
PIECEWISE CONTINUOUS TOEPLITZ MATRICES ANDOPERATORS: SLOW APPROACH TO INFINITYALBRECHT B�OTTCHER�, MARK EMBREEy, AND LLOYD N. TREFETHENyAbstrat. The pseudospetra of banded �nite dimensional Toeplitz matries rapidly onverge tothe pseudospetra of the orresponding in�nite dimensional operator. This exponential onvergenemakes a ompelling ase for analyzing pseudospetra of suh Toeplitz matries, not just eigenvalues.But what if the matrix is dense and its symbol has a jump disontinuity? The pseudospetra of the�nite matries still onverge, but it is shown here that the rate is no longer exponential in the matrixdimension, only algebrai.Key words. Toeplitz matrix, pieewise ontinuous symbol, pseudospetraAMS subjet lassi�ations. 47B35, 15A60Let T be a Toeplitz operator (singly in�nite matrix) on `2(N) with symbol a 2L1(T), where T is the unit irle. If a is ontinuous, then the spetrum spT isthe urve a(T) together with all the points this urve enloses with nonzero windingnumber [6℄. This result generalizes to pieewise ontinuous a: If a#(T) is the urveonsisting of the omponents of a(T) onneted by straight segments at points ofdisontinuity, then spT is a#(T) together with all the points it enloses with nonzerowinding number; see [5, x1.8℄.A long-reognized anomaly is that the spetra of Toeplitz matries TN of �nitedimension N look very di�erent, typially onsisting of points distributed along urvesrather than aross regions, even asN !1 [1, 5, 10, 11, 15℄. Some kind of resolution ofthis anomaly was obtained with the disovery that although the spetra of the matrixand the operator do not agree, the "-pseudospetra may agree very losely [8, 9℄.(The "-pseudospetrum sp" A of a matrix or operator A is the set of points z 2 Csatisfying k(zI�A)�1k � "�1, where we write k(zI�A)�1k =1 when z 2 spA; see,e.g., [12, 13℄.) In partiular, if TN is banded, then for eah point z enlosed by a(T)with nonzero winding number, k(zI � TN )�1k grows exponentially as N !1 [3, 9℄;the ondition number kVNkkV �1N k of any matrix VN of eigenvetors of TN is likewiseexponentially large. As illustrated by numerial examples in [9℄, the result is that forsmall ", the "-pseudospetra of TN typially look muh like the spetrum of T forvalues of N on the order of hundreds.A more general onvergene result for sp" TN has been proved in [2℄. If a 2 L1(T)is pieewise ontinuous, then for eah " > 0, sp" TN onverges to sp" T as N ! 1.The question arises: If a is disontinuous, is the onvergene still fast enough to beompelling for modest values of N?We have found that the answer is no. If the symbol is disontinuous, the rate atwhih k(zI�TN)�1k and kVNkkV �1N k inrease as N !1 may drop from exponentialto algebrai, hanging the qualitative nature of the pseudospetra strikingly.We onsider the following simple example. Take a suh that a(T) is the right halfof the unit irle, spei�ally, a(ei�) = ie�i�=2 for � 2 [0; 2�). Then spT is the losedright half of the unit disk, and TN is a dense Toeplitz matrix whose entries are given�Fakult�at f�ur Mathematik, TU Chemnitz, 09107 Chemnitz, Germany (albreht.boetther�mathematik.tu-hemnitz.de).yOxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD,UK (embree�omlab.ox.a.uk, LNT�omlab.ox.a.uk). Supported by UK Engineering and PhysialSienes Researh Counil Grant GR/M12414. 1
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N = 102 N = 103 N = 104Fig. 1. Eigenvalues and "-pseudospetra for the Toeplitz matries TN given by (1) for threevalues of N with " = 10�1, 10�2, and 10�3 (from the outside in). The ross (+) marks the origin.Exept in the �rst image, the eigenvalues are so numerous that they appear fused into a urve. Thethikness of this urve is atually due to the boundaries of the 10�2- and 10�3-pseudospetra; theboundary of the 10�3-pseudospetrum also a�ets the thikness of the middle eigenvalues in the �rstplot. We believe these images are orret to plotting auray.by the Fourier oeÆients of the symbol,(TN)jk := 1�(j � k + 12 ) ; j; k = 1; : : : ; N:(1)Figure 1 shows numerially omputed "-pseudospetra of TN for N = 100, 1000, and10 000 with " = 10�1, 10�2 and 10�3. Note how far they are from spT for thesmaller values of ", and how the interior ars approximate irles passing through�i. Figure 2 shows resolvent norms as a funtion of N for points on the real axis.For z = 12 , the bound k(zI � TN)�1k grows roughly like 3:8N0:30. At this rate, theresolvent norm will not exeed 105 until N � 1015. For z = 0, k(zI � TN )�1k growsroughly like 0:4 logN+1:5; it will not exeed 105 until N � 10108572. This behavior isrelated to the \Moler phenomenon," the observation that the norm of the matrix (1)approahes 1 spetaularly fast as N ! 1 while the smallest singular value deaysto 0 very slowly [5, x4.5℄, [14℄.Here is a mathematial foundation for these observations. Let a be a pieewiseC2 funtion with at most one jump disontinuity, say at ei�0 2 T. For z outside a(T),let arg(a � z) be any ontinuous argument of a � z on T n fei�0g. De�ne �z, theCauhy index of a with respet to z, by�z = 12� �arg�a(ei(�0+2��0))� z�� arg�a(ei(�0+0))� z�� ;and put �z = j�z j. If �z < 12 , then zI � TN is invertible for all suÆiently large N ,and it is well known that k(zI � TN )�1k = O(1) in this ase [7℄. If �z � 1, thenk(zI � TN )�1k may grow exponentially, as trigonometri polynomials (i.e., bandedmatries) with nonzero winding number about z show. The following result tells usthat for 12 � �z < 1, we have just algebrai growth at a known rate.
