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Abstract. We discuss the numerical solution of structured generalized eigenvalue problems that arise from
linear-quadratic optimal control problems, H∞ optimization, multibody systems, and many other areas of applied
mathematics, physics, and chemistry. The classical approach for these problems requires computing invariant and
deflating subspaces of matrices and matrix pencils with Hamiltonian and/or skew-Hamiltonian structure. We extend
the recently developed methods for Hamiltonian matrices to the general case of skew-Hamiltonian/Hamiltonian pen-
cils. The algorithms circumvent problems with skew-Hamiltonian/Hamiltonian matrix pencils that lack structured
Schur forms by embedding them into matrix pencils that always admit a structured Schur form. The rounding error
analysis of the resulting algorithms is favorable. For the embedded matrix pencils, the algorithms use structure
preserving unitary matrix computations and are strongly backwards stable, i.e., they compute the exact structured
Schur form of a nearby matrix pencil with the same structure.
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1. Introduction and Preliminaries. In this paper we study eigenvalue and invariant sub-
space computations involving matrices and matrix pencils with the following algebraic structures.

Definition 1.1. Let J :=
[

0
−In

In

0

]
, where In is the n× n identity matrix.

a) A matrix H ∈ C2n,2n is Hamiltonian if (HJ )H = HJ . The Lie Algebra of Hamiltonian
matrices in C2n,2n is denoted by H2n.

b) A matrix H ∈ C2n,2n is skew-Hamiltonian if (HJ )H = −HJ . The Jordan algebra of
skew-Hamiltonian matrices in C2n,2n is denoted by SH2n.

c) If S ∈ SH2n and H ∈ H2n, then αS − βH is a skew-Hamiltonian/Hamiltonian matrix
pencil.

d) A matrix Y ∈ C2n,2n is symplectic if YJYH = J . The Lie group of symplectic matrices
in C2n,2n is denoted by S2n.

e) A matrix U ∈ C2n,2n is unitary symplectic if UJUH = J and UUH = I2n. The compact
Lie group of unitary symplectic matrices in C2n,2n is denoted by US2n.

f) A subspace L of C2n is called Lagrangian if it has dimension n and xHJ y = 0 for all
x, y ∈ L.

A matrix S ∈ C2n,2n is skew-Hamiltonian if and only if iS is Hamiltonian. Consequently, there
is little difference between the structure of complex skew-Hamiltonian matrices and complex Ha-
miltonian matrices. However, real skew-Hamiltonian matrices are not real scalar multiples of Ha-
miltonian matrices, so there is a greater difference between the structure of real skew-Hamiltonian
matrices and real Hamiltonian matrices.

The structures in Definition 1.1 arise typically in linear-quadratic optimal control [27, 33, 35]
and H∞ optimization [18, 39]. Moreover, instances of skew-Hamiltonian/Hamiltonian pencils
appear in several other areas of applied mathematics, computational physics and chemistry, e.g.,
gyroscopic systems [20], numerical simulation of elastic deformation [28, 34], and linear response
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theory [30]. Linear-quadratic optimal control and H∞ optimization problems are related to skew-
Hamiltonian/Hamiltonian pencils in [4, 5].

It is important to exploit and preserve algebraic structures (like symmetries in the matrix
blocks or symmetries in the spectrum) as much as possible. Such algebraic structures typically arise
from the physical properties of the problem. If rounding errors or other perturbations destroy the
algebraic structures, then the results may be physically meaningless. Not coincidentally, numerical
methods that preserve algebraic structures are typically more efficient as well as more accurate.

Despite the advantages associated with exploiting matrices with special structure, condensing
data into a compact, structured matrix using finite precision arithmetic may be ill-advised. A dis-
cussion of avoiding normal-equations-like numerical instability when embedding linear-quadratic
optimal control problems and H∞ optimization problems into skew-Hamiltonian/Hamiltonian
pencils appears in [4, 5].

Although the numerical computation of n-dimensional Lagrangian invariant subspaces of Ha-
miltonian matrices and the related problem of solving algebraic Riccati equations have been ex-
tensively studied (see [12, 22, 27, 35] and the references therein), completely satisfactory methods
for general Hamiltonian matrices and matrix pencils are still an open problem. Completely sat-
isfactory methods would be numerically backward stable, have complexity O(n3) and preserve
structure. There are several reasons for this difficulty all of which are well demonstrated in the
context of algorithms for Hamiltonian matrices. First of all, an algorithm based upon structure
preserving similarity transformations (including QR-like algorithms) would require a triangular-
like Hamiltonian Schur form that displays the desired deflating subspaces. A Hamiltonian Schur
form under unitary symplectic similarity transformations is presented in [31]. (See (1.1).) Unfor-
tunately, not every Hamiltonian matrix has this kind of Hamiltonian Schur form. For example,
the Hamiltonian matrix J in Definition 1.1 is invariant under arbitrary unitary similarity trans-
formations but is not in the Hamiltonian Schur form described in [31]. (Similar difficulties arise in
the skew-Hamiltonian/Hamiltonian pencil case for the Schur-like forms of skew-Hamiltonian/Ha-
miltonian matrix pencils in [25, 26] and for the other structures given in Definition 1.1 in [24].)
A second problem comes from the fact that even when a Hamiltonian Schur form exists, there
is no completely satisfactory structure preserving, numerical method to compute it. It has been
argued in [2] that, except in special cases [13, 14], QR-like algorithms are impractically expensive
because of the lack of a Hamiltonian Hessenberg-like form. For this reason other methods like the
multishift-method of [1], the structured implicit product methods of [6, 7, 38] do not follow the
QR-algorithm paradigm. (The implicit product methods [6, 7] do come quite close to optimality.
We extend the method of [6] to skew-Hamiltonian/Hamiltonian matrix pencils in Section 4.) A
third difficulty arises when the Hamiltonian matrix or the skew-Hamiltonian/Hamiltonian matrix
pencil has eigenvalues on the imaginary axis. In that case, the desired Lagrangian subspace is,
in general, not unique [29]. Furthermore, if finite precision arithmetic or other errors perturb the
matrix off the Lie algebra of Hamiltonian matrices, then it is typically the case that the perturbed
matrix has no Lagrangian subspace or does not have the expected eigenvalue pairings, see, e.g.,
[7, 38].

We close the introduction by introducing some notation. To simplify notation, the term
eigenvalue is used both for eigenvalues of matrices and, in the context of a matrix pencil αE−βA,
for pairs (α, β) ∈ C \ (0, 0) for which det(αE − βA) = 0. These pairs are not unique. If β 6= 0
then we identify (α, β) with (α/β, 1) and λ = α/β. Pairs (α, 0) with α 6= 0 are called infinite
eigenvalues.

By Λ(E,A) we denote the set of eigenvalues of αE−βA including finite and infinite eigenvalues
both counted according to multiplicity. We will denote by Λ−(E,A), Λ0(E,A) and Λ+(E,A) the
set of finite eigenvalues of αA− βE with negative, zero and positive real parts, respectively. The
set of infinite eigenvalues is denoted by Λ∞(E,A). Multiple eigenvalues are repeated in Λ−(E,A),
Λ0(E,A), Λ+(E,A) and Λ∞(E,A) according to algebraic multiplicity. The set of all eigenvalues
counted according to multiplicity is Λ(E,A) := Λ−(E,A) ∪ Λ0(E,A) ∪ Λ+(E,A) ∪ Λ∞(E,A).
Similarly, we denote by Def−(E,A), Def0(E,A), Def+(E,A) and Def∞(E,A) the right deflating
subspaces corresponding to Λ−(E,A), Λ0(E,A), Λ+(E,A) and Λ∞(E,A), respectively.
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Throughout this paper, the imaginary number
√
−1 is denoted by i. The inertia of a Hermitian

matrix A consists of the triple In(A) = (π, ω, ν), where π = π(A), ω = ω(A), and ν = ν(A)
represent the number of eigenvalues with positive, zero, and negative, real parts, respectively.

By abuse of notation, we identify a subspace and a matrix whose columns span this subspace
by the same symbol.

We call a matrix Hamiltonian block triangular if it is Hamiltonian and has the form[
F G
0 −FH

]
.

If, furthermore, F is triangular then we call the matrix Hamiltonian triangular. The terms skew-
Hamiltonian block triangular and skew-Hamiltonian triangular are defined analogously.

The Hamiltonian (skew-Hamiltonian) Schur form of a Hamiltonian (skew-Hamiltonian) matrix
H is the factorization

H = UT UH ,(1.1)

where U ∈ US2n, and T is Hamiltonian (skew-Hamiltonian) triangular. As mentioned above, not
all Hamiltonian matrices have a Hamiltonian Schur form. Real skew-Hamiltonian matrices always
have one [38], but not all complex skew-Hamiltonian matrices do. For Hamiltonian matrices that
have no purely imaginary eigenvalues the existence of a Hamiltonian Schur form was proved in
[31]. Necessary and sufficient conditions for the existence of the Hamiltonian Schur form in the
case of arbitrary spectra were suggested in [23] and a proof based on a structured Hamiltonian
Jordan form was recently given in [24].

