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Abstract:

Smoothness and symmetry are two important properties of a refinable function. It
is known that the Sobolev smoothness exponent of a refinable function can be estimated
by computing the spectral radius of certain finite matrix which is generated from a mask.
However, the increase of dimension and the support of a mask tremendously increases the
size of the matrix and therefore make the computation very expensive. In this paper, we
shall present a simple algorithm to efficiently numerically compute the smoothness exponent,
of a symmetric refinable function with a general dilation matrix. By taking into account
of symmetry of a refinable function, our algorithm greatly reduces the size of the matrix
and enables us to numerically compute the Sobolev smoothness exponents of a large class of
symmetric refinable functions. Step by step numerically stable algorithms and details of the
numerical implementation are given. To illustrate our results by performing some numerical
experiments, we construct a family of dyadic interpolatory masks in any dimension and we
compute the smoothness exponents of their refinable functions in dimension three. Several
examples will also be presented for computing smoothness exponents of symmetric refinable
functions on the quincunx lattice and on the hexagonal lattice.
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1 Introduction

A d x d integer matrix M is called a dilation matrix if lim;_,.. M * = 0. A dilation matrix
M is isotropic if all the eigenvalues of M have the same modulus. We say that a is a
mask on Z¢ if a is a finitely supported sequence on Z% such that > seza@(B8) = 1. Wavelets
are derived from refinable functions via a standard multiresolution technique. A refinable
function ¢ is a solution to the following refinement equation

¢ =|det M| > a(B)p(M - —p), (1.1)
B
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where a is a mask and M is a dilation matrix. For a mask a on Z¢ and a d x d dilation matrix
M, it is known ([1]) that there exists a unique compactly supported distributional solution,
denoted by ¢M throughout the paper, to the refinement equation (1.1) such that QASfLVI 0) =1,
where the Fourier transform of f € L;(R%) is defined to be f(£) := [o, f(v)e "€ dx, & € RY
and can be naturally extended to tempered distributions. Symmetric multivariate wavelets
and refinable functions have proved to be very useful in many applications. For example,
2D refinable functions and wavelets have been widely used in subdivision surfaces and im-
age/mesh compression while 3D refinable functions have been used in subdivision volumes,
animation and video processing, etc.

For a compactly supported function ¢ in R?, we say that the shifts of ¢ are stable if
for every £ € RY, ¢p(& + 273) # 0 for some 3 € Z%. For a function ¢ € Ly(R?), its Sobolev
smoothness exponent is defined to be

(@) =sup{v >0 : [ [BOPO+ ) de < oo (1.2

Smoothness is one of the most important properties of a wavelet system. Therefore, it is of
great importance to be able to numerically compute the smoothness exponent of a refinable
function. Let a be a mask and M be a dilation matrix. We say that a satisfies the sum
rules of order k with respect to the lattice MZ? if

Y ala+B)gla+B)= > alBeB) VaeZqell,

BeMZ4 BEMZ4

where II;_; denotes the set of all polynomials of total degree less than k. By convention,
I1_; is the empty set. Define a new sequence b from the mask a by

b(a) := Z ala+ B)a(B), a € 74 (1.3)

BEZ4

The transition operator 7; s associated with the sequence b and the dilation matrix M
is defined by

[Ty au)(a) = [det M| Y b(Ma — B)u(B),  a€Z% ue lh(ZY, (1.4)
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where £y(Z?) denotes the linear space of all finitely supported sequences on Z?. For a subset
K of Z4, by ¢(K) we denote the linear space of all finitely supported sequences on Z¢ that
vanish outside the set K.

When ¢M € Ly(R?) and the shifts of ¢ are stable, if M is isotropic and a satisfies the
sum rules of order k£ but not k£ + 1, then it was demonstrated in [3, 4, 7, 15, 18, 20, 21, 26,
27, 29] in various forms under various conditions that

d
V2(¢¢]1w) = _5 10g| det M| p(Tb,M|V2k71)’ (15)

where p(Ty ar|vy, ) is the spectral radius of the operator T}, 5, acting on the finite dimensional
T, m-invariant subspace Va1 of £(€2 a7) with the set €2 s being defined to be

Uy = [iM‘jK]ﬂZd and K:={acZ®: |of<k}U{acZ®: bla)#0}, (1.6)

=1

and the slightly smaller subspace Vo,_1 of £(2 5s) is defined to be

Vi={u € l(Qnm) : Z u(a)g(B) =0 Vg €11}, JjeN. (1.7)

Bezd

However, from the point of view of numerical computation, there are some difficulties in
obtaining the Sobolev smoothness exponent of a refinable function via (1.5) by computing
the quantity p(Th,a|v,, ,) due to the following considerations:

D1. It is not easy to find a simple basis for the space V5,1 by a numerically stable
procedure to obtain a representation matrix of 7} p; under such a basis. Theoretically
speaking, if some elements in a numerically found basis of Vo 1 can not satisfy the
equality in (1.7) exactly, then it will dramatically change the spectral radius since in
general Tj s has significantly larger eigenvalues outside the subspace Va;_;.

D2. When the dimension is greater than one and even when the mask has a relatively
small support, in general, the dimensions of the spaces Va1 and ¢(£2 ) are very
large. For example, for a 3D mask with support [—7,7]> and sum rules of order 4,
we have dim(V7) = 24269 and dim(¢(Qp7,)) = 24389. This makes the numerical
computation using (1.5) very expensive or even impossible.

D3. In order to obtain the exact Sobolev smoothness exponent by (1.5), we have to check
the assumption that the shifts of ¢ are stable which is a far from trivial condition to
be verified.

Fortunately, the difficulty in D1 was successfully overcome in Jia and Zhang [19], where they
demonstrated that p(Ty am|v,,_,) is the largest value in modulus in the set consisting of all
the eigenvalues of T} ar¢(q, ,,) excluding some known special eigenvalues. Note that £(S2,ar)
has a simple basis {0, : @ € Qa1 }, where 6,(a) = 1 and 6,(8) = 0 for all 8 € Z4\{a}.
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On the other hand, both symmetry and smoothness of a wavelet basis are very important
and much desired properties in many applications. It is one of the purposes in this paper to
try to overcome the difficulty in D2 for a symmetric refinable function. We shall demonstrate
in Algorithm 2.1 in Section 2 that we can compute the Sobolev smoothness exponent of a
symmetric refinable function by using a much smaller space than using the space £(£2 ).
In Section 3, we shall see that for many refinable functions, it is not necessary to directly
verify the stability assumption since they are already implicitly implied by the computation.
Therefore, the difficulty in D3 does not exist at all for many refinable functions (almost all
interesting known examples fall into this class).

To give the reader some idea about how symmetry can be of help in computing the
Sobolev smoothness exponents of symmetric refinable functions, we give the following com-
parison result in Table 1. See Section 2 for more detail and explanation of Table 1.

