
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Low-rank approximations with sparse factors II: penalized methods with discrete Newton-
like iterations

Permalink
https://escholarship.org/uc/item/1662d8wc

Author
Simon, Horst

Publication Date
1999-09-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1662d8wc
https://escholarship.org
http://www.cdlib.org/


LBNL-44217 
Preprint 

ERN!ESlJ~ ORLANDO a~AWRENlCE 
BrER~<EIL!EY NAT~DNAIL lnABDIRATDRY 

Low-Rank Approximations with 
Sparse Factors II: Penalized Methods 
with Discrete Newton-Like Iterations 

Zhenyue Zhang, Hongyuan Zha, and Horst Simon 

National Energy Research 
Scientific Computing Division 

September 1999 
Submitted to 
SIAMJournalof 
Matrix Analysis 

, 
PJ ---
~ 
"1 
ro 
::; 
o 
(0 

ro 
<OJ 

-' 
zo..--­
OJ 10 
rI" • 
'....J~ 

OUl 
::;l$l 
OJ 
-' , ..... 
,D'" 
OJ "1 
D'"OJ 
o "1 
-5 '< 

~I 
o 
"1 ::0 
<: ro 

-h 



DISCLAIMER 

This document was prepared as an account of work sponsored by the 
United States Government. While this document is believed to contain 
correct information, neither the United States Government nor any 
agency thereof, nor The Regents of the University of California, nor any 
of their employees, makes any warranty, express or implied, or assumes 
any legal responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or 
service by its trade name, trademark, manufacturer, or otherwise, does 
not necessarily constitute or imply its endorsement, recommendation, 
or favoring by tile United States Government or any agency thereof, or 
The Regents of the University of California. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof, or The Regents of the 
University of California. 

Ernest Orlalido Lawrence Berkeley National Laboratory 
is an equal opportunity employer. 



LBNL-44217 

Low-Rank Approximations with Sparse Factors II: 
Penalized Methods with Discrete Newton-Like Iterations 

Zhenyue Zhang, Hongyuan Zha, and Horst Simon 

National Energy Research Scientific Computing Division 
Ernest Orlando Lawrence Berkeley National Laboratory 

University of California 
Berkeley, California 94720 

September 1999 

This work was supported by the Director, Office of Science, Office of Laboratory Policy and Infrastructure 
Management, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Computing 
resources were supported by the Director, Office of Advanced Scientific Computing Research, Division of 
Mathematical, Information, and Computational Sciences, of the U.S. Department of Energy under Contract No. 
DE-AC03-76SF00098. Work was also supported by the NSFC under Project No. 19771073 and the National 
Science Foundation under Grant Nos. CCR-9619452 and CCR-9901986. 



LOW-RANK APPROXIMATIONS WITH SPARSE FACTORS II: 
PENALIZED METHODS WITH DISCRETE NEWTON-LIKE 

ITERATIONS 

ZHENYUE ZHANG·, HONGYUAN ZHAt, AND HORST SIMONt 

Abstract. In [9], we developed algorithms for computing low-rank approximations of matrices 
together with a detailed error analysis. The low-rank approximations are constructed in a certain 
factored form with the sparsity patterns of the factors controlled by some user determined parame­
ters. In this paper, we cast the sparse low-rank approximation problem in a penalized optimization 
framework. We discuss various approximation schemes for the optimization problem that gives arise 
to formulations of the problem that is more amendable for numerical computations. We develop a 
globally convergent discrete secant method for solving those penalized optimization problems. We 
also compare the reconstruction errors of the sparse low-rank approximations computed by our new 
methods with those obtained using the methods in [9]. Numerical examples show that the penalized 
methods are more robust and produce approximations with lower ranks and more sparse factor. 

1. Introduction. Low-rank approximations of matrices have many applica­
tions in information retrieval, data mining and solving ill-posed problems, to name 
a few [5, 8]. The theory of singular value decomposition (SVD) provides the best 
rank-k approximation bestk(A) of a given matrix A in terms of its singular values and 
singular vectors, 

where (Ti, i = 1, ... , k, are the largest k singular values of A, and Ui and Vi are the 
corresponding left and right singular vectors [1]. Notice that even when A is sparse, 
there is in general no guarantee that bestk(A) will be sparse, not even the factors 
Uk and Vk· To remedy this drawback of the low-rank approximations computed by 
SVD, it was proposed to write a low-rank approximation Bk of A in a factored form 
Bk = Xk Dk Yk [3, 6]. In [9] we further developed this idea and propose to find 
Bk = XkDkYk that solves the following optimization problem, 
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In [9], several algorithms are developed for choosing the sparsity patterns of X,., and 
y,." and a detailed error analysis of our proposed algorithms is given that compares 
the computed sparse low-rank approximations with those obtained from SVD and 
some of the previous methods developed in [3,6]. The basic idea is to use a sequence 
of rank-one deflation steps to construct the approximation 