2. Schur-like forms of Skew-Hamiltonian/Hamiltonian Matrix Pencils. In this sec-
tion we derive the theoretical background for algorithms to compute eigenvalues and deflating
subspaces of skew-Hamiltonian/Hamiltonian matrix pencils. A primary theoretical and computa-
tion tool is the J-congruence. A J-congruence transformation of a 2n× 2n pencil αS − βH by a
nonsingular matrix Y ∈ C2n,2n is the conguence transformation JYHJ T (αS − βH)Y where J is
as in Definition 1.1. The structure of skew-Hamiltonian/Hamiltonian matrix pencils is preserved
by J-congruence transformations [25, 26], i.e., if αS − βH is a skew-Hamiltonian/Hamiltonian
pencil and Y is nonsingular, then JYHJ T (αS − βH)Y is also skew-Hamiltonian/Hamiltonian.

The skew-Hamiltonian/Hamiltonian Schur form of a skew-Hamiltonian/Hamiltonian pencil
αS − βH is the factorization

αS − βH = JQJ T

(
α

[
S11 S12

0 SH
11

]
− β

[
H11 H12

0 −HH
11

])
QH ,(2.1)

where Q ∈ C2n,2n is unitary, S11 ∈ Cn,n and H11 ∈ Cn,n are upper triangular, S12 ∈ Cn,n is skew-
Hermitian and H12 ∈ Cn,n is Hermitian. Note that the skew-Hamiltonian/Hamiltonian Schur form
is a special case of the Schur form a general matrix pencil and that it displays the eigenvalues and
a nested system of deflating subspaces. This definition of a skew-Hamiltonian/Hamiltonian Schur
form is essentially consistent with the definition of the Hamiltonian Schur form of a Hamiltonian
matrix (1.1). If (2.1) holds with S = I, then it is not difficult to show that Q is a unitary diagonal
matrix multiple of a unitary symplectic matrix and that there is a unitary symplectic choice of Q,
QH = Q−1 = JQHJT , for which (2.1) holds with S11 = I and S12 = 0.

Skew-Hamiltonian/Hamiltonian matrix pencils often have the characteristic that the skew-
Hamiltonian matrix S is block diagonal [4, 5], i.e., S =

[
E
0

0
EH

]
for some matrix E ∈ Cn,n. In

this case (among others), the matrix S factors in the form

S = JZHJ TZ.(2.2)

where Z = diag(I, EH). Such a factorization may also be intrinsic to the problem formulation for
non-block diagonal skew-Hamiltonian matrices S; see, e.g., [28].
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Let 〈x, y〉 be the indefinite inner product on C2n × C2n defined by 〈x, y〉 = yHJ x. If Z ∈
C2n,2n, then for all x, y ∈ C2n, 〈(Zx), y〉 = 〈x, (J−TZHJ T )y〉, i.e., the adjoint of Z with respect
to 〈 . , . 〉 is J−TZHJ T . Because J−1 = J T = −J , the adjoint may also be expressed as JZHJ T .
From this point of view, (2.2) is a symmetric-like factorization of S into the product of adjoints
JZJ T and Z. By analogy with the factorization of symmetric matrices, we will use the term
J -semidefinite to refer to skew-Hamiltonians matrices which have a factorization of the form (2.2).
A J -definite skew-Hamiltonian matrix is a skew-Hamiltonian matrix that is both J -semidefinite
and non-singular.

The property of J -semidefiniteness arises frequently in applications [3, 4, 5]. We show below
that all real skew-Hamiltonian matrices are J -semidefinite. We also show that if a skew-Ha-
miltonian/Hamiltonian matrix pencil has a skew-Hamiltonian/Hamiltonian Schur form, then the
skew-Hamiltonian part is J -semidefinite.

Although J -semidefiniteness is a common property of skew-Hamiltonian matrices it is not
universal. The following lemma shows that neither iJ nor any nonsingular, skew-Hamiltonian
matrix of the form iJLLT is J -semidefinite.

Lemma 2.1. A nonsingular skew-Hamiltonian matrix S is J -definite if and only if iJS is
Hermitian with n positive and n negative eigenvalues.

Proof. If S is J -definite, then Z in (2.2) is nonsingular and the Hermitian matrix iJS is
congruent to −iJ T = iJ . It follows from Sylvester’s law of inertia [16, p. 296],[21, p. 188] that
iJS is a Hermitian matrix with n positive eigenvalues and n negative eigenvalues.

Conversely, suppose that iJS is Hermitian with n positive and n negative eigenvalues. The
matrix iJ T also has n positive and n negative eigenvalues, so, by an immediate consequence of
Sylvester’s law of inertia, there is a nonsingular matrix Z ∈ C2n,2n for which iJS = ZH(iJ T )Z.
It follows that (2.2) holds with this matrix Z.

Lemma 2.1 suggests that J -semidefiniteness might be a characteristic of the inertia of iJS.
The next lemma shows that this is indeed the case.

Lemma 2.2. A matrix S ∈ SH2n is J -semidefinite if and only if iJS satisfies both π(iJS) ≤
n and ν(iJS) ≤ n.

Proof. Suppose that S ∈ SH2n is J -semidefinite. For some Z satisfying (2.2), define S(ε) by
S(ε) = J (Z + εI)HJ T (Z + εI). For ε small enough, Z + εI is nonsingular, and, by Lemma 2.1,
π(iJS(ε)) = n and ν(iJS(ε)) = n. Because eigenvalues are continuous functions of matrix
elements and S = limε→0 S(ε), it follows that π(iJS) ≤ n and ν(iJS) ≤ n.

For the converse, if π(iJS) = p ≤ n and ν(iJS) = q ≤ n, then, there exists a nonsingular
matrix W for which iJS = WHLW with signature matrix

L =


p n− p q n− q

p Ip 0 0 0
n− p 0 0 0 0
q 0 0 −Iq 0
n− q 0 0 0 0

.

Because p ≤ n and q ≤ n, L factors as L = Ldiag(In,−In)L where In is the n×n identity matrix.
The matrix diag(In,−In) is the diagonal matrix of eigenvalues of iJ T , so L = L(UH(iJ T )U)L,
where U = (1/

√
2)

[
In

iIn

In

−iIn

]
is the unitary matrix of eigenvectors of iJ T . Hence, (2.2) holds

with Z = ULW.
The following immediate corollary also follows from [15].
Corollary 2.3. Every real skew-Hamiltonian matrix S is J -semidefinite.
Proof. If S is real, then JS is real and skew-symmetric. The eigenvalues of JS appear in

complex conjugate pairs with zero real part. Hence, the eigenvalues of iJS lie on the real axis in
± pairs. In particular, π(iJS) = ν(iJS). It follows from the trivial identity π(iJS) + ω(iJS) +
ν(iJS) = 2n that π(iJS) ≤ n and ν(iJS) ≤ n.

The next lemma and its corollary show that J -semidefiniteness of both S and iH are necessary
conditions for a skew-Hamiltonian/Hamiltonian matrix pencil αS − βH to have a skew-Hamilto-
nian/Hamiltonian Schur.
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Lemma 2.4. If S ∈ SH2n and there exists a nonsingular matrix Y such that

JYHJ TSY =
[

S11 S12

0 SH
11

]
with S11, S12 ∈ Cn,n, then S is J -semidefinite.

Proof. Let T be the Hermitian matrix

T = YH(iJS)Y =
[

0 iSH
11

−iS11 −iS12

]
,

and set T (ε) = T + ε

[
0 In

In In

]
. For ε sufficiently small, both εIn − iS12 and εIn − iS11 are

nonsingular and T (ε) is congruent to[
−(εIn − iS11)(εIn − iS12)−1(εIn − iS11)H 0

0 (εIn − iS12)

]
.

By Sylvester’s law, the inertia of the negative of the (1, 1) block is equal to the inertia of the (2, 2)
block. This implies π(T (ε)) = ν(T (ε)) = n. Continuity of eigenvalues as ε → 0 implies π(T ) ≤ n
and ν(T ) ≤ n. The assertion now follows from Lemma 2.2.

Corollary 2.5. If H ∈ H2n and there exists a nonsingular matrix Y such that

JYHJ THY =
[

H11 H12

0 −HH
11

]
with H11, H12 ∈ Cn,n, then iH is J -semidefinite.

Proof. Apply Lemma 2.4 to the skew-Hamiltonian matrix iH.
It follows from Lemma 2.4 and Corollary 2.5, that if αS − βH is a skew-Hamiltonian/Ha-

miltonian matrix pencil that has a skew-Hamiltonian/Hamiltonian Schur form, then S and iH
are J -semidefinite. As noted above, the factor Z in (2.2) is often given explicitly as part of the
problem statement. It can also be obtained as in the proof of Lemma 2.2 or by a modification
of Gaussian elimination [3]. The next theorem shows that if S is nonsingular, then the skew-
Hamiltonian/Hamiltonian Schur form (if it exists) can be expressed in terms of block triangular
factorizations of Z and H without explicitly using S. This opens the possibility of designing
numerical methods that work directly on Z and H and avoid the normal-equations-like numerical
instability of forming S explicitly.