Mask 4D mask | 3D mask | 2D mask | 2D mask | 2D mask
Support [-5,5]* | [-7,7 | [=27,27 | [-7,7)? | [-12,12)?
Symmetry full axes | full axes | hexagonal | full axes | hexagonal
Dilation matrix 21, 213 21, 1 11 ; _?
Method in [19] | 194481 24389 8911 5601 > 3241
Algorithm 2.1 715 560 756 707 294

Table 1: The last two rows indicate the matrix sizes in computing the Sobolev smoothness
exponents of symmetric refinable functions using both the method in [19] and the method
in Algorithm 2.1 in Section 2 in this paper. This table demonstrates that Algorithm 2.1
can greatly reduce the size of matrix in computing the Sobolev smoothness exponent of a
symmetric refinable function.

The structure of the paper is as follows. In Section 2, we shall present step by step nu-
merically stable algorithms to numerically compute the smoothness exponent of a symmetric
refinable function. In Section 3, we shall study the relation of the spectral radius of certain
operator acting on different spaces. Such analysis enables us to overcome the difficulty in
D3 for a large class of masks. In Section 4, we shall apply the results in Sections 2 and 3
to several examples including refinable functions on quincunx lattice and hexagonal lattice.
We shall also present a C? v/3-interpolatory subdivision scheme in Section 4. In Section 5,
we shall generalize the well known univariate interpolatory masks in Deslauriers and Dubuc
[5] and the bivariate interpolatory masks in [11] to any dimension. Finally, we shall use
the results in Sections 2 and 3 to compute Sobolev smoothness exponents of interpolating
refinable functions associated with the interpolatory masks in Section 5 in dimension three.

Programs for computing the Sobolev and Hdélder smoothness exponents of symmetric
refinable functions based on the Algorithms 2.1 and 2.5 in Section 2, which come without
warranty and are not yet optimized with respect to user interface, can be downloaded at
http://www.ualberta.ca/~bhan.



2 Computing Smoothness Exponent Using Symmetry

In this section, taking into account of symmetry, we shall present an algorithm to efficiently
numerically compute the Sobolev smoothness exponent of a symmetric multivariate refinable
function with a general dilation matrix. As the main result in this section, Algorithms 2.1
and 2.5 are quite simple and can be easily implemented, though their proofs and some
notation are relatively technical.

Before proceeding further, let us introduce some notation and necessary background.
Let Ny denote all the nonnegative integers. For p = (p1,... ,pq) € N, |p| := p1 + -+ + pa,
pl = pg!- e pgl and EF =& - &4 for £ = (&4,...,&1) € RY For a € Z% and y € R%, we
define

Voui=u—u(-—a), Vyf:=f-[f(-y), u € by(Z%), f € Ly(R?).

For = (py, ... ,pq) € NI, VF := Vi ---VEi where e; is the jth coordinate unit vector in
R?. Let § = &y denote the sequence such that §(0) = 1 and §(3) = 0 for all 3 € Z4\{0}. Let
M be a d x d dilation matrix and a be a mask on Z¢. For 1 < p < co and k € Ny, we define

pr(a; M, p) := max{ lim [[V*S7, 8],/ « |u| =k, p € N3}, (2.1)

where ||ul|, = (dezd\u(ﬂﬂp)l“’ for u € £y(Z%) and S, is the subdivision operator
given by

[Sa,mul(a) := | det M| Z a(la — MB)u(p), o € 2% u e 6o(Z%).
Bezd
Let M be a dilation matrix and A, be the spectral radius of M (When M is isotropic,

then A = |det M|*/%). When a mask a satisfies the sum rules of order k£ but not k + 1,
we define the following important quantity:

vp(a; M) := —log,  [|det M| /?pp(a; M,p)], 1< p< oo (2.2)

The above quantity v,(a; M) plays a very important role in characterizing the convergence of
a subdivision scheme in a Sobolev space and in characterizing the L, smoothness exponent
of a refinable function. The partial derivative of a differentiable function f with respect
to the jth coordinate is denoted by D,f, j = 1,...,d, and for p = (u1,...,pns) € Ng,
Dt := Di* .. Dh?. By W (R?) we denote the Sobolev space that consists of all functions f
such that D¥*f € L,(R?) for all u € Nj with |u| < k, equipped with the norm || f||wx g4 :=

> i<k I1D#fllp- When & =0, W,)(R?) is the space L,(R?) and || - [|wore) is the L, norm.
An iteration scheme can be employed to solve the refinement equation (1.1). Start with
some initial function ¢g € W (R?) such that ¢o(0) = 1 and D¥¢y(278) = 0 for all B € Z4\{0}

and for all y € N¢ with |u| < k. We employ the iteration scheme Q% %0, n € Ny, where
Qa,ur is the linear operator on L,(R?%) (1 < p < 00) given by

Quuef == [det M| Y a(B)f(M-—B),  [€ Ly,(RY).

BeZ



This iteration scheme is called a subdivision scheme ([1]). When the sequence Q7 o
converges in the Sobolev space Wf(Rd), then the limit function must be ¢ and we say
that the subdivision scheme associated with mask a and dilation M converges in W}F(R?).
When M is an isotropic dilation matrix, the subdivision scheme associated with the mask
a and dilation M converges in the Sobolev space W} (R?) if and only if ppi1(a; M,p) <
| det M |'/P=k/ (we shall see in Section 3 that this is equivalent to v,(a; M) > k). See [10]
for the case k = 0 and [17] for the case p = 2 on the characterization of the convergence of
a subdivision scheme.

The L, smoothness of f € L,(R?) is measured by its L, smoothness exponent:

vp(f) :==sup{v 20 : [|[Vifll, <Cllyll" Vy € R? for some constant C and

2.3
for large enough positive integer n}. (2:3)

When p = 2, the above definition of v5(f) agrees with the definition in (1.5). By generalizing
the results in [4, 3, 7, 9, 15, 18, 20, 21, 26, 27, 29] and references therein, we have
vp(dg') > vp(a; M), 1< p<oo

a

and the equality holds when the shifts of ¢ are stable and M is an isotropic dilation matrix.

So, to compute the Sobolev smoothness exponent of a refinable function, we need to
compute vy(a; M) and therefore, to compute pg(a; M,2). It is the purpose of this section to
discuss how to efficiently compute py(a; M, 2) when a is a symmetric mask.

Let © be a finite subset of integer matrices whose determinants are +1. We say that ©
is a symmetry group with respect to a dilation matrix M if © forms a group under matrix
multiplication and MM ~! € © for all § € ©. Obviously, each element in a symmetry group
induces a linear isomorphism on Z¢.

