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Abstract. We study the Lanczos method for computing extreme eigenvalues of a symmetric
or Hermitian matrix. It is not guaranteed that the extreme Ritz values are close to the extreme
eigenvalues—even when the norms of the corresponding residual vectors are small. Assuming that
the starting vector has been chosen randomly, we compute probabilistic bounds for the extreme
eigenvalues from data available during the execution of the Lanczos process. Four different types of
bounds are obtained using Lanczos, Ritz, and Chebyshev polynomials. These bounds are compared
theoretically and numerically. Furthermore we show how one can determine, after each Lanczos step,
a probabilistic upper bound for the number of steps still needed (without performing these steps) to
obtain an approximation to the largest or smallest eigenvalue within a prescribed tolerance.
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1. Introduction. Knowledge about the extreme eigenvalues of symmetric or
Hermitian matrices is important in many applications. For example, the stability of
processes involving such matrices is often governed by the location of their eigenvalues.
The extreme eigenvalues can also be used to determine condition numbers, the field
of values, and ε-pseudospectra of arbitrary matrices (see, e.g., [1, 12]). For small-
sized matrices the eigenvalues can be computed by the QR-method (see, e.g., [2]), but
this is not feasible for large matrices. A method which is often used in practice to
compute a few extreme eigenvalues of large sparse symmetric or Hermitian matrices
is the Lanczos method (see, e.g., [2, 7, 14]). The approximations of the eigenvalues
obtained with the Lanczos method (the Ritz values) lie between the smallest and
largest eigenvalue of the original matrix and one would like to know whether the largest
(or smallest) Ritz value is sufficiently close to the largest (or smallest) eigenvalue of
that matrix.

The classical a priori error estimates for the Lanczos method, established by
Kaniel, Paige, and Saad (see, e.g., [2, 3, 6, 7, 10]) are not applicable in practice to ob-
tain bounds on the spectrum of Hermitian matrices, because they involve knowledge
about the eigenvalues and angles between the eigenvectors and the starting vector.
Furthermore one should note that small residuals for the Ritz values only imply that
these Ritz values are close to an eigenvalue, but it is not guaranteed that this eigen-
value is indeed the one we are looking for (cf., e.g., [8]). In fact, it is not possible
to derive rigorous bounds on the spectrum from any possible starting vector: if the
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starting vector is perpendicular to the eigenvector (or eigenspace in case of multiple
eigenvalues) corresponding to the largest or smallest eigenvalue, it is impossible to
obtain any information regarding this eigenvalue from the Lanczos process.

In this paper we derive various a posteriori bounds for the spectrum of real sym-
metric matrices using a probabilistic approach. Assuming that the starting vector
of the Lanczos process is chosen randomly from the uniform distribution over the
unit sphere, we derive, using data available while executing the Lanczos process, for
every ε ∈ (0, 1) bounds for the spectrum with probability at least 1 − ε. No intrinsic
properties of the matrix (apart from being symmetric) are required to compute our
bounds. Polynomials related to the Lanczos process, namely the Lanczos polynomials
and Ritz polynomials, are used to derive two types of such bounds. For symmetric
positive definite matrices Kuczyński and Woźniakowski [5, Theorem 3] give, for arbi-
trary t > 1, an a priori upper bound for the probability that the largest eigenvalue
is greater than t times the largest Ritz value; Chebyshev polynomials of the second
kind are used to obtain these bounds. This result can be used to compute a poste-
riori probabilistic bounds for the spectrum while executing the Lanczos process, and
bounds based on [5, Theorem 3] can be used for symmetric indefinite matrices as well.
The fourth kind of bounds for the spectrum is obtained with Chebyshev polynomials
of the first kind. The sharpness of the different bounds is analyzed theoretically and
compared numerically. It turns out that the bounds based on Lanczos polynomials
are the sharpest ones in most cases; however, the Ritz polynomials sometimes pro-
vide better bounds when the Lanczos method suffers from a misconvergence (i.e., the
largest (or smallest) Ritz values in consecutive Lanczos steps seem to converge, but
not to an extreme eigenvalue).

Apart from the bounds on the spectrum, we also study probabilistic bounds for
the number of Lanczos steps needed to get an error (or relative error) in the largest
or smallest eigenvalue that is smaller than a given tolerance. In [4, Theorem 4.2] the
authors present a probabilistic upper bound for the number of Lanczos steps needed to
yield a relative error in the largest eigenvalue of a symmetric positive definite matrix
that is smaller than a given tolerance. For this special case numerical experiments
demonstrate that our bound and the one from [4, Theorem 4.2] are almost the same.
Furthermore, we provide upper bounds for the number of Lanczos steps needed to
guarantee with probability at least 1−ε that either the spectrum lies between certain
prescribed bounds, or that a misconvergence has occurred.

The results in this paper deal with the Lanczos process applied to real symmetric
matrices and real starting vectors. This includes the case of Hermitian matrices,
because the Lanczos method applied to a complex Hermitian matrix (with a complex
starting vector) can be written as the application of the Lanczos method to a related
real symmetric matrix of double size with a real starting vector (see Remark 2.1 for
details).

All bounds discussed in this paper are easily implemented and can be computed
with little effort while executing the Lanczos process.

The paper has been organized as follows. In section 2 some notations and defini-
tions are introduced. Bounds based on Lanczos polynomials are presented in section 3,
and bounds obtained with Ritz polynomials can be found in section 4. In section 5
we derive bounds from Chebyshev polynomials. The estimates for the number of
Lanczos steps still to be done for sufficiently accurate approximations can be found in
section 6.1, and the estimates for the number of Lanczos steps needed to obtain pre-
scribed bounds for the spectrum or to detect misconvergence are given in section 6.2.
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Numerical experiments are presented in section 7, and the conclusions can be found
in section 8.

2. Preliminaries and notation. In this section we introduce some notations
and present relevant properties of the Lanczos method. For an introduction to the
Lanczos method and more details, as well as implementation issues, the reader may
consult, e.g., [2, 7]. Throughout this paper we do not consider the effect of rounding
errors.

