EXISTENCE, UNIQUENESS AND PARAMETRIZATION OF
LAGRANGIAN INVARIANT SUBSPACES
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Abstract. The existence, uniqueness and parametrization of Lagrangian invariant subspaces for
Hamiltonian matrices is studied. Necessary and sufficient conditions and a complete parameterization
are given.

Some necessary and sufficient conditions for the existence of Hermitian solutions of algebraic
Riccati equations follow as simple corollaries.
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1. Introduction. The computation of invariant subspaces of Hamiltonian ma-
trices is an important task in many applications in LQ and H., control, Kalman
filtering or spectral factorization, see [13, 15, 20, 28] and the references therein.

DEFINITION 1.1. A matriz H € C*™" is called Hamiltonian if J,H = (J,H)Y

1s Hermitian, where J,, = [73 IO"

H denotes the conjugate transpose.
Every Hamiltonian matrix 7 has the block form

A M
wela ]

], I,, is the n X n identity matrix and the superscript

with M = MY, G = GH. Hamiltonian matrices are closely related to algebraic
Riccati equations of the form

(1.1) APX 4 XA-XMX+G=0.
It is well known [15] that if X = X solves (1.1), then

(1.2) H[f&ﬁjz[ﬁ%ﬁj{mfgx)_m}$mH‘

This implies that the columns of [ f’)‘(] span an invariant subspace of H associated

with the eigenvalues of A — M X. Invariant subspaces of this form are called graph
subspaces [15]. The graph subspaces of Hamiltonian matrices are special Lagrangian
subspaces.

DEFINITION 1.2. A subspace L of C2" is called Lagrangian subspace if it has
dimension n and

¥ J,y =0, Vz,yelL.

Clearly a subspace L is Lagrangian if and only if every matrix L whose columns span
L satisfies rank L = n and L7 J,L = 0.
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Despite the fact that Hamiltonian matrices, algebraic Riccati equations and their
properties have been a very active area of research for the last 40 years, there are
still many open problems. These problems are mainly concerned with Hamiltonian
matrices that have eigenvalues with zero real part and in particular with numerical
methods for such problems.

In this paper we summarize and extend the known conditions for existence of
Lagrangian invariant subspaces of a Hamiltonian matrix. Based on these results we
then give a complete parametrization of all possible Lagrangian invariant subspaces
and also discuss necessary and sufficient conditions for the uniqueness of Lagrangian
invariant subspaces.

Most of the literature on this topic is stated in terms of Hermitian solutions
for algebraic Riccati equations, see [15]. For several reasons we will, however, be
mainly concerned with the characterization of Lagrangian invariant subspaces. First
of all, the concept of Lagrangian invariant subspaces is a more general concept than
that of Hermitian solutions of the Riccati equation, since only graph subspaces are
associated with Riccati solutions. A second and more important reason is that in
most applications the solution of the Riccati equation is not the primary goal, but
rather a dangerous detour, see [21]. Finally, even most numerical solution methods
for the solution of the algebraic Riccati equations (with the exception of Newton’s
method) proceed via the computation of Lagrangian invariant subspaces to determine
the solution of the Riccati equation, see [3, 5, 6, 7, 8, 16, 17, 20, 27]. These methods
employ transformations with symplectic matrices.

DEFINITION 1.3. A matriz S € C?2" s called symplectic if S*J,S = J,. If
S is symplectic then by definition its first n columns span a Lagrangian subspace.
Conversely, if the columns of S; span a Lagrangian subspace, then it generates a
symplectic matrix, given for example by S = [Sy, J,S1 (S S1)~!]. Hence the rela-
tion between Lagrangian subspaces and symplectic matrices can be summarized has
follows.

PROPOSITION 1.4. If S € C?™2" s symplectic, then the columns of S [IO"] span

a Lagrangian subspace. If the columns of S; € C2>™" span a Lagrangian subspace,
then there exists a symplectic S such that range S [16‘] =range S;.

Considering Lagrangian invariant subspaces L of a Hamiltonian matrix H we
immediately have the following important equivalence.

PROPOSITION 1.5. Let H € C?™2" be a Hamiltonian matriz. There exists a
Lagrangian invariant subspace L of H if and only if there exists a symplectic matriz

S such that range S [IO"] =L and

(1.3) S S = [ kD ]

0 —RH

The form (1.3) is called Hamiltonian block triangular form and if furthermore R is
upper triangular (or quasi upper triangular in the real case), it is called Hamiltonian
triangular form or Hamiltonian Schur form. Note that for the existence of Lagrangian
invariant subspaces it is not necessary that R in (1.3) is triangular if one is not
interested in displaying actual eigenvalues. Most numerical methods, however, will
return a Hamiltonian triangular or quasi-triangular form.

Necessary and sufficient conditions for the existence of such transformations were
given in [18, 22] and in full generality in [19], and we will briefly summarize these
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conditions in the next section. Numerically backward stable methods to compute
such forms have been developed in [1, 2, 3, 4].

The contents of this paper is as follows. In Section 2 after recalling some of the
results on Hamiltonian triangular forms we will discuss the existence of Lagrangian
invariant subspaces corresponding to all possible eigenvalue selections. In Section 3
we give complete parametrizations of all possible Lagrangian subspaces of a Hamilto-
nian matrix associated with a particular set of eigenvalues. Based on these results we
summarize necessary and sufficient conditions for the existence and uniqueness of La-
grangian invariant subspaces in Section 4. Finally we apply these results to give some
simple proofs of (mostly known) theorems on existence and uniqueness of Hermitian
solutions to algebraic Riccati equations in Section 5.

2. Hamiltonian block triangular forms and existence of Lagrangian in-
variant subspaces. To study an invariant subspace problem we first need to discuss
the possible selection of associated eigenvalues.

We denote by A(A) the spectrum of a square matrix A, counting multiplicities.
For a Hamiltonian matrix, if A € A(#) and Re A # 0 then it is easy to see that also
—X € A(H), see [15, 20]. Furthermore, if H has the block triangular form (1.3) and if
i is a purely imaginary eigenvalue (including zero), then it must have even algebraic
multiplicity. It follows that the spectrum of a Hamiltonian matrix # in the form (1.3)
can be partitioned into two disjoint subsets

AL(H) = {0, A, = AL, = ALy Ay s Ay = Ay e ooy —Au}
— ~ g —_— ~
ni ni em Ny
(2.1) A2(7-[):{E'al,...,iozll,...,E'a,,,...,ia,,l},
2;7:1 Q;Hry
where Ay, ..., A, are pairwise disjoint eigenvalues with positive real part and iaq, ...,

i, are pairwise disjoint purely imaginary eigenvalues (including zero).

If a matrix is transformed as in (1.3), then the spectrum associated with the
Lagrangian invariant subspace spanned by the first n columns of S is A(R). Since
A(H) = A(R) U A(—RH), it follows that A(R) must be associated to a characteristic
polynomial

()\ — iaj)mj,
1

w v
LTI =25+ )t
j=1 j=

where t; are integers with 0 < ¢; < n; for j = 1,...,u. We denote the set of all

possible such selections of eigenvalues by Q(#). Note that Q(#) contains [T}_, (n;+1)
different selections.

In most applications it is desired to determine Lagrangian invariant subspaces
associated with eigenvalue selections for which only one of the eigenvalues of the pair
Aj, —A; (which are not purely imaginary) can be chosen in A(R). In another words, ¢,
must be either 0 or n;. Such subspaces all called unmized and the associated Riccati
solution, if it exists, is called unmized solution of the Riccati equation, see [26]. We
denote the subset of all possible such selections by Q(#). Obviously Q(#) contains
2# different elements.