Let ©4 denote the set of all linear transforms on Z¢ which are given by
On (01, ..., 0q) = (E10x(1), - - - ,EdO(a)), (aq,...,0q) € Z4, (2.4)

where ¢ = (g1,... ,64) € {—1,1}? and 7 is a permutation on (1, ... ,d). ©4 is called the full
axes symmetry group. Obviously, ©7 is a symmetry group with respect to the dilation
matrix 2J,4. It is also easy to check that ©F is a symmetry group with respect to the quincunx
R [T —1] 11 : :
dilation matrices 11 and e Another symmetry group with respect to 21, is the

following group which is called the hexagonal symmetry group:

St G A e e S S | B R

Such group ©F can be used to obtain wavelets on the hexagonal planar lattice (that is,
the triangular mesh). For a symmetry group © and a sequence u on Z? we define a new



sequence O(u) as follows:

OWIB) = g Sudd). e ue @) (26)

fco

where #0 denotes the cardinality of the set ©. We say that a mask « is invariant under ©
if ©(a) = a. Obviously, for any sequence u, ©(u) is invariant under © since ©(0(u)) = O(u).
When O is a symmetry group with respect to a dilation matrix M, then a is invariant under
© implies that the refinable function ¢ is also invariant under ©; that is, ¢ (0-) = ¢
for all 8 € ©. We caution the reader that the condition MM~ € © for all § € © can not
be removed in the definition of a symmetry group with respect to a dilation matrix M. For
10
01
respect to the quincunx dilation matrices, though it is a symmetry group with respect to the
dilation matrix 275. So even when a mask a is invariant under such a group O, the refinable
function ¢M with the quincunx dilation matrix M may not be invariant under ©.

example, as a subgroup of 03, © = {+ [ } ,+ {_01 ?]} is not a symmetry group with

Let Z% denote a subset of Z? such that for every « € Z¢, there exists a unique 3 € Z%
satisfying 3 = « for some § € ©. In other words, Zg is a set of complete representatives of
the distinct cosets of Z¢ under the equivalence relation induced by © on Z¢.

Algorithm 2.1 Let M be a d X d isotropic dilation matrixz and let © be a symmetry group
with respect to the dilation matriz M. Let a be a mask on Z¢ such that } 4 54a(B) = 1.
Define the sequence b as in (1.3). Suppose that b is invariant under the symmetry group ©
and a satisfies the sum rules of order k but not k+1. The quantity vo(a; M) (or equivalently,
pe(a; M, 2)) is obtained via the following procedure:

(a) Find a finite subset Ko of Z& such that {M~*(fa+ B8) : 0 € ©,a € Ko, €
supp b} VA - {05 : ﬁ € K@, RS @} and dim(HQk_1|{9ﬂ . 96@,,361(@}) = dim(Hgk_l);

(b) Obtain a (#Ke) x (#Ke) matriz T as follows:

. | det M| B '
Tlo, ] := F7c6 - eﬂzﬂ}aezeb(Mﬁ fa), o, B € Ko; (2.7)

(c) Let o(T) consist of the absolute values of all the eigenvalues of the square matriz T
counting multiplicity. Then vy(a; M) is the smallest number in the following set

d
{—5 log getnr| P 1 p € o(T)I\{J/2 with multiplicity me(j) : 0 < j <2k}, (2.8)
where by default 10g) 4o pr 0 := —00 and

m@(j) = dlm(@(H])) - dlm(@(HJ_l)), ] S NO (29)



Before we give a proof to Algorithm 2.1, let us make some remarks and discuss how
to compute the set Ko and the quantities me(j) in Algorithm 2.1. Since the matrix 7" in
Algorithm 2.1 has a simple structure, it is not necessary to store the whole matrix 7" in
order to compute its eigenvalues and many techniques from numerical analysis (such as the
subspace iteration method and Arnoldi’s method as discussed in [28]) can be exploited to
further improve the efficiency in computing the eigenvalues of 7". We shall not discuss such
an issue here. The set Kg can be easily obtained as follows:

Proposition 2.2 Let Ky := suppbU{fa € Z% : |a| < k,0 € O} where suppb := {3 € Z¢ :
b(B) # 0}. Recursively compute

K;=K; UM YK;_1+suppb)NZY,  jeN

Then K; = K;_; for some j € N. Set Ko := K; NZ%. Then K¢ satisfies all the conditions
n (a) of Algorithm 2.1.

Proof: Note that K; C (3.2, M 7Ko) N2 C {a € Z* : |a| < r} for some finite integer
r. Therefore, there must exist j € N such that K; = K;_; by K;_; C K, for all « € N.
Consequently, M~ (K; +suppb) NZ% = M~ (K;_1 +suppb) NZ* C K;. Since K, C K;, we
have dim(Hgk_l) = dim(Hgk_l‘KO) < dim(Hgk_lhgg . 06@,ﬂEK®}) < dim(Hgk_l). |

Let O; := {p € N¢ : |u| =j}. The set O; can be ordered according to the lexicographic
order. That is, (v1,...,vy) is less than (uq,...,pe) in lexicographic order if |v| < |u| or
vi=p; for j=1,...,9—1and v; < p; for some 7. For a d x d matrix A and any j € Ny,
we define a (#0;) x (#O-) matrix S(A4, j) which is uniquely determined by

= 1S4, )uw pe 05 €N (2.10)

veOD;

Note that S(AB,j) = S(A,)S(B,j) and S(A”,j) = S(A, j)*. Moreover, when Ay, ..., g
are all the eigenvalues of A, then M, u € O; are all the eigenvalues of S(4,j), where A =
(A1,...,Aq) since S(A4,j) is similar to S(B, j) when A is similar to B.

The quantities mg(j),j € Ny can be computed as follows.

Proposition 2.3 Let © be a symmetry group. Then

me(j) = mnk[z S(G,j)}, jeN,. (2.11)

0coO

In particular, when —I; € O, then mg(2j — 1) =0 for all j € N.

Proof: For p € N¢, let g, be the sequence given by ¢,(a) = a“/,u!, a € Z4. Note that

@) = Z%(ea) = Z Z (0,7 ]u, Z 9 (o Z (0, 5)] -

0co 0co ' 0€0 veO; 2 veo; fcO
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Since g, i € O; are linearly independent, we have

me(j) = dim(6(I1;)) - dim(©(I]; ;) = dim(span{O(g,) : p € O;}) = rank| 3" S(6, 7))
9co
When —I; € ©, we observe that >y 0 S(60,5) = D o S(—0,7) = (—1)7 X pce S0, 7).
Therefore, meg(2j — 1) = 0 for all j € N since }_,.o S5(0,2j — 1) = 0. u
Note that mg(j) depends only on the symmetry group © and is independent of the

dilation matrix M. When © is a subgroup of the full axes symmetry group ©7, then me(j)
can be easily determined since matrix S (6, j) is very simple for every 6 € ©4. For example,

Mea(25) = #{ (1, s 1a) € NG 2 0 < i <2 <o+ < gy i+ + pa = j 1

For the convenience of the reader, we list the quantities meg(j) in Algorithm 2.1 for some
well known symmetry groups in Table 2, where ©) and ©2 are defined to be

arfel B[ ) o-fb YR )

me(j), 7=0,2,4,...,32
j o214 |6][8]10]12]14[16]18[20]22[24]26]28]30] 32
of 111ttt r]r 111|111 ]1]1]1]1
of [1]1]2]2[3]3 |44 |5 [5]6]6]7]7|8]8]9
ofF 1112|223 |3[3|4[4|4][5]|5][5]|6]6
ol 1123456 |7 [8]|9]10]11]12|13]14|15][ 16|17
o2 123456 |7 [8|9]10]11][12]|13][14|15][ 16|17
O [1]1]2[3]4]5 |7 ][8]10]12|14]16[19]21[24]27]30
of [1]1]2[3]5]6 ]9 [11]15]18]23|27[34|39][47|54]64

Table 2: The quantities mg(j),j € Ny in Algorithm 2.1 for some known symmetry groups.
Note that me(2j — 1) = 0,5 € N in this table.