The standard inner product on R
n will be denoted by (·, ·), and ‖ · ‖ stands for

the Euclidean norm, and I is the n× n identity matrix.
Let A be a real symmetric n× n matrix with eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn.(2.1)

The corresponding normalized eigenvectors xj form an orthonormal basis of R
n. We

use the Lanczos method to approximate one or a few extreme eigenvalues of A. The
unit starting vector is denoted by v1 and can be written as

v1 =

n∑

j=1

γjxj .(2.2)

If v1 is chosen randomly from the uniform distribution with respect to the unit sphere,
the dimension of the Krylov subspace

Kk(A, v1) = span{v1, Av1, . . . , Ak−1v1}

is equal to k with probability one for k less than the number of distinct eigenvalues
of A.

In the Lanczos process vectors vk are generated by the three-term recurrence

δkvk+1 = Avk − αkvk − βk−1vk−1 for k = 1, 2, 3, . . . ,(2.3)

where v0 = 0, β0 = 1, αk = (Avk, vk), βk−1 = (Avk, vk−1), and δk > 0 is chosen
such that ‖vk+1‖ = 1. With this choice one has δk = βk for k ≥ 1. The vectors
v1, v2, . . . , vk form an orthonormal basis of the Krylov subspace Kk(A, v1). Let Vk be
the n×k matrix of which vj is the jth column. The Ritz values occurring in step k of
the Lanczos process are the eigenvalues of the tridiagonal k× k matrix Tk = V T

k AVk,
and are denoted by

θ
(k)
1 < θ

(k)
2 < · · · < θ

(k)
k ;

the Ritz values satisfy θ
(k)
j > λj and θ

(k)
k+1−j < λn+1−j (1 ≤ j ≤ k). We denote the

eigenvectors of Tk by s
(k)
j : Tks

(k)
j = θ

(k)
j s

(k)
j and the Ritz vectors by y

(k)
j = Vks

(k)
j ,

where we assume that these Ritz vectors are normalized. We also introduce the
residuals

r
(k)
j = Ay

(k)
j − θ

(k)
j y

(k)
j .

Related to the three-term recursion (2.3) are the polynomials pk of degree k defined
by p−1(t) = 0, p0(t) = 1, and

βkpk(t) = (t− αk)pk−1(t) − βk−1pk−2(t) for k = 1, 2, 3, . . . .(2.4)
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From (2.3) with δk = βk and (2.4) it follows that

vk+1 = pk(A)v1 for k = 1, 2, 3, . . . .

The polynomials pk are called the Lanczos polynomials with respect to A and v1.

Other polynomials related to the Lanczos method are the Ritz polynomials q
(k)
j of

degree k − 1, which are characterized by the fact that

y
(k)
j = q

(k)
j (A)v1 for j = 1, 2, . . . , k.(2.5)

In the following sections estimates for the eigenvalues of A, based on Lanczos and Ritz
polynomials, will be studied and compared. Therefore it is important to understand
the relation between these polynomials. The polynomial pk is a scalar multiple of the
characteristic polynomial of the matrix Tk (cf., e.g., [7, section 7.3]), which implies

that θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
k are the zeros of pk. From [7, section 12.3] it follows that these

Ritz values without θ
(k)
j are the zeros of q

(k)
j . Hence pk(t) = c

(k)
j (t− θ

(k)
j )q

(k)
j (t) for a

certain constant c
(k)
j .1 Because vk+1 = pk(A)v1 = c

(k)
j (A−θ(k)

j I)q
(k)
j (A)v1 = c

(k)
j r

(k)
j ,

we have c
(k)
j = 1/‖r(k)

j ‖, which yields the following relation between the Lanczos and
Ritz polynomials:

pk(t) = (t− θ
(k)
j )q

(k)
j (t) / ‖r(k)

j ‖ for j = 1, 2, . . . , k.(2.6)

Remark 2.1. The Lanczos method described above can also be used to determine
a few extreme eigenvalues of a complex Hermitian matrix A. The results in this paper
are only valid for real symmetric matrices, but the Lanczos method for Hermitian
matrices can be formulated in terms of real matrices and vectors. Let ReA and ImA
be the real and imaginary part of A, respectively. The Lanczos method applied to the
2n× 2n real symmetric matrix

B =

(
ReA −ImA
ImA ReA

)

with starting vector (Re v1

Im v1
) yields the same tridiagonal matrices Tk as the Lanczos

method applied to A with starting vector v1; this can be seen from taking the real and
imaginary part of the three-term recurrence (2.3). The numbers λ1, λ2, . . . , λn are the
eigenvalues of B, but with multiplicity twice as large as for the matrix A. Therefore
(probabilistic) bounds for the spectrum of B are (probabilistic) bounds for the spectrum
of A as well.

3. Spectral bounds using the Lanczos polynomial. In this section we will
give probabilistic upper and lower bounds for the spectrum of A, based on Lanczos
polynomials. For each step of the Lanczos process we obtain these bounds based on
the information computed so far. No assumptions on the location or separation of the
eigenvalues are required.

The Lanczos polynomials pk are a byproduct of the process. They are usually

small between θ
(k)
1 and θ

(k)
k and increase rapidly outside this interval. We can exploit

1From this relation it follows that q
(k)
j is a scalar multiple of

∏
i6=j(t− θ

(k)
i ) and that polynomial

is called a reduced Ritz polynomial in [11]. The relation between these polynomials and (2.5) also
follows from [11, Formula (5.14)].
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this fact: assuming that the starting vector has components in the direction of x1 and
xn, we can provide upper and lower bounds for the spectrum of A.

From

1 = ‖vk+1‖2 = ‖pk(A)v1‖2 =

n∑

j=1

γ2
j pk(λj)

2

and pk(λn) > 0 it follows that

1 ≥ |γn| pk(λn).