Note that all selections in Q(#) contain the same purely imaginary eigenvalues.
Note further that if H cannot be transformed to the Hamiltonian block triangular
form (1.3), then the set () may be empty. A simple example for this is the matrix

Ji.



We now recall some results on the existence of Hamiltonian triangular forms. In
the following we denote a single Jordan block associated with an eigenvalue A by
N, (\) = Al + N,., where N, is a nilpotent Jordan block of size r. We also frequently
use the antidiagonal matrices

(2.2) P, = (-1)?

and we denote by e; the j-th unit vector of appropriate size.

LEMMA 2.1. [19] Suppose that icc is a purely imaginary eigenvalue of a Hamilto-
nian matrizc H and that the Jordan block structure associated with this eigenvalue is
N(ia) :=ial + N, where

N = diag(Ny,, ..., Np,).
Then there exists a full column rank matriz U such that HU = UN (ic) and
Ut g,U = diag(m1Pr,,...,7sPs,),

where 7y, € {1,—1} if vy, is even and 7 € {i,—i} if r is odd.
Using the indices and matrices introduced in Lemma 2.1, the structure inertia
index associated with the eigenvalue i« is defined as

IHdS(’L.Oé) = {Bl: .. 758}7

where (8 = (—l)TTkﬂ'k if 7 is even, and 8 = (—l)TkT_liﬂ'k if 7 is odd. Note that the
B; are all £1 and there is one index associated with every Jordan block. The structure
inertia index is closely related to the well-known sign characteristic for Hermitian pen-
cils, see [15], since every Hamiltonian matrix A can be associated with the Hermitian
pencil A\iJ — JH. Although the sign characteristic is a more general concept, since it
also applies to general Hermitian pencils, we prefer to use the structure inertia index,
since it is better suited for the analysis of Hamiltonian triangular forms, see [19].

For the following analysis the tuple Indg(i«) is partitioned into three parts
Ind$ (ia), Ind(ic), Ind%(ie), where Ind% (i) contains all the structure inertia in-
dices corresponding to even 7y, Indg(ic) contains the maximal number of structure
inertia indices corresponding to odd r, in +1 pairs and Ind% (i) contains the remain-
ing indices, i.e., all indices in Ind%(ia) have the same sign, see [19].

Necessary and sufficient conditions for the existence of a symplectic similarity
transformation to a Hamiltonian triangular Jordan like form (1.3) are given in the
following Theorem.

THEOREM 2.2. Let H be a Hamiltonian matriz, let i, ..., iq, be its pairwise
distinct purely imaginary eigenvalues and let the columns of Uy, k= 1,...,v, span the
associated invariant subspaces of dimension my. Then the following are equivalent.

i) There exists a symplectic matriz S, such that S™YHS is Hamiltonian block
triangular.

ii) There exists a unitary symplectic matriz U, such that UTHU is Hamiltonian

block triangular.

iii) U JU} is congruent to Jy, for allk=1,...,v.

w) Ind%(iay) is void for all k=1,... v.
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Moreover, if any of the equivalent conditions holds, then the symplectic matriz S can
be chosen such that ST'HS is in Hamiltonian triangular Jordan form

R. 0 0 0 0 0
O R 0 0 D, 0
0 0 R, O 0 D.
(2:3) 0 0 0 —RE 0 0o |’
0O 0 0 0 —RH
0 0 0 0 0 —RH

where the blocks with subscript r are associated with eigenvalues of nonzero real part
and have the substructure

R, = diag(R{,..., R}), Ry =diag(Na,,(Ak),.. s Nay,, (M), k=1,...,4.

The blocks with subscript e are associated with the structure inertia indices of even ry,
for all purely imaginary eigenvalues and have the substructure

R. = diag(Riv ) Rle/)7 R, = dia‘g(le,l (iak)) s 7le,qk (iak))v
D, = diag(D5,...,D;), Di= diag(ﬂ,ilelk’leg,l, s Bl €liq, eg‘qk ).

The blocks with subscript ¢ are associated with pairs of blocks of inertia indices associ-
ated with odd-sized blocks for purely imaginary eigenvalues and have the substructure

R, = diag(R{,...,R}), R =diag(By,,-..,Bkr,),
D. = diag(Df: - "DIC/)’ le: = diag(ck,la .- -aCk,rk)a

where
No,, (i) 0 e
By ; = 0 N, , (i) —?enk A
0 0 Ty,
0 0 e
;T
Chj = %mgﬁ. 0 0 —en,

Proof. The proof of equivalence for i) and iv) is given in Theorem 1.3 in [25]. The
equivalence of the other conditions and the structured Hamiltonian triangular Jordan
form (2.3) has been derived in [19]. O

REMARK 1. For real Hamiltonian matrices a real quasi triangular Jordan form
analogous to (2.3) and a similar set of equivalent conditions as in Theorem 2.2 can
be given. We refer the reader to [25] and Theorem 24 in [19] for details. = The
necessary and sufficient conditions in Theorem 2.2 only guarantee the existence of
one Lagrangian invariant subspace associated to one selection in (7). But the
following theorem shows they also guarantee the existence of a Lagrangian invariant
subspace associated to every selection in Q(#H).

THEOREM 2.3. Let ‘H be a Hamiltonian matriz. If any of the conditions in
Theorem 2.2 holds, then for every eigenvalue selection w € Q(H) there exists at least
one corresponding Lagrangian invariant subspace.

Proof. A proof for this result based on condition iv) was given in [23, 25] but a
simple proof follows directly from (2.3). Note that any w contains half the number
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of eigenvalues for every purely imaginary eigenvalue. So a basis for a corresponding
invariant subspace is easily determined from (2.3). For an eigenvalue pair A, —Ag

we only need to consider the small Hamiltonian block [% _( RT) } Note that RJ is

upper triangular. Suppose that the selection w contains ¢ copies of Ay and sj copies
of —Ag. A corresponding basis of the invariant subspace can then be chosen based on
a symplectic permutation which exchanges trailing sy x s; blocks in R}, and —(RZ)H
a

In this section we have reviewed some results on the existence of (unitary) sym-
plectic transformations to Hamiltonian block triangular form, and the existence of
Lagrangian invariant subspaces. In the next section we use these results to give a full
parametrization of all possible Lagrangian subspaces and therefore also a parametriza-
tion of all symplectic similarity transformations to Hamiltonian block triangular form.

3. Parametrization of all Lagrangian invariant subspaces. In the previ-
ous section we have shown that if # has a Hamiltonian block triangular form then
for every eigenvalue selection w € () there exists at least one corresponding invari-
ant subspace. In this section we will parametrize all possible Lagrangian invariant
subspaces associated to a given selection w.

For this we will need some technical lemmas.

LeEmMMA 3.1. Consider pairs of matrices (w P, Ny,.), k = 1,2, where r1,ro are
either both even or both odd. Let my, 7o € {1,—1} if both ry are even and m,my €
{i,—i} if both ry, are odd, let

L m P, 0 N, 0
(PmNC) T <|: 0 7T2P'I"2 :| ) |: 0 NTQ :|>

and let d := ‘T12r2| If m = (=1)" 'y, i.e., 1 = —Py for the corresponding 31 and
B2, then we have the following transformations to Hamiltonian triangular form.
1. If r1 > ry then with

I, 0 0 0
7 = 0 Irz 0 - ’/T2P 1
Tlo 0 mPt 0

0 -, 0 —imp;!

we obtain ZfIPCZl = Jri4ry and
2

Ly Norigro D
Z7 Z1 = 2
1 c4l H )
0 N”Jr,,2
1
where D = 7'ede,ﬁl+r2 + 7-67‘1+r2 ed , T = —5M2.

