NUMERICAL COMPUTATION OF DEFLATING SUBSPACES
OF SKEW-HAMILTONIAN/HAMILTONIAN PENCILS*

PETER BENNER', RALPH BYERS!, VOLKER MEHRMANN®!, AND HONGGUO XUY

Abstract. We discuss the numerical solution of structured generalized eigenvalue problems that arise from
linear-quadratic optimal control problems, H, optimization, multibody systems, and many other areas of applied
mathematics, physics, and chemistry. The classical approach for these problems requires computing invariant and
deflating subspaces of matrices and matrix pencils with Hamiltonian and/or skew-Hamiltonian structure. We extend
the recently developed methods for Hamiltonian matrices to the general case of skew-Hamiltonian/Hamiltonian pen-
cils. The algorithms circumvent problems with skew-Hamiltonian/Hamiltonian matrix pencils that lack structured
Schur forms by embedding them into matrix pencils that always admit a structured Schur form. The rounding error
analysis of the resulting algorithms is favorable. For the embedded matrix pencils, the algorithms use structure
preserving unitary matrix computations and are strongly backwards stable, i.e., they compute the exact structured
Schur form of a nearby matrix pencil with the same structure.
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1. Introduction and Preliminaries. In this paper we study eigenvalue and invariant sub-
space computations involving matrices and matrix pencils with the following algebraic structures.

DEFINITION 1.1. Let J := [_(}n Ig} , where I, is the n x n identity matriz.

a) A matriz H € C*™?" js Hamiltonian if (HJ7)? = HJ. The Lie Algebra of Hamiltonian
matrices in C*™2" s denoted by Ha,,.

b) A matriz H € C?™2" s skew-Hamiltonian if (HJ)? = —HJ. The Jordan algebra of
skew-Hamiltonian matrices in C*2" is denoted by SH,,.

¢) If S € SHy,, and H € Hy,, then aS — fH is a skew-Hamiltonian/Hamiltonian matriz
pencil.

d) A matriz Y € C*™2" s symplectic if YTV = J. The Lie group of symplectic matrices
in C?™2" 4s denoted by Say,.

e) A matriz U € C>2" s unitary symplectic if UTUT = T and UUT = I,,,. The compact
Lie group of unitary symplectic matrices in C*™2" is denoted by US,,,.

f) A subspace L of C*" is called Lagrangian if it has dimension n and x™ Jy = 0 for all
x,y € L.

A matrix S € C?™?" is skew-Hamiltonian if and only if S is Hamiltonian. Consequently, there
is little difference between the structure of complex skew-Hamiltonian matrices and complex Ha-
miltonian matrices. However, real skew-Hamiltonian matrices are not real scalar multiples of Ha-
miltonian matrices, so there is a greater difference between the structure of real skew-Hamiltonian
matrices and real Hamiltonian matrices.

The structures in Definition 1.1 arise typically in linear-quadratic optimal control [27, 33, 35]
and H,, optimization [18, 39]. Moreover, instances of skew-Hamiltonian/Hamiltonian pencils
appear in several other areas of applied mathematics, computational physics and chemistry, e.g.,
gyroscopic systems [20], numerical simulation of elastic deformation [28, 34], and linear response
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theory [30]. Linear-quadratic optimal control and H., optimization problems are related to skew-
Hamiltonian/Hamiltonian pencils in [4, 5].

It is important to exploit and preserve algebraic structures (like symmetries in the matrix
blocks or symmetries in the spectrum) as much as possible. Such algebraic structures typically arise
from the physical properties of the problem. If rounding errors or other perturbations destroy the
algebraic structures, then the results may be physically meaningless. Not coincidentally, numerical
methods that preserve algebraic structures are typically more efficient as well as more accurate.

Despite the advantages associated with exploiting matrices with special structure, condensing
data into a compact, structured matrix using finite precision arithmetic may be ill-advised. A dis-
cussion of avoiding normal-equations-like numerical instability when embedding linear-quadratic
optimal control problems and H,, optimization problems into skew-Hamiltonian/Hamiltonian
pencils appears in [4, 5].

Although the numerical computation of n-dimensional Lagrangian invariant subspaces of Ha-
miltonian matrices and the related problem of solving algebraic Riccati equations have been ex-
tensively studied (see [12, 22, 27, 35] and the references therein), completely satisfactory methods
for general Hamiltonian matrices and matrix pencils are still an open problem. Completely sat-
isfactory methods would be numerically backward stable, have complexity O(n?) and preserve
structure. There are several reasons for this difficulty all of which are well demonstrated in the
context of algorithms for Hamiltonian matrices. First of all, an algorithm based upon structure
preserving similarity transformations (including @ R-like algorithms) would require a triangular-
like Hamiltonian Schur form that displays the desired deflating subspaces. A Hamiltonian Schur
form under unitary symplectic similarity transformations is presented in [31]. (See (1.1).) Unfor-
tunately, not every Hamiltonian matrix has this kind of Hamiltonian Schur form. For example,
the Hamiltonian matrix 7 in Definition 1.1 is invariant under arbitrary unitary similarity trans-
formations but is not in the Hamiltonian Schur form described in [31]. (Similar difficulties arise in
the skew-Hamiltonian/Hamiltonian pencil case for the Schur-like forms of skew-Hamiltonian/Ha-
miltonian matrix pencils in [25, 26] and for the other structures given in Definition 1.1 in [24].)
A second problem comes from the fact that even when a Hamiltonian Schur form exists, there
is no completely satisfactory structure preserving, numerical method to compute it. It has been
argued in [2] that, except in special cases [13, 14], QR-like algorithms are impractically expensive
because of the lack of a Hamiltonian Hessenberg-like form. For this reason other methods like the
multishift-method of [1], the structured implicit product methods of [6, 7, 38] do not follow the
@ R-algorithm paradigm. (The implicit product methods [6, 7] do come quite close to optimality.
We extend the method of [6] to skew-Hamiltonian/Hamiltonian matrix pencils in Section 4.) A
third difficulty arises when the Hamiltonian matrix or the skew-Hamiltonian/Hamiltonian matrix
pencil has eigenvalues on the imaginary axis. In that case, the desired Lagrangian subspace is,
in general, not unique [29]. Furthermore, if finite precision arithmetic or other errors perturb the
matrix off the Lie algebra of Hamiltonian matrices, then it is typically the case that the perturbed
matrix has no Lagrangian subspace or does not have the expected eigenvalue pairings, see, e.g.,
[7, 38].

We close the introduction by introducing some notation. To simplify notation, the term
eigenvalue is used both for eigenvalues of matrices and, in the context of a matrix pencil o — A,
for pairs (a,8) € C\ (0,0) for which det(aoE — SA) = 0. These pairs are not unique. If 8 # 0
then we identify (o, 8) with (a/8,1) and A = a/f. Pairs (a,0) with o # 0 are called infinite
etgenvalues.

By A(E, A) we denote the set of eigenvalues of « E— A including finite and infinite eigenvalues
both counted according to multiplicity. We will denote by A_(FE, A), Ag(F, A) and A, (E, A) the
set of finite eigenvalues of A — SE with negative, zero and positive real parts, respectively. The
set of infinite eigenvalues is denoted by A, (E, A). Multiple eigenvalues are repeated in A_(FE, A),
Ao(E,A), A+ (E, A) and A (E, A) according to algebraic multiplicity. The set of all eigenvalues
counted according to multiplicity is A(F,A) := A_(E,A) UAo(E,A) UA(E,A) UA(E,A).
Similarly, we denote by Def_(FE, A), Defo(E, A), Def { (E, A) and Def(F, A) the right deflating
subspaces corresponding to A_(E, A), Ag(E, A), AL (E, A) and A (F, A), respectively.
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Throughout this paper, the imaginary number v/—1 is denoted by i. The inertia of a Hermitian
matrix A consists of the triple In(A) = (7,w,v), where 7 = 7(A), w = w(A4), and v = v(A)
represent the number of eigenvalues with positive, zero, and negative, real parts, respectively.