If γn is known, this estimate provides an upper bound λup for λn: let λup be the
largest real zero of

fL(t) = pk(t) − 1/|γn|.(3.1)

This number λup exists and satisfies λup > θ
(k)
k because pk is strictly increasing on

(θ
(k)
k ,∞). The number λup can be determined by Newton’s method or bisection. As

a starting point for the Newton process one can take ‖A‖∞ (the maximal row sum of
the absolute values of the entries of A) or a previously computed upper bound for λn.

In practice we do not know γn, but we can determine the probability that |γn| is
smaller than a given (small) constant. Let Sn−1 denote the (n− 1)-dimensional unit
sphere in R

n. We assume that v1 is chosen randomly with respect to the uniform
distribution over Sn−1. Then, as a result, (γ1, γ2, . . . , γn) is also random with respect
to the uniform distribution over Sn−1 (cf., e.g., [4, p. 1116]). In the following lemma
we compute the probability that |γn| is smaller than δ.

Lemma 3.1. Assume that the starting vector v1 has been chosen randomly with
respect to the uniform distribution over the unit sphere Sn−1 and let δ ∈ [0, 1]. Then

P (|γn| ≤ δ) = 2B(n−1
2 , 1

2 )−1 ·
∫ arcsin δ

0

cosn−2 t dt,

where B denotes Euler’s Beta function: B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt.

Proof. Define Sδ = {γ ∈ Sn−1 : |γn| < δ}; we want to determine the ratio of the
areas of the sets Sδ and Sn−1. The image of the map

ϕ : (−π, π) × (−π
2 ,

π
2 )n−2 → Sn−1

defined by

ϕ :




α
ψ1

ψ2

...
ψn−2




7→




cosα cosψ1 cosψ2 · · · cosψn−3 cosψn−2

sinα cosψ1 cosψ2 · · · cosψn−3 cosψn−2

sinψ1 cosψ2 · · · cosψn−3 cosψn−2

...
sinψn−3 cosψn−2

sinψn−2




equals the sphere up to a negligible set. One can check that the associated Euclidean
density is given by

ω(α, ψ1, ψ2, . . . , ψn−2) = cosψ1 · cos2 ψ2 · · · cosn−2 ψn−2.
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Therefore we can compute the areas of Sδ and Sn−1 by integrating this density over
the respective domains. Taking the ratio of the two results, we get

P (|γn| ≤ δ) = P (|ψn−2| ≤ arcsin δ)

= 2

∫ arcsin δ

0

cosn−2 t dt
/∫ π/2

−π/2

cosn−2 t dt

= 2

∫ arcsin δ

0

cosn−2 t dt
/
B(n−1

2 , 1
2 ),

which proves the lemma.

Now suppose we would like to have an upper bound for the spectrum of A that
is correct with probability at least 1− ε. Then we determine the value of δ for which

∫ arcsin δ

0

cosn−2 t dt = ε
2B(n−1

2 , 1
2 )

(
= ε

∫ π/2

0

cosn−2 t dt

)
(3.2)

holds, e.g., by using Newton’s method. The integrals in (3.2) can be computed using
an appropriate quadrature formula. We replace |γn| in (3.1) by the value δ computed

from (3.2) and determine the zero λup > θ
(k)
k . This λup is an upper bound for the

spectrum of A with probability at least 1 − ε, and we call λup a probabilistic upper
bound.

A lower bound λlow for the spectrum of A with probability at least 1 − ε can be
obtained in a similar way. (Note that Lemma 3.1 remains valid if |γn| is replaced by
|γ1|.) The only difference is that we have to separate the cases where k, the degree of
pk, is even (pk(t) → +∞ for t → −∞) or odd (pk(t) → −∞ for t → −∞). Hence we
have proved the following theorem.

Theorem 3.2. Assume that the starting vector v1 has been chosen randomly with
respect to the uniform distribution over Sn−1 and let ε ∈ (0, 1). Then λup, the largest
zero of the polynomial

fL(t) = pk(t) − 1/δ(3.3)

with δ given by (3.2), is an upper bound for the spectrum of A with probability at least
1 − ε, and λlow, the smallest zero of

fL(t) = (−1)kpk(t) − 1/δ,(3.4)

is a lower bound for the spectrum of A with probability at least 1 − ε.

Note that if we are unlucky in choosing v1, so that |γn| < δ, then the computed
bounds may or may not be correct; see section 7 for an illustration.

The determination of the lower and upper bounds from Theorem 3.2 is rather
cheap in general (compared with a matrix-vector multiplication with A); the compu-
tation of fL(t) (using (2.4)) costs approximately 6k floating point operations. Note
that the Ritz values and vectors are not needed to obtain these bounds of the spec-
trum. For very small k one cannot expect to obtain tight bounds, so it only makes
sense to compute the zeros of (3.3) and (3.4) for k of moderate size. In practice one
could, e.g., compute these zeros only every second or third Lanczos step until the
bounds become sufficiently sharp.
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4. Spectral bounds using Ritz polynomials. We can also try to obtain prob-
abilistic upper and lower bounds for the spectrum of A using some Ritz polynomials

q
(k)
j . The degree of these polynomials is one less than the degree of pk, but while

pk(θ
(k)
k ) = 0, the polynomial q

(k)
k has its last zero in θ

(k)
k−1 and could be a competitor

of pk to give a possibly tighter upper bound. Similarly, q
(k)
1 may be used to obtain

another lower bound.
We write θ

(k)
j as a Rayleigh quotient:

θ
(k)
j = (Ay

(k)
j , y

(k)
j ) =

n∑

i=1

λi γ
2
i q

(k)
j (λi)

2.(4.1)

First suppose that A is positive semidefinite. Then set j = k to derive the inequality

θ
(k)
k ≥ λn γ

2
n q

(k)
k (λn)2. Hence the zero λup > θ

(k)
k of

fR(t) = tq
(k)
k (t)2 − θ

(k)
k /γ2

n(4.2)

is an upper bound for λn. If γn is not known, one can obtain a probabilistic upper
bound λup of λn with probability at least 1 − ε, as in the previous section. (Replace
γn in (4.2) by δ where δ satisfies (3.2).)