2. If ry < ry, then wzth

m Py, 0 i, 0

7. _ 0 mP; 0 0
7| -mP, 0 i, 0
0 0 0 Iy

we obtain that Z{IPCZQ = Jritr and
2

Nr1+r2 D
Zy'\NeZy = l 0 N ,

r1tra
2
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- 1
where D = 7'616713’1Jrl + Tlem+1efl, T=—5T1.

Proof. The proof is a simple modification of the proof of Lemma 18 in [19]. O
LeEMMA 3.2. Consider a nilpotent matriz in Jordan form N = diag(N,,,...,N;,).
i) If the columns of the full column rank matriz X form an invariant subspace of

N, i.e., NX = X A for some matriz A, then X = UZ, where Z is nonsingular
and

L, 0 .. 0 0
0 Vie ... Vipr Vi,
0 Iy, ... 0 0
0 0 ... Vapa Vi
(3.1) U=| : ' : :
0 0 L,, 0
0 0 0 Vpip
0 0 0 I,
L0 0 0 0 J

Herefork=1,...,p,0<ty <rg,andfori=1,...,p—1landj =i+1,...,p,
we have V; j € C*ti with s; = r; —t;. Moreover, if My = diag(Ns,, ... ,Ns,),
M; = diag(Ny,, ..., Ny,) and E = diag(e, ef?, ... e efl), then
0 Vig ... Vi
fol,p
0

satisfies the algebraic Riccati equation

MV — VM, —VEV =0.
If the columns of the full column rank matrix X form an invariant subspace

of NH ie., NIX = —XA for some matriz A, then X = UZ, where Z is
nonsingular and

0 0 0 0
~I;, 0 0
Vo 0 0 0
0 ~I; 0 0
(3.2) U= : : . : :
Vorin Vooio oo 0 0
0 0 ... - 0
Vp,l Vp’2 .. Vp,p*l 0
0 0 ... 0 - |

Here for k =1,...,p, 0<tp<rpandfori=2,....pandj=1,...,i—1,
we have V; ; € Céli with §; = r; —t;. Moreover, if M; = diag(Ns,,...,Ns,),
7



M; = diag(Ny,, - .- :Nip) and E = diag(eleg, R eleg), then

V=
Vor wor Vppo1 O
satisfies the algebraic Riccati equation

MEV - VM -VEV =o0.

Proof. We will derive the structure of X by multiplying nonsingular matrices

to X from the right. Let us first prove part i). Partition X = [ﬁ;] so that X,

has r, rows. Then using the QR or singular value decomposition [12], there exists
a nonsingular (actually unitary) matrix Y7 such that Xo = [0, X22]Y1, where Xos €
C"»''» and rank Xy = t,. (This implies that 0 < ¢, <r,.) Then we have the partition

X = XY(1 = [XO“ §;§] . Since range X is an invariant subspace of N so is range X .

Hence, there exists a matrix A such that
(3.3) NX = XA.

Partitioning A= [ﬁ; ﬁ;ﬂ conformally with X, then (3.3) implies that A»; = 0 and
Ny, X2z = X59A5>. Because X5 has full column rank and N,, is a single Jordan
block, it is clear that Ass is similar to Ni,, i.e., there exists a nonsingular matrix

Y22 such that Y251A22Y22 = th and hence Nrp (XQQ}/QQ) = (XQQ}/QQ)th. By Lemma
4.4.11 in [14], X22Y2s = [g] , where T' is an upper triangular Toeplitz matrix and T

must be nonsingular, since X25 has full column rank. Therefore, by setting X=X Y5
with Y5 = diag(I,Ys,)T !, it follows that

[N X
X - 0 Itp
0 0

and (3.3) becomes NX = X [AO“ ;\%2]. Setting N = diag(N,,, ..., N,,_,) it follows

that NX} = lein, and since X has full column rank, also Xl has f1~111 column rank.
By inductively applying the construction that leads from X to X, we determine
a nonsingular matrix Z; such that XZ,; ' = X, where X has the block structure

[ Itl W172 W17p_1 WLP 1
0 ‘/1,2 Vvl,p—l Vvl,p
0 Itz . W27p_1 W27p
0 0 ... Vapa Vo,
X=|: : A
0 0 L, ., Wy yp
0 0 0 V1
0 0 0 I,
00 0 0 |




with 0 < ¢; < r;. The blocks W; ; in X can be eliminated by performing a sequence
of block Gaussian type eliminations from the right. Hence, there exists a nonsingular
matrix Z, such that X’ZZ_I = U, where U is in (3.1). Therefore, by setting Z := Z»Z;
we have X = UZ.

From the block form of U we can determine a block permutation matrix ) such
that QU = [‘I,] and QNQ ! = [Agi A]j] Since [‘I,] is invariant to QNQ ™!, we have
MV - VM, —-VEV =0.

Part (ii) is proved analogously by beginning the reduction from the top and
compressing in each step to the left. O

Using these lemmas we are able to parametrize the set of all Lagrangian invariant
subspaces of a Hamiltonian matrix # associated with a fixed eigenvalue selection in
w € Q(H). Let H be in Hamiltonian block triangular form (1.3) and let the spectrum
of H be as in (2.1). Then, see [19], there exists a symplectic matrix S such that

STIHS = [’g _gH], where R = diag(Ry, ..., R,y,) and D = diag(D1,..., D).

Furthermore, the blocks are reordered such that Hy := [%’“ fl)%’“ﬁ
k

block triangular, and associated with an eigenvalue pair Ay, —\; with nonzero real
part for k = 1,..., u and purely imaginary eigenvalues iy for k= pu+1,..., 0+ v.

] is Hamiltonian

Furthermore, A(R) = w and rangeS [(ﬂ =L.
For this block diagonal form there exists a block permutation matrix P such that

PHIP = diag(Jnys- - s s Tmas oo s Im,) = J,
(3.4) PISTI'HSP = diag(Hy, ..., Hyy Hyvry - Hygo)-

Suppose that there exists another Lagrangian invariant subspaceNIN; corresponding to
w. Using the same argument, there exists a symplectic matrix S, such that for the
same block permutation matrix P we have

PISTIHSP = diag(Hy, ..., Hy; Huyry - -, Huy),

where again all Hj, are Hamiltonian block triangular and A(Hj) = A(Hy) for all
k =1,...,u+ v. Therefore, we have SP = SPE, for some block diagonal matrix
& = diag(Ex, ..., E,4,) satistying H, Ey, = E},Hy,. Since PHJP = J and since S and
S are symplectic, it follows that & = P~1S~1SP satisfies £ J€ = J, which implies
that all blocks Ej, are symplectic. Since S = SPEPL, the difference between S and
S, (and therefore L and L) is completely described by the first half of the columns
of the symplectic matrices Fj, i.e., the Lagrangian invariant subspaces of the small
Hamiltonian matrices Hy, (note that all H are Hamiltonian block triangular). Fol-
lowing this argument, it is sufficient to parametrize all possible Lagrangian invariant
subspaces of a Hamitonian matrix with either a single purely imaginary eigenvalue i«
or a single eigenvalue pair A\, —\ with Re X # 0.

Consider first the case of a single purely imaginary eigenvalue. In this case Q(H)
has only one element. So all Lagrangian invariant subspaces are associated to the
same eigenvalue.

To simplify our analysis we need the following Hamiltonian Jordan form.

LEMMA 3.3. Let ‘H be a Hamiltonian matriz that has only one eigenvalue ic.
Then there exists a symplectic matriz S such that

N(ia) D
0 —N(ia)H |°
9

(3.5) R:=8 'HS =



where N = diag(N,,,...,N,,), D = diag(D1,...,D,). Here either D; = B;erjeg, 50
that H has a Jordan block No,; with structure inertia index 35 € {1,-1}, or D; =

H, = H . 1 ritditt . . 1 ritdj
Tj€d; €y, +Tjer;eq. with 7; = 5(-1) if3j if rj+dj is odd, and 7; = 5(—1) B
if rj + dj is even for some B; € {—1,1}, so that H has two Jordan blocks N, yq;,
Ny; —q; with structure inertia indices B;, —f3;, respectively.