,., 

B,., = X,.,D,.,y,.,T = LXidiYT. 
i=l 

At each deflation step, approximate largest left and right singular vectors Ui and Vi 

of the deflated matrix Ai- 1 = A - Bi-1 are used to construct a sparse rank-one 
approximation xidiyT to matrix Ai. Specifically, the sparse vectors Xi and Yi are 
obtained by discarding small components of Ui and Vi. We proved that if the norm 
of the vector consisting of the discarded components is no greater than V2f at each 
step, then the computed sparse low-rank approximation B,., has reconstruction error, 
defined as IIA - B,.,IIF, no greater than the best rank-k approximation best,.,(A) by a 
factor (1 + b,.,f)1/2, i.e., 

IIA - B,.,IIF :S (1 + b,.,f)1/2I1A - best,., (A)IIF, . 

where b1 = O"HA)j (0"5(A) + .. ·O"~(A)) and 

b - 2:;-lO"i(A)ui+1(A) O() k 2 
,., - ",n 2(A) + f, 2':. 

L.Ji="'+l 0"; 

The tolerance f determined by the user can balance the tradeoff between sparsity and 
good reconstruction error of the low-rank approximations. We suggested in [9] that 
the size of the tolerance used at each deflation step can be a variable determined by 

for step i. Numerical results in [9] show that the variable-tolerance scheme works 
better than the constant-tolerance scheme. In general if we fix the desirable recon­
struction error, reducing f will yield a smaller rank k and X,., and y,., that have poor 
degree of sparsity while increasing f will cause the rank of the low-rank approxima­
tion to increase but the degree of sparsity of the factors is reduced. However, we 
also observed that the rank and the degree of sparsity computed by the methods in 
[9] sometimes can be quite sensitive to the choice of f (f,.,), i.e., a slight change of f, 

though does not change the reconstruction error very much, can have a much greater 
effect on the rank of the low-rank approximation' and the degree of sparsity of its 
factors. This behavior is rather undesirable. 

The goal of this paper is to develop more robust methods for sparse low-rank 
approximations. Our basic idea for the improved algorithms is to use penalty terms 
to penalize low-rank approximations with factors X,., and y,., that have large number of 

. nonzeros. In a rather general framework, we can consider the following optimization 
problem, 

where nnz(-) denotes the number. of nonzeros. In essence, we want a low-rank approx­
imation B,., = X,.,D,.,y,.,T to have a small reconstruction error IIA - X,.,D,.,y,.,TIIF and 
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at same time we also penalize those Bk the Xk and Yk factors of which have large 
number of nonzero elements. We can certainly use some general techniques to solve 
the optimization problem (1.2). However, the problem itself possesses many useful 
structures that deserves exploitation. In particular, we will use the deflation tech­
nique to reduce the problem to the problem of finding a sequence of sparse rank-one 
approximations, and build the low-rank approximation one rank at a time [3, 6, 9]. 

Our ultimate goal is to reduce (1.2) to a simpler form that is easy to solve. We 
will describe the reduction process in several steps (each of which involves certain 
approximation) and give the rational behind each steps. When we reach the final 
simple formulation, we will have a penalized optimization problem that is easy to 
solve, and at the same time has a solution that is close to the solution of (some 
variation of) (1.2). 

The rest of the paper is organized as follows. In section 2, we motivates the intro­
duction of the penalized optimization problem. Specifically, we look at the relation 
between the singular values of a matrix with those of its submatrices. In the rank-one 
case, we also give an upper bound of the number of nonzeros of the sparse factors 
in terms of elements of the largest left and right singular vectors. In section 3, we 
focus on the rank-one case of the penalized optImization problem and discuss ways 
to reduce it to a simpler form that is more amenable for numerical computations. 
In section 4, we propose a discrete globally convergent secant method for solving the 
simplified rank-one penalized optimization problem. Many new computational issues 
arise in the. discrete secant method: We focus on how to compute the secant directions 
at each iteration step, and how to select the next iterate to guarantee the existence of 
a bracketing interval. In section 5, we present several numerical examples, and make 
comparison with previously proposed methods. 

2. Motivations. To motivate the introduction of the penalized optimization 
problem similar to (1.2), we look at several issues concerning the trade-off of degree 
of sparsity of the low-rank approximations and the their reconstruction errors. First 
we have the following general result. 

THEOREM 2.1. Let matrix 

and let (CTI, UI, vd be the largest singular triplet of A. Then CTI = CTmax(F) if and only 
if 

ui B = 0, . vi C = 0 

and (CTI, [ ~l ] , [ ~l ]) is the largest singular triplet of F. 

Proof We only need to prove the "if" part. The "only if" part is trivial. We will 
use induction. First we assume that Band C are column vectors. Let 

A = U:EVT = [UI, ... , ud diag(CTI, ... , CTr)[VI, ... , vlf 

be the SVD of A. Denoting B = UT B, C = V T C, we have 

T. [ :E2 + BBT 
F F = dlag(U,l) CT:E + DBT 
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By the assumption of the theorem O"~ is the largest eigenvalue of F