As in the previous section, if we happen to choose a v1 so that |γn| < δ, then we
are not certain that the computed upper bound is correct. It can even happen that

the largest zero λup of fR with γn replaced by δ satisfies λup < θ
(k)
k ! See section 7 for

an illustration.
When it is not known whether A is positive definite, we can obtain a probabilistic

upper bound in the following way. Let −σ < 0 be a known lower bound for the
spectrum of A: then the matrix A+ σI is positive semidefinite. We get

θ
(k)
k + σ =

n∑

i=1

(λi + σ) γ2
i q

(k)
k (λi)

2

with λi + σ ≥ 0 for all i. The rightmost zero of

fR(t) = (t+ σ)q
(k)
k (t)2 − (θ

(k)
k + σ)/γ2

n(4.3)

is an upper bound for the spectrum of A. Again, we can replace γn by the δ that
satisfies (3.2) to compute a probabilistic upper bound.

For a lower bound, we use the polynomial q
(k)
1 . If A is negative semidefinite, it

follows from θ
(k)
1 ≤ λ1 γ

2
1 q

(k)
1 (λ1)

2 (cf. (4.1)) that the unique zero λlow < θ
(k)
1 of

fR(t) = tq
(k)
1 (t)2 − θ

(k)
1 /γ2

1(4.4)

is a lower bound for λ1. Otherwise one has to use a shift τ > 0 such that A − τI
becomes negative semidefinite and modify fR in (4.4) accordingly. Of course the shifts
σ and τ should be chosen as small as possible to get the best results.

The bounds discussed in this section can be determined for example by Newton’s
method or bisection. In order to compute fR(t) one has to know the largest or
smallest Ritz value and the corresponding eigenvector of the tridiagonal matrix Tk.
Apart from that, the computation of fR(t) is cheap. The determination of the bounds
based on Ritz polynomials will be more expensive in general than the determination
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of the bounds based on the Lanczos polynomials. (The Ritz values and vectors are
not needed in the latter case.)

It is interesting to compare the sharpness of the bounds based on Ritz polynomials
and those based on Lanczos polynomials. For simplicity we assume that A is positive
semidefinite and compare the largest zero of (4.2) with the largest zero of (3.1). (The
other cases, including those where shifts are used, can be analyzed in a similar way.)
Consider the function

g(t) =

√
t/θ

(k)
k q

(k)
k (t) − 1/|γn|;(4.5)

the largest zero of g is the largest zero of fR from (4.2). After some straightforward
calculations, using (2.6) with j = k, one obtains that (with fL as in (3.1) and g as in
(4.5))

fL(t) < g(t) for θ
(k)
k ≤ t ≤ (1 + c) θ

(k)
k

and

fL(t) > g(t) for t ≥ (1 + c+ c2) θ
(k)
k ,

where c = ‖r(k)
k ‖/θ(k)

k . The quantity c can be interpreted as an approximation of the
relative error for the largest eigenvalue, and c will be small after sufficiently many
Lanczos steps. For small c the Ritz polynomial provides a smaller upper bound for

λn only when this upper bound is very close to θ
(k)
k —but in that case the Lanczos

polynomial yields a very tight upper bound as well. Hence, it is not likely that
the bounds based on Ritz polynomials are sharper than the bounds obtained with
the Lanczos polynomials—unless c is large. Numerical experiments illustrating these
observations can be found in section 7.

5. Spectral bounds using Chebyshev polynomials. Chebyshev polynomi-
als are often used to obtain error bounds for the Lanczos method; cf., e.g., [2, 5, 7].
In this section we explain how these polynomials can be used to obtain probabilis-
tic upper and lower bounds for the spectrum of A, based on computations with the
Lanczos method. One type of bounds follows easily from a result by Kuczyński and
Woźniakowski [5, Theorem 3].

Let cj(t) = cos(j arccos t) be the Chebyshev polynomial (of the first kind) of degree
j, with the usual extension outside the interval [−1, 1]. The polynomial

uj−1(t) = 1
j c

′
j(t)

of degree j − 1 is a Chebyshev polynomial of the second kind (cf. [9, p. 7]).
In [5, Theorem 3], the following result has been derived for symmetric positive

definite matrices. Let t > 1 and v1 be chosen randomly from the uniform distribution
over Sn−1. Then

P (λn ≤ t θ
(k)
k ) ≥ 1 − 2

(
B(n−1

2 , 1
2 )

√
t− 1u2(k−1)(

√
t )
)−1

.(5.1)

(B is the Euler Beta function.) The estimate (5.1) can be generalized for symmetric
indefinite matrices by using a shift σ such that A+σI is positive definite. Probability
estimates for lower bounds of λ1 can be obtained similarly. Along these lines we can
derive bounds for the spectrum of A with probability at least 1− ε, and these results
are presented in the following theorem.
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Theorem 5.1. Let ε ∈ (0, 1) and σ, τ ∈ R be such that A + σI is positive
semidefinite, and A− τI is negative semidefinite. Consider for t ≥ 1 the function

f(t) = ε
2 B(n−1

2 , 1
2 )

√
t− 1u2(k−1)(

√
t ) − 1(5.2)

(B is the Euler Beta function) and let tk > 1 be the (unique) zero of f . Furthermore,
let v1 be chosen randomly from the uniform distribution over Sn−1. Then

λup = tk θ
(k)
k + (tk − 1)σ(5.3)

is an upper bound for the spectrum of A with probability at least 1 − ε, and

λlow = tk θ
(k)
1 − (tk − 1)τ(5.4)

is a lower bound for the spectrum of A with probability at least 1 − ε.
The quantity tk can be determined numerically. The numbers uj(t) can be com-

puted from the three-term recurrence uj(t) = 2tuj−1(t)−uj−2(t) for j ≥ 2, u0(t) = 1,
u1(t) = 2t (see, e.g., [9, p. 40]). From (5.3) and (5.4) it is clear that the shifts σ and
τ should be chosen as small as possible (cf. section 4).