Proof. Since H — ial is Hamiltonian, we may w.l.o.g. consider the problem with
a = 0, i.e., ‘H that has only the eigenvalue zero. Since H has only one multiple
eigenvalue the columns of every nonsingular matrix span a corresponding invariant
subspace so that condition iii) of Theorem 2.2 holds. The canonical form (3.5) then
is obtained in a similar way as for (2.3), see [19]. The only difference is here, that
we match all possible pairs of Jordan block with opposite structure inertia indices in
such a way that even blocks are matched with even blocks and odd blocks with odd
blocks and furthermore the blocks are ordered in decreasing size. Finally we use the
technique given in Lemma 3.1. O

The complete parameterization is then as follows.

THEOREM 3.4. Let H be a Hamiltonian matriz that has only one purely imaginary
eigenvalue. Let S be symplectic such that STYHS is in Hamiltonian canonical form

(8.5). Then all possible Lagrangian subspaces can be parametrized by range SU, where

L, 0 ... 0 0 0 0 0
0 V12 .. V17p_1 ‘/ip W11 PN W17p_1 Wlp
0 I, ... 0 0 0 0 0
0 0 ... Vap1 Vi WH o Wy Wayp
0 0 L, 0 0 0 0
0 0 0 Vo, WH 0 Wpipmr Wity
0 0 0 I, 0 0 0
B36)U=| 0 0 0 0 wio W W |
0 0 0 0 0 0
0 0 0 0 I, 0 0
0 0 0 0 vHE o0 0
0 o0 0 0 |25 : 0 0
0 0 0 0 0 e I, 0
0 0 0 0 vl vHE 0
L 0 0 ... 0 0 0 -I,, |

with block sizes 0 < s5,t; <rj and s; + 1ty =rj. Then, setting
Mt = diag(Ntl, cey th),
M, = diag(Ns,,...,Ns,),
E = diag(es, e, ... ,etpefl),
partitioning the Hermitian blocks

G
b,=[ &
J

u?: \>§

and setting

K = diag(K,,..., Ks),
10



F:diag(Fla-"aFS)a
G = diag(Gly"'7GS)7

it follows that the block matrices

0 Vipg ... Vi,
. . . Wl,l Wl,p
V= , W= | Co | =wh
Vo1 Wal Wy p
0 :

satisfy
M, FH W
0o -Mf Vo
o]

or equivalently V., W satisfy

v
0
EH
G

(3.8) 0=M,V -VM, -~ VEV
0= (M, - VE)W +W(M, - VE)"
(3.9) +(VF)E 4+ VF-VGVHE - K.

Every Lagrangian invariant subspace is uniquely determined by a set of parameters
ti,...,tp with0 <t; <rj;, and a set of matrices V; j,i=1,...,p—1,j=i+1,...,p
and Wi ;,i=1,...,p, j =1,...,p satisfying (3.8) and (3.9).

Moreover, all symplectic matrices that transform H to Hamiltonian block triangu-
lar form can be parametrized as SUY, where Y is a symplectic block triangular matriz,
U =[U,U], with U as in (3.6) and

0 0 0 0 0 0 0 0
0 0 0 0 I, 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 I, 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 L,, 0
0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 I,
B10) U= 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 I, 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 I,, 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 I, 0 0 0 0
L0 0 0 0 0 0 0 0 |




Proof. As in Lemma 3.3, we assume that the only eigenvalue of # is zero. Consid-
ering the form (3.5), it is sufficient to prove that every basis X of a Lagrangian invari-

ant subspace of R can be expressed as X = UY. To prove this, we first compress the

X11 X2
0 Xa2

where Xso has full column rank. Obviously Xi; also has full column rank. Then,
since XY is still a basis of an invariant subspace of R, the block triangular form of R
implies that the columns of X7 and X5 form bases of the invariant subspace of N and
—NH respectively. Applying Lemma 3.2, there exist matrices Z; and Z such that
Ui = X11Z1 and Uss := X22Z5 have structures as the matrices in (3.1) and (3.2)

bottom square block of X, i.e., we determine a matrix Y7 such that XY; = [

associated with the integer parameters ¢y,...,%, and th,... ,fp, respectively. Now let
U:= XY, [Z01 ZOZ Yy = Uél g;ﬂ , where Y5 is used to eliminate the blocks in X122

using the identity blocks in U; ;. Since X and hence also U is Lagrangian, we have
that UH Uy = 0. Thus, we have f]- =m;—t;=:s;forallj=1,...,pand ‘7,] = fo
foralli=2,...,p,j=1,...,p—1. Since UL Uy, is Hermitian, it follows that Uy has
the desired form. To prove (3.7), as in the proof of Lemma 3.2, there exists a block

permutation matrix P such that P[U;1,Ujs] = [‘I, V(I),] Let P = diag(P, P), which is

symplectic. Then

I 0 M, E G F
- lvow -~ |0 M, FP K
PU=1¢ yr | P RP=1 4 o _nN# o

0 -I 0 0 -EH _NH

Since the columns of PU form an invariant subspace for P~IRP, it follows that the
matrices V, W satisfy (3.7). Conditions (3.8) and (3.9) follow directly from (3.7).
To show the uniqueness of a particular Lagrangian invariant subspace, suppose that
there are two matrices Uy, Us of the same form as U such that range SU; = range SUs.
Then U JU, = 0 and from this it follows first that the associated integer parameters
t1,...,t, must be the same, and then all the blocks V; ;, W; ; must be the same.

To prove the second part, let X' be a symplectic matrix which triangularizes .
Since the first n columns of X form a Langrangian invariant subspace, there exists

a matrix U of the form (3.6) such that range X [(ﬂ = rangeSU. Then the matrix

U = [U,U] with U as in (3.10) is symplectic. Since both X and S are symplectic and
their first n columns span the same subspace there exists a symplectic block triangular
matrix ) such that X = S¢/Y. 0O

These results show that the parameters that characterize a Lagrangian invariant
subspace are integers t; with 0 <t; < mj, and the matrices V; ;, W; ; satisfying the
Riccati equations (3.7), or equivalently (3.8) and (3.9). Note that the equation for W
is a singular Lyapunov equation. The equation for V' is quadratic. But if we consider
it blockwise, it is equivalent to a sequence of singular Sylvester equations

j—1
(3.11) Ny Vi = VigNey = > VieBrVi; =0,

k=it1
fori=p—1,...,1,j =i+ 1,...,p. For results on nonsymmetric Riccati equations

see [10].
12



In general not much more can be said about this parametrization. In the special
case of a Hamiltonian matrix #H that has only two Jordan blocks we have the following
result.

COROLLARY 3.5. Consider a Hamiltonian matriz H that has ezactly two Jordan
blocks Ny, (ia), Ny, (ia) with 0 < ro < ry; and the corresponding structure inertia

indices 1 = —fB2. Then there exists a symplectic matriz S such that
_ Np (i) D
1 _ m
STHS=| Ty T NGt |

where m = (r1 +712)/2, d = (r1 —r2)/2 and D = teqel + Feell) = +i/2 if ry
is odd and T = £1/2 if ro is even. All Lagrangian invariant subspaces of H can be
parametrized by

rangeS

oo o

0
w
0
—I,

and all symplectic matrices that transform H to Hamiltonian block triangular form
can be parametrized as

I, 0
0 W
0 0 Y,
0

oSt oo
oo o

where Y is symplectic block triangular, d <t <m, t +s=m, W = WH satisfying
(3.12) NW +WNH =,

which has infinitely many solutions for every s > 0.