For regular skew-Hamiltonian/Hamiltonian matrix pencils the following theorem gives neces-
sary and sufficient conditions for the existence of a skew-Hamiltonian/Hamiltonian Schur form.

Theorem 2.6. [25, 26] Let αS − βH be a regular skew-Hamiltonian/Hamiltonian matrix
pencil, with ν pairwise distinct, finite, nonzero, purely imaginary eigenvalues iα1, iα2, . . . , iαν

of algebraic multiplicity p1, p2, . . . , pν , and associated right deflating subspaces Q1, Q2, . . . , Qν .
Let p∞ be the algebraic multiplicity of the eigenvalue infinity and let Q∞ be its associated deflating
subspace. The following are equivalent.

(i) There exists a nonsingular matrix Y, such that

JYHJ T (αS − βH)Y = α

[
S11 S12

0 SH
11

]
− β

[
H11 H12

0 −HH
11

]
,(2.3)

where S11 and H11 are upper triangular while S12 is skew-Hermitian and H12 is Hermitian.
(ii) There exists a unitary matrix Q such that JQHJ T (αS − βH)Q is of the form on the

right-hand-side of (2.3).
(iii) For k = 1, 2, . . . , ν, QH

k JSQk is congruent to a pk × pk copy of J . (If ν = 0, i.e., if
αS − βH has no finite, nonzero, purely imaginary eigenvalue, then this statement holds
vacuously.)
Furthermore, if p∞ 6= 0 then QH

∞JHQ∞ is congruent to a p∞ × p∞ copy of iJ .
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Similar results cover real Schur-like forms of real Hamiltonian matrices and skew-Hamiltoni-
an/Hamiltonian matrix pencils [24, 25, 26].

Theorem 2.6 gives necessary and sufficient conditions for existence of a structured triangular-
like form for skew-Hamiltonian/Hamiltonian pencils. It also demonstrates that whenever a struc-
tured triangular-like form exists, then it also exists under unitary transformations. It is partly
because of this fact that there exist structure preserving, numerically stable numerical algorithms
like those described here and in [4].

Theorem 2.7. Let αS − βH be a skew-Hamiltonian/Hamiltonian matrix pencil with nonsin-
gular, J -semidefinite skew-Hamiltonian part S = JZHJ TZ. If any of the equivalent conditions
of Theorem 2.6 holds, then there exists a unitary matrix Q and a unitary symplectic matrix U
such that

UHZQ =
[

Z11 Z12

0 Z22

]
,(2.4)

JQHJ THQ =
[

H11 H12

0 −HH
11

]
,(2.5)

where Z11, ZH
22 and H11 are n× n and upper triangular.

Proof. With Q as in Theorem 2.6 part (ii) we obtain (2.5) and JQHJ TSQ =
[

S11
0

S12

SH
11

]
.

Partition Z̃ = ZQ as Z̃ = [Z1, Z2], where Z1, Z2 ∈ C2n,n. Using S = JZHJ TZ, we obtain

Z̃HJ Z̃ =
[

0 SH
11

−S11 −S12

]
.(2.6)

In particular, ZH
1 JZ1 = 0, i.e., the columns of Z1 form a basis of a Lagrangian subspace and

therefore the columns of Z1 form the first n columns of a symplectic matrix. (It is easy to verify
from Definition 1.1 that, using the non-negative definite square root, [Z1, −JZ1(ZH

1 Z1)−1/2] is
symplectic.) It is shown in [11] that Z1 has a unitary symplectic QR factorization

UHZ1 =
[

Z11

0

]
,

where U ∈ US2n is unitary symplectic and Z11 ∈ Cn,n is upper triangular. Setting

UHZQ = UHZ̃ =
[

Z11 Z12

0 Z22

]
we obtain from (2.6) that ZH

22Z11 = S11. Since S11 and Z11 are both upper triangular and Z11 is
nonsingular, we conclude that ZH

22 is also upper triangular.
Note that the invertibility of Z is only a sufficient condition for the existence of U as in

(2.4) and (2.5). However, there is no particular pathology associated with Z being singular. The
algorithms described below and in [4] do not require Z to be nonsingular.

If both S and H are nonsingular, then the following stronger form of Theorem 2.7 holds.
Corollary 2.8. Let αS − βH be a skew-Hamiltonian/Hamiltonian matrix pencil with non-

singular J -semidefinite skew-Hamiltonian part S = JZHJ TZ and nonsingular J -semidefinite
Hamiltonian part iH = JWHJ TW. If any of the equivalent conditions of Theorem 2.6 holds,
then there exist a unitary matrix Q and unitary symplectic matrices U and V such that

UHZQ =
[

Z11 Z12

0 Z22

]
, VHWQ =

[
W11 W12

0 W22

]
,

where Z11, ZH
22 and W11, WH

22 are n× n and upper triangular.
Proof. Similar to the proof of Theorem 2.7.
In the following we derive the theoretical background for algorithms to compute eigenvalues

and deflating subspaces of skew-Hamiltonian/Hamiltonian matrix pencils.
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We will obtain the structured Schur form of a complex skew-Hamiltonian/Hamiltonian matrix
pencil from the structured Schur form of a real skew-Hamiltonian/skew-Hamiltonian matrix pencil
of double dimension. The following theorem establishes that, in contrast to the complex skew-Ha-
miltonian/Hamiltonian case, every real, regular skew-Hamiltonian/skew-Hamiltonian pencil ad-
mits a structured real Schur form.

Theorem 2.9. If αS − βN is a real, regular skew-Hamiltonian/skew-Hamiltonian matrix
pencil with S = JZTJ TZ, then there exist a real orthogonal matrix Q ∈ R2n,2n and a real
orthogonal symplectic matrix U ∈ R2n,2n such that

UTZQ =
[

Z11 Z12

0 Z22

]
,(2.7)

JQTJ TNQ =
[

N11 N12

0 NT
11

]
,(2.8)

where Z11 and ZT
22 are upper triangular, N11 is quasi upper triangular and N12 is skew-symmetric.

Moreover,

JQTJ T (αS − βN )Q = α

[
ZT

22Z11 ZT
22Z12 − ZT

12Z22

0 ZT
11Z22

]
− β

[
N11 N12

0 NT
11

]
(2.9)

is a J -congruent skew-Hamiltonian/skew-Hamiltonian matrix pencil.
Proof. A constructive proof for the existence of Q and U satisfying (2.7) and (2.8) is Algo-

rithm 3 in [4]. To show (2.9), recall that U is orthogonal symplectic and therefore commutes with
J . Hence,

JQTJ TSQ = JQTJ T (JZTJ TZ)Q
= JQTJ T (JZTJ TU)(UTZQ)
= J (UTZQ)TJ T (UTZQ).

Equation (2.9) now follows from the block triangular form of (2.7).
Note that this theorem does not easily extend to complex skew-Hamiltonian/skew-Hamilto-

nian matrix pencils.
A method for computing the structured Schur form (2.9) for real matrices was proposed in

[32], but if S is given in factored form, then Algorithm 3 in [4] is more robust in finite precision
arithmetic, because it avoids forming S explicitly.

Neither the method in [32] nor Algorithm 3 in [4] applies to complex skew-Hamiltonian/Ha-
miltonian matrix pencils because those algorithms depend on the fact that real diagonal skew-
symmetric matrices are identically zero. This property is also crucial for the structured Schur
form algorithms in [6, 38].

Algorithm 1 given below computes the eigenvalues of a complex skew-Hamiltonian/Hamiltoni-
an matrix pencil αS−βH using an unusual embedding of C into R2 that was recently proposed in
[8]. Let αS −βH be a complex skew-Hamiltonian/Hamiltonian matrix pencil with J -semidefinite
skew-Hamiltonian part S = JZHJ TZ. Split the skew-Hamiltonian matrix N = iH ∈ SH2n as
iH = N = N1 + iN2, where N1 is real skew-Hamiltonian and N2 is real Hamiltonian, i.e.,

N1 =
[

F1 G1

H1 FT
1

]
, G1 = −GT

1 , H1 = −HT
1 ,

N2 =
[

F2 G2

H2 −FT
2

]
, G2 = GT

2 , H2 = HT
2 ,
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and Fj , Gj ,Hj ∈ Rn×n for j = 1, 2. Setting

Yc =
√

2
2

[
I2n iI2n

I2n −iI2n

]
,

P =


In 0 0 0
0 0 In 0
0 In 0 0
0 0 0 In

 ,(2.10)

Xc = YcP,(2.11)

and using the embedding BN = diag(N , N̄ ) we obtain that

Bc
N := XH

c BNXc =


F1 −F2 G1 −G2

F2 F1 G2 G1

H1 −H2 FT
1 FT

2

H2 H1 −FT
2 FT

1

(2.12)

is a real skew-Hamiltonian matrix in SH4n. Similarly, set

BZ :=
[
Z 0
0 Z̄

]
,(2.13)

BT :=
[
JZHJ T 0

0 JZHJ T

]
,(2.14)

BS :=
[
S 0
0 S̄

]
= BT BZ .(2.15)

Hence,

αBS − βBN =
[

αS − βN 0
0 αS̄ − βN̄

]
.