For a sequence u on Z¢, its symbol is given by
e = u(@e Pt EeR (2.12)
BeLa
For j=1,...,d, let A; denote the difference operator given by
Aju = —u(- —e;) +2u —u(- +ej), u € £o(ZY),
and A¥ := A" - AB for pp = (pg, ..., pa) € N. Define

(u,0) = Y _w(Bw(B),  u,v € L(Z.

pezd

To prove Algorithm 2.1, we need the following result.
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Theorem 2.4 Let a be a finitely supported mask on Z¢ and let b be the sequence defined in
(1.3). Let © be a symmetry group with respect to a dilation matriz M. Suppose that b is
invariant under ©. Then ©(Ty pu) = Ty O(u) for all u € £y(Z%) and

pr(a; M, 2) = | det MY/ p(Ty.pe|w,), ke Ny, (2.13)

where Ty s is the transition operator defined in (1.4) and Wy is the minimal Ty pr-invariant
finite dimensional space which is generated by O(A*S), p € N& with |u| = k.

Proof: Since © is a symmetry group with respect to the dilation matrix M and b is invariant
under O, it is easy to directly check that © (T pu) = Tp, ;O (u) for all u € £o(ZY).

Note that b(¢) = [@(€)[2 = 0 for all £ € RY. Let m := |det M|. By the Parseval identity,
we have

n

1

I 52:—/ VrST (€)1 dE =
IV S50l =ga | IVPSE0(E) dE =5 g

From the definition of the transition operator, it is easy to verify that

/[0 » ARSF L 8(€) dE = mMAESE5(0).

TP A5(0) = (TP A"5,8) = (A8, Sp4,8) = (5, A*SP ,6) = A*SP,6(0).

For a sequence u such that (&) > 0 for all £ € R?, we observe that ||u|| = u(0) (see [8]).
From the fact that T;",,©0(A#5)(€) > 0 and ArSy,,6(£) > 0 for all £ € R?, it follows that

T30 O(A%6) |0 = T 1O (A"6)(0) = O (Ty A*0)(0)
= (#O)T;\A"6(0) = (#O)A"S} 1 (0) = (#O)m "[|V*Sg 1 d]f5.

Since Wy is the minimal T} p-invariant subspace generated by {©(A#§) : u e N¢, |u| = k},
we have

(T aalws) = max{ lim [T, O(A#0)[L7 < || = ko € N}
= max{ lim (#0)"/"m~|V*S; 65"+ |ul = k,u € Ng} = m™" (pi(a; M, 2))°

which completes the proof. [ ]

Proof of Algorithm 2.1: Let K := {05 : 6 € ©,5 € Ko}. Then it is easy to check that
both ¢(K) and O(¢(K)) are invariant under T} s (see [10, Lemma 2.3]). Since a satisfies the
sum rules of order k, then the sequence b, which is defined in (1.3), satisfies the sum rules
of order 2k and Va_; is invariant under Ty s (see [14, Theorem 5.2]), where V; := {u €
(2% : Y sepau(B)g(B) =0 Vg €I}, Define U; := ©(L(K)NVj;),5 € N. Let Wy, denote
the linear space in Theorem 2.4. Observe that W, C Us,_1 C Vor_1. By Theorem 2.4 and
(1.5), we have py(a; M,2) = /| det M|p(Ty rr]v,,_, )-

10



Since b satisfies the sum rules of order 2k and b is invariant under ©, we have T3, ,,U; C U;
for all j = —1,0,...,2k — 1. Therefore, we have spec(Tyar|owk))) = spec(Tyn|v,_,) U
spec(Ty.arlo(k))/Us_r ), Where spec(T') denotes the set of all the eigenvalues of T count-
ing multiplicity and the liner space ©({(K))/Usy_1 is a quotient group under addition.
Note that U_; = O(¢(K)). Since T, »U; C Uj for all j = —1,0,...,2k — 1, the quo-
tient group ©(¢(K))/Usk_1 is isomorphic to U_1 /Uy @ Uy /Uy @ - -+ @ Usg_o/Usx_1. Hence,
spec(Ty,n o) /Us_1) = U?’iglspec(Tb,Mbj_l/Uj). By [19, Theorem 3.2] or by the proof of
Theorem 3.1 in Section 3, we know that for any j = 0,...,2k — 1, all the eigenvalues of
Ty,mlv;_,/v; have modulus |det M|=/¢. Since U;_1/U; is a subgroup of V;_1/V;, we deduce
that all the eigenvalues of Ty u|y,_, /v, have modulus |det M |=3/¢. (In fact, by duality, we
can prove that for any j = 0,...,2k — 1, spec(Ty,mlv;_,ju;) = spec(T|ea\m,_,)), Where
[7(¢)](z) == ¢(M~'z),q € lg_y1.) By duality, dim(U;_,/U;) = dim(U;_,) — dim(U;) =
dim(O(Il;)) — dim(©(II;_;)) = me(j). Note that {©(d,) : a € Kg} is a basis of O(¢(K))
and the matrix T is the representation matrix of the linear operator T}, 5 acting on ©(¢(K))
under the basis {O(J,) : « € Kg}. This completes the proof. n

From the above proof, without the assumption that M is isotropic, we observe that
pr(a; M, 2) is the largest number in the set o(T)\{|A| : A € spec(T|e(n,, ,))}, where o(T) is
defined in Algorithm 2.1 and [7(q)](z) := ¢(M~'z),z € R¢ q € Ily;_;. Since O is a symmetry
group with respect to the dilation matrix M, it is easy to see that 7O(II;) C O(IL;) for all
Jj € N, where O(II;) := {% Y oco@x) : ¢ € II;}. In passing, we mention that the
calculation of the Sobolev smoothness for a bivariate mask which is invariant under ©4 with
the dilation matrix 21, was also discussed by Zhang in [30]. When a mask has a nonnegative
symbol, then we can also compute pg(a; M, 00) in a similar way (see [10, Theorem 4.1]). For
completeness, we present the following algorithm whose proof is almost identical to that of
Algorithm 2.1.

Algorithm 2.5 Let M be a d X d isotropic dilation matrixz and let © be a symmetry group
with respect to the dilation matriz M. Let a be a mask on Z¢ such that > pezaa(B) = 1.
Suppose that a is invariant under the symmetry group ©, the symbol of a is nonnegative
(i.e., a(§) = 0 for all ¢ € R?), and a satisfies the sum rules of order k but not k + 1. The
quantity ve(a; M) (or equivalently, pi(a; M, 00)) is obtained via the following procedure:

(a) Find a finite subset Ko of Z& such that {M'(a+ B8) : 6 € ©,a € K¢, €
suppa} NZE C {08 : B € Ko, € O} and dim(TTx—1 {08 : co,pe ko)) = dim(ITx_1);
(b) Obtain a (#Ke) x (#Ke) matriz T as follows:
| det M|

Ta, 8] := Z0co eﬁzﬁ}eezga(Mﬂ—Oa), a,f € Ke.