Other bounds for the spectrum of A can be obtained as follows, using Chebyshev
polynomials of the first kind. Let a < b and cj(t; a, b) = cj(1 + 2(t − b)/(b − a)) be
the Chebyshev polynomial of degree j with respect to the interval [a, b]. With σ such

that A+ σI is positive semidefinite, we define the polynomial h(t) = ck−1(t;−σ, θ(k)
k )

and the vector x = h(A)v1 ∈ Kk(A, v1). From θ
(k)
k (x, x) ≥ (Ax, x) it follows that2

the largest zero of

fC(t) = (t− θ
(k)
k )ck−1(t;−σ, θ(k)

k )
2
− (θ

(k)
k + σ)/γ2

n(5.5)

is an upper bound for λn. With γn replaced by the δ computed from (3.2), as in
the previous sections, one obtains an upper bound λup for the spectrum of A with
probability at least 1 − ε. A lower bound for the spectrum of A can be obtained in

a similar way, using θ
(k)
1 (x, x) ≤ (Ax, x) with x = ck−1(A; θ

(k)
1 , τ)v1, where τ is such

that A− τI is negative semidefinite.
In order to compare the bounds derived along these lines with those obtained

from Theorem 5.1, we first replace γn in (5.5) by δ and scale the interval [−σ, θ(k)
k ] to

[0, 1]. The largest zero λup of (5.5) satisfies the equality λup = t̂ θ
(k)
k +(t̂− 1)σ, where

t̂ > 1 is the unique zero of

g(t) = δ
√
t− 1 ck−1(t; 0, 1) − 1.

One can show that ck−1(t; 0, 1) = c2(k−1)(
√
t ;−1, 1) ( = c2(k−1)(

√
t ) ) for t > 0. This

means that we have to compare the zeros of (5.2) and those of

g(t) = δ
√
t− 1 c2(k−1)(

√
t ) − 1.(5.6)

The relation between δ and ε
2B(n−1

2 , 1
2 ) is given by (3.2). One has δ > ε

2B(n−1
2 , 1

2 )
for all ε ∈ (0, 1) and n > 3, but δ ≈ ε

2B(n−1
2 , 1

2 ) for ε and n of practical interest. For

2Invoke (2.2): use
∑

γ2
j ≤ 1 where the summation is with respect to those j satisfying λj ≤ θ

(k)
k

and h(λj)
2 ≤ 1 for λj ≤ θ

(k)
k .
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instance, (δ− ε
2B(n−1

2 , 1
2 ))/δ ≈ 2.6 · 10−5 for ε = 1.0 · 10−2 and n = 103, 104, 105, 106.

On the other hand one has the relation

u2(k−1)(
√
t ) = 2 c2(k−1)(

√
t ) + u2(k−2)(

√
t ) for t > 0

(cf., e.g., [9, p. 9]) so that u2(k−1)(
√
t ) > 2c2(k−1)(

√
t ) for t ≥ 1 and this implies,

together with δ ≈ ε
2B(n−1

2 , 1
2 ), that the zero of (5.6) is larger than the zero of (5.2)

in most applications. Hence, the upper bound λup from (5.3) is in general smaller
than the upper bound obtained from (5.5), so Theorem 5.1 will produce sharper
bounds than the construction described above. These observations are supported by
numerical experiments in section 7.

6. Upper bounds for the number of Lanczos steps.

6.1. Bounds based on Theorem 5.1. Theorem 5.1 can also be used to com-
pute a probabilistic upper bound for the number of Lanczos steps necessary to obtain
a Ritz value close enough to λn in a relative or absolute sense. These estimates can be
obtained while executing the Lanczos process. First we investigate how many Lanczos
steps are needed to obtain a relative error that is smaller than a prescribed tolerance
tol with probability at least 1 − ε.

Suppose k steps of the Lanczos method have been performed and θ
(k)
k > 0; if

θ
(k)
k ≤ 0 the eigenvalue λn can be arbitrarily close to zero and the relative error

(λn − θ
(m)
m )/λn cannot be estimated properly. Let m ≥ k and let tm be the zero of

the function f in (5.2) with k replaced by m. It follows from (5.3) that

λn − θ
(m)
m

λn
≤ (tm − 1)(θ

(m)
m + σ)

λn
≤ (tm − 1)(λn + σ)

λn
≤ (tm − 1)(µ+ σ)

µ
(6.1)

holds with probability at least 1 − ε; here µ = θ
(k)
k if σ ≥ 0, and µ ≥ λn (e.g.,

µ = ‖A‖∞; one should not take a probabilistic upper bound for λn) whenever σ < 0;
σ is as in Theorem 5.1. The requirement (tm − 1)(µ + σ)/µ ≤ tol is equivalent to
tm ≤ 1 + tol · µ/(µ+ σ), and the smallest integer m, for which the quantity tm from
(5.2) satisfies

tm ≤ 1 + tol · µ/(µ+ σ),(6.2)

is an upper bound for the number of Lanczos steps necessary to provide an approxi-

mation θ
(m)
m to λn that satisfies (λn − θ

(m)
m )/λn ≤ tol with probability at least 1− ε.

Note that in case σ > 0 the right-hand side of (6.2) increases with k, so that the
smallest number m satisfying (6.2) may decrease during the execution of the Lanczos
process.

For symmetric positive definite matrices an upper bound m for the number of
Lanczos steps which yields an approximation to the largest eigenvalue, such that the
relative error is bounded by tol with probability at least 1 − ε, has been given in [4,
Theorem 4.2]: the number m should satisfy

1.648
√
n e−(2m−1)

√
tol ≤ ε.(6.3)

Numerical experiments show that (6.3) yields almost the same upper bound as (6.2)
with σ = 0 (in most cases the bounds were exactly the same, while the difference was at
most two steps); this is not surprising in view of the discussion in [5, p. 679]. However,
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(6.2) can be used for indefinite matrices as well, as long as θ
(k)
k > 0. Furthermore, for

symmetric positive definite matrices smaller numbers m may be obtained when (6.2)
is applied with σ < 0.