One can easily verify that

Bc
Z := XH

c BZXc,(2.16)
Bc
T := XH

c BT Xc = J (Bc
Z)TJ T ,

Bc
S := XH

c BSXc = J (Bc
Z)TJ TBc

Z(2.17)

are all real. Therefore,

αBc
S − βBc

N = XH
c (αBS − βBN )Xc

= XH
c

[
αS − βN 0

0 αS̄ − βN̄

]
Xc(2.18)

is a real 4n × 4n skew-Hamiltonian/skew-Hamiltonian matrix pencil. For this matrix pencil we
can employ Algorithm 3 in [4] to compute the structured factorization (2.8), i.e., we can determine
an orthogonal symplectic matrix U and an orthogonal matrix Q such that

B̃c
Z := UTBc

ZQ =
[
Z11 Z12

0 Z22

]
,(2.19)

B̃c
N := JQTJ TBc

NQ =
[
N11 N12

0 N T
11

]
.(2.20)

Thus, if B̃c
S := J (B̃c

Z)TJ T B̃c
Z , then

αB̃c
S − βB̃c

N = α(JQTJ TBc
SQ)− β(JQTJ TBc

NQ)
8



is a J -congruent skew-Hamiltonian/skew-Hamiltonian matrix pencil in Schur form. By (2.18) and
the fact that the finite eigenvalues of αS − βN are symmetric with respect to the real axis, we
observe that the spectrum of the extended matrix pencil αBc

S − βBc
N consists of two copies of the

spectrum of αS − βN . Consequently,

Λ(S,H) = Λ(S,−iN ) = Λ(ZT
22Z11,−iN11).

In this way, Algorithm 1 below computes the eigenvalues of the complex skew-Hamiltonian/Ha-
miltonian matrix pencil αS − βH = αS + iβN .

From this we can also derive the skew-Hamiltonian/Hamiltonian Schur form of αBS − βBH
where

BH = −iBN =
[
H 0
0 −H̄

]
(2.21)

and BS is as in (2.17). The spectrum of the extended matrix pencil αBS − βBH consists of two
copies of the spectrum of αS − βH [6]. If

Bc
H = −iBc

N = XH
c BHXc,(2.22)

then it follows from (2.19) and (2.20) that

B̃c
Z := UTBc

ZQ =
[
Z11 Z12

0 Z22

]
,(2.23)

B̃c
H := JQTJ TBc

HQ =
[
−iN11 −iN12

0 −(−iN11)H

]
,(2.24)

and the matrix pencil αB̃c
S − βB̃c

H := αJ (B̃c
Z)HJ T B̃c

Z − βB̃c
H is in skew-Hamiltonian/Hamilto-

nian Schur form. We have thus obtained the structured Schur form of the extended complex
skew-Hamiltonian/Hamiltonian matrix pencil αBc

S − βBc
H. Moreover,

αB̃c
S − βB̃c

H = JQHJ T (αBc
S − βBc

H)Q = (XcJQJ T )H (αBS − βBH)XcQ(2.25)

is in skew-Hamiltonian/Hamiltonian Schur form.
We have seen so far that we can compute structured Schur forms and thus are able to compute

the eigenvalues of the structured matrix pencils under consideration using the embedding technique
into a structured matrix pencil of double size.

3. Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Matrix Pencils. For the
solution of problems involving skew-Hamiltonian/Hamiltonian matrix pencils as described in the
introduction it is usually necessary to compute n-dimensional deflating subspaces associated with
eigenvalues in the closed left half plane. To get the desired subspaces we generalize the techniques
developed in [6]. For this we need a structure preserving method to reorder the eigenvalues along
the diagonal of the structured Schur form so that all eigenvalues with negative real part appear in
the (1, 1) block and eigenvalues with positive real part appear in the (2, 2) block. Such a reordering
method is described in Appendix B of [4].

The following theorem uses this eigenvalue ordering to determine the desired deflating sub-
spaces of the matrix pencil αS − βH from the structured Schur form (2.25).

Theorem 3.1. Let αS−βH ∈ C2n,2n be a skew-Hamiltonian/Hamiltonian matrix pencil with
J -semidefinite skew-Hamiltonian matrix S = JZHJ TZ. Consider the extended matrices

BZ = diag(Z, Z̄),

BT = diag(JZHJ T ,JZHJ T ),
BS = BT BZ = diag(S, S̄),
BH = diag(H,−H̄).

9



Let U ,V,W be unitary matrices such that

UHBZV =
[
Z11 Z12

0 Z22

]
=: RZ ,

WHBT U =
[
T11 T12

0 T22

]
=: RT ,(3.1)

WHBHV =
[
H11 H12

0 H22

]
=: RH,

where Λ−(BS ,BH) ⊂ Λ(T11Z11,H11) and Λ(T11Z11,H11)∩Λ+(BS ,BH) = ∅. Here Z11, T11,H11 ∈
Cm,m. Suppose Λ−(S,H) contains p eigenvalues. If

[
V1
V2

]
∈ C4n,m are the first m columns of V,

2p ≤ m ≤ 2n− 2p, then there are subspaces L1 and L2 such that

range V1 = Def−(S,H) + L1, L1 ⊆ Def0(S,H) + Def∞(S,H),
range V2 = Def+(S,H) + L2, L2 ⊆ Def0(S,H) + Def∞(S,H).

(3.2)

If Λ(T11Z11,H11) = Λ−(BS ,BH), and
[

U1
U2

]
,

[
W1
W2

]
are the first m columns of U , W, respectively,

then there exist unitary matrices QU , QV , QW such that

U1 = [P−
U , 0]QU , U2 = [0, P+

U ]QU ,
V1 = [P−

V , 0]QV , V2 = [0, P+
V ]QV ,

W1 = [P−
W , 0]QW , W2 = [0, P+

W ]QW

and the columns of P−
V and P+

V form orthogonal bases of Def−(S,H) and Def+(S,H), respectively.
Moreover, the matrices P−

U , P+
U , P−

W and P+
W have orthonormal columns and the following relations

are satisfied

ZP−
V = P−

U Z̃11, JZHJ T P−
U = P−

W T̃11, HP−
V = P−

W H̃11,

ZP+
V = P+

U Z̃22, JZHJ T P+
U = P+

W T̃22, HP+
V = −P+

W H̃22.
(3.3)

Here, Z̃kk, T̃kk and H̃kk, k = 1, 2, satisfy Λ(T̃11Z̃11, H̃11) = Λ(T̃22Z̃22, H̃22) = Λ−(S,H).
Proof. The factorizations in (3.1) imply that BSV = WRTRZ and BHV = WRH. Comparing

the first m columns and making use of the block forms we have

SV1 = W1(T11Z11), HV1 = W1H11,
SV2 = W2 (T11Z11), HV2 = −W2H11.

(3.4)

Clearly, range V1 and range V2 are both deflating subspaces of αS − βH. Since

Λ−(S,H) ⊆ Λ−(BS ,BH) ⊆ Λ(T11Z11,H11)

and Λ(T11Z11,H11) contains no eigenvalue with positive real part, we get

range V1 ⊆ Def−(S,H) + L1, L1 ⊆ Def0(S,H) + Def∞(S,H),
range V2 ⊆ Def+(S,H) + L2, L2 ⊆ Def0(S,H) + Def∞(S,H).

We still need to show that

Def−(S,H) ⊆ range V1, Def+(S,H) ⊆ range V2.(3.5)

Let Ṽ1 and Ṽ2 be full rank matrices whose columns form bases of Def−(S,H) and Def+(S,H),
respectively. It is easy to show that the columns of

[
Ṽ1
0

0

Ṽ2

]
span Def−(BS ,BH). This implies that

range

[
Ṽ1 0
0 Ṽ2

]
⊆ range

[
V1

V2

]
.
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Therefore,

range
[

Ṽ1

0

]
, range

[
0
Ṽ2

]
⊆ range

[
V1

V2

]
,

and from this we obtain (3.5) and hence (3.2).

If Λ(T11Z11,H11) = Λ−(BS ,BH), where p is the number of eigenvalues in Λ−(S,H), then from
(3.2) we have m = 2p and

range V1 = Def−(S,H), range V2 = Def+(S,H).

Hence, rank V1 = rankV2 = p and furthermore T11, Z11 and H11 must be nonsingular. Using (3.4)
we get

HV1 = SV1((T11Z11)−1H11),
HV2 = −SV2 ((T11Z11)−1H11).

Let V1 = [P−
V , 0]QV be an RQ (triangular-orthogonal) decomposition [17] with P−

V of full column
rank. Since rank V1 = p we have rankP−

V = p. Partition V2Q
H
V = [PV , P+

V ] conforming to V1Q
H
V .