(c) Let o(T) consist of the absolute values of all the eigenvalues of the square matriz T
counting multiplicity. Then v (a; M) is the smallest number in the following set

{—dlogges ar p ¢ p € o(T)}\{J with multiplicity me(§) : 7 =0,...,k—1}.
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3 Relations Among pi(a; M,p), k € Ny

In this section, we shall study the relations among pi(a; M, p), k € Ny. Using such relations
we shall be able to overcome the difficulty in D3 in Section 1 in order to check the stability
condition for certain refinable functions.

The main results in this section are as follows.

Theorem 3.1 Let M be a dilation matriz. Let a be a finitely supported mask on Z¢ such
that 3 scg0a(8) = 1 and a satisfies the sum rules of order k with respect to the lattice WA
Let Apin = minigjca|Aj| and Amez = maxigjca |Aj], where Ay, ..., Aq are all the eigenvalues
of M. Then

pj(a;M,p)=max{|detM|1/p)\T_nJZ:n, pe(a; M, p)} Vi<p<oo,0<j<k (3.1)

and | det M|Y97YPp.(a; M, p) < p;j(a; M, q) < pj(a; M,p) for all j € Ny and 1 < p < ¢ < oo.
Consequently, vy(a; M) > vy(a; M) > vy(a; M) + (1/q — 1/p) log, . | det M|.

We say that a mask a is an interpolatory mask with respect to the lattice MZ4 if
a(B) = 0 for all € MZ\{0}. Let a and b be two finitely supported masks on Z?. Define

a sequence ¢ by ¢(€) = a(€)b(€),€ € R, If ¢ is an interpolatory mask with respect to the
lattice MZ?, then b is called a dual mask of a with respect to MZ¢ and vice versa.

Let ¢ be a continuous function on R¢. We say that ¢ is an interpolating function if
#(0) = 1 and ¢(B) = 0 for all 3 € Z4\{0}. For discussion on interpolating refinable functions
and interpolatory masks, the reader is referred to [5, 6, 11, 12, 24, 25] and references therein.
For a compactly supported function ¢ on R?, we say that the shifts of ¢ are linearly
independent if for every £ € C?, ¢(£ + 2n3) # 0 for some 8 € Z%. Clearly, if the shifts
of ¢ are linearly independent, then the shifts of ¢ are stable. When ¢ is an interpolating
function, then the shifts of ¢ are linearly independent. Given a finitely supported mask a
on Z4, though a method was proposed in Hogan and Jia [13] to check whether the shifts of
@2'a are linearly independent or not. However, there are similar difficulties as mentioned in
D1 and D2 in Section 1 when applying such a method in [13]. In fact, the procedure in [13]
is not numerically stable and exact arithmetic is needed. Also see [23] on stability.

Given a mask a and a dilation matrix M, it is known that ¢ is an interpolating
refinable function if and only if the mask « is an interpolatory mask and the subdivision
scheme associated with mask a and dilation M converges in the L., norm (equivalently,
p1(a; M, 00) < 1, see [10]). However, in general, it is difficult to directly check the condition
p1(a; M, 00) < 1. The following result is useful to indirectly check such a condition.

Corollary 3.2 Let a be a finitely supported mask on Z¢ and M be a dilation matriz. Suppose
that b is a dual mask of a with respect to the lattice MZ® and

vp(a; M) 4+ vy(b; M) >0 for some 1< pg<oo with 1/p+1/¢=1. (3.2)
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Then the shifts of oM are linearly independent. Therefore, the shifts of oM are stable and
when M is isotropic and vy(a; M) > 0, v,(¢Y) = vy(a; M). In particular, when a is an
interpolatory mask with respect to the lattice MZ?, if vo(a; M) > d/2 (or more generally
vp(a; M) > d/p for some 1 < p < 00), then the subdivision scheme associated with mask a
and dilation M converges in the Lo, norm and ¢M is a continuous interpolating refinable
function.

Proof: Let m := |det M|. Define a sequence ¢ by ¢(&) = a(£)b(€). By definition, ¢ is an
interpolatory mask with respect to the lattice MZ®. By [9, Theorem 5.2] and using Young’s
inequality, we have

pik(c; M, 00) <m™ pj(a; M,p)pi(b; M,q) ¥ j,k € Np.

Note that v,(a; M) = —log,  [m™'/Pp;(a; M, p)] and v, (b; M) = —log,  [m™"4p(b; M, q)]
for some proper integers j and k. Therefore, p;4(c; M, 00) < Al =9BM) 1 1t follows
from Theorem 3.1 that p; (¢; M, 00) < 1 and therefore, the subdivision scheme associated with

mask ¢ and dilation M converges in the Ly, norm. Consequently, ¢ is an interpolating

refinable function and so its shifts are linearly independent. Note that ¢ (¢) = @M (6)5{)‘4 (6).
Therefore, the shifts of ¢/ must be linearly independent.

Note that § is a dual mask of an interpolatory mask and for any 1 < g < oo, v (0; M) =
(1/¢ —1)log, _m > d/q — d. The second part of Corollary 3.2 follows directly from the
first part. The second part can also be proved directly. Since v,(a; M) > d/p, by Theorem
3.1, we have py(a; M,0) < pp(a; M,p) = mAP ) @M [mA_2 1/P < 1 for some proper
integer k. By Theorem 3.1, we have p;(a; M, 00) < 1. So the subdivision scheme associated
with the mask a and the dilation matrix M converges in the L., norm and therefore, ¢pM is
a continuous interpolating refinable function. ]

In particular, if b is a dual mask of a and vy(a; M) + vo(b; M) > 0, then the shifts of
@M are linearly independent (In fact, when the shifts of $ are linearly independent, there
exists a dual mask b of a such that v5(b; M) can be made arbitrarily large and in particular
ve(a; M) + ve(b; M) > 0).

In order to prove Theorem 3.1, we need to introduce the concept of £,-norm joint spectral
radius. Let A be a finite collection of linear operators on a finite-dimensional normed vector
space V. For a positive integer n, A™ denotes the Cartesian power of A:

.An:{(Al, :A’n) B Al,--- ,AHE.A},

and for 1 < p < 0o, we define

1/
A= (S0 A AlP) T, when 1<p<oo,
(Al,...,An)E.A”
A"l s= masc{[ Ay Aull 5 (i A) €A, when p=os,
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where || - || denotes the operator norm given by || A|| := sup{||Av|| : ||v|| =1,v € V}.

For any 1 < p < oo, the £,-norm joint spectral radius (see [4, 11, 18] and references
therein on /,-norm joint spectral radius) of A is defined to be

po(A) 1= lim A" = inf A7}/

Let & be the set of complete representatives of the distinct cosets of Z?/MZ?. To relate the

quantities pi(a; M, p) to the £,-norm joint spectral radius, we introduce the linear operator
T.(e € &) on £y(Z?) as follows:

T.u(w) := | det M| Z a(Ma — B +¢)u(p), a € 7%, u e by(ZY). (3.3)

pezd
For v = (vy,...,v4) and p = (p1,...,pq), We say that v < p if v; < p; for all
j=1,....d.