By abuse of notation, we identify a subspace and a matrix whose columns span this subspace
by the same symbol.

We call a matrix Hamiltonian block triangular if it is Hamiltonian and has the form

o ]

If, furthermore, F' is triangular then we call the matrix Hamiltonian triangular. The terms skew-
Hamiltonian block triangular and skew-Hamiltonian triangular are defined analogously.

The Hamiltonian (skew-Hamiltonian) Schur form of a Hamiltonian (skew-Hamiltonian) matrix
'H is the factorization

(1.1) H=UTU",

where U € USy,,, and 7 is Hamiltonian (skew-Hamiltonian) triangular. As mentioned above, not
all Hamiltonian matrices have a Hamiltonian Schur form. Real skew-Hamiltonian matrices always
have one [38], but not all complex skew-Hamiltonian matrices do. For Hamiltonian matrices that
have no purely imaginary eigenvalues the existence of a Hamiltonian Schur form was proved in
[31]. Necessary and sufficient conditions for the existence of the Hamiltonian Schur form in the
case of arbitrary spectra were suggested in [23] and a proof based on a structured Hamiltonian
Jordan form was recently given in [24].

2. Schur-like forms of Skew-Hamiltonian/Hamiltonian Matrix Pencils. In this sec-
tion we derive the theoretical background for algorithms to compute eigenvalues and deflating
subspaces of skew-Hamiltonian/Hamiltonian matrix pencils. A primary theoretical and computa-
tion tool is the J-congruence. A J-congruence transformation of a 2n x 2n pencil aS — GH by a
nonsingular matrix ) € C?™2" is the conguence transformation J Y7 T(aS — BH)Y where T is
as in Definition 1.1. The structure of skew-Hamiltonian/Hamiltonian matrix pencils is preserved
by J-congruence transformations [25, 26], i.e., if aS — OH is a skew-Hamiltonian/Hamiltonian
pencil and Y is nonsingular, then JYH 7 T(aS — BH)Y is also skew-Hamiltonian/Hamiltonian.

The skew-Hamiltonian/Hamiltonian Schur form of a skew-Hamiltonian/Hamiltonian pencil
aS — BH is the factorization

_ T Sll 512 Hll H12 H

where Q € C?™?" is unitary, S;; € C™™ and H;; € C™" are upper triangular, S15 € C™" is skew-
Hermitian and Hyo € C™" is Hermitian. Note that the skew-Hamiltonian/Hamiltonian Schur form
is a special case of the Schur form a general matrix pencil and that it displays the eigenvalues and
a nested system of deflating subspaces. This definition of a skew-Hamiltonian/Hamiltonian Schur
form is essentially consistent with the definition of the Hamiltonian Schur form of a Hamiltonian
matrix (1.1). If (2.1) holds with S = I, then it is not difficult to show that Q is a unitary diagonal
matrix multiple of a unitary symplectic matrix and that there is a unitary symplectic choice of Q,
o = Q=1 = JQH JT | for which (2.1) holds with S;; = I and S = 0.
Skew-Hamiltonian/Hamiltonian matrix pencils often have the characteristic that the skew-

Hamiltonian matrix S is block diagonal [4, 5], i.e., S = [lg EOH] for some matrix £ € C™". In

this case (among others), the matrix S factors in the form
(2.2) s=gz"7"z.

where Z = diag(I, ET). Such a factorization may also be intrinsic to the problem formulation for
non-block diagonal skew-Hamiltonian matrices S; see, e.g., [28].
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Let (x,y) be the indefinite inner product on C2" x C2" defined by (z,y) = y# Jz. If Z €
C?27 then for all z, y € C*, ((Zx),y) = (x, (T TZHFT)y), i.e., the adjoint of Z with respect
to(.,.)is J TZHFT Because T ! = JT = -7, the adjoint may also be expressed as JZHTT,
From this point of view, (2.2) is a symmetric-like factorization of S into the product of adjoints
JZJT and Z. By analogy with the factorization of symmetric matrices, we will use the term
J -semidefinite to refer to skew-Hamiltonians matrices which have a factorization of the form (2.2).
A J-definite skew-Hamiltonian matrix is a skew-Hamiltonian matrix that is both J-semidefinite
and non-singular.

The property of J-semidefiniteness arises frequently in applications [3, 4, 5]. We show below
that all real skew-Hamiltonian matrices are [J-semidefinite. We also show that if a skew-Ha-
miltonian/Hamiltonian matrix pencil has a skew-Hamiltonian/Hamiltonian Schur form, then the
skew-Hamiltonian part is J-semidefinite.

Although 7-semidefiniteness is a common property of skew-Hamiltonian matrices it is not
universal. The following lemma shows that neither 7 nor any nonsingular, skew-Hamiltonian
matrix of the form i 7LL" is J-semidefinite.

LEMMA 2.1. A nonsingular skew-Hamiltonian matriz S is J-definite if and only if iJS is
Hermitian with n positive and n negative eigenvalues.

Proof. If S is J-definite, then Z in (2.2) is nonsingular and the Hermitian matrix iJS is
congruent to —iJT = iJ. It follows from Sylvester’s law of inertia [16, p. 296],[21, p. 188] that
1JS is a Hermitian matrix with n positive eigenvalues and n negative eigenvalues.

Conversely, suppose that 7S is Hermitian with n positive and n negative eigenvalues. The
matrix 477 also has n positive and n negative eigenvalues, so, by an immediate consequence of
Sylvester’s law of inertia, there is a nonsingular matrix Z € C?™2" for which i7S = Z7(iJ7)Z.
It follows that (2.2) holds with this matrix Z. O

Lemma 2.1 suggests that J-semidefiniteness might be a characteristic of the inertia of iJS.
The next lemma shows that this is indeed the case.

LEMMA 2.2. A matriz S € SHa, is J-semidefinite if and only if iJS satisfies both w(iJS) <
n and v(iJS) < n.

Proof. Suppose that S € SHy,, is J-semidefinite. For some Z satisfying (2.2), define S(¢) by
S(e) = J(Z + e )HJT(Z + €l). For € small enough, Z + €l is nonsingular, and, by Lemma 2.1,
m(iJS(e)) = n and v(iJS(e)) = n. Because eigenvalues are continuous functions of matrix
elements and § = lim._,¢ S(e), it follows that 7(iJ7S) < n and v(iJS) < n.

For the converse, if 7(iJS) = p < n and v(iJS) = g < n, then, there exists a nonsingular
matrix W for which iJS = WH LW with signature matrix

p n—p g n—gq
P I, 0 0 0
L_"n"P 0 0 0 0
q 0 0 -1, 0
n—q | 0 0 0 0

Because p < n and ¢ < n, L factors as £ = Ldiag(I,, —I,)L where I,, is the n x n identity matrix.
The matrix diag(I,, —1I,) is the diagonal matrix of eigenvalues of iJ7, so £ = LU (iTT)U)L,
where U = (1/v/2) [7117; _Ii’}n] is the unitary matrix of eigenvectors of i77. Hence, (2.2) holds
with Z =ULW. O

The following immediate corollary also follows from [15].

COROLLARY 2.3. Every real skew-Hamiltonian matriz S is J-semidefinite.

Proof. If S is real, then JS§ is real and skew-symmetric. The eigenvalues of JS appear in
complex conjugate pairs with zero real part. Hence, the eigenvalues of ¢ 7S lie on the real axis in
+ pairs. In particular, 7(¢JS) = v(iJS). It follows from the trivial identity 7(:JS) + w(iJS) +
v(iJS) = 2n that 7(¢JS) <n and v(iJS) <n. O

The next lemma and its corollary show that J-semidefiniteness of both S and iH are necessary
conditions for a skew-Hamiltonian/Hamiltonian matrix pencil aS — fH to have a skew-Hamilto-
nian/Hamiltonian Schur.