Since the columns of
[

V1
V2

]
are orthonormal, we obtain (P+

V )HP+
V = Ip and hence rankP+

V = p.
Furthermore, since rankV2 = p we have

range PV ⊆ range P+
V = range V2,

and using orthonormality, we obtain PV = 0. Therefore, the columns of P−
V and P+

V form orthog-
onal bases of Def−(S,H) and Def+(S,H), respectively.

From (3.1) we have

ZV1 = U1Z11, JZHJ T U1 = W1T11, HV1 = W1H11,(3.6)

and

ZV2 = U2Z11, JZHJ T U2 = W2 T11, HV2 = −W2H11.(3.7)

Let U1 = [P−
U , 0]QU and W1 = [P−

W , 0]QW be RQ (triangular-orthogonal) decompositions, with
P−

U , P−
W of full column rank. Using V1 = [P−

V , 0]QV and the fact that ZP−
V , SP−

V and HP−
V are

of full rank (otherwise there would be a zero or infinite eigenvalue associated with the deflating
subspace range P−

V ), from the first and third identity in (3.6) we obtain

rank P−
U = rankP−

W = rankP−
V = p.

Moreover, setting

Z̃ = QUZ11Q
H
V , T̃ = QWT11Q

H
U , H̃ = QWH11Q

H
V ,

we obtain

Z̃ =
[

Z̃11 0
Z̃21 Z̃22

]
, T̃ =

[
T̃11 0
T̃21 T̃22

]
, H̃ =

[
H̃11 0
H̃21 H̃22

]
,

where all diagonal blocks are p× p.
Set U2Q

H
U =: [PU , P+

U ], W2Q
H
W =: [PW , P+

W ] and take V2Q
H
V =: [0, P+

V ]. The block forms
of Z̃, T̃ and H̃ together with the first identity of (3.7) imply that PU Z̃11 = P+

U Z̃21. Since the

columns of
[

U1
U2

]
are orthonormal, we have (P+

U )HP+
U = Ip and (P+

U )HPU = 0. Hence, Z̃21 = 0,

11



and consequently PU = 0. Similarly, from the third identity of (3.7) we get PW = 0, H̃21 = 0 and
from the second identity we obtain T̃21 = 0. Combining all these observations, we obtain[

Z 0
0 Z̄

] [
P−

V 0
0 P+

V

]
=

[
P−

U 0
0 P+

U

] [
Z̃11 0
0 Z̃22

]
,[

JZHJ T 0
0 JZHJ T

] [
P−

U 0
0 P+

U

]
=

[
P−

W 0
0 P+

W

] [
T̃11 0
0 T̃22

]
,[

H 0
0 −H̄

] [
P−

V 0
0 P+

V

]
=

[
P−

W 0
0 P+

W

] [
H̃11 0
0 H̃22

]
,

which gives (3.3).
We remark that (3.1) can be constructed from (2.25) by reordering the eigenvalues properly.
Theorem 3.1 gives a way to obtain the stable deflating subspace of a skew-Hamiltonian/Hamil-

tonian matrix pencil from the deflating subspaces of an embedded skew-Hamiltonian/Hamiltonian
matrix pencil of double size. This will be used by the algorithms formulated in the next section.

4. Algorithms. The results of Theorem 3.1 together with the embedding technique lead
to the following algorithm to compute the eigenvalues and the deflating subspaces Def−(S,H)
and Def+(S,H) of a complex skew-Hamiltonian/Hamiltonian matrix pencil αS − βH. Since the
algorithms are rather technical, we do not discuss details like eigenvalue reordering or explicit
elimination orders in the construction of the structured Schur forms. Instead we refer the reader
to the technical report [4] for these details.

In summary, Algorithm 1 proposed below transforms a 2n×2n complex skew-Hamiltonian/Ha-
miltonian matrix pencil with J -semidefinite skew-Hamiltonian part into a 4n× 4n complex skew-
Hamiltonian/Hamiltonian matrix pencil in Schur form. The process passes through intermediate
matrix pencils of the following types.

2n× 2n complex skew-Hamiltonian/Hamiltonian matrix pencil
αS − βH with S = JZHJ TZ.

⇓
Equation (2.18)

⇓
4n× 4n real skew-Hamiltonian/skew-Hamiltonian matrix pencil

αBc
S − βBc

N with Bc
S = J (Bc

Z)TJ TBc
Z

⇓
Algorithm 3 in [4]

⇓
4n× 4n real skew-Hamiltonian/skew-Hamiltonian matrix pencil in Schur form

αB̃c
S − βB̃c

N with B̃c
S = J (B̃c

Z)TJ T B̃c
Z

and B̃c
Z = UTBc

ZQ =
[
Z11
0

Z12
Z22

]
, B̃c

N = JQTJ TBc
NQ =

[
N11
0

N12

NT
11

]
as in (2.19) and (2.20)

⇓
Algorithm 4 in [4]

⇓
4n× 4n complex skew-Hamiltonian/Hamiltonian matrix pencil in Schur form

with ordered eigenvalues.

The required deflating subspaces of the original skew-Hamiltonian/Hamiltonian matrix pencil
are then obtained from the deflating subspaces of the final 4n×4n complex skew-Hamiltonian/Ha-
miltonian matrix pencil. (Unfortunately, if there are non-real eigenvalues, then Algorithm 4 in
[4] (the eigenvalue sorting algorithm) reintroduces complex entries into the 4n× 4n extended real
matrix pencil.)

Algorithm 1. Given a complex skew-Hamiltonian/Hamiltonian matrix pencil αS −βH with
J -semidefinite skew-Hamiltonian part S = JZHJ TZ, this algorithm computes the structured

12



Schur form of the extended skew-Hamiltonian/Hamiltonian matrix pencil αBc
S − βBc

H, the eigen-
values of αS−βH, and orthonormal bases of the deflating subspace Def−(S,H) and the companion
subspace range P−

U .
Input: Hamiltonian matrix H and the factor Z of S.
Output: P−

V , P−
U as defined in Theorem 3.1.

Step 1:
Set N = iH and form matrices Bc

Z , Bc
N as in (2.16) and (2.12), respectively. Find the

structured Schur form of the skew-Hamiltonian/skew-Hamiltonian matrix pencil αBc
S −

βBc
N using Algorithm 3 in [4] to compute the factorization

B̃c
Z = UTBc

ZQ =
[
Z11 Z12

0 Z22

]
,

B̃c
N = JQTJ TBc

NQ =
[
N11 N12

0 N T
11

]
,

where Q is real orthogonal, U is real orthogonal symplectic, Z11, ZT
22 are upper triangular

and N11 is quasi upper triangular.
Step 2:

Reorder the eigenvalues using Algorithm 4 in [4] to determine a unitary matrix Q̃ and a
unitary symplectic matrix Ũ such that

ŨH B̃c
ZQ̃ =

[
Z̃11 Z̃12

0 Z̃22

]
=: B̌c

Z ,

J Q̃HJ T (−iB̃c
N )Q̃ =

[
H11 H12

0 −HH
11

]
=: B̌c

H,

with Z̃11, Z̃H
22, H11 upper triangular such that Λ−(J (B̌c

Z)HJ T B̌c
Z , B̌c

H) is contained in
the spectrum of the 2p× 2p leading principal sub-pencil of αZ̃H

22Z̃11 − βH11.
Step 3:

Set V = [I2n, 0]XcQQ̃
[

I2p

0

]
, U = [I2n, 0]XcUŨ

[
I2p

0

]
(where Xc is as in (2.11)) and com-

pute P−
V , P−

U , orthogonal bases of range V and range U , respectively, using any numerically
stable orthogonalization scheme.

End
Based on flop counts, we estimate the cost of this algorithm to be roughly 50% of the cost

of the periodic QZ algorithm [10, 19] applied to the 2n × 2n complex pencil αJZHJ TZ − βH
(treating JZHJ T as one matrix).

If S is not factored, then the algorithm can be simplified by using the method of [32] to
compute the real skew-Hamiltonian/Hamiltonian Schur form of αBc

S − βBc
H directly.

Algorithm 2. Given a complex skew-Hamiltonian/Hamiltonian matrix pencil αS − βH.
This algorithm computes the structured Schur form of the extended skew-Hamiltonian/Hamiltoni-
an matrix pencil αBc

S −βBc
H, the eigenvalues of αS −βH, and an orthogonal basis of the deflating

subspace Def−(S,H).
Input: A complex skew-Hamiltonian/Hamiltonian matrix pencil αS − βH.
Output: P−

V as defined in Theorem 3.1.
Step 1:

Set N = iH and form the matrices Bc
S , Bc

N as in (2.17) and (2.12), respectively.
Find the structured Schur form of the skew-Hamiltonian/skew-Hamiltonian matrix pencil
αBc

S − βBc
N using Algorithm 5 in [4] to compute the factorization

B̌c
S = JQTJ TBc

SQ =
[
S11 S12

0 ST
11

]
,

B̌c
N = JQTJ TBc

NQ =
[
N11 N12

0 N T
11

]
,

where Q is real orthogonal, S11 is upper triangular and N11 is quasi upper triangular.
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Step 2:
Reorder the eigenvalues using Algorithm 6 in [4] to determine a unitary matrix Q̃ such
that

J Q̃HJ T B̌c
SQ̃ =

[
S̃11 S̃12

0 S̃H
11

]
,

J Q̃HJ T (−iB̌c
N )Q̃ =

[
H11 H12

0 −HH
11

]
,

with S̃11, H11 upper triangular and such that Λ−(B̌c
S ,−iB̌c

N ) is contained in the spectrum
of the 2p× 2p leading principal sub-pencil of αS̃11 − βH11.