To estimate the number of steps, still necessary to have the absolute error λn −
θ
(m)
m ≤ tol with probability at least 1 − ε, we proceed as follows. If m satisfies the

requirement (cf. (6.1))

(tm − 1)(µ+ σ) ≤ tol,(6.4)

with µ ≥ λn (µ should not be a probabilistic upper bound), the equality λn − θ
(m)
m ≤

tol holds with probability at least 1− ε. The smallest integer m satisfying (6.4) can

be computed. Note that (6.4) is also valid when θ
(k)
k ≤ 0 and we do not have to

distinguish between the cases σ ≥ 0 and σ < 0.
Estimates for the number of Lanczos steps, to be done so that the (relative) error

in the smallest eigenvalue is less than tol with probability at least 1 − ε, can be
derived in a similar way.

6.2. Upper bounds for the number of Lanczos steps in case of miscon-

vergence. Suppose that after sufficiently many Lanczos steps the largest Ritz value

seems to have converged to an eigenvalue: θ
(k)
k ≈ θ

(k−1)
k−1 for several consecutive k and

‖r(k)
k ‖ is small. It is known that |θ(k)

k − λj | ≤ ‖r(k)
k ‖ for a certain eigenvalue λj (see,

e.g., [7, section 4.5]), and in most cases the largest Ritz value will have converged to

the largest eigenvalue λn, but it may also happen that θ
(k)
k is not close to λn (mis-

convergence); this can happen, e.g., if |γn| is very small. Below we show how one
can determine a probabilistic upper bound for the number of Lanczos steps needed
after which one can conclude that either λn < λ holds for a given constant λ, or a

misconvergence has been detected, i.e., λn > θ
(k)
k + ‖r(k)

k ‖.
Let m > k and g be a polynomial of degree m− 1, and x = g(A)v1 ∈ Km(A, v1).

If λn > θ
(k)
k + ‖r(k)

k ‖, the inequality

(Ag(A)v1, g(A)v1) >
(
θ
(k)
k + ‖r(k)

k ‖
)
(g(A)v1, g(A)v1)(6.5)

is satisfied for a certain m and a suitable polynomial g: the Ritz polynomial q
(m)
m

maximizes the Rayleigh quotient (Ag(A)v1, g(A)v1)/(g(A)v1, g(A)v1) but q
(m)
m is not

available after k steps of the Lanczos process, so we will consider another polynomial
of degree m− 1. Rewriting (6.5) using (2.2) gives

(
λn − (θ

(k)
k + ‖r(k)

k ‖)
)
γ2
n g(λn)2 >

(
θ
(k)
k + ‖r(k)

k ‖ − λn−1

)
γ2
n−1 g(λn−1)

2

+

n−2∑

j=1

(
θ
(k)
k + ‖r(k)

k ‖ − λj
)
γ2
j g(λj)

2.
(6.6)

In order to satisfy (6.6) with m as small as possible we search for a polynomial g that

resembles the Ritz polynomial q
(m)
m . We have q

(k)
k to our disposal, and therefore we

take g(t) = q
(k)
k (t)h(t) with h a suitable polynomial of degree m−k. We assume that

|θ(k)
k − λn−1| ≤ ‖r(k)

k ‖ (with ‖r(k)
k ‖ small); this assumption is likely to be realistic in

case of a misconvergence. In order to amplify the effect of q
(k)
k in (6.6) we choose h such

that h is large in λn and small in λ1, . . . , λn−2. Hence h(t) = cm−k(t;λ1, λn−2) would
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be a proper choice, but λ1 and λn−2 are not known, so we replace both quantities.

Again let −σ ≤ λ1, and assume that λn−2 ≤ θ
(k)
k−1 + ‖r(k)

k−1‖; we now define

g(t) = q
(k)
k (t) cm−k

(
t;−σ, θ(k)

k−1 + ‖r(k)
k−1‖

)
.

If we replace in the right-hand side of (6.6) the quantity θ
(k)
k + ‖r(k)

k ‖ − λn−1 by

2 ‖r(k)
k ‖, γ2

n−1 by 1, g(λn−1) by g(θ
(k)
k + ‖r(k)

k ‖), and g(λj) by M , where

M = max { |q(k)
k (t)| : −σ ≤ t ≤ θ

(k)
k−1 + ‖r(k)

k−1‖ },

then the inequality

(
λn − (θ

(k)
k + ‖r(k)

k ‖)
)
g(λn)2 > 2 ‖r(k)

k ‖ g
(
θ
(k)
k + ‖r(k)

k ‖
)2
/ γ2

n

+ M2
(
θ
(k)
k + ‖r(k)

k ‖ + σ
)
/ γ2

n

(6.7)

implies (6.6) (cf. the derivation of (5.5), which is based on the same ideas). We now
replace λn in (6.7) by the given constant λ and γn by δ, where |γn| ≥ δ holds with
probability 1 − ε. We determine the smallest integer m > k such that

(
λ− (θ

(k)
k + ‖r(k)

k ‖)
)
g(λ)2 > 2 ‖r(k)

k ‖ g
(
θ
(k)
k + ‖r(k)

k ‖
)2
/ δ2

+ M2
(
θ
(k)
k + ‖r(k)

k ‖ + σ
)
/ δ2

(6.8)

is satisfied and perform m− k Lanczos steps to obtain θ
(m)
m . If θ

(m)
m < θ

(k)
k + ‖r(k)

k ‖,
then (6.5) and (6.6) are violated. This implies that (6.7) does not hold if, e.g.,

λn−1 ≤ θ
(k)
k−1 + ‖r(k)

k−1‖. (This will be satisfied in most cases.) From the fact that
(6.7) is violated and (6.8) holds we conclude that λn < λ holds with probability at
least 1 − ε.

If θ
(m)
m > θ

(k)
k + ‖r(k)

k ‖, we know that a misconvergence has occurred and we do
not know whether λn < λ is satisfied or not. In the latter case one may repeat the
above construction with k replaced by m.

These ideas can also be used to investigate whether or not the smallest Ritz value
has converged to λ1.