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101 102 103 104Fig. 2. The resolvent norm as a funtion of N for the lass of matries (1). The growth isalgebrai for z = 14 ; 12 and 34 and logarithmi for z = 0. For z = � 14 , k(zI � TN )�1k is boundedby 4 (see Theorem 3:19 of [5℄).Theorem. If 12 � �z < 1, then for every Æ > 0 there exist positive onstants Czand Dz;Æ suh that CzN2�z�1 � k(zI � TN )�1k � Dz;ÆN2�z�1+Æ(2)for all suÆiently large N .In the example (1), we have �z < 12 for all z outside spT and �z = 12 for z 2 (�i; i).For z in the interior of spT , we have�z = 1� 1� artan 1x;(3)where x 2 (0; 1) is the point at whih the irular ar through �i; z; i intersetsthe real line. In partiular, 12 < �z < 34 , and hene, by our theorem, the resolventnorm inreases at most like O(N1=2) for z in the interior of spT , explaining the slowonvergene seen in Figure 1. Moreover, formula (3) also reveals why the interior arsof Figure 1 are lose to irles passing through �i and i. Finally, our theorem explainsFigure 2. For z = 12 , for example, we have 2�z � 1 = 0:295 : : :, in good agreementwith the growth 3:8N0:30 estimated numerially.Sketh of the proof of the theorem. The proof of the upper bound in (2) an bebased on the argument used to prove Theorem 6.1() of [4℄: A theorem by Verbitskyand Krupnik (see, e.g., Theorem 7.20 of [5℄) states that the resolvent norm is uniformlybounded on ertain weighted `p spaes, and appropriate hoie of these spaes togetherwith H�older's inequality gives the `2 estimate O(N2�z�1+Æ). To prove the lower boundin (2), assume that 12 � �z < 1. (The ase �1 < �z � � 12 an be redued to this aseby passing to adjoints.) We an write a � z = z'z , where z is a ontinuous andpieewise C2 funtion with no zeros on T and with zero winding number and where
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Fig. 3. Slow growth for the symbol a(ei�) = �ei�. On the left, omputed eigenvalues and "-pseudospetra for the Toeplitz matrix of dimension N = 1000 for " = 10�1, 10�2, 10�3, 10�4. (Theeigenvalues appear fused into a urve near the essential range of a.) The shaded region shows thespetrum of the orresponding in�nite dimensional operator. On the right, ontour lines of onstant�z for �z = 0:5; 0:55; : : : ; 1:45 (lokwise from right).'z is a ertain anonial pieewise ontinuous funtion with a single jump (see, e.g.,pp. 170{171 and 182 of [5℄). Here z is a omplex number whose real part equals �z.By Cramer's rule, the (N; 1) entry of (zI � TN)�1 is (�1)N+1 times the quotient oftwo Toeplitz determinants,�(zI � TN)�1�N;1 = (�1)N+1DN�1(z'z�1)DN(z'z ) ;and sine jRe z j < 1 and jRe z�1j < 1, we an invoke Re�nement 5.46 of [5℄ (whihproves an important speial ase of the Fisher{Hartwig onjeture) to onlude thatthe absolute value of [(zI � TN)�1℄N;1 is asymptotially equal to a nonzero onstanttimes �����N�(z�1)2N�2z ����� = ��N2z�1�� = N2Re z�1 = N2�z�1:As the norm of (zI � TN)�1 is greater than the modulus of its (N; 1) entry, we arriveat the lower bound of (2).For z = 0, the estimate (2) asserts that C � kT�1N k � DÆNÆ for arbitrary Æ > 0.Tyrtyshnikov [14℄ showed that in this ase we atually haveC logN � kT�1N k � D logN:We may summarize our observations as follows. Sine the pseudospetra, orresolvent norms, onverge, TN must \behave" as if spTN = spT for suÆiently largeN . However, it is worth bearing in mind that a typial marosopi system has onthe order of 108 or 1010 atoms or moleules in eah diretion (on the order of the uberoot of Avogadro's number or somewhat more). Thus for TN to behave like T , thedimension N will have to be larger than the numbers that usually pass for in�nity inthe physis of gases, liquids, and solids.Figure 3 presents a further example, the Toeplitz matries assoiated with thesymbol a(ei�) = �ei�. The eigenvalues of these �nite Toeplitz matries have been
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