Step 3:
Set V = [I2n, 0]XcQQ̃

[
I2p

0

]
(where Xc is as in (2.11)) and compute P−

V , the orthogonal
basis of range V , using any numerically stable orthogonalization scheme.

End
Algorithm 2 needs roughly 80% of the 1600n3 real flops required by the QZ algorithm applied

to the 2n×2n complex pencil αS −βH as suggested in [37]. If only the eigenvalues are computed,
then Algorithm 2 without accumulation of V needs roughly 60% of the 960n3 real flops required
by the QZ algorithm.

In this section we have presented numerical algorithms for the computation of (complex)
structured triangular forms. Various details appear in [4]. In the next section we give an error
analysis. The analysis is a generalization of the analysis for Hamiltonian matrices in [6, 7, 8].

5. Error and Perturbation Analysis. In this section we will give the perturbation analysis
for eigenvalues and deflating subspaces of skew-Hamiltonian/Hamiltonian matrix pencils. Vari-
ables marked with a circumflex denote perturbed quantities.

We begin with the perturbation analysis for the eigenvalues of αS−βH and αJZHJ TZ−βH.
In principle, we could multiply out JZHJ TZ and apply the classical perturbation analysis of ma-
trix pencils using the chordal metric [36], but this may give pessimistic bounds and would display
neither the effects of perturbing each factor separately nor the effects of structured perturbations.
Therefore, we make use of the perturbation analysis for formal products of matrices developed in
[9].

If Algorithm 2 is applied to the skew-Hamiltonian/Hamiltonian matrix pencil αS − βH, then
we compute the structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix
pencil αBc

S − βBc
H. The well-known backward error analysis of orthogonal matrix computations

implies that rounding errors in Algorithm 2 are equivalent to perturbing αBc
S − βBc

H to a nearby
matrix pencil αB̂c

S − βB̂c
H, where

B̂c
S = Bc

S + ES ,(5.1)
B̂c
H = Bc

H + EH,(5.2)

with ES ∈ SH4n, EH ∈ H4n and

||ES ||2 < cSε ||Bc
S ||2 ,(5.3)

||EH||2 < cHε ||Bc
H||2 .(5.4)

Here ε is the unit round of the floating point arithmetic and cS and cH are modest constants
depending on the details of the implementation and arithmetic. Let x and y be unit norm vectors
such that

Hx = α1y, Sx = β1y,(5.5)

and let λ = α1/β1 be a simple eigenvalue of αS − βH. If λ is finite and Re λ 6= 0, then −λ̄ is also
a simple eigenvalue of αS − βH. Let u, v be unit norm vectors such that

Hu = α2v, Su = β2v,(5.6)
14



and α2/β2 = −λ̄. Then we have

−H̄ū = −ᾱ2v̄, S̄ū = β̄2v̄.(5.7)

Using the equivalence of the matrix pencils αBc
S − βBc

H and αBS − βBH, and setting

U1 = XH
c

[
y 0
0 v̄

]
, U2 = XH

c

[
x 0
0 ū

]
,(5.8)

we obtain from (5.5) and (5.7) that

Bc
HU2 = U1

[
α1 0
0 −ᾱ2

]
, Bc

SU2 = U1

[
β1 0
0 β̄2

]
,

which implies that λ is a double eigenvalue of αBc
S − βBc

H with a complete set of linearly inde-
pendent eigenvectors. Similarly, −λ̄ is a double eigenvalue of αBc

S − βBc
H with a complete set of

linearly independent eigenvectors and

Bc
HV2 = V1

[
α2 0
0 −ᾱ1

]
, Bc

SV2 = V1

[
β2 0
0 β̄1

]
,

where

V1 = XH
c

[
v 0
0 ȳ

]
, V2 = XH

c

[
u 0
0 x̄

]
.(5.9)

Note that the finite eigenvalues with non-zero real part appear in pairs as in (5.5) and (5.6), but
infinite and purely imaginary eigenvalues may not appear in pairs. Consequently, in the following
perturbation theorem, the bounds for purely imaginary and infinite eigenvalues are different from
the bounds for finite eigenvalues with non-zero real part.

Theorem 5.1. Consider the skew-Hamiltonian/Hamiltonian matrix pencil αS − βH along
with the corresponding extended matrix pencils αBc

S − βBc
H = XH

c (αBS − βBH)Xc, where BS is
given by (2.15), BH by (2.21), Bc

H by (2.22), Xc by (2.11) and Bc
S by (2.17). Let αB̂c

S − βB̂c
H be

a perturbed extended matrix pencil satisfying (5.1)–(5.4) with constants cH, cS and let ε be equal
to the unit round of the floating point arithmetic.

If λ is a simple eigenvalue of αS−βH with vectors x and y as in (5.5) and vectors u and v as
in (5.6), then the corresponding double eigenvalue of αBc

S − βBc
H may split into two eigenvalues

λ̂1 and λ̂2 of the perturbed matrix pencil αB̂c
S − βB̂c

H, each of which satisfies the following bounds.
(i) If λ is finite and Re λ 6= 0, then∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤ ε

|uHJ y|

(
cH
|α1|

||H||2 +
cS
|β1|

||S||2

)
+ O(ε2), k = 1, 2.

(ii) If λ is finite and Re λ = 0, then

|λ̂k − λ| ≤ ε

|β1||xHJ y|
(cH ||H||2 + cS |λ| ||S||2) + O(ε2), k = 1, 2.

(iii) If λ = ∞, then

1

|λ̂k|
≤ ε

cS ||S||2
|α1||xHJ y|

+ O(ε2), k = 1, 2.

Proof. We first consider the case that λ is finite and Re λ 6= 0. Let U1 and U2 be defined by
(5.8) and V1 and V2 be defined by (5.9). Using the perturbation theory for formal products of
matrices (see [9]), we obtain∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤ min
(∣∣∣∣∣∣∣∣(VH

2 JU1CS)−1VH
2 J (

1
λ
EH − ES)U2

∣∣∣∣∣∣∣∣
2

,∣∣∣∣∣∣∣∣(VH
2 JU1)−1VH

2 J (
1
λ
EH − ES)U2C

−1
S

∣∣∣∣∣∣∣∣
2

)
+ O(ε2).
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Here, CS =
[

β1
0

0
β̄2

]
and VH

2 JU1 =
[

u
0

0
x̄

]H XcJXH
c

[
y
0

0
v̄

]
=

[
uHJ y

0
0

xTJ v̄

]
. The second equation

in (5.6) implies uHJS = β̄2v
HJ . Combining this with the second equation of (5.5) we get

β̄2v
HJ x = β1u

HJ y. Hence,∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣(VH

2 JU1CS)−1VH
2 J (

1
λ
EH − ES)U2

∣∣∣∣∣∣∣∣
2

+ O(ε2)

≤
∣∣∣∣(VH

2 JU1CS)−1
∣∣∣∣
2

∣∣∣∣∣∣∣∣ 1λEH − ES
∣∣∣∣∣∣∣∣
2

+ O(ε2)

≤ 1
|uHJ y|

(
||EH||2
|β1λ|

+
||ES ||2
|β1|

)
+ O(ε2)

≤ ε

|uHJ y|

(
cH
|α1|

||H||2 +
cS
|β1|

||S||2

)
+ O(ε2).

If λ is purely imaginary or infinite, then the bounds are obtained by adapting the classical
perturbation theory in [36] to a formal product of matrices (for details see [9]) and by replacing
(5.7) with −H̄x̄ = −ᾱ1ȳ and S̄x̄ = β̄1ȳ as well as replacing u, v, α2 and β2 by x, y, α1 and β1,
respectively.

The bound in part 1 appears to involve only u, y, α1 and β1 but not v, x, α2 and β2. However,
note in the proof that β̄2v

HJ x = β1u
HJ y, so the bound implicitly involves all the parameters.

Note further, that if S is nonsingular, then vHJ x and uHJ y are just the reciprocals of the
condition number of λ as eigenvalue of S−1H and HS−1, respectively, see [6].

If S is given in factored form, Algorithm 1 computes a unitary symplectic matrix U and a
unitary matrix Q which reduce the perturbed matrices

B̂c
Z := Bc

Z + EZ , B̂c
H := Bc

H + EH(5.10)

to block upper triangular form as in (2.23) and (2.24), where

||EZ ||2 ≤ cZε ||Bc
Z ||2 , ||EH||2 ≤ cHε ||Bc

H||2(5.11)

and cZ and cH are constants. The eigenvalue perturbation bounds then are essentially the same
as in Theorem 5.1.