7. Numerical experiments. In this section we compare the different bounds
derived in the previous sections. All experiments are carried out with Matlab on a
SUN workstation. Without loss of generality we can restrict ourselves to diagonal
matrices A (cf. [4, section 6]): this will reduce the influence of rounding errors on
our computations. For analysis it is also convenient to know the eigenvalues and
eigenvectors of A. The vector v1 is chosen randomly from the uniform distribution
over the unit sphere Sn−1; in [4, p. 1116] it is explained how this can be done.

In our first example we take

n = 1000, A = diag(1, 2, . . . , 1000).(7.1)

Let ε = 0.01, i.e., we are looking for bounds of the spectrum that are 99% reliable.
From (3.2) one obtains δ = 3.97 ·10−4. We checked that our randomly chosen starting
vector v1 satisfied |γ1| > δ and |γn| > δ, so the computed probabilistic bounds are
true bounds for the spectrum of A. We have performed 100 Lanczos steps. The shifts
(see sections 4 and 5) used in our computations are σ = 0 and τ = λn = 1000. The
results are displayed in Figure 7.1.
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Fig. 7.1. Probabilistic bounds for the spectrum of A. Solid curves correspond to the bounds
based on Lanczos polynomials, the dashed curves correspond to bounds based on Ritz polynomials,
the dotted curves correspond to bounds obtained from Theorem 5.1, and the dash-dotted curves
correspond to (5.5). The left figure shows the upper bounds and the right figure the lower bounds.
The largest Ritz values (left picture) and smallest Ritz values (right picture) are indicated by small
circles.

We see that the Lanczos polynomials provide the sharpest bounds and (5.5) yields
the worst bounds. In section 4 it has already been explained why the Lanczos polyno-
mials may provide better bounds than the Ritz polynomials. Furthermore, it may not
be a surprise that the Lanczos polynomials produce better bounds than the Cheby-
shev polynomials, because more information regarding the actual Lanczos process is
used in the construction of the Lanczos polynomials. The relationship between the
different bounds based on Chebyshev polynomials is in agreement with the discus-
sion on this topic in section 5. We repeated the same experiment with other random
starting vectors v1, and the bounds behaved similarly as those displayed in Figure 7.1.

We also investigated how many Lanczos steps are needed to obtain an approx-
imation to λn with a relative error less than a prescribed tolerance tol. Again we
set σ = 0, so that (6.2) reduces to tm ≤ 1 + tol; the upper bound m for the num-
ber of Lanczos steps does not depend on the matrix A or the starting vector v1 and
can be computed in advance. The results are displayed in Table 7.1. We see that
the upper bound m from (6.2) is much larger than k1, the actual number of steps
needed to obtain a relative error smaller than tol; this has already been observed in
other examples for the upper bound obtained with (6.3) [4, 5]. We also observe that

m > k2, the number of steps needed to obtain (λup − θ
(k)
k )/λup ≤ tol with λup the

upper bound obtained from the Lanczos polynomial of degree k. This is not surpris-
ing in view of the results from Figure 7.1, because m is related to the upper bound
determined with Theorem 5.1, and these bounds are not as sharp as those based on
Lanczos polynomials. Instead of performing m Lanczos steps, it may be useful in

practice to compute (λup − θ
(k)
k )/λup while executing the Lanczos method and check

whether this quantity is smaller than tol or not.

We have repeated the experiments described above with ε = 0.001 (instead of
ε = 0.01). The behavior of the bounds is the same as for ε = 0.01, but of course the
bounds are further away from the spectrum of A. In order to compare the different
bounds, let λup be an upper bound corresponding to ε = 0.01 (determined with one

of the four techniques discussed here), and let λ̃up be the upper bound determined
with the same technique but with ε = 0.001. For all four techniques we observed
that 1 < (λ̃up − λn)/(λup − λn) < 2.2 for 20 ≤ k ≤ 100 (k denotes the number
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Table 7.1

The second column displays the smallest integer m satisfying (6.2) with σ = 0. The smallest

integer k1 for which (λn − θ
(k)
k )/λn ≤ tol is shown in the third column, and the smallest integer

k2 with (λup − θ
(k)
k )/λup ≤ tol, where λup is the upper bound for λn obtained with the Lanczos

polynomial of degree k, is listed in the fourth column of the table.

tol m k1 k2

5.0 · 10−2 20 5 18
1.0 · 10−2 44 11 40
5.0 · 10−3 61 17 55
1.0 · 10−3 136 48 97

40 60 80 100

−50

0

50

100

40 60 80 100

−50

0

50

100

Fig. 7.2. “Upper bounds” for the spectrum of A, obtained with two different starting vectors;
the starting vector for the left picture satisfies |γn| > δ, while |γn| < δ for the starting vector used
to produce the right picture. Solid curves correspond to the bounds based on Lanczos polynomials,
the dashed curves correspond to bounds based on Ritz polynomials, the dotted curves correspond to
bounds obtained from Theorem 5.1, and the dash-dotted curves correspond to (5.5). The largest Ritz
values are indicated by small circles.

of Lanczos steps) and the same holds for (λ1 − λ̃low)/(λ1 − λlow), where the lower

bounds λlow and λ̃low are defined analogously. Hence the behavior of the bounds for
the spectrum of A does not change much when ε is decreased from 0.01 to 0.001, which
is reasonable because the polynomials used to derive the bounds grow fast outside the
spectrum of A.

The second example comes from the discretization of the Laplace operator on the
unit square with homogeneous Dirichlet boundary conditions. When the standard
second order finite difference scheme with uniform meshwidth equal to 1/33 (in both
directions) is used, one obtains a symmetric matrix of order n = 322 = 1024 with
eigenvalues

332(−4 + 2 cos( iπ33 ) + 2 cos( jπ33 )), i, j = 1, 2, . . . , 32(7.2)

(see, e.g., [13, section 6.5]). Let A be the diagonal matrix of order 1024 with these
eigenvalues on its diagonal in increasing order. Note that A is negative definite.