Proof. Note that r1 + r» is the size of the Hamiltonian matrix 7{, which must be
even. So r; and r» must be both even or odd. The canonical form and the form of
the parameterization follows directly form Theorem 3.4 by setting there p = 1. So we
only need to prove that d <t < m and that (3.12) holds. For p =1, (3.8) reduces to

N,W +WNH = K,

where K is the trailing s X s block of D. Then K = 0if ¢t > d (s < rp) and
K = req el + Teseglft ift <d (s >rmrg). If t > d, then the singular Lyapunov
equation has infinitely many Hermitian solutions W, see [11, 14]. If t < d and 7y,
ro are both even, then it follows that 7 # 0 is real. By comparing the elements, it
follows that the Lyapunov equation has no solution. The same conclusion follows for
the case that rq, ro are both odd. Consequently W exists if and only if d < t < m.
a

In this simple case the parameters are completely given. But more importantly
this result also gives a sufficient condition that a Hamiltonian matrix has infinitely
many Lagrangian invariant subspaces.

COROLLARY 3.6. If a Hamiltonian matriz H has ezactly one eigenvalue i and
has at least two even or two odd size Jordan blocks with opposite structure inertia
indices, then H has infinitely many Lagrangian invariant subspaces.

13



Proof. We may assume w.l.o.g. that the two (even or odd) Jordan blocks are
arranged in trailing position of R in the canonical form (3.5). Choosing ¢; = r; for
all j =1,...,p— 1implies that all V; ; are void, W = W, , and

I 0 0
0L 0

U=|0 0 W,
0 0 0
0 0 —I,

By Lemma 3.5 there are infinitely many Lagrangian invariant subspaces (that are
parametrized by W), ,) for the small Hamiltonian matrix

and hence, there are also infinitely many Lagrangian invariant subspaces for H. 0O

This corollary shows that to obtain a unique Lagrangian invariant subspace all
structure inertia indices of H have to have the same sign. Moreover, by Theorem 2.2
this also implies that H has only even size Jordan blocks. In the next section we will
prove that this is also sufficient.

In order to complete the analysis we need to study Hamiltonian matrices H that
have only two eigenvalues A\, —\ that are not purely imaginary. If # € C?>™2" then
the algebraic multiplicities of A, —A are both n and hence Q(#) consists of n + 1
selections w(m), m = 0,...,n, where w(m) contains m copies of A\ and n — m copies
of —A.

It follows from Theorem 2.2 that in this case there exists a symplectic matrix S
such that

(3.13) R:=S'"HS =

where N(A\) = Al + N, N = diag(N,,, ..., Ny,).

For every w(m), 0 < m < n, the parameterization of all possible Lagrangian
invariant subspaces can be derived in a similar way as in the case of purely imaginary
eigenvalues.

THEOREM 3.7. Let H € C2X2n be q Hamiltonian matriz that has only eigenval-
ues A\, —X which are not purely imaginary. Let S be a symplectic matriz that trans-
forms H to the form (3.13). For every selection w(m) € Q(H) all the corresponding

14



invariant subspaces can be parametrized by range SU, where U has the form

L, 0 ... o0 0 0 0 0 0
0 Vis ... Vipr Wi, O 0 0 0
0 I, 0 0 0 0 0 0
0 0 Vopi Vo, O 0 0 0
0 0 L, 0 0 0 0 0
0 0 0 V., O 0 0 0
0 0 0 I, 0 0 0 0
0 0 0 0 0 0 0 0
e B 0 0 0 0 0 0o |
0 0 0 0 I, 0 0 0
0 0 0 0o VE 0 0 0
0 0 0 0 0 -I, 0 0
0 0 0 0 VAL VAL, .. 0 0
0 0 0 0 0 0 ... I, 0
0 0 ... 0 0 VE VE L VH 0
0 0 ... o0 0 0 o .. o' -,

with 0 < sj,t; <71, 85 +t; =r; and 335_) t; = m. If we set

Mt = diag(Ntl,. . .,Nt ),

P

M, = diag(Ns,,...,Ns ),

y4Vs,
E = diag(es,ef, ... e efl),
then the matriz
0 Vis ... Vip
V= ,
folyp
0

must satisfy the Riccati equation
(3.15) 0=M;V-VM,—VEV.

Every Lagrangian invariant subspace associated with w(m) is uniquely determined by
a set of parameters {t1,...,tp} with 0 < t; < r; and Z?:l t; = m, and a set of
matrices Vi j, i =1,...,p—1, j=i+1,...,p satisfying (3.15).
Moreover, all symplectic matrices that transform H to Hamiltonian block tri-
angular form can be parametrized by SUY, where Y is symplectic block triangular,
15



U = [U,U] with U as in (3.10) and

0 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 I, 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 L, 0
0 0 0 0 0 0 0 0
g_| 0 0 0 0 0 0 0 I,
I, 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 I, 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 I,,, 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 I, 0 0 0 0
L0 0 0 0 0 0 0 0 |

Proof. Tt is sufficient to consider the Lagrangian invariant subspaces of R in
(3.13). Let the columns of X span a Lagrangian invariant subspace of R associated
with w(m). Then RX = XA and A(A) = w(m). Since A # —\, there exists a matrix

Y such that Y 1AY = [%1 Xz], where A; is m x m and has only the eigenvalue

A and Ay is (n — m) x (n — m) and has only the eigenvalue —\. If we partition

XY = [§; §;§] conformally with Y"1 AY, then from the block diagonal form of R

we obtain X12 = 0, X21 =0 and N()\)Xll = X11A1, _N(A)HXQQ = XQQAQ, since
X171, X2 must have full column rank. We apply Lemma 3.2 and then the result
follows as in the case of purely imaginary eigenvalues. 0

The parametrization in this case is essentially the same as in case of purely imag-
inary eigenvalues except that in this case W is void and that Z§:1 t; is fixed for a
given w(m). In both cases the blocks V; ; still satisfy a sequence of Sylvester equations
(3.11).

Again we have a corollary.

COROLLARY 3.8. Let H € C**2" be a Hamiltonian matriz that has only the
eigenvalues X, —\ which are not purely imaginary. If H has exactly two Jordan blocks
with respect to X\, then for every fived w(m) € Q(H) the corresponding Lagrangian
invariant subspaces can be paramterized as

v’:\qOOOOO

[y

coococooos
< |
sy

coococofi<o
NOOoOOoOOoOOoOOO

o
|

T
]
| I

[y
(=2}



where t; +ta =m, tj+s;=r; and 0 <t;,5; <r; forj=1,2.
Furthermore, V. = [0,T] if s1 < to and V = [g] if s1 > to, where T is an

arbitrary square upper triangular Toeplitz matriz. So for every w(m) with 0 <m <n
there are infinitely many Lagrangian invariant subspaces.

Proof. Applying Theorem 3.7 for p = 2 we obtain the parametrization and the
restrictions for ¢1,t2. The expression for V follows from the fact that V' satisfies the
Sylvester equation Ng,V — VN, =0. 0O

In this special case we have the following uniqueness result.

COROLLARY 3.9. Let H € C2"*2" pe a Hamiltonian matriz that has only the
eigenvalues X\, —\ which are not purely imaginary. Then we have the following:

i) For w(0) or w(n) the corresponding Lagrangian subspace is unique.

it) If H has only a single Jordan block with respect to A then for every fized
w(m) € Q(H) with 0 < m < n the corresponding Lagrangian invariant sub-

space is unique. In this case there exists a symplectic matriz S such that
A71 I~ R D
(3.16) S ’HS—{ 0 —RH}’
with R = diag(Nyp(A), =Np—m (M), D = emell | + emy1ell.
iti) If H has at least two Jordan blocks with respect to X\, then for every fized

w(m) € Q(H) with 0 < m < n there are infinitely many corresponding La-

grangian invariant subspaces.