Theorem 5.2. Consider the skew-Hamiltonian/Hamiltonian matrix pencil αS − βH with
J -semidefinite skew-Hamiltonian part S = JZHJ TZ. Let αBc

S − βBc
H = XH

c (αBS − βBH)Xc

be the corresponding extended matrix pencils, where Bc
S = J (Bc

Z)HJ TBc
Z , BZ and Bc

Z are given
by (2.13) and (2.16), BH and Bc

H by (2.21) and (2.22), and Xc by (2.11). Let (B̂c
Z , B̂c

H) be the
perturbed extended matrix pair in (5.10), (5.11) with constants cH, cZ .

Let λ be a simple eigenvalue of αS − βH = αJZHJ TZ − βH with Re λ 6= 0, and let x, y, z,
u, v, w be unit norm vectors such that

JZHJ T x = α1y, Hz = β1y, Zz = γ1x,(5.12)

with λ = β1
α1γ1

, and

JZHJ T u = α2v, Hw = β2v, Zw = γ2u,(5.13)

with −λ̄ = β2
α2γ2

.

The corresponding double eigenvalue of αBc
S − βBc

H may split into two eigenvalues λ̂1 and λ̂2

of the perturbed matrix pencil αB̂c
S − βB̂c

H, each of which satisfies the following bounds.
(i) If λ is finite and Re λ 6= 0, then∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤ ε

(
cH

|β1wHJ y|
||H||2 + 2

cZ
min{|γ1uHJ x|, |α1wHJ y|}

||Z||2

)
+ O(ε2).
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(ii) If λ is purely imaginary, then

|λ̂k − λ| ≤ ε

(
cH

|α1γ1yHJ z|
||H||2 +

2|λ|cZ
|γ1uHJ x|

||Z||2

)
+ O(ε2).

(iii) If λ = ∞, then |λ̂k|
−1

= O(ε2).
Proof. The perturbation analysis follows [9]. If λ is finite and Re λ 6= 0, then∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣(VH

2 JU3)−1(C̃1C̃3)−1(VH
3 EH

Z JU1C3 + C̃H
3 UH

1 J EZU3 −
1
λ
VH

3 J EHU3)
∣∣∣∣∣∣∣∣
2

+ O(ε2),

where U1 = XH
c

[
x
0

0
ū

]
∈ C4n,2, U3 = XH

c

[
z
0

0
w̄

]
∈ C4n,2, V2 = XH

c

[
v
0

0
ȳ

]
∈ C4n,2, V3 =

XH
c

[
w
0

0
z̄

]
∈ C4n,2, and C̃1 =

[
α2
0

0
ᾱ1

]
∈ C2,2, C̃3 =

[
γ2
0

0
γ̄1

]
∈ C2,2, C3 =

[
γ1
0

0
γ̄2

]
∈ C2,2.

From VH
2 JU3 =

[
vHJ z

0
0

yTJ w̄

]
, it follows that∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤ max{|γ1|, |γ2|} ||EZ ||2 + 1
|λ| ||EH||2

min{|ᾱ2γ̄2vHJ z|, |α1γ1wHJ y|}
+

||EZ ||2
min{|ᾱ2vHJ z|, |α1wHJ y|}

+ O(ε2).

From (5.12) and (5.13), we also have

ᾱ2v
HJ z = γ1u

HJ x, γ̄2u
HJ x = α1w

HJ y, β̄2v
HJ z = −β1w

HJ y.(5.14)

It follows that

|ᾱ2γ̄2v
HJ z| = |γ̄2γ1u

HJ x| = |γ1α1w
HJ y|.

Hence,

max{|γ1|, |γ2|}
min{|ᾱ2γ̄2vHJ z|, |α1γ1wHJ y|}

=
1

min{|ᾱ2vHJ z|, |α1wHJ y|}
,

|λ|min{|ᾱ2γ̄2v
HJ z|, |α1γ1w

HJ y|} = |β1w
HJ y|,

and ∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤ ε

(
cH

|β1wHJ y|
||H||2 +

2cZ
min{|ᾱ2vHJ z|, |α1wHJ y|}

||Z||2

)
+ O(ε2).

Equation (5.14) implies that ᾱ2v
HJ z = γ1u

HJ x. The first part of the theorem follows.
If λ is purely imaginary, the proof is analogous.
If λ = ∞, then α1 = 0 or γ1 = 0 and β1 6= 0. Using the first equation of (5.14), we have

ᾱ1y
HJ z = γ1x

HJ x, where we have replaced u, v and α2 by x, y and α1, respectively ((5.12) and
(5.13) are the same now). Since λ is simple, i.e., yHJ z 6= 0 and xHJ x 6= 0, we have α1 = γ1 = 0
and hence,

C1 =
[

α1 0
0 ᾱ1

]
= 0, C3 =

[
γ1 0
0 γ̄1

]
= 0, C2 =

[
β1 0
0 β̄1

]
6= 0.

Therefore,

E∞ := CH
1 C−H

2 UH
3 EH

Z JU1 − UH
1 J EZU3C

−1
2 C1 − CH

1 C−H
2 UH

3 J EHU3C
−1
2 C1 = 0.

From [9, Theorem 23, part b)], we get∣∣∣∣ 1

λ̂k

∣∣∣∣ ≤ ∣∣∣∣(UH
1 JU1)−1E∞

∣∣∣∣
2

+ O(ε2) = O(ε2).(5.15)
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If the matrix pencil αS −βH with J -semidefinite skew-Hamiltonian part S = JZHJ TZ has
semi-simple, multiple, infinite eigenvalues, then the perturbation bound (5.15) weakens to O(ε)
[9].

To study the perturbations in the computed deflating subspaces we need to study the perturba-
tions for the extended matrix pencil in more detail. As mentioned before, by applying Algorithm 2
to αBc

S − βBc
H we actually compute a unitary matrix Q̂ such that

J Q̂HJ T (αB̂c
S − βB̂c

H)Q̂ = αR̂S − βR̂H

=: α

[
Ŝ11 Ŝ12

0 ŜH
11

]
− β

[
Ĥ11 Ĥ12

0 −ĤH
11

]
,(5.16)

where B̂c
S and B̂c

H are defined in (5.1) and (5.2), and Λ(Ŝ11, Ĥ11) = Λ−(B̂c
S , B̂c

H). If we assume
that the matrix pencil αS − βH has no purely imaginary eigenvalues, then by Theorem 2.6 there
exist unitary matrices Q1, Q2 such that

JQH
1 J T (αS − βH)Q1 = α

[
S−11 S−12
0 (S−11)

H

]
− β

[
H−

11 H−
12

0 −(H−
11)

H

]
with Λ(S−11,H

−
11) = Λ−(S,H), and

JQH
2 J T (αS − βH)Q2 = α

[
S+

11 S+
12

0 (S+
11)

H

]
− β

[
H+

11 H+
12

0 −(H+
11)

H

]
with Λ(S+

11,H
+
11) = Λ+(S,H), respectively. Set Q = XH

c diag(Q1, Q̄2)P with P and Xc as in
(2.10) and (2.11). Then Q is unitary and

JQHJ T (αBc
S − βBc

H)Q

= α


S−11 0 S−12 0
0 S+

11 0 S+
12

0 0 (S−11)
H 0

0 0 0 (S+
11)

H

− β


H−

11 0 H−
12 0

0 −H+
11 0 −H+

12

0 0 −(H−
11)

H 0
0 0 0 (H+

11)
H


=: α

[
S11 S12

0 SH
11

]
− β

[
H11 H12

0 −HH
11

]
(5.17)

=: αRS − βRH.

This is the structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix pencil
αBc

S − βBc
H. Moreover, Λ(S11,H11) = Λ−(Bc

S ,Bc
H).

In the following, we will use the linear space Cn,n × Cn,n endowed with the norm

||(X, Y )|| = max{||X||2 , ||Y ||2}.

Theorem 5.3. Let αS − βH be a regular skew-Hamiltonian/Hamiltonian matrix pencil with
neither infinite nor purely imaginary eigenvalues. Let P−V be the orthogonal basis of the deflating
subspace of αS−βH corresponding to Λ−(S,H), and let P̂−V be the perturbation of P−V obtained by
Algorithm 2 in finite precision arithmetic. Denote by Θ ∈ Cn,n the diagonal matrix of canonical
angles between P−V and P̂−V .