We have computed bounds for the spectrum of A with ε = 0.01 (which yields
δ = 3.92 · 10−4 by (3.2)), σ = −λ1 and τ = 0, using different randomly chosen
starting vectors. For most starting vectors the bounds behave similarly as in the
first example and we will not consider this further. Instead we deal with two different
starting vectors that provide a different behavior for the upper bounds (similar results
can be obtained for lower bounds as well), and the results can be found in Figure 7.2.
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In the left picture we see what can happen if |γn| is small (|γn| = 5.46 · 10−4 for
this example), but still greater than δ. The Ritz polynomials provide the sharpest
bounds at a certain stage of the Lanczos process. At that stage the misconvergence
behavior of the Lanczos process (cf., e.g., [8]) is discovered: for 37 ≤ k ≤ 49 one has

|λn−1−θ(k)
k | ≤ 0.15 (λn−1 = −49.22 · · · ), and the largest Ritz values seem to converge

to a number close to the (double) eigenvalue λn−1. For larger values k the Lanczos
process notices the existence of a larger eigenvalue (λn = −19.72 · · · ) and starts to
converge to this eigenvalue. At the stage of the Lanczos process where the misconver-
gence behavior is discovered, the norm of the residual usually increases strongly (for

example, ‖r(42)42 ‖ = 5.65 and ‖r(55)55 ‖ = 102) and a large residual norm may explain
why the Ritz polynomials provide sharper bounds than the Lanczos polynomials (see
the discussion at the end of section 4). However, for larger k the bounds based on
Lanczos polynomials are again the sharpest ones. The misconvergence of the Lanczos
process also causes a hump in the upper bounds obtained with the Chebyshev polyno-
mials. Finally we note that the upper bounds obtained with the Lanczos polynomials
are much sharper than those obtained with the Chebyshev polynomials.

In the right figure the behavior is shown for a starting vector for which, in contrary
to our assumption, |γn| < δ (|γn| = 3.13 · 10−5). This means that the probabilistic
upper bounds for λn need not to be true bounds, and the right picture in Figure 7.2
shows that at certain stages of the Lanczos process the Lanczos and Ritz polynomials
provide bounds that are actually smaller than λn. The Chebyshev bounds follow the
jump of the Ritz values at the discovering of the misconvergence, as in the left picture.
At that stage the Lanczos bound corrects its value to give a tight bound, but the Ritz
bound fails completely: the upper bound stays far below the largest Ritz value.

In the third example we illustrate the theory of section 6.2. We take

n = 1000, A = diag(1, 2, . . . , 999, 1020).(7.3)

We set σ = −λ1 and the starting vector v1 is chosen as follows: γ1 = γ2 = γn−2 =
γn−1 = c, γj = 10−3c (3 ≤ j ≤ n − 3), γn = 10−6c, and the constant c is such that∑
γ2
j = 1. For k = 34 we have θ

(k)
k = λn−1 − 3.20 · 10−5, ‖r(k)

k ‖ = 7.3 · 10−2 so that

λn > θ
(k)
k + ‖r(k)

k ‖. We now determine the smallest integer m for which (6.8) holds.
We take k = 34, λ = λn, δ = γn = 5.0 ·10−7 and M = 2.11. The smallest m satisfying
(6.8) is m = 69. The Lanczos process finds the largest eigenvalue λn earlier: one

has, e.g., θ
(50)
50 = λn − 2.4 · 10−2, θ

(60)
60 = λn − 5.5 · 10−5 and θ

(69)
69 = λn − 2.4 · 10−7.

This behavior is not surprising: the Ritz polynomial q
(m)
m maximizes the Rayleigh

quotient (Ag(A)v1, g(A)v1)/(g(A)v1, g(A)v1) and several other estimates used in the
derivation of (6.8) may not be sharp as well.

8. Conclusion. Using the fact that the Lanczos, Ritz, and Chebyshev polyno-
mials increase rapidly outside the smallest interval containing the Ritz values, we have
derived probabilistic bounds for the spectrum of a symmetric matrix. These bounds
can be computed while executing the Lanczos process. From theoretical arguments
supported by experiments, we conclude that the bounds obtained with the Lanczos
polynomials are generally sharper than those derived from Chebyshev polynomials.
In most cases the bounds based on Lanczos polynomials are also sharper than the
bounds found with Ritz polynomials—unless the norm of the corresponding residual
is relatively large (which occurs if the Lanczos method suffers from a misconvergence).

The bounds corresponding to the Lanczos polynomials are cheap to compute,
because the Ritz values are not required. When the Ritz values are available, it is
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useful to compute the bounds based on these polynomials as well, because they might
be sharper; in that case it can indicate a misconvergence of the Lanczos method. The
bounds based on Theorem 5.1, using Chebyshev polynomials of the second kind, may
be determined as well because they can be computed cheaply when the Ritz values
are known. The bounds obtained from Theorem 5.1 are sharper than those derived
from (5.5), which are based on Chebyshev polynomials of the first kind, in all cases
of practical interest; hence it seems not useful to determine the latter ones.

Chebyshev polynomials may also be used to determine probabilistic bounds for
the number of Lanczos steps still to be done to get bounds for the (relative) error
which are smaller than the desired tolerance. However, our experiments suggest that
these bounds are much larger than the actual number of Lanczos steps still necessary
to get an approximation which is sufficiently accurate. From their derivation (6.1) it
is clear that one cannot expect a proper estimation of the number of steps required if
the bounds from Theorem 5.1 are far from sharp.

A combination of Ritz and Chebyshev polynomials can be used to obtain proba-
bilistic bounds for the number of Lanczos steps needed such that one can decide that
either the spectrum lies between certain prescribed bounds or a misconvergence has
occurred.

Acknowledgments. The authors wish to thank Joop Kolk for discussions re-
garding Lemma 3.1 and Gerard Sleijpen for pointing out reference [5].

REFERENCES

[1] T. Braconnier and N. J. Higham, Computing the field of values and pseudospectra using the
Lanczos method with continuation, BIT, 36 (1996), pp. 422–440.

[2] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1996.

[3] S. Kaniel, Estimates for some computational techniques in linear algebra, Math. Comp., 20
(1966), pp. 369–378.
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