LEMMA 2.4. If S € SHy, and there exists a nonsingular matriz Y such that

HoTey | S11 Si2
with S11, S12 € C™", then S is J-semidefinite.
Proof. Let T be the Hermitian matrix
NS H s - 0 iSH
T=Y7ar8)y = { —iS11 —iS12 |’

and set T(e) =T + ¢ [ 19 ﬁ" } For e sufficiently small, both el,, — 7512 and eI, — iS1; are
nonsingular and 7 (¢) is congruent to
—(EIn — iSll)(GIn — iSlz)il(EIn — iS11)H 0
0 (EIn — iSlg) ’

By Sylvester’s law, the inertia of the negative of the (1, 1) block is equal to the inertia of the (2,2)
block. This implies 7(7 (€)) = v(7 (¢)) = n. Continuity of eigenvalues as ¢ — 0 implies 7(7) < n
and v(7T) < n. The assertion now follows from Lemma 2.2. 0O
COROLLARY 2.5. If H € Hy,, and there exists a nonsingular matriz Y such that
H H
H +T _ 11 12

with Hy1, Hio € C™™, then iH is J-semidefinite.

Proof. Apply Lemma 2.4 to the skew-Hamiltonian matrix iH. 0O

It follows from Lemma 2.4 and Corollary 2.5, that if aS — 8H is a skew-Hamiltonian/Ha-
miltonian matrix pencil that has a skew-Hamiltonian/Hamiltonian Schur form, then S and H
are J-semidefinite. As noted above, the factor Z in (2.2) is often given explicitly as part of the
problem statement. It can also be obtained as in the proof of Lemma 2.2 or by a modification
of Gaussian elimination [3]. The next theorem shows that if S is nonsingular, then the skew-
Hamiltonian/Hamiltonian Schur form (if it exists) can be expressed in terms of block triangular
factorizations of Z and H without explicitly using S. This opens the possibility of designing
numerical methods that work directly on Z and H and avoid the normal-equations-like numerical
instability of forming S explicitly.

For regular skew-Hamiltonian/Hamiltonian matrix pencils the following theorem gives neces-
sary and sufficient conditions for the existence of a skew-Hamiltonian/Hamiltonian Schur form.

THEOREM 2.6. [25, 26] Let oS — BH be a regular skew-Hamiltonian/Hamiltonian matriz
pencil, with v pairwise distinct, finite, nonzero, purely imaginary eigenvalues icy, iqs, ..., 10y,
of algebraic multiplicity p1, p2, ..., Pv, and associated right deflating subspaces Q1, Qa, ..., Q..
Let pso be the algebraic multiplicity of the eigenvalue infinity and let Q be its associated deflating
subspace. The following are equivalent.

(i) There exists a nonsingular matriz Y, such that

H 7T Su Si2 Hyy Hip

(23) 7y J(aS—ﬁH)yza[ ! Sﬁ]—g[ : _H{{}’
where S11 and Hy1 are upper triangular while S5 is skew-Hermitian and H1o is Hermitian.

(ii) There exists a unitary matriz Q such that JQH JT (aS — BH)Q is of the form on the
right-hand-side of (2.3).

(iii) For k =1,2,...,v, Q1 J8Qy is congruent to a py x px copy of J. (If v =0, i.e., if
aS — BH has no finite, nonzero, purely imaginary eigenvalue, then this statement holds
vacuously.)

Furthermore, if poo # 0 then Q. THQ, is congruent to a ps X poo copy of iJ .
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Similar results cover real Schur-like forms of real Hamiltonian matrices and skew-Hamiltoni-
an/Hamiltonian matrix pencils [24, 25, 26].

Theorem 2.6 gives necessary and sufficient conditions for existence of a structured triangular-
like form for skew-Hamiltonian/Hamiltonian pencils. It also demonstrates that whenever a struc-
tured triangular-like form exists, then it also exists under unitary transformations. It is partly
because of this fact that there exist structure preserving, numerically stable numerical algorithms
like those described here and in [4].

THEOREM 2.7. Let aS — H be a skew-Hamiltonian/Hamiltonian matriz pencil with nonsin-
qular, J-semidefinite skew-Hamiltonian part S = JZXJTZ. If any of the equivalent conditions
of Theorem 2.6 holds, then there exists a unitary matriz @ and a unitary symplectic matriz U
such that

H | Zu Zi2
(2.4) utzg = { A } ,
H 4T | Huu  Hy

where Zy1, Z5 and Hyy are n x n and upper triangular.

Proof. With Q as in Theorem 2.6 part (ii) we obtain (2.5) and JQHJ7SQ = [Sél zﬁ} .
11

Partition Z = Z2Q as Z = [Zy, Zs], where Z;, Z, € C**". Using S = J2Z" J7 Z, we obtain

S 0 SH
2.6 zHlgz = 1
(26) J { S S ]

In particular, ZH 77, = 0, i.e., the columns of Z; form a basis of a Lagrangian subspace and
therefore the columns of Z; form the first n columns of a symplectic matrix. (It is easy to verify
from Definition 1.1 that, using the non-negative definite square root, [Zy, —J Z1(ZH Z1)~1/?] is
symplectic.) It is shown in [11] that Z; has a unitary symplectic QR factorization

H, _ | Z11
Z/{Zl_|: 0 k)

where U € US,, is unitary symplectic and Z1; € C™"™ is upper triangular. Setting

H H 5 Zu Zia
wzouns=| % 2]
we obtain from (2.6) that Z& 7,; = S1;. Since Si; and Z;; are both upper triangular and 73, is
nonsingular, we conclude that ZZI is also upper triangular. O

Note that the invertibility of Z is only a sufficient condition for the existence of U as in
(2.4) and (2.5). However, there is no particular pathology associated with Z being singular. The
algorithms described below and in [4] do not require Z to be nonsingular.

If both § and ‘H are nonsingular, then the following stronger form of Theorem 2.7 holds.

COROLLARY 2.8. Let aS — SH be a skew-Hamiltonian/Hamiltonian matriz pencil with non-
singular J-semidefinite skew-Hamiltonian part S = JZH JTZ and nonsingular J-semidefinite
Hamiltonian part iH = IWHTTW. If any of the equivalent conditions of Theorem 2.6 holds,
then there exist a unitary matriz Q and unitary symplectic matrices U and V such that

le Z12

uttzo =
Q { 0  Zxp

:|, VHWQ: |: Wll W12 :|’

0 Wa

where Z11, Z& and Wiy, W are n x n and upper triangular.

Proof. Similar to the proof of Theorem 2.7. D

In the following we derive the theoretical background for algorithms to compute eigenvalues
and deflating subspaces of skew-Hamiltonian/Hamiltonian matrix pencils.
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We will obtain the structured Schur form of a complex skew-Hamiltonian/Hamiltonian matrix
pencil from the structured Schur form of a real skew-Hamiltonian /skew-Hamiltonian matrix pencil
of double dimension. The following theorem establishes that, in contrast to the complex skew-Ha-
miltonian/Hamiltonian case, every real, regular skew-Hamiltonian/skew-Hamiltonian pencil ad-
mits a structured real Schur form.

THEOREM 2.9. If aS — BN is a real, reqular skew-Hamiltonian/skew-Hamiltonian matriz
pencil with S = JZTJTZ, then there exist a real orthogonal matrizx @ € R?*™?" and a real
orthogonal symplectic matriz U € R?>™2"™ such that

T | Zu Zio

(2.7) U'zQ = [ . } ,
T 4T | Ni1 Np2

(2.8) JQJNQ{ 0 Nﬂ}’

where Z11 and Z1, are upper triangular, N1y is quasi upper triangular and Nio is skew-symmetric.

Moreover,

T 7T(\G _ _ Z3sZn Z3Zhz — Z3Z2 | o[ N Nio
(29)  JQTIT(aS ﬁ/\f)g_a{ : i R

is a J-congruent skew-Hamiltonian/skew-Hamiltonian matriz pencil.

Proof. A constructive proof for the existence of Q and U satisfying (2.7) and (2.8) is Algo-
rithm 3 in [4]. To show (2.9), recall that U is orthogonal symplectic and therefore commutes with
J. Hence,

JOTTrsQ=g0" 7" (g2 g"2)Q
=Jot gt ( T 2T T U) (U 2Q)
=JUz9)' gt WU 29).