Proof of Theorem 3.1: Let m := |det M|. Let K, = suppaU{B € Z¢ : |B] < k} and
K =72Nn3Y 2, M 7K. Define

Vi={uelK) : (uq)=Y u(B)qB)=0 Vgell;}, jeN,.

BEZ4

Since a satisfies the sum rules of order k, by [14, Theorem 5.2], T,V; C V; for all 0 < j < k
and for all € € €. By [10, Theorem 2.5], we have

pila; M,p) = ppy({Telv;_, : € €E}),  j=0,....k
Note that V;_; = V; & W, where W, := span{V*§ : |u| = j,p € N¢}.
For any p,v € N¢ such that |v| < |u| < k, we have
(T.VHS, (M) V) = > [T.V*8](c) (M) [ V!

a€Zd
=m Y Y a(Ma—B+¢)[V*5)(B)(Ma)” /v,
BEZL aeZd
Note that
(Ma)y  (Ma—pB+e+B—¢e) (Ma—B+e)r (B —e)"
v V! N 0; (v —n)! n!
n<v

Since a satisfies the sum rules of order &k, we have

Za(Ma—ﬁ-{-g)M: Z MZG(M()—5+5)(M@_B+E)U_"

aczd v virer T (v —mn)!
— n Ma)v—"n
- 3 Y et G
o<y T aend venr



Thus, for v, u € N¢ such that |v| <

|| < k, we have

(TV“(S( m Y Y a(Ma) MO MO‘

o ZV“&] ) .

0<n<Y qezd BEZ4
It is evident that
Sl D <o L sy vl <
et n! n!
Therefore,
(T.V*5, (M) /v!) = mé(u —v) Z a(Ma) = 6(p—v) Veekl, [v| < |pl <k (3.4)
a€Zd
On the other hand, for any |v| < |u/,
(Ma)”
Z S(M™Y, |ul) nu V"0, (M-)" [v]) = Z Z S(M~, | ul) nu V"0] () V!
n|=]ul a€Z4 |n|=/u|
=3 ST | pl)gu[V8)(@) Y S(M, |v]) "’\/\'
a€Z4 |n|=|u IAl=lv|
o
=Y D> SM T |uDguSM, )y Y [V70)( )
In|=lul X =|v| aczd
Z Z S(M~, ul) S (M, [V])u26(n — A)
7 =1ul [A[=]v]
= 0(|pl = v]) Z S(M, |p))vnS(M 71:|N|)n,u
n|=]ul
= 6(|ul =[S s, |p))vu = (1 — v),
where S(M ™!, |u|) is defined in (2.10). Therefore, we have
T.V'S— > S(M L)L,V eV,  V|u=j<keek.
n|=]ul
Since V;_1 = V; ® W; and {V*§ : |u| = j,p € Nd} is a basis for W, we have
S HT o« :
T.|v;_, [ 0 T.ly, e€é& 0<j<k.

J
is A

Note that the spectral radius of S(M~1, j)T
oo Ty = c € €}) =

max{|det M7 X3, p, ({T: s,

for all 5 € N. Therefore, we deduce that

: £ € &}). So (3.1) holds.

By the definition of the £,-norm joint spectral radius, using the Holder inequality, we

have | det M|/ p,({T,|y,
see [10]). This completes the proof.
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4 Some Examples of Symmetric Refinable Functions

In this section, we shall give several examples to demonstrate the advantages of the algo-
rithms and results in Sections 2 and 3 on computing smoothness exponents of symmetric
refinable functions.

Example 4.1 Let M = 2I,. The interpolatory mask a for the butterfly scheme in [6] is
supported on [—3, 3]* and is given by

0 0 0 0 —1 -1 0
0 0 -1 0 2 0 -1
0 -1 2 8 8 2 -1
110 0o 8 168 0 0
64
-1 2 8 8 2 -1 0
-1 0 2 0 -1 0 0
0 -1 -1 0 0 0 0 |

Then a satisfies the sum rules of order 4 and a is invariant under the hexagonal symmetry
group ©. By Proposition 2.2, we have #Kgr = 11 and by computing the eigenvalues of
the 11 x 11 matrix 7" in Algorithm 2.1, we have

{—log,p : pea(T)}={0, 1,2, 2.44077, 2.56925, 3, 3, 3.05923, 3.28397, 3.72404, 4}.

So by Algorithm 2.1, v(a;2L,) ~ 2.44077 > 1. Therefore, by Corollary 3.2, ¢ is an
interpolating refinable function and vy(¢22) = vy(a;2) ~ 2.44077. Note that the matrix
size using the method in [19] is #2;, = 109 which is much larger than the matrix size
#Kgr = 11 used in Algorithm 2.1.

Example 4.2 Let M = 2[,. A family of bivariate interpolatory masks RS,(r € N) was
given in Riemenschneider and Shen [25] (also see Jia [16]) such that RS, is supported on
[1—27r,2r—1]?, RS, satisfies the sum rules of order 2r with respect to the lattice 2Z? and RS,
is invariant under the hexagonal symmetry group ©f. Using the fact that the symbol of RS,
has the factor [(1+ e~%1)(1 4 e7%2)(1 + e~ &+8))]" by taking out some of such factors, Jia
and Zhang [19, Theorem 4.1] was able to compute the Sobolev smoothness exponents of QS%I;T
for r = 2,...,16. In fact, when r = 16, to compute 1/2((13?{516), the method in [19, Theorem
4.1] has to compute the eigenvalues of two matrices of size 4743 (without factorization, the
matrix size used in [19] is 11719). Without using any factorization, when r = 16, for any
mask a which is supported on [—31,31]? and is invariant under ©f by Algorithm 2.1, we
have #Kgr = 909. So, to compute l/z(g/ﬁ{gw), we only need to compute the eigenvalues of a
matrix of size 909.

16



1 -1
1 1
a is supported on [—3, 3]? and is given by

Example 4.3 Let M = [ } be the quincunx dilation matrix. The interpolatory mask

0 -1 0 -1 0
-1 0 10 0 -1
— | 0 10 32 10 0
-1 0 10 0 -1
0 -1 0 -1 0 |

Note that a satisfies the sum rules of order 4 with respect to the quincunx lattice MZ? and
a is invariant under the full axes symmetry group ©4 with respect to the dilation matrix M.
This example was discussed in [19] and belongs to a family of quincunx interpolatory masks
in [12]. By Algorithm 2.1, we have #Koa = 46 and vo(a; M) = 2.44792 > 1. Therefore,
va(dM) = vy(a; M) =~ 2.44792. Note that the matrix to compute v5(¢) using method in
[19] has size 481 (see [19]) which is much larger than the size 46 when using Algorithm 2.1.
Note that the symbol of a is nonnegative. By Algorithm 2.5, we have #Kga = 13 and
Voo(a; M) =~ 1.45934 > 0. Therefore, by Corollary 3.2, vy (¢M) = v (a; M) ~ 1.45934.
However, using method in [19], the matrix size is 129 (see [19]) which is much larger than
the size 13 in Algorithm 2.5.

