v̄ in Lσ̄(Σ) (see (5.4)).
By passing to the limit when k tends to infinity in (5.14), with Fatou’s lemma

(applied to the sequence of functions (νkG(·, 0, vk(·)), λkΨ(·, 0, vk(·)))k and the con-
vergence results stated in Step 2, we obtain

HΣ(ȳ, v̄, p̄, ν̄, λ̄) ≤ HΣ(ȳ, v0, p̄, ν̄, λ̄),(5.15)
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1202 E. CASAS, J.-P. RAYMOND, AND H. ZIDANI

for every v0 ∈ Vad. On the other hand, from definitions of µk and λk, and from (5.2),
we deduce

λi
k

∫
Σ

Ψi(s, t, yk, vk) dsdt = 0, m0 + 1 ≤ i ≤ m,

〈µk, z − Φ(yk)〉M(D)×C(D) ≤ 0 for all z ∈ C.

We obtain (2.2) and (2.3) by passing to the limit in these expressions. Since C is of
finite codimension, by using the same arguments as in [22], we prove that (ν̄, λ̄, µ̄) is
nonzero.
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Boston, Basel, Berlin, 1995.

[18] J. P. Raymond, Nonlinear boundary control of semilinear parabolic equations with pointwise
state constraints, Discrete Contin. Dynam. Systems, 3 (1997), pp. 341–370.

D
ow

nl
oa

de
d 

04
/2

3/
13

 to
 1

93
.1

44
.1

85
.2

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



PONTRYAGIN’S PRINCIPLE FOR LOCAL SOLUTIONS 1203

[19] J. P. Raymond and H. Zidani, Hamiltonian Pontryagin’s principles for control problems
governed by semilinear parabolic equations, Appl. Math. Optim., 39 (1999), pp. 143–177.

[20] J. P. Raymond and H. Zidani, Optimal control problem governed by a semilinear parabolic
equation, in System Modelling and Optimization, J. Dolezal and J. Fidler, eds., Chapman
and Hall, London, 1996, pp. 211–217.

[21] J. P. Raymond and H. Zidani, Pontryagin’s principles for state-constrained control prob-
lems governed by semilinear parabolic equations with unbounded controls, SIAM J. Control
Optim., 36 (1998), pp. 1853–1879.

[22] J. P. Raymond and H. Zidani, Pontryagin’s principle for time optimal problems, J. Optim.
Theory Appl., 101 (1999), pp. 375–402.

[23] J. Serrin, Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup.
Pisa, 18 (1964), pp. 385–387.

[24] Y. Yao, Vector measure and maximum principle of distributed parameter systems, Sci. Sinica
Ser. A, 26 (1983), pp. 102–112.

[25] Y. Yao, Maximum principle of semi-linear distributed systems, in Proceedings of the Third
IFAC Symposium on the Control of Distributed Parameter Systems, Toulouse, France,
Pergamon, Oxford, UK, 1982.

[26] J. Yong, Pontryagin maximum principle for semilinear second order elliptic partial differ-
ential equations and variational inequalities with state constraints, Differential Integral
Equations, 5 (1992), pp. 1307–1334.

D
ow

nl
oa

de
d 

04
/2

3/
13

 to
 1

93
.1

44
.1

85
.2

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