Using the structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix pencil
αBc

S − βBc
H (as in (2.17) and (2.22)) given by (5.17), define δ by

δ = min
Y ∈C2n,2n\{0}

∣∣∣∣(HH
11Y + Y HH11,SH

11Y − Y HS11)
∣∣∣∣

||Y ||2
.(5.18)

If

8 ||(ES , EH)|| (δ + ||(S12,H12)||) < δ2,(5.19)
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then

||Θ||2 < cb
||(ES , EH)||

δ
< cbε

||(cSS, cHH)||
δ

,(5.20)

where cS and cH are the modest constants in (5.3)–(5.4) and cb = 8(
√

10 + 4)/(
√

10 + 2) ≈ 11.1.
Proof. Let αR̂S−βR̂H, Q̂ be the output of Step 2 in Algorithm 2 in finite precision arithmetic,

where B̂c
S , B̂c

H satisfy (5.1) and (5.2). Let Q̃ be the unitary matrix computed by Algorithm 2 in
exact arithmetic such that

J Q̃HJ T (αBc
S − βBc

H)Q̃ = αR̃S − βR̃H

= α

[
S̃11 S̃12

0 S̃H
11

]
− β

[
H̃11 H̃12

0 −H̃H
11

]
,

with Λ(S̃11, H̃11) = Λ−(Bc
S ,Bc

H). Since (5.17) is another structured Schur form with the same
eigenvalue ordering, there exists a unitary diagonal matrix G = diag(G1, G2) such that Q = Q̃G.
Therefore, we have ∣∣∣∣∣∣(S̃12, H̃12)

∣∣∣∣∣∣ = ||(S12,H12)|| ,

and for δ given in (5.18) we also have

δ = min
Y ∈C2n,2n\{0}

∣∣∣∣∣∣(H̃H
11Y + Y HH̃11, S̃H

11Y − Y H S̃11)
∣∣∣∣∣∣

||Y ||2
.

Let

ẼS := J Q̃HJ TESQ̃ =:
[
E11 E12

E21 EH
11

]
, ẼH := J Q̃HJ TEHQ̃ =:

[
F11 F12

F21 −FH
11

]
and set γ = ||(E21,F21)||, η =

∣∣∣∣∣∣(S̃12 + E12, H̃12 + F12)
∣∣∣∣∣∣ and δ̃ = δ − 2 ||(E11,F11)||. Since we have∣∣∣∣∣∣(ẼS , ẼH)

∣∣∣∣∣∣ = ||(ES , EH)||, condition (5.19) implies that

δ̃ ≥ δ − 2 ||(ES , EH)|| > 3
4
δ,

and clearly,

4 ||(ES , EH)|| ||(S12,H12)|| < δ2 − 4δ ||(ES , EH)|| .

Hence

γη

δ̃2
≤
||(ES , EH)|| {

∣∣∣∣∣∣(S̃12, H̃12)
∣∣∣∣∣∣ + ||(ES , EH)||}

(δ − 2 ||(ES , EH)||)2

<
||(ES , EH)||2 + (δ2 − 4δ ||(ES , EH)||)/4

(δ − 2 ||(ES , EH)||)2
=

1
4
.

Following the perturbation analysis for a formal product of matrices in [9], it can be shown that
there exists a unitary matrix

W =
[

(I + WHW )−
1
2 −WH(I + WWH)−

1
2

W (I + WHW )−
1
2 (I + WWH)−

1
2

]
with

||W ||2 < 2
γ

δ̃
<

8
3

γ

δ
<

1
3

(5.21)
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such that

J (Q̃W)HJ T (αB̂c
S − βB̂c

H)(Q̃W)

is another structured Schur form of the perturbed matrix pencil. Since there are neither infinite
nor purely imaginary eigenvalues, (5.16) implies that Q̂HQ̃W is unitary block diagonal.

Without loss of generality we may take Q̂ = Q̃W. If Xc is as in (2.11) and XcQ̃ =
[
Q11
Q21

Q12
Q22

]
,

then it follows from Theorem 3.1 that P−V = rangeQ11. Clearly P̂−V = range{(Q11 +Q12W )(I +
WHW )−

1
2 }. The upper bound (5.20) can then be derived from (5.21), by using the same argument

as in the proof of Theorem 4.4 in [6].
If S is given in factored form, then we obtain a similar result. In this case, by using Algorithm 1

we compute a unitary matrix Q̂ and a unitary symplectic matrix Û such that

ÛH B̂c
ZQ̂ = R̂Z =:

[
Ẑ11 Ẑ12

0 Ẑ22

]
,

J Q̂HJ T B̂c
HQ̂ = R̂H =:

[
Ĥ11 Ĥ12

0 −ĤH
11

]
,(5.22)

where B̂c
Z and B̂c

H are defined in (5.10) and (5.11), and Λ(ẐH
22Ẑ11, Ĥ11) = Λ−(B̂c

S , B̂c
H), where

B̂c
S = J (B̂c

Z)HJ T B̂c
Z .

Analogous to Theorem 2.7, if αS − βH has no purely imaginary eigenvalues, then there exist
unitary matrices Q1, Q2 and unitary symplectic matrices U1, U2 such that

UH
1 ZQ1 =

[
Z−11 Z−12
0 Z−22

]
, JQH

1 J THQ1 =
[

H−
11 H−

12

0 −(H−
11)

H

]
,

with Λ((Z−22)
HZ−11,H

−
11) = Λ−(S,H), and

UH
2 ZQ2 =

[
Z+

11 Z+
12

0 Z+
22

]
, JQH

2 J THQ2 =
[

H+
11 H+

12

0 −(H+
11)

H

]
,

with Λ((Z+
22)

HZ+
11,H

+
11) = Λ+(S,H), respectively. Set

Q = XH
c diag(Q1, Q̄2)P, U = XH

c diag(U1, Ū2)P,

where P and Xc are as in (2.10) and (2.11). Then Q is unitary and U ∈ US4n, and a simple
calculation yields

UHBc
ZQ =


Z−11 0 Z−12 0
0 Z+

11 0 Z+
12

0 0 Z−22 0
0 0 0 Z+

22

 =:
[
Z11 Z12

0 Z22

]
=: RZ ,(5.23)

JQHJ TBc
HQ =


H−

11 0 H−
12 0

0 −H+
11 0 −H+

12

0 0 −(H−
11)

H 0
0 0 0 (H+

11)
H

 =:
[
H11 H12

0 −HH
11

]
=: RH.(5.24)

This leads to the structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix
pencil αJ (Bc

Z)HJ TBc
Z − βBc

H with Λ(ZH
22Z11,H11) = Λ−(Bc

S ,Bc
H).

Theorem 5.4. Consider the regular skew-Hamiltonian/Hamiltonian matrix pencil αS − βH
with nonsingular, J -definite skew-Hamiltonian part S = JZHJ TZ. Suppose that αS − βH has
no eigenvalue with zero real part. Let the extended skew-Hamiltonian and Hamiltonian matrix Bc

Z
20



and Bc
H be as in (2.16) and (2.22), respectively with structured triangular form given by (5.23)

and (5.24). Define δp as

δp = min
(X,Y )∈C2n,2n×C2n,2n\{(0,0)}

∣∣∣∣(HH
11Y + Y HH11, XZ11 −Z22Y )

∣∣∣∣
||(X, Y )||2

.

Define errors EZ and EH by (5.10) and (5.11). Let P−V , P−U , P̂−V and P̂−U be the deflating subspaces
computed by Algorithm 1 in exact and finite precision arithmetic, respectively. Denote by ΘV ,ΘU ∈
Cn,n the diagonal matrices of canonical angles between P−V and P̂−V , P−U and P̂−U , respectively.

If

8 ||(EZ , EH)|| (δp + ||(Z12,H12)||) < δ2
p,

then

||ΘV ||2 , ||ΘU ||2 < cb
||(EZ , EH)||

δp
< cbε

||(cZZ, cHH)||
δp

,

with cb as in Theorem 5.3.
Proof. The proof is analogous to the proof of Theorem 5.3.
It follows that the described numerical algorithms are numerically backwards stable. These

algorithms can also be used to compute deflating subspaces which contain eigenvectors associated
with infinite or purely imaginary eigenvalues. By Theorem 3.1 we get partial information also in
these cases, but we face the difficulty that the desired deflating subspace may not be unique or
may not exist. (See the recent analysis for Hamiltonian matrices [29]).

6. Conclusion. We have presented numerical procedures for the computation of structured
Schur forms, eigenvalues, and deflating subspaces of matrix pencils with matrices having a Ha-
miltonian and/or skew-Hamiltonian structure. These methods generalize the recently developed
methods for Hamiltonian matrices which use an extended, double dimension Hamiltonian matrix
that always has a Hamiltonian Schur form.

The algorithms circumvent problems with skew-Hamiltonian/Hamiltonian matrix pencils that
lack a structured Schur form by embedding them in extended matrix pencils that always admit a
structured Schur form. For the extended matrix pencils, the algorithms use structure preserving
unitary matrix computations and are strongly backwards stable, i.e., they compute the exact
structured Schur form of a nearby matrix pencil with the same structure. Such structured Schur
forms can always be computed regardless of the regularity of the original matrix pencil.

It is still somewhat unsatisfactory that the algorithms do not efficiently exploit the micro
structures of the extended matrix pencils, as for example in the matrix Bc

N in (2.12). How best
to use these micro structures is still an open question.

Practical implementation and numerical experiments are in progress and will be reported
elsewhere. For detailed algorithms and implementation issues see [4].

Acknowledgments. We gratefully acknowledge Daniel Kressner for his assistance imple-
menting and testing experimental versions of parts of the algorithms discussed here.
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