1 —
1 1
proposed in [12] such that g, is supported on [—r, r]?, satisfies the sum rules of order 2r with
respect to MZ?, is an interpolatory mask with respect to MZ? and is invariant under the
full axes symmetry group ©4'. Note that the mask in Example 4.3 corresponds to the mask
g2 in this family. Since the symbols of g, are nonnegative, the L., smoothness exponents
Voo (¢)!) were computed in [12] for r = 1,... , 8. Using Algorithm 2.5, we are able to compute
I/oo(¢§/[) forr=9,...,16 in Table 3.

T

Example 4.4 Let M = { . A family of quincunx interpolatory masks g,(r € N) was

Voo %) Voo f;\/{ro) Voo 3/111) Voo %2) Voo ffg) Voo 2/{[4) Voo 5;\/1[5) Voo é\i[s)

5.71514 | 6.21534 | 6.70431 | 7.18321 | 7.65242 | 8.11171 | 8.56039 | 8.99752

Table 3: The L., (Holder) smoothness exponents of the interpolating refinable functions qﬁé‘f .

A coset by coset (CBC) algorithm was proposed in [9, 12] to construct quincunx biorthog-
onal wavelets. Some examples of dual masks of g,, denoted by (g,);, were constructed via
[12, Theorem 5.2] and some of their Sobolev smoothness exponents were given in Table
4 in [12]. Note that the dual mask (g,); is supported on [~k — 7,7 + k|?, satisfies the
sum rules of order 2k, has nonnegative symbol and is invariant under the full axes sym-
metry group ©4. However, in the paper [12] we are unable to complete the computation
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in Table 4 in [12] due to the difficulty mentioned in D2 in Section 1. In fact, to com-
pute vo(a; M) for a mask supported on [—k, kJ?, the set 3, defined in (1.6) is given by
{(i,§) € Z* : |i| < 6k, |j| < 6k, |i—j| < 8k,|i+j| < 8k}. For example, in order to compute
v5((94)3; M), the set € 5 consists of 16321 points which is beyond our ability to compute
the eigenvalues of a 16321 x 16321 matrix. We now can complete the computation using
Algorithm 2.1 in Section 2. Note that the quincunx dilation M here is denoted by () in
Table 4 in [12]. By computation, y2(¢f‘g4)g) /2 2.47477 and rest of the computation is given
in the following Table 4.

Table 4: Computing v (‘bé\;jr )i) by Algorithm 2.1. The result here completes Table 4 in [12].

va(@gns) | Va(Pgs) | v2(Bigpye) | v2(bgns) | va(Pg ) | v2(Bigys) | v2(igy) | va(Piaus)
3.01166 | 2.92850 | 2.90251 | 2.91546 | 3.49499 | 3.38671 | 3.34268 | 3.32116

1 =2
2 -1
The interpolatory mask a is supported on [—4,4]* and is given by

Example 4.5 Let M = [ } be the dilation matrix in a v/3-subdivision scheme ([22]).

0 0 0 7 4 0 4
0 0 4 0 =32 =32 0
0 0 =32 =20 0 =20 -32
4 =32 0 312 312 0 32
1
-2 12 72 12 -2
5187 0 0 3 729 3 0

0
=32 0 312 312 0 —-32 4
=32 =20 0 =20 =32 O 0
0 =32 =32 0 4 0 0
4 0 4 7 0 0 0

N RO R g O O o o
B e B e S e S =TGN |

Note that a satisfies the sum rules of order 6 with respect to the lattice MZ? and a is
invariant under the hexagonal symmetry group © with respect to the dilation matrix M.
By Algorithm 2.1, we have #Kgn = 38 and 1,(a; M) =~ 3.28036 > 1. Therefore, by Corollary
3.2, oM is a C? interpolating refinable function and ve(dM) = vy(a; M) ~ 3.28036. By
estimate, the matrix size # s using the method in [19] is greater than 361 which is much
larger than the size 38 when using Algorithm 2.1. Note that the symbol of a is nonnegative.
By Algorithm 2.5, we have #Kgr = 11 and vy (a; M) ~ 2.34654 > 0. Therefore, by
Corollary 3.2, Voo (0M) = vso(a; M) & 2.34654. Using method in [19], the matrix size #Q, us
is greater than 85 which is much larger than the size 11 in Algorithm 2.5. Since ¢¥ € C?,
this example gives us a C? v/3 interpolatory subdivision scheme.
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5 Dyadic Interpolatory Masks in R’ and Some Exam-
ples in R?

In this section, based on the work [11], we shall present a general construction of dyadic
interpolatory masks in any dimension with optimal sum rules and minimal support. This
general construction includes the family of interpolatory masks for dimension one in [5] and
for dimension two in [11] as special cases. To facilitate our discussion, we need the following
result.

Lemma 5.1 For a positive integer r, define

At:={aeN : |af <r} (5.1)
and order the elements in A% in the lexicographic order. Then for any ¢ = (e1,...,64) €
{0,1}¢, the square matriz ((28 + 8)2“)5@%“6/\% is nonsingular and

d p;i—1

II  IIIMMCu+e)®—@i+e#0,

(“17--- 7“(1)6/\;1 i=1 ']:0

‘det [((a‘ + Qﬂ)Qu)geAg,ueAﬁ}

where by convention H;:lo := 1. Moreover, for any € = (¢1,-..,¢4) € {0,1}%, the unique
solution {cg : B € A4} to the following system of linear equations
S 28+ =f, VueAl (5.2)
peAd

is given by the following recursive formula (first compute cg for |5| = r — 1, then compute
cg for |B| =r —2 and so on, finally compute cy):

o= X Gl X aCator|,  sens 63)
/JEAldBH_l aeAga‘a|>‘/3|
where for B = (Bu, ... ,Ba4), b = (f1,--- ,1g) € AZ, B = Hflzld?i,w and d3

5,u; GT€ uniquely
determined by

- —1 .
S 125 e — (25 + )

. = — : , reR
putts Hf;ol (28 +€i)* = (25 + &)

#i=0

Proof: Obviously, the claim holds true for » = 1 since A = {0}. For a fixed p =
(p1,- .-, pa) € A with |u| = r — 1, we can replace the column ((25+8)2N)B6A¥ of the matrix

F:=(28+¢)™) by a new column

BeAd ueAd

d pi—1

(H H [(28; + ) — (25 + 8i)2])(,31,...,,3d)eAfz'

i=1 j=0
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It is easily seen that this transform does not change the determinant of F'. Let us simplify the
new column. We observe that [, ”’71[(2@4-5) —(2j+€i)? = 0for (B, ---,Ba) € AN\{u}
since for any 8 € A%\ {u}, we have 3; < p; for some 1 < i < d. Now by induction on 7, we

have
d p;—1

[det Fl = T[] ] I0u+e)* - (25 +e)’ #0.

(11 e pis)EAZ =1 5=0

So F' is a nonsingular square matrix.
Since F' is nonsingular, there is a unique solution to (5.2). To derive the formula (5.3),
we prove it by induction on r. When r = 1, it is evident that A¢ = {0} and the formula

(5.3) gives us ¢y = fy which is the solution to (5.2) with r = 1. Suppose (5.3) is true for
r — 1. In the following, we demonstrate that (5.3) holds for r.