Equation (2.9) now follows from the block triangular form of (2.7). D

Note that this theorem does not easily extend to complex skew-Hamiltonian/skew-Hamilto-
nian matrix pencils.

A method for computing the structured Schur form (2.9) for real matrices was proposed in
[32], but if S is given in factored form, then Algorithm 3 in [4] is more robust in finite precision
arithmetic, because it avoids forming S explicitly.

Neither the method in [32] nor Algorithm 3 in [4] applies to complex skew-Hamiltonian/Ha-
miltonian matrix pencils because those algorithms depend on the fact that real diagonal skew-
symmetric matrices are identically zero. This property is also crucial for the structured Schur
form algorithms in [6, 38].

Algorithm 1 given below computes the eigenvalues of a complex skew-Hamiltonian/Hamiltoni-
an matrix pencil aS — #H using an unusual embedding of C into R? that was recently proposed in
[8]. Let oS — OH be a complex skew-Hamiltonian/Hamiltonian matrix pencil with [J-semidefinite
skew-Hamiltonian part S = JZH 77 Z. Split the skew-Hamiltonian matrix N' = iH € SHo,, as
iH = N = N} +iNs, where N is real skew-Hamiltonian and N3 is real Hamiltonian, i.e.,

H FT

F, G
H, —FF

NIZ |: Fl Gl :l 9 GlZ—G,{, le_HlTa

NQZ[ :|; GZZGg7 H2:H2T7
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and F;, G, H; € R™*" for j =1, 2. Setting

y — ﬁ IQn iIQn
¢ 2 IQn *ZI2n ’
I, 0 0 O
o 0 I, 0
(2.10) P=1l0o 1. 0 o
0o o0 0 I,
(2.11) Xe = VP,

and using the embedding By = diag(N, V') we obtain that

F1 —Fg G1 —G2
, F: F G G
c . vH _ 2 1 2 1
(2.12) By = X By Xe = o, —i, F1T FQT
Ho H, —F2T FlT
is a real skew-Hamiltonian matrix in SHy,,. Similarly, set
[z 0
(2.13) Bz := K = } ,
- r jZHjT 0
(2.14) Br == _ 0 TZHT |
S 0
(2.15) Bs = 0 S ] = BsB=.
Hence,

oBs — By = { R aSEﬂN]

One can easily verify that

(2.16) BS = x"Bz X,
By = XHBrx.=JB)TIT",
(2.17) B = XMBsx. = 7(B)T "B

are all real. Therefore,
aBs — 8BS = XX (aBs — BBy)X.

B aS — N 0
(2.18) _XCH[ 0 aS—ﬁN]XC

is a real 4n x 4n skew-Hamiltonian/skew-Hamiltonian matrix pencil. For this matrix pencil we
can employ Algorithm 3 in [4] to compute the structured factorization (2.8), i.e., we can determine
an orthogonal symplectic matrix &/ and an orthogonal matrix Q such that

- . Zn Z
(2.19) B =U'BQ = [ 011 ZZ } :
(2.20) B = 79" J"B5Q = { Ag” ﬁ/ﬁﬁ } :
11

Thus, if l’;’g = j(lg’cz)TjTBCZ, then

aBg — BB% = a(JQT T BSQ) — B(T QT TV BS Q)
8



is a J-congruent skew-Hamiltonian/skew-Hamiltonian matrix pencil in Schur form. By (2.18) and
the fact that the finite eigenvalues of aS — BN are symmetric with respect to the real axis, we
observe that the spectrum of the extended matrix pencil aBg — BB, consists of two copies of the
spectrum of aS — 3N. Consequently,

AS,H) = A(S, —iN) = A(ZL 211, —iN).

In this way, Algorithm 1 below computes the eigenvalues of the complex skew-Hamiltonian/Ha-
miltonian matrix pencil aS — fH = aS + iBN.

From this we can also derive the skew-Hamiltonian/Hamiltonian Schur form of aBs — 8By
where

(2.21) By = —iBy — { "o ]

0 —H

and Bgs is as in (2.17). The spectrum of the extended matrix pencil aBs — B consists of two
copies of the spectrum of aS — FH [6]. If

(2.22) B, = —iBS = X' By X,

then it follows from (2.19) and (2.20) that

5c . 1 Tpe~_ | 211 Z12
(2.23) Bs = UTBLQ — [ oo ]
se T A Tre A | =Nt —iNi2

and the matrix pencil aBg — 8BS, := aJ (BE)? JTBL — BBS, is in skew-Hamiltonian/Hamilto-
nian Schur form. We have thus obtained the structured Schur form of the extended complex
skew-Hamiltonian/Hamiltonian matrix pencil aBg — #Bg,. Moreover,

(2.25) aB§ — BB, = 7O 77 (aBS — BBS,)Q = (X.TJ QT (aBs — By) X.Q

is in skew-Hamiltonian/Hamiltonian Schur form.

We have seen so far that we can compute structured Schur forms and thus are able to compute
the eigenvalues of the structured matrix pencils under consideration using the embedding technique
into a structured matrix pencil of double size.

3. Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Matrix Pencils. For the
solution of problems involving skew-Hamiltonian/Hamiltonian matrix pencils as described in the
introduction it is usually necessary to compute n-dimensional deflating subspaces associated with
eigenvalues in the closed left half plane. To get the desired subspaces we generalize the techniques
developed in [6]. For this we need a structure preserving method to reorder the eigenvalues along
the diagonal of the structured Schur form so that all eigenvalues with negative real part appear in
the (1,1) block and eigenvalues with positive real part appear in the (2, 2) block. Such a reordering
method is described in Appendix B of [4].

The following theorem uses this eigenvalue ordering to determine the desired deflating sub-
spaces of the matrix pencil oS — BH from the structured Schur form (2.25).

THEOREM 3.1. Let aS—BH € C?™2" be a skew-Hamiltonian/Hamiltonian matriz pencil with
J -semidefinite skew-Hamiltonian matric S = JZHJT Z. Consider the extended matrices

Bz = diag(Z, 2),
Br = diag(7 2" g7, 72HJT),
Bs = BrBz = diag(S, S),
By = diag(H, —H).
9



Let U, V, W be unitary matrices such that

H 20 Zie ]
U*BzV = 0 Zn =Rz,
[ 711 T
H | T T |
(3.1) WHBrU = 0 T :| =R,
H [ Hu Hi2 ]
WHByY = 0 M } =: Ry,

where A,(Bs,BH) C A('THZH,HH) and A('Z—HZHJ‘{H) ﬁAJr(BS’ BH) = (). Here Zi11,T11, Hq1 €
C™m™. Suppose A_(S,H) contains p eigenvalues. If {“2} € C*™ are the first m columns of V,
2p < m < 2n — 2p, then there are subspaces L1 and Ly such that

rangeVp, = Def_(S,H) + Ly, Ly C Defo(S,H) + Def o (S,
Vs S

H),
rangeVa = Def (S, H) + Lo, Ly C Defo(S,H) + Def oo (S, H).

)

If A(T11 211, H11) = A_(Bs, By), and [gﬂ, [VV[‘;;} are the first m columns of U, W, respectively,
then there exist unitary matrices Qu, Qv, Qw such that

(3.2)

Ul = [P[;7O]QU7 U2 = [OaPJ]QU,
‘/1 - [P\;aO]QV7 ‘/2 - [pr\—}_]QVa
Wl - [PVTMO}QWa W2 = [Ovplle/]QW

and the columns of Py, and?Jform orthogonal bases of Def _ (S, H) and Def (S, H), respectively.
Moreover, the matrices Py, PJ, Py, and PV}", have orthonormal columns and the following relations
are satisfied

2, = B 2'ITR; = FyTu WEG = Pyl
ZP} = PfZe, JZUJTPF = P Tw, HPS = -—P; Ho.

(3.3)

Here, Zkk; Tkk and gkk; k= 1,2, satisfy A(THZH,I:{H) = A(TQQZQQ,E{22) = A_(S,H)
Proof. The factorizations in (3.1) imply that BsV = WRr Rz and ByV = WRy. Comparing
the first m columns and making use of the block forms we have

SV = Wl(Tnle)v HVI = WiHiy,

3.4 A = A Vit
(34) SV, = Wa(TaZu), HVi — —WatH.

Clearly, range V| and range Vs are both deflating subspaces of aS — H. Since
A_(S,H) € A_(Bs, By) € A(T11211, Han)

and A(771211,H11) contains no eigenvalue with positive real part, we get

range V) C Def _(S,H) + Ly, L; C Defo(S,H) + Defoo (S, H),

range Vo C Def, (S, H) + Lo, Ly C Defo(S,H) + Def oo (S, H).
We still need to show that
(3.5) Def_(S,H) C rangeV;, Def (S, ’H) C range V.
Let V4 and Vs, be full rank matrices whose columns form bases of Def_ (S8,H) and Def (S, H),

respectively. It is easy to show that the columns of [%1 ‘%] span Def _ (Bg, By ). This implies that

Vi 0 Vi

- C .

0 %]_range{vz}
10

range




Therefore,

range Vi range g C range Vi
0 ’ Vs - Vo |’

and from this we obtain (3.5) and hence (3.2).

If A(T11211, H11) = A—(Bs, By), where p is the number of eigenvalues in A_ (S, H), then from
(3.2) we have m = 2p and

range V; = Def (S, H), range Vs = Def, (S, H).

Hence, rank V; = rank V5 = p and furthermore 771, 211 and H1; must be nonsingular. Using (3.4)
we get

HVL = SVi((T11 211) Y Hnr),
Hv2 = _SvZ((’Tllzll)ilHll)'

Let Vi = [P;,,0]Qv be an RQ (triangular-orthogonal) decomposition [17] with P, of full column
rank. Since rank Vi = p we have rank P;; = p. Partition V2Q¥ = [Py, P{}'] conforming to V1QH.
Since the columns of [“2] are orthonormal, we obtain (P;f)? Pt = I, and hence rank P;f = p.

Furthermore, since rank Vo = p we have
range Py C range P‘J} = range Vs,

and using orthonormality, we obtain P, = 0. Therefore, the columns of P, and Pi‘J,r form orthog-
onal bases of Def _(S,H) and Def (S, H), respectively.
From (3.1) we have

(3.6) ZVi=U12n, JZPTJ7U, =WiTi, HVi=WiHi,
and
(3.7) ZVo=Uy 211, JZHTTU, =Wy T, HVa=—Ws Hi1.

Let Uy = [P;,0]Qu and Wy = [Py,,0]Qw be RQ (triangular-orthogonal) decompositions, with
P, Py, of full column rank. Using Vi = [P/, 0]Qv and the fact that ZP,,, SP,, and HP,, are
of full rank (otherwise there would be a zero or infinite eigenvalue associated with the deflating
subspace range Py, ), from the first and third identity in (3.6) we obtain

rank P;; = rank Pj;, = rank Py, = p.
Moreover, setting
Z=QuzZnQY¥, T=QwTuQf, H=QuwHnQy,
we obtain
5 le 0 :| ~ |: Tll 0 :| e |: Ijlll 0 :|
Z = 4 ~ ) T = '3 2 ) H = r7 r7 )
{ Zor oo To1 Tho Hy  Hao

where all diagonal blocks are p x p.

Set U2Q =: [Py, P[], WaQH, =: [Py, P}};] and take V2Q¥ =: [0, Pf]. The block forms
of Z, T and H together with the first identity of (3.7) imply that Py Zy; = PJ Zs1. Since the
columns of [gi] are orthonormal, we have (Pg)? Pt = I, and (Pg)" Py = 0. Hence, Zy; = 0,

11



and consequently Py = 0. Similarly, from the third identity of (3.7) we get Py = 0, Hy =0 and
from the second identity we obtain T5; = 0. Combining all these observations, we obtain

zZ o0][P, 01 [P 0 Zu 0

0 Z||l o0 P | 0 Pf 0 Zp |’
JZHgT 0 J[P; 0] [Py O Ty 0
0 JZEFT || 0 Pf || 0 P 0 T
H 0 [P 0] _ [Py O Hy 0

0 -H|| o P | | 0 P 0 22 |’

which gives (3.3). O
We remark that (3.1) can be constructed from (2.25) by reordering the eigenvalues properly.
Theorem 3.1 gives a way to obtain the stable deflating subspace of a skew-Hamiltonian/Hamil-
tonian matrix pencil from the deflating subspaces of an embedded skew-Hamiltonian/Hamiltonian
matrix pencil of double size. This will be used by the algorithms formulated in the next section.

4. Algorithms. The results of Theorem 3.1 together with the embedding technique lead
to the following algorithm to compute the eigenvalues and the deflating subspaces Def_ (S, H)
and Def (S,H) of a complex skew-Hamiltonian/Hamiltonian matrix pencil aS — fH. Since the
algorithms are rather technical, we do not discuss details like eigenvalue reordering or explicit
elimination orders in the construction of the structured Schur forms. Instead we refer the reader
to the technical report [4] for these details.

In summary, Algorithm 1 proposed below transforms a 2n x 2n complex skew-Hamiltonian/Ha-
miltonian matrix pencil with J-semidefinite skew-Hamiltonian part into a 4n x 4n complex skew-
Hamiltonian/Hamiltonian matrix pencil in Schur form. The process passes through intermediate
matrix pencils of the following types.

2n x 2n complex skew-Hamiltonian/Hamiltonian matrix pencil
aS — fH with S = JZHJT Z.
U
Equation (2.18)

4

4n x 4n real skew-Hamiltonian/skew-Hamiltonian matrix pencil
aB$ — BBS, with BS = J(BLTITBS
.
Algorithm 3 in [4]
)

4n x 4n real skew-Hamiltonian/skew-Hamiltonian matrix pencil in Schur form
aBg — BBS, with Bg = J(B$)T TTBS
~C — C — Zl Zl ~C J— C — Nll N 3
and BS = UTBLQ = [ i1 Z} B = JQTITB5,Q = [ ; NT] as in (2.19) and (2.20)
Algorithm 4 in [4]
4
4n x 4n complex skew-Hamiltonian/Hamiltonian matrix pencil in Schur form
with ordered eigenvalues.

The required deflating subspaces of the original skew-Hamiltonian/Hamiltonian matrix pencil
are then obtained from the deflating subspaces of the final 4n x 4n complex skew-Hamiltonian/Ha-
miltonian matrix pencil. (Unfortunately, if there are non-real eigenvalues, then Algorithm 4 in
[4] (the eigenvalue sorting algorithm) reintroduces complex entries into the 4n x 4n extended real
matrix pencil.)

ALGORITHM 1. Given a complex skew-Hamiltonian/Hamiltonian matriz pencil oS — BH with
J-semidefinite skew-Hamiltonian part S = JZHJT Z, this algorithm computes the structured

12



Schur form of the extended skew-Hamiltonian/Hamiltonian matriz pencil alBg — BBS,, the eigen-
values of aS — H, and orthonormal bases of the deflating subspace Def _ (S, H) and the companion
subspace range P .

Input: Hamiltonian matrix H and the factor Z of S.

Output: P, P, as defined in Theorem 3.1.

Step 1:
Set N/ = ¢H and form matrices B, Bf, as in (2.16) and (2.12), respectively. Find the
structured Schur form of the skew-Hamiltonian/skew-Hamiltonian matrix pencil aBg —
BB, using Algorithm 3 in [4] to compute the factorization
s , Z1 Z
c _1Tprco 11 12
B =U BZQ—{ 0 222],
5 M1 N
c _ T 7TpRe ) _ 11 12
where Q is real orthogonal, U is real orthogonal symplectic, Z11, Z2, are upper triangular
and N7 is quasi upper triangular.

Step 2: ~
Reorder the eigenvalues using Algorithm 4 in [4] to determine a unitary matrix Q and a
unitary symplectic matrix U such that

~Hpe A 2 2 3

U"BzQ = 22| = B3,

29 { 0 Zo } z
~ L Be N A H H Sc
JAMIN (=B =| "'y | = B
0 _Hll

with 211, Z8, 11 upper triangular such that A_(J(Bg)?J7Bg, B,) is contained in
the spectrum of the 2p x 2p leading principal sub-pencil of a2 21, — BH;.

Step 3:

Set V = [Iyy, 0]X.Q0 [lg’)}, U = (L, 0]X.UU {I?f} (where X, is as in (2.11)) and com-
pute P, P/, orthogonal bases of range V" and range U, respectively, using any numerically
stable orthogonalization scheme.

End

Based on flop counts, we estimate the cost of this algorithm to be roughly 50% of the cost
of the periodic QZ algorithm [10, 19] applied to the 2n x 2n complex pencil aJZH# 7T Z — gH
(treating JZH J7T as one matrix).

If S is not factored, then the algorithm can be simplified by using the method of [32] to
compute the real skew-Hamiltonian/Hamiltonian Schur form of aBg — gB5, directly.

ALGORITHM 2. Given a complex skew-Hamiltonian/Hamiltonian matriz pencil oS — OH.
This algorithm computes the structured Schur form of the extended skew-Hamiltonian/Hamiltoni-
an matriz pencil aBB — 8BS, the eigenvalues of oS — BH, and an orthogonal basis of the deflating
subspace Def_ (S, H).

Input: A complex skew-Hamiltonian/Hamiltonian matrix pencil aS — GH.

Output: P, as defined in Theorem 3.1.

Step 1:
Set /' =iH and form the matrices BE, BS, as in (2.17) and (2.12), respectively.
Find the structured Schur form of the skew-Hamiltonian/skew-Hamiltonian matrix pencil
aBg — BBS, using Algorithm 5 in [4] to compute the factorization

Sll 812 }

> T 77T ¢ _
BS—JQJBSQ—{ 0 Sk

> T 7T yzc _ Nll NIQ
BN—JQJBNQ—[ 0 NITI},

where Q is real orthogonal, Sy is upper triangular and N7; is quasi upper triangular.
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Step 2:
Reorder the eigenvalues using Algorithm 6 in [4] to determine a unitary matrix Q such

that
SH T A | S 512
jQ \.7 BSQ - |: 0 Sﬁ :| )
SH T, perA | Hin Hiz

with 511, ‘H11 upper triangular and such that Ai(Bg, —zl?jv) is contained in the spectrum
of the 2p x 2p leading principal sub-pencil of aS11 — GH11.
Step 3:
Set V = [Iay, O]XCQQ [IBP} (where X, is as in (2.11)) and compute P, , the orthogonal
basis of range V', using any numerically stable orthogonalization scheme.
End
Algorithm 2 needs roughly 80% of the 1600n3 real flops required by the QZ algorithm applied
to the 2n x 2n complex pencil oS — BH as suggested in [37]. If only the eigenvalues are computed,
then Algorithm 2 without accumulation of V needs roughly 60% of the 960n? real flops required
by the QZ algorithm.
In this section we have presented numerical algorithms for the computation of (complex)
structured triangular forms. Various details appear in [4]. In the next section we give an error
analysis. The analysis is a generalization of the analysis for Hamiltonian matrices in [6, 7, 8].

5. Error and Perturbation Analysis. In this section we will give the perturbation analysis
for eigenvalues and deflating subspaces of skew-Hamiltonian/Hamiltonian matrix pencils. Vari-
ables marked with a circumflex denote perturbed quantities.

We begin with the perturbation analysis for the eigenvalues of aS—gH and aJZH JTZ - 3H.
In principle, we could multiply out J 27 7T Z and apply the classical perturbation analysis of ma-
trix pencils using the chordal metric [36], but this may give pessimistic bounds and would display
neither the effects of perturbing each factor separately nor the effects of structured perturbations.
Therefore, we make use of the perturbation analysis for formal products of matrices developed in
[9].

If Algorithm 2 is applied to the skew-Hamiltonian/Hamiltonian matrix pencil oS — fH, then
we compute the structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix
pencil aBg — 8B5,. The well-known backward error analysis of orthogonal matrix computations
implies that rounding errors in Algorithm 2 are equivalent to perturbing aBg — 8B5, to a nearby
matrix pencil a[g’g — ﬂl?,c{, where

(5.1) Bs = B + Es,
(5.2) BS, = BS, + Ex,
with Es € SH4n7 5')—( € Hy,, and

(5.3) I€sl, < cse|Bsly
(5.4) 1€0]ly < exe |Billy -
Here ¢ is the unit round of the floating point arithmetic and c¢s and ¢y are modest constants

depending on the details of the implementation and arithmetic. Let x and y be unit norm vectors
such that

(5.5) He = a1y, Sz = py,

and let A = a; /31 be a simple eigenvalue of aS — BH. If A is finite and Re X # 0, then — ) is also
a simple eigenvalue of oS — fH. Let u,v be unit norm vectors such that

(5.6) Hu = agv, Su = Bav,
14



and ay/Bs = —A. Then we have

(5.7) —Hu = —asd, St = [Ba0.
Using the equivalence of the matrix pencils aBS — B85, and aBBs — 3By, and setting
(58) Z/[l—Xc |:0 ,l—):la UQ_XC |:0 ’Z_J,:|7

we obtain from (5.5) and (5.7) that
¢ o 0 ¢ B1 0
BHuzzul[ 01 —az}’ BSMQZZ/{l[ 01 By ],

which implies that A is a double eigenvalue of aBBg — B3, with a complete set of linearly inde-
pendent eigenvectors. Similarly, —\ is a double eigenvalue of aBg — 3B, with a complete set of
linearly independent eigenvectors and

. « 0 c 0
BHVQ_Vl{ 02 &y }, BSV2_V1[602 3, :|a
where
o H v O o H u 0
(5.9) V=X, {O y}’ Vo = X, {O x]

Note that the finite eigenvalues with non-zero real part appear in pairs as in (5.5) and (5.6), but
infinite and purely imaginary eigenvalues may not appear in pairs. Consequently, in the following
perturbation theorem, the bounds for purely imaginary and infinite eigenvalues are different from
the bounds for finite eigenvalues with non-zero real part.

THEOREM 5.1. Consider the skew-Hamiltonian/Hamiltonian matriz pencil oS — BH along
with the corresponding extended matriz pencils aBS — B3, = XH(aBs — BBy)X., where Bs is
given by (2.15), By by (2.21), BS, by (2.22), X. by (2.11) and BE by (2.17). Let a3 — GBS, be
a perturbed extended matriz pencil satisfying (5.1)—(5.4) with constants ¢y, cs and let € be equal
to the unit round of the floating point arithmetic.

If X is a simple eigenvalue of aS — fH with vectors x and y as in (5.5) and vectors u and v as
in (5.6), then the corresponding double eigenvalue of aBg — BB%, may split into two eigenvalues
M1 and Ao of the perturbed matrix pencil alé’g — ﬂl?%, each of which satisfies the following bounds.

(i) If A is finite and Re A # 0, then

A — A
by

3 CH Ccs 9
< ML, + S, ) +0(E?),  k=1,2.
o (1 Pl + 22151, ) + 0

(i) If X\ is finite and Re A = 0, then

2 £
= A < S e M, + s IS1,) + O, k= 1,2
(#i) If X = oo, then
1 cs |Sl, 2
R e Yo T S )
Sl = TTanlletryl T O

Proof. We first consider the case that A is finite and Re A # 0. Let U; and Uy be defined by
(5.8) and V; and Vs be defined by (5.9). Using the perturbation theory for formal products of
matrices (see [9]), we obtain

e — A
A

b

2

< min (H(VQHJZ/ACS)_lVgHJ(igH — Es)Us

1
H(szljul)_ll}fj(/\&” — Es)UsC5?!

2) +0(e?).
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Here, Cs = [ﬁol ﬁpz} and VI Uy = [} g}HXCJXCH [¥ g] = [“Hojy wT?ﬁ}. The second equation

in (5.6) implies ul JS = BevH 7. Combining this with the second equation of (5.5) we get
B Tz = Brufl Jy. Hence,

A — A 1
k)\ S“(VfJU1CS)IVQI{j(A5H55)1/{2 +0(e?)
2
1
<" TUhCs) M, || 6 — Es| +O()
2
1 (rrm ||5s||2> 2
+ +O(e
< i 7] (m G ) O
€ CH cs 2
< — | = HI, + =S + O(e%).
_|quy|<|a1|| I+ 2 ||2) ()

If X is purely imaginary or infinite, then the bounds are obtained by adapting the classical
perturbation theory in [36] to a formal product of matrices (for details see [9]) and by replacing
(5.7) with —HZ = —a;y and ST = (317 as well as replacing u, v, ap and (2 by z, y, a1 and 3,
respectively. O

The bound in part 1 appears to involve only u, y, a; and 81 but not v, x, as and B5. However,
note in the proof that Gov Ja = B1u Jy, so the bound implicitly involves all the parameters.
Note further, that if S is nonsingular, then v 7z and uf Jy are just the reciprocals of the
condition number of \ as eigenvalue of S™'H and HS™!, respectively, see [6].

If S is given in factored form, Algorithm 1 computes a unitary symplectic matrix U and a
unitary matrix @ which reduce the perturbed matrices

(5.10) BS =B +Ez, B =B85 +En
to block upper triangular form as in (2.23) and (2.24), where
(5.11) [€2l; < czelBzly, 18kl < ene |Byl,

and cz and ¢y are constants. The eigenvalue perturbation bounds then are essentially the same
as in Theorem 5.1.

THEOREM 5.2. Consider the skew-Hamiltonian/Hamiltonian matriz pencil aS — fH with
J -semidefinite skew-Hamiltonian part S = JZHJTZ. Let aB% — BBS, = X2 (aBs — BBy)X.
be the corresponding extended matriz pencils, where B = T BLHEITBS, Bz and B are given
by (2.13) and (2.16), By and B§, by (2.21) and (2.22), and X, by (2.11). Let (B%, BS,) be the
perturbed extended matriz pair in (5.10), (5.11) with constants ¢y, cz.

Let X be a simple eigenvalue of aS — fH = aJ 2 JT Z — BH with Re X # 0, and let x, y, z,
u, v, w be unit norm vectors such that

(5.12) TZ T = ary, Hz=py, Zz=mx,
with A = 21 , and
Q171
(5.13) TZ T =azv, Hw =P, Zw=mu,
with —\ = 52
Q27y2

The corresponding double eigenvalue of aBg — BB, may split into two eigenvalues A1 and Mg
2 c

of the perturbed matriz pencil aBg — ﬁBH, each of which satisfies the following bounds.
(i) If X is finite and Re X # 0, then
Ak — A
A

CH cz )
=€ Hlp +2 Zly ) +O(e?).
<= Ity Ml g g a7y 12l +O6)
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(i) If \ is purely imaginary, then

2|/\‘Cg

~ CH
M — A <e| ———|H|, +
ho-nse Ml + oy

Zly ) + O(?).
e j21,) + 0

(iii) If X = oo, then |M,| = O(?).
Proof. The perturbation analysis follows [9]. If X is finite and Re A # 0, then

e — A - N 1
’“A < H(VQHju3)—1(0103)—1(v§5§ju103+c§fuffjgzu3— XV?JSHUS) +0(?),
2
where Uy = XH [0 0] € €2 Uy = XF [} 2] € €2y, = xH [g ol € T2 vy =

X[p Jechramd Ci=[3 2 lee Go= [} JJee a= [y J]ec

z 0 0 72
From iju?, = [”HOJZ 0 }, it follows that

yT Tw
S a|_ maxtinl el 1€zl + i 16nds iEsl, o
A | T minf{|aeyev? T2, larnw? Ty} min{|asv® T 2|, [aawf Ty|} .

From (5.12) and (5.13), we also have
(5.14) av B Tz =mut Tz, Foul Tz = aw Ty, Bl T2z =Bt Ty.
It follows that

|aoyov T 2| = [Fenu Tz| = [yroqw™ Tyl

Hence,
max{h/l'a |,72|} _ 1
min{|agY2v? T 2|, jorywH Ty}~ min{|agof Tz, [arwH Ty|}’
A min{|agya™ Tz, larmw™ Tyl = 8w Ty,
and
A =X CH 2cz > 2
= Hle + ima Z|y | +O(e7).
A <|ﬁ1ijy| IHl, min{|azv? 7], [ayw? Ty|} 121, (e%)

Equation (5.14) implies that agv? 7z = viuf Jz. The first part of the theorem follows.

If A is purely imaginary, the proof is analogous.

If A = oo, then ;7 = 0 or 93 = 0 and 7 # 0. Using the first equation of (5.14), we have
a1y Jz = vzt Jx, where we have replaced u, v and oy by z, y and ay, respectively ((5.12) and
(5.13) are the same now). Since \ is simple, i.e., yI Tz # 0 and 27 Tz # 0, we have a; =1 =0
and hence,

0 0 B 0
Ci=| % T l=0 c3=|"7" T |=0 = > 0.
1 |: 0 al :| b 3 |: 0 71 ) 2 0 51 #
Therefore,
Ey =CHc B ull el gu, —ull 7ezusc51 0y — cH oy Ul 7&,u051Ch = 0.

From [9, Theorem 23, part b)|, we get

(5.15)

1
Ll < 0 4 el + 0% - 0.
k

17



O

If the matrix pencil aS — fH with J-semidefinite skew-Hamiltonian part S = J ZH 7T Z has
semi-simple, multiple, infinite eigenvalues, then the perturbation bound (5.15) weakens to O(e)
[9].

To study the perturbations in the computed deflating subspaces we need to study the perturba-
tions for the extended matrix pencil in more detail. As mentioned before, by applying Algorithm 2
to aBBg — BB%, we actually compute a unitary matrix Q such that

T IT (B — BB5,)0 = aRs — BRx

Sll 312 7:\{11 7:[12
1 =: . — !
(5.16) “{0 Sﬁ} ﬁ[o —Hﬁ}’

where B% and B% are defined in (5.1) and (5.2), and A(Sy1, Hi1) = Af(é‘cg,é%) If we assume
that the matrix pencil S — fH has no purely imaginary eigenvalues, then by Theorem 2.6 there
exist unitary matrices @1, Qs such that

ST ST5 H, H
7ol es -~ =a| 7 [-a TG |

with A(S7;, Hy;) = A_(S,H), and

St S H H
H ~+T _ _
JOH 7 <as—m¢)92_a[ fl (554 5{ i —(HE)H}

with A(S]}, H}) = A (S, H), respectively. Set Q = X diag(Q;, Q2)P with P and X, as in
(2.10) and (2.11). Then Q is unitary and

T T (aBg — 85, Q

S; 0 S5 0 H; 0 Hy, 0
B T /A Y B 7 R N
0 0 | )7 0 0 0 | —(H,)" 0
0 0 0 (Si)H 0 0 0 (Hi)H
811 812 Hll H12
(517) = 0 Sﬁ | _ﬁ [ 0 *Hﬁ :|
=:aRs — FRx.

This is the structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix pencil
aBg — BB, Moreover, A(S11, Hi1) = A_(Bg, B,).

In the following, we will use the linear space C™" x C™" endowed with the norm
(X, V) = max{| X1, , [Y],}-

THEOREM 5.3. Let aS — BH be a regular skew-Hamiltonian/Hamiltonian matriz pencil with
nesther infinite nor purely imaginary eigenvalues. Let Py, be the orthogonal basis of the deflating
subspace of aS — BH corresponding to A_(S,H), and let 75; be the perturbation of Py, obtained by
Algorithm 2 in finite precision arithmetic. Denote by © € C™™ the diagonal matriz of canonical
angles between Py, and 75;

Using the structured Schur form of the extended skew-Hamiltonian/Hamiltonian matriz pencil
aBg — pBS, (asin (2.17) and (2.22)) given by (5.17), define § by

[(HEY + YHH,, SEY — YHS)|

5.18 o= min

(5.18) Yec2n2n\ {0} 1Y,

If

(5.19) 81(Es,Er) (6 + |(S12, Ha2)|) < 62,
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then
€580l _,, NesS.cnt]

where cs and cy are the modest constants in (5.3)-(5.4) and c, = 8(v10 +4)/(+v/10 +2) ~ 11.1.

Proof. Let aRs— BRH, O be the output of Step 2 in Algorithm 2 in finite precision arithmetic,
where BS, BH satisfy (5.1) and (5.2). Let Q be the unitary matrix computed by Algorithm 2 in
exact arithmetic such that

TJOH T (aBg — BB5,)Q = aRs — fR¥

- 511 512 B ﬂn 7:[12
‘“{o sﬂ ‘3[ 0 —Hﬁ}’

(5.20) el < e

with A(S11,Hi1) = A—(BE,B,). Since (5.17) is another structured Schur form with the same
eigenvalue ordering, there exists a unitary diagonal matrix G = diag(G1, G2) such that Q = ogG.
Therefore, we have

H(5‘1277‘~(12)H = |(S12, Hi2)|,

and for § given in (5.18) we also have

H(H Y + YHHLSHY — Y su)H

= min
Y eC2n:2n\ {0} ||Y||2
Let
& 3 5 En € = = ~ F F
Eei— HaTe O —. 11 12} & = H T¢ _:[ 11 12 }
S jQ j SQ |:€21 61}{ 5 H jQ j ’HQ ]__21 _]__1}{

and set v = | (a1, Fo1)|, n = H(Sm + E12, Hao —|—]:12)H and & = 6 — 2 (&1, Fi1)|. Since we have
H(és, SH)H — |(Es, Ex)|, condition (5.19) implies that

526 2](Es. 60 > 20,
and clearly,
11(Es, £ 1(S1z, Haz)]| < 8 — 45 1(Es, £l

Hence

o _ V€ &G Fa) | + 185,801

2 = (0 —2](&s. En)])?
< [(E€s. EnI” + (6% — 45 |(Es, Er)D/4 1
(0 —2](&s. En)])? 4

Following the perturbation analysis for a formal product of matrices in [9], it can be shown that
there exists a unitary matrix

(I+WHEW) 2 —WH(I+WWH)~2

W=l waswiwy-t @+ wwiy-
with
8y 1
21 2l <27
(5.21) Wi, <2 <22<2
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such that
T(OMTT (aBs — BBS,)(OW)

is another structured Schur form of the perturbed matrix pencil. Since there are neither infinite
nor purely imaginary eigenvalues, (5.16) implies that Qf QW is unitary block diagonal.

Without loss of generality we may take Q = OW. If X, is as in (2.11) and X0 = [g; g;ﬂ’

then it follows from Theorem 3.1 that Py, = range Q1. Clearly ﬁ; = range{(Q11 + Q12W)(I +
WHW)~=2}. The upper bound (5.20) can then be derived from (5.21), by using the same argument
as in the proof of Theorem 4.4 in [6]. O

If S is given in factored form, then we obtain a similar result. In this case, by using Algorithm 1
we compute a unitary matrix Q and a unitary symplectic matrix U such that

uHBc =Rz =: 11 A12

ZQ zZ |: 0 222 )

(5.22) JOMTTBsQ =Ry = [ HOH _”:}(_}i{ ] ,
11

where [;’CZA and B%Aare defined in (5.10) and (5.11), and A(Z211, 1) = A_(B%, BS,), where
B = J(Bs)" 77 By

Analogous to Theorem 2.7, if S — fH has no purely imaginary eigenvalues, then there exist
unitary matrices Q1, Q2 and unitary symplectic matrices Uy, Us such that
Zn 2

ulHZQl:{ 0 Zy

}, JQ?JTﬁglz[Hﬁ s ]

0 —(Hpy)"
with A(Zy)" 211, Hy;) = A_(S,H), and

+ gt
le Z12

u;’zgzz{ 0 7

+ +
}, JQ?JTHQF[HH H ]

0 —(H"
with A((ZH)H Z,, H{}) = A, (S, H), respectively. Set
Q=X diag(Q1,02)P, U =X diag(Uy,U)P,

where P and X, are as in (2.10) and (2.11). Then Q is unitary and U € USy,, and a simple
calculation yields

Zn 0 | Zp O
Hpe A 0 ZH | 0 ZLH | [20 Z2i2]
(5.23) UBLQO = 0 0z, 0|~ 0z, | Rz,
0 0 0 Zi
Hy, 0 Hy, 0
—H 0 —H, Hu H
H ~7T pac _ 11 12 . 11 12 .
0 0 0 (H{HH

This leads to the structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix
pencil aJ (B$)? TTBS — BBS, with A(Z8 211, Hi1) = A_(BS, BS,).

THEOREM 5.4. Consider the regular skew-Hamiltonian/Hamiltonian matriz pencil oS — OH
with nonsingular, J-definite skew-Hamiltonian part S = JZHJTZ. Suppose that aS — FH has
no eigenvalue with zero real part. Let the extended skew-Hamiltonian and Hamiltonian matriz BS

20



and B, be as in (2.16) and (2.22), respectively with structured triangular form given by (5.23)
and (5.24). Define §, as

min |(HIY + YT Hi, X211 — 25|
(X,Y)eC?m:2n xC?m:27\ {(0,0)} (X, V)],

op =

Define errors Ez and Ey by (5.10) and (5.11). Let Py,, Py, 75; and 75_ be the deflating subspaces
computed by Algorithm 1 in exact and finite precision arithmetic, respectwely Denote by Oy, 0y €
C™™ the diagonal matrices of canonical angles between Py, and PV, Py and PU, respectively.

If
81(€z, En)l (6p + (212, Ha2)]) <6

then

I(€2.80] _ , NezZ 0]
617 617

1evly,10ul, <

with ¢, as in Theorem 5.3.

Proof. The proof is analogous to the proof of Theorem 5.3. O

It follows that the described numerical algorithms are numerically backwards stable. These
algorithms can also be used to compute deflating subspaces which contain eigenvectors associated
with infinite or purely imaginary eigenvalues. By Theorem 3.1 we get partial information also in
these cases, but we face the difficulty that the desired deflating subspace may not be unique or
may not exist. (See the recent analysis for Hamiltonian matrices [29]).

6. Conclusion. We have presented numerical procedures for the computation of structured
Schur forms, eigenvalues, and deflating subspaces of matrix pencils with matrices having a Ha-
miltonian and/or skew-Hamiltonian structure. These methods generalize the recently developed
methods for Hamiltonian matrices which use an extended, double dimension Hamiltonian matrix
that always has a Hamiltonian Schur form.

The algorithms circumvent problems with skew-Hamiltonian /Hamiltonian matrix pencils that
lack a structured Schur form by embedding them in extended matrix pencils that always admit a
structured Schur form. For the extended matrix pencils, the algorithms use structure preserving
unitary matrix computations and are strongly backwards stable, i.e., they compute the exact
structured Schur form of a nearby matrix pencil with the same structure. Such structured Schur
forms can always be computed regardless of the regularity of the original matrix pencil.

It is still somewhat unsatisfactory that the algorithms do not efficiently exploit the micro
structures of the extended matrix pencils, as for example in the matrix Bf, in (2.12). How best
to use these micro structures is still an open question.

Practical implementation and numerical experiments are in progress and will be reported
elsewhere. For detailed algorithms and implementation issues see [4].

Acknowledgments. We gratefully acknowledge Daniel Kressner for his assistance imple-
menting and testing experimental versions of parts of the algorithms discussed here.
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