Proof. 1) For w(0) all t; must be zero so U = [_[}

n

} is unique. Analogously, for

w(n) the unique Lagrangian invariant subspace is U = [I" ]

0
I
ii) By assumption p = 1, so for a fixed w(m), U is unique as 8 . Then
_In—m

(3.16) follows from (3.13) and the special form ¢ for p = 1.

ili) In this case we can choose the integers ¢; such that ¢t; < r; and ¢, > 0. We
set Vi ; = 0 except for Vi, which is chosen to satisfy N, Vi, — V1, Ny, = 0. Since
s1,tp > 0, there are infinitely many solutions V; , and hence, infinitely many U. 0O

In the next section we will use the parametrizations to characterize existence and
uniqueness of Lagrangian invariant subspaces.

4. Existence and uniqueness of Lagrangian invariant subspaces. In this
section we summarize all results given in the previous sections and give a complete
characterization of the existence and the uniqueness of Lagrangian invariant subspaces
for a Hamiltonian matrix. This complete result includes previous results based on
structure inertia indices of [23, 25].

THEOREM 4.1. (Ezistence) Let H € C*"*?" be a Hamiltonian matriz, let
iau, . .., iay, be its pairwise distinct purely imaginary eigenvalues and let Ay, —\1, . . .,
Aus _/_\u be its pairwise distinct nonimaginary eigenvalues. The following are equiva-
lent:

i) M has a Lagrangian invariant subspace for one w € Q(H).

ii) H has a Lagrangian invariant subspace for all w € Q(H).

ii) There exists a symplectic matriz S, such that STYHS is Hamiltonian block

triangular.

17



iv) There exists a unitary symplectic matriz U, such that UT HU is Hamiltonian
block triangular.

v) For all k =1,...,v, if Uy span the invariant subspace associated with iy,
then U,fIJUk s congruent to Jp,, .

vi) Ind%(iay) is void for all k=1,...,v.

Proof. This result in different notation is known, see [19, 23, 24, 25]. O

THEOREM 4.2. (Uniqueness for Q(H)). Let H € C2"*2" be o Hamiltonian
matriz. Let taq, ... iq, be its pairwise distinct purely imaginary eigenvalues and
let A1, —A1,.. o A —5\“ be its pairwise distinct nonimaginary eigenvalues. Suppose
that any of the equivalent conditions of Theorem 4.1 for the existence of Lagrangian
invariant subspaces holds. Then the following are equivalent:

i) For every w € Q(’H) there exists a unique associated Lagrangian invariant
subspace.
i) If w € Q(H) and if Sy and Sy are symplectic matrices such that S; *HS; =

[%1 _[])%1{{], S, YHS, = [132 _[%1] and A(Ry) = A(Ry) = w, then S; 'S is
symplectic block triangular.

iii) There exists an w € Q(H) such that H has a unique associated Lagrangian
invariant subspace.

i) There exists anw € Q(H) such that if S; and Sy are symplectic matrices satis-

fying ST HS, = [1?)1 _[])%1{;], SyYHS, = [%2 _[%1] and A(Ry) = A(Rz) = w,

then 81_182 1s symplectic block triangular.

v) Let [‘3 _ﬁH] be an arbitrary Hamiltonian block triangular form of H. If

for a purely imaginary eigenvalue iay, the columns of ®; form a basis of the
left eigenvector subspace of A, i.e., @kHA = iakq)kH, then <I>£IB<I>k is positive
definite or negative definite.

vi) For every purely imaginary eigenvalue iy, there are only even sized Jordan
blocks which, furthermore, have all structure inertia indices of the same sign.

If the uniqueness conditions do not hold, then for every w € Q(’H) there are infinitely
many Lagrangian invariant subspaces. They can be parametrized by applying Theo-
rem 3.4 for every iay.

Proof. The proof of the equivalence of i) and vi) has been given (in different
notation) in Theorem 1.3 of [25]. For completeness we give the whole proof in our
terminology. By the argument in Section 3 it suffices to consider a Hamiltonian matrix
H that has either a single purely imaginary eigenvalue i« or an eigenvalue pair A and
—A. In the first case we again take i = 0.

Since by Corollary 3.9 for nonimaginary eigenvalues the corresponding invari-
ant subspaces are unique, we only need to consider the case of a purely imaginary
eigenvalue.

The proofs of i) < ii) and iii) < iv) are obvious. Corollary 3.6 implies that ii) =
vi). If vi) holds, then by Theorem 2.2 there exists a symplectic matrix S such that

et | R D

(4.1) R:=S ’HS—[O _RH |’

where R = diag(Ny,, ..., Ni,) and D = S diag(e, ef ... ,elqefql). (Recall that ia = 0.)

We only need to prove that for every symplectic Z satisfying Z71RZ = []g 72;;],
18



Z is block triangular. Partitioning Z = [Z“ 212], it follows that

Z21 Za2
(4.2) RZy 4+ DZy = Z11R
and
(4.3) —RY 75 = Zs1R.

Suppose that Z; # 0, then it follows by (4.3) that range Z»; is an invariant
subspace of —RH. Hence, there exists a vector = such that Z;;z # 0 and

(4.4) RE Zy 2 =0,

i.e., Zo1z is a left eigenvector of R. Multiplying (Z212) and x on both sides of (4.2)
and using (4.4) we get

(Zor2)2 D(Zo12) = —2x® ZH 7)) R,
Since Z is symplectic, we have ZH 7, = ZH Z,,. Combining (4.3) and (4.4) we get
eHZH 7 Ry = 2P ZE 750 Ax = —aH ZERE 712 = 0
and, therefore,
(Zor2)" D(Zy1 ) = 0.

On the other hand, since Z, x is a left eigenvector of R, by the structure of R
there must exist a nonzero vector y such that Zy;z = Ey, where

(4.5) E:=lep,..-,ep,],
with pp = Ele lj for k=1,...,q. But E"DE = BI, and hence
0= (Zanx)" D(Zz2) = y" E"DEy = By"y # 0,

which is a contradiction.
i) = iii) is obvious and iii) = i) follows from iii) = vi) by Corollary 3.6 and vi)
& ).

To prove vi) = v) let R = |4 B

[0 _ AH] be an arbitrary Hamiltonian triangular
form of H and let R be as in (4.1). Since vi) holds and vi)& ii), there exists a

symplectic block triangular matrix S = [%1 SS_2H] (see [5]) such that R = S™'RS.
1

Hence S;'RS; = A and B = S;'RSy + S;'DSTH + SERY S . Since A is similar
to R, a left eigenvector subspace of A can be chosen as ® = S E, where E is as in

.5). Then a simple calculation yields = .
4.5). Th imple calculati ields 2 B® = I,

A

For v) = vi) suppose that R = [0

fjH] satisfies v). Using the same argument

as for vi) = ii) and replacing R by R we obtain that v) = ii). Since ii)& vi), it
follows that v) also implies vi). 0O

THEOREM 4.3. (Uniqueness for Q(H)). Let H € C>™*>" be a Hamiltonian
matriz. Let taq, ... iq, be its pairwise distinct purely imaginary eigenvalues and
let A1, =M, .. . —5\,, be its pairwise distinct nonimaginary eigenvalues. Suppose
that any of the equivalent conditions of Theorem /.1 for the existence of Lagrangian
invariant subspaces holds. Then the following are equivalent:
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i) For every w € Q(H) there exists a unique associated Lagrangian invariant
subspace.
i) Let w € Q(H). If S1 and Sy are symplectic matrices such that ST'HS, =

[%1 7[1;1{;], Sy HS, = [132 f}%’] and A(Ry) = A(Ry) = w, then S;'S, is
symplectic block triangular.

iii) There exists an w € Q(H) but w & Q(H) such that H has a unique associated
Lagrangian invariant subspace.

w) There exists an w € Q(H) but w & Q(H) such that if Si and So are sym-

plectic matrices satisfying S; *HS) = [%1 _ng}, S, 'HS, = [132 _%2;1] and
1 2

A(Ry) = A(Ry) = w, then S;7'Sy is symplectic block triangular.

v) Let [’3 _iH} be an arbitrary Hamiltonian block triangular form of H. Then

A either has one of A\, —\i, as its eigenvalue and has a unique corresponding
left eigenvector, or A has both A\, —\j, as eigenvalues and has unique corre-
sponding left eigenvectors xy, and yi such that mkHByk # 0. Furthermore, for
every iy, if the columns of @y form a basis of the left eigenvector subspace of
A, e, (I>£IA = iak(I)f, then <I>£IB(I>k is positive definite or negative definite.
vi) For every nonimaginary eigenvalue, H has only one corresponding Jordan
block and for every purely imaginary eigenvalue icy,, H has only even sized
Jordan blocks with all structure inertia indices of the same sign.
If the uniqueness conditions do not hold, then for every w € Q(H) there are infinitely
many Lagrangian invariant subspaces. They can be parametrized by applying Theo-
rem 3.4 for every iay and Theorem 3.7 for every pair A, —\p.

Proof. The proof of the equivalence of i) and vi) has again been given (in different
notation) in Theorem 1.3 of [25]. For completeness we again give the whole proof in
our terminology.

By the argument in Section 3 it suffices to consider that the Hamiltonian matrix
‘H has only either a single purely imaginary eigenvalue i or an eigenvalue pair A and
—\, and in the first case we will assume i = 0. For the purely imaginary eigenvalue
the proof is as that of Theorem 4.2. Hence, consider H with an eigenvalue pair A, —A.
The parts i) < ii) and iii) < iv) are obvious. i) < vi) follows from Corollary 3.9.
i) @ iii) follows, since iii) = vi) and vi) < i), since w ¢ Q(H) implies that both A
and —\ have been chosen in w. It remains to prove v) < vi). We may assume that
both A, —X are in A(A), since otherwise w € Q(H).

For vi) = v) let R = [6‘ _fH] be an arbitrary Hamiltonian triangular form of

‘H. Since vi) holds, by (3.16) in Corollary 3.9 the Hamiltonian canonical form is

R = []g fgy], where R = diag(N;(\), —Ns(\) "), D = eief’ | + erp1ef’ and t is the

multiplicity of A in A(A4). By ii) there exists a symplectic matrix S = [501 55_24 such
1

that R = S 1RS. Hence S7'RS; = A and B = ST RS, + ST'DSTH + SHRHSH
If only one of A\,—\ is in A(A), then, since A is similar to R, it is also in A(R).
Hence, either t = 0 or s = 0 and R (and thus also A) has only one corresponding
left eigenvector. If both A, —X are in A(A) then s,¢ > 0. In this case R has only left
eigenvectors e; and e;y; with respect to A and —\, respectively. Therefore, A also
has only left eigenvectors Sfe; and SHe;, 1, for A and —), respectively. Then it is
easy to see that ef1S;BSie;11 = el Desyq = 1.

For v) = vi), if A has only one of A, —\ as its eigenvalue and has a unique left
eigenvector, then A also has only one right eigenvector. Since A(A) N A(—AH) =0
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in this case R has also a unique corresponding right eigenvector. Therefore, there is
only one corresponding Jordan block. By the canonical form (3.13) for the another
eigenvalue there is also only one Jordan block. If A has both A, —\, then we first show
that for left eigenvectors z,y of A such that 2 By # 0 condition ii) holds. Then we

show that z,y must be unique. As in the proof of Theorem 4.2 we only need to prove

that for every symplectic matrix Z satisfying Z~'RZ = [? 7%1], A(R) = A(A) it

follows that Z is block triangular. Partitioning Z = [ £ 22|, it follows that

(4.6) AZy + BZy = Z11R
and
—A" 7, = ZyR.

Suppose that Zy; # 0, then range Z»; is an invariant subspace of —A”. Hence there
exists z;, with either Rzl = —\z or Rzl = Az; such that Zy121 # 0, which implies
that Z» 21 is the left eigenvectors of A corresponding to A or —\. W.l.o.g, assume
that z; satisfies Rz; = —Az;. Let 2y # 0 satisfy z2HA = —5\Z2H. Multiplying z2H
and z; on both sides of (4.6), a simple calculation yields 2z B(Z;22) = 0, which is a
contradiction.

Suppose that z,y are not unique. Then let X form the left eigenvector subspace
of A with respect to A\. Since X By has more than one row there always exists a
vector z such that z# XH By = 0, which is a contradiction. So z and y must be
unique. 0O

REMARK 2. For real Hamiltonian matrices it is reasonable to consider real La-
grangian invariant subspaces. For this problem we have to give a natural additional
restriction on the eigenvalue selections. Note that in this case if A is a nonreal eigen-
value of H, then A, —\ and —\ are also eigenvalues of 7. To obtain real invariant
subspaces it is necessary to keep the associated eigenvalues in conjugate pairs. So if
we choose a nonreal A we must choose A\ with same multiplicity. But essentially we
can use the same construction as for the complex case to solve this problem, see [19],
since if H is real then for real eigenvalues the corresponding invariant subspaces can
be chosen real. So for these eigenvalues we can still use Theorems 3.7 and 3.4 by
chosing V and W real.

In this section we have given necessary conditions for the existence and uniqueness
of Lagrangian invariant subspaces. In the following section we obtain as corollaries
several results on the existence and uniqueness of Hermitian solutions of algebraic
Riccati equations.

5. Hermitian solutions of Riccati equations. In this section we apply the
existence and uniqueness results for Lagrangian invariant subspaces to analyze the
existence and uniqueness of Hermitian solutions of algebraic Riccati equations

(5.1) APX + XA-XMX+G =0,

with M = M and G = G. The related Hamiltonian matrix is # = [ fn]. The

following result is well-known, see, e.g., [15].
PROPOSITION 5.1. The algebraic Riccati equation (5.1) has an Hermitian solution

if and only if there exists a 2n X n matriz L = [i;], with Ly, Ly € C™" and L,
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invertible, such that the columns of L span a Lagrangian invariant subspace of the
related Hamiltonian matriz H associated to w € Q(H). In this case X = —LoL7" is
Hermitian and solves (5.1) and A(A - MX) = w.

It follows that we can study the existence and uniqueness of solutions of algebraic
Riccati equations via the analysis of Lagrangian invariant subspaces of the associated
Hamiltonian matrices.

Unlike the Lagrangian invariant subspace problem, which only depends on the
Jordan structure, Hermitian solution of the Riccati equation depend further on the
top block of the basis of the Lagrangian invariant subspace and the choice of the
associated eigenvalues. In other words, for a given Hamiltonian block triangular
form R, all Hamiltonian matrices which are similar to R have Lagrangian invariant
subspaces, while for Riccati equation solutions these Hamiltonian matrices may be
partitioned into three groups which i) have Hermitian solutions for all selections Q(R),
ii) have Hermitian solutions for some w € Q(R), iii) have no Hermitian solution for
any w € Q(R).

ExaAMPLE 1. Consider three Riccati equations with matrices

i 0 1 —1-i 00
a)A_{o 1]’ M_[—1+i 0 ] G_{o 0]’
i 0 11— 0 0
b)A4=1, 1}’ M=1_14i -2 ’G_[o 0}’
[i o _[o o I S S
C)A_{o —1]’ M‘[o 0}’ G_{—l—i 0 }

In all three cases the related Hamiltonian matrices have the same Hamiltonian Jordan
canonical form

1 01 0
01 0 0O
0 0 7 0O ’
0 00 -1

and Q(H) = {w1, w2} with wy = {i,1}, we = {4, —1}. Certainly for both wy, wy all
Hamiltonian matrices have a unique Lagrangian invariant subspace. But the Hermi-
tian solutions of Riccati equation are different. In case a) for w; the solution is X = 0
and for wo there is no solution. In case b) for w; the solution is 0 and for ws the

0
is also possible that the Riccati equation has no Hermitian solution while the related
Hamiltonian matrix has infinitely many Lagrangian invariant subspaces.

EXAMPLE 2. For

solution is X = [0 31} . In case c) for both w; and wo there is no solution at all. It

00 0 1
=w=[ ] o= (1]

the Riccati equation (5.1) has no solution. But for the associated Hamiltonian matrix
the bases of the Lagrangian invariant subspace can be parametrized as

—if 0 0 ~ 0 1
-1 0 0 0 0 0
o 11| o 1] ool
a if 10 10

where a, 3,7 are real.
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By using the parameterizations in Section 3 we can give a necessary and sufficient
condition for the existence of the Hermitian solutions of the Riccati equation (5.1).
Note that for the solvability of the Riccati equation it is necessary that the Hamilto-
nian matrix #H associated to (5.1) has a Hamiltonian block triangular form. So there
exists a symplectic matrix S such that

1 _
(5.2) SHS=|y _pu

RD]

with R = diag(Rl,. .. ’RN;RN+1’ . ’RN+V)’ D = dlag(O, .. "O;DN+1’ .. '7DH+V)‘ A

Ry

o _]O%kH] has the Jordan form (3.13) with respect to the eigenval-

submatrix Hy :=

Ry Dy

ues A\, —Ag for k =1,...,u, and a submatrix Hy := [ 0 _RH
k

] has the Jordan form
(3.5) with respect to iag—, for k=p+1,...,p+v.

THEOREM 5.2. Let ‘H be the Hamiltonian matriz associated with the algebraic
Riccati equation (5.1) and assume that H has a Hamiltonian block triangular form.

Let S be a symplectic matriz satisfying (5.2) and let P be a permutation matriz such
that

P IS YHSP = diag(Hu, ..., Hys Hygry oo o, Huth),
(5.3) PHIP = diag(Jnys-- - Inpi Jmas - - - I )5

where Hj, = [%’“ 710%;’]' Then for an eigenvalue selection w € Q(H), the Riccati

equation (5.1) has an Hermitian solution X with A(A— MX) = w if and only if there
exist matrices Uy, ..., U, and Q1,...,Q, with the following properties. The matrices
Uy are 2nyg X ny and have the block form (3.10) with blocks satisfying (3.15) and the
matrices Qy are 2my, X my, and have the block form (3.6) with blocks satisfying (3.8)
and (3.9), such that

(5.4) Ly := [I,,0]SP diag(Uy, ..., Up: Q1,- .., Q)

18 nonsingular.

Moreover, X = —[0,I,]SP diag(Uy, ..., U,; Q1,...,Q,) L.

Proof. Since H has a Hamiltonian block triangular form, we have (5.2) and P
can be easy to determined to obtain (5.3). A given w specifies the number elements
Ak, —Ax and hence by Theorems 3.7 and 3.4 we obtain the parameterizations for the
bases of the associated Lagrangian invariant subspaces of H. Thus by Proposition 5.1
we have the conclusion. O

REMARK 3. If in the Hamiltonian matrix H = [é }Xn} the matrix M is positive

or negative semidefinite, then the invertibility of L in (5.4) is ensured by a controlla-
bility assumption, see Theorem 3.1 and Remark 3.2 in [9] or [15] for details. If (5.1)
has an Hermitian solution with respect to a selection w, then the uniqueness follows
directly from the uniqueness results for Lagrangian invariant subspaces.

THEOREM 5.3. Let X = X be an Hermitian solution of (5.1) with A(A—MX) =
w. Then X associated to w is unique if and only if the related Hamiltonian matriz H
has a unique Lagrangian invariant subspace associated to w. Moreover, in this case
if w € QH) then for every selection in Q(H) for which the associated Hermitian
solutions exists, it is unique.

If the uniqueness condition for the Lagrangian invariant subspaces of H does not
hold and if (5.1) has at least one Hermitian solution associated with a selection w,
then (5.1) has infinitely many Hermitian solutions associated to w.
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Proof. The uniqueness conditions for the Hermitian solutions follows from the
equivalence of i) and iii) in Theorems 4.2 and 4.3.

If (5.1) has a solution X associated to an w, following Theorem 5.2, there must
be two sets of matrices Uy,...,U, and Q1,...,Q, such that for

‘ L
L = SPdiag(Ui,...,Uu;Q1,...,Q.) =: [ L; }’

L, is nonsingular and X = —LyL; L If the uniqueness condition for H does not
hold then for at least one pair Az, —A; or one purely imaginary eigenvalue icy, the
uniqueness condition does not hold. In the case of a pair A, —\, by Theorem 3.7 the
parameters si,. .., s, cannot be all zero. So the matrix V' cannot be void and satisfies
(3.15) or equivalently (3.11). For every V;; the associated equation is a singular
Sylvester equation. So at least for the last V; ;, say Vi p, there are infinitely many
solutions. This means that we can choose infinitely many bases which are near to a
certain U. For the case of an eigenvalue ¢ from Theorem 3.4 again si,..., s, cannot
be all zero. So W cannot be void. Since W must satisfies the singular Lyapunov
equation (3.8), there are infinitely many solutions. So we can also choose infinitely
many bases which are near to a certain Q. Consequently if the uniqueness condition
of H does not hold, then there are infinitely many bases L of the Lagrangian invariant
subspaces associated to w such that ||L — L|| < ||LT"||, which implies that there are
infinitely many Hermitian solutions corresponding to such L. O

If an Hermitian solution X is known then we can use it to verify the uniqueness.

COROLLARY 5.4. Let X be an Hermitian solution of (5.1) with A(A—MX) = w.
Let the columns of @y, k = 1,... v, span the left eigenspaces of A—M X corresponding
to iay. If @ M®y, is either positive definite or negative definite for all k =1,...,v,
then w € Q(H) implies that X is unique. If w ¢ Q(H) then X is unique if we
have the additional condition that for every eigenvalue pair Ay and —\p the matriz
A — MX either has one of them as its eigenvalue and has a unique corresponding left
eigenvector, or has both of them as eigenvalues and the corresponding left eigenvectors
Ty, Yy satisfy xf My #0 fork=1,...,p.

Proof. The proof follows directly from the fact that

e [ A-MX M B
S ’HS_{ 0 A uxyE | =R

where § = [_IX (I)] is symplectic, and from v) in Theorems 4.2 and 4.3. O

6. Conclusion. Based on Hamiltonian block triangular forms for Hamiltonian
matrices under symplectic similarity transformations we have given necessary and suf-
ficient conditions for the existence and uniqueness of Lagrangian invariant subspaces.
If the subspace is not unique, then we have given a complete parametrization of all
possible Lagrangian invariant subspaces. We have then applied these results to derive
existence and uniqueness results for Hermitian solutions of algebraic Riccati equations
as corollaries.
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