For any 8 = (B1,...,04) € A with |3] = r — 1, define a polynomial gz by
ML 05 [ — (25 + )7

— . , (z1,...,2q9) € R
Hg:11—[]ﬂ_z:01 [(Qﬁz + Ei)2 - (2] + 51’)2] '

qa(z1,... ,xq) ==

It is easy to see that
qﬂ((2a1 +€1)2,... ,(Qad+sd)2)= 5(Oé—ﬂ) Va= (041,... ,ad) S Ag (54)
since for any o € A%\ {8}, we have a; < ; for some 1 < i < d.
Note that for any p € A¢, the coefficient of ## in gg(z) is exactly dj ,. Therefore,
q5(%) = 3 ,cra d3,2" and (5.4) can be rewritten as
Y d5,2a+e)"=6a-p) VaeAl BeAl with [fl=r-1.
HEAS
The above equality and (5.2) imply that

Zfﬂd%,u Z an 2a+82ud67u ZCQZdﬂMQOH_‘S

uEA? ueAd acAd acAd ueAd

= Z cad(a — B) = cp.

a€Nd

Hence, cg = 37, pa fudj, for all B € Af with |3] = r — 1. Therefore, from (5.2), we have

D ot =fi— ) @B+e)™  peAl,
aEAd_| BEASL,|Bl=r—1

By induction hypothesis, we obtain the formula (5.3). n

We are now in a position to describe the general construction of dyadic interpolatory
masks with minimal support and optimal order of sum rules in R%.

20



Theorem 5.2 Let M = 21, be the dilation matriz. For each positive integer r, there exists
a unique dyadic interpolatory mask g2 in R? with the following properties:

(a) g2 is supported on the set {2a+¢ : ¢ € {—1,0,1}¢, a € Z%, |a| <71 };

(b) g2 is symmetric about all the coordinate azes;

(c) g2 satisfies the sum rules of order 2r with respect to the lattice 27.4.

Proof: Using Lemma 5.1, the proof is similar to that of [11, Theorem 4.3]. Let a be a dyadic
interpolatory mask satisfying all the conditions (a), (b) and (c¢). Then all the conditions in
Theorem 5.2 can be translated into

> 2728 +6)(28+ )™ =270(n) Ve A, e € {0,13\{0}, (5.5)
peAd

where Z(ay,...,aq) denotes the cardinality of the set {i € {1,...,d} : «; # 0}. By
Lemma 5.1, there is a unique solution {22#+€)q(28+¢) : B € A?} (and therefore, a unique
solution {a(28 +¢) : B € A¢}) to the system of linear equations in (5.5). So there is
a unique interpolatory mask a satisfying all the conditions in Theorem 5.2. The reader is
referred to [11, Theorem 4.3] for a more detailed proof for the case d = 2. |

By the uniqueness, we see that each g¢ in Theorem 5.2 is invariant under the full axes
symmetry group ©7. From the construction, it is not difficult to verify that the number of
nonzero coefficients in g¢ is 2¢7%/d! + O(r~'). For example, g has 373 + 107 + L7 + 1
nonzero coefficients. By the uniqueness of g¢ in Theorem 5.2 again, we see that g!(r € N)
were exactly the univariate Deslauriers-Dubuc interpolatory masks in [5] and ¢?(r € N) were
the bivariate interpolatory masks proposed in [11]. In passing, we mention that Lemma 5.1
can be used in the CBC algorithm in [9] to construct biorthogonal wavelets without solving

any equations.

In the following, let us give some examples of the above interpolatory masks in dimension
three. Let Z%A = {(B1,52,03) € N} : B < B2 < B3}. Clearly, if a is a mask invariant
3

under the group ©4, then it is totally determined by all the coefficients a(f3), 8 € Z% A
3

Example 5.3 The coefficients of the interpolatory mask g5 on the set Z?é 4 are given by
3

95(0,0,0) = 1/8, 95(0,0,1) = 9/128, g5(0,1,1) = 5/128,  ¢5(1,1,1) = 11/512,
95(0,0,3) = —1/128, ¢3(0,1,3) = —1/256,  g¢5(1,1,3) = —1/512,
gg(a) =0,

Then g3 satisfies the sum rules of order 4 and there are only 81 nonzero coefficients in the
mask g5. By Algorithm 2.1, we have #Koa = 36 and va(g5; 213) ~ 2.44077 > 1.5. Therefore,

for any other o € Z?ésA.
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by Corollary 3.2, ¢213 is an interpolating refinable function and V2(¢§I3) 2.44077. Note
that #€2 o1, = 965 and #K@A = 36. Hence, Algorithm 2.1 can greatly reduce the dimension
of the matrix to compute v, (92, 215).

Example 5.4 The coefficients of the interpolatory mask g3 on the set Z?é 4 are given by
3

93(0,0,0) = 1/8, 95(0,0,1) = 75/1024, g5(0,1,1) = 87/2048,
g5(1,1,1) = 25/1024, 95(0,0,3) = —25/2048,  ¢5(0,1,3) = —29/8192,
g5(1,1,3) = —29/8192, 93(0,3,3) = 1/2048, g5(1,3,3) = 1/4096,
95(0,0,5) = 3/2048, g5(0,1,5) = 3/4096, g5(1,1,5) = 3/8192,
gs(a) =0 for other a € Z?é?.

Then g3 satisfies the sum rules of order 6 and it has 171 nonzero coefficients. By Algorithm
2.1, we have #Kga = 101 and vo(g3;213) =~ 3.17513 > 1.5. Therefore, by Corollary 3.2,
qﬁzl?’ is an interpolating refinable function and V2(¢2£3) ~ 3.17513. Note that # o5, = 3021
and #K@A = 101. Hence, Algorithm 2.1 can greatly reduce the dimension of the matrix to
compute z/g(g3, 213).

The Sobolev smoothness exponents of (bzée’ (r=2,...,10) are presented in Table 5. By
[11, Theorem 3.3] and [9, Theorem 5.1], we see that g3(r = 1,...,10) achieve the optimal
Sobolev smoothness and optimal order of sum rules with respect to the support of their
masks. In general, the Algorithms 2.1 and 2.5 roughly reduce the size of matrix to be 1/#©
of the number of points in Q5 in (1.6). Note that #07 = 29d! and #6045 = 48. So
Algorithms 2.1 and 2.5 are very useful in computing the smoothness exponents of symmetric
multivariate refinable functions.

Vo (¢2§3) Vy (¢2§3) Uy (¢2§3) Uy (¢2§3) Vy (¢2£3) Vg (¢2§3) vy (¢2§3) Uy (¢§§3) Vo (¢§§2)

95 93 91 g5 9s 97 98

2.44077 | 3.17513 | 3.79313 | 4.34408 | 4.86202 | 5.36283 | 5.85293 | 6.33522 | 6.81143

Table 5: The Sobolev smoothness exponents of gbf}ﬁs forr=2,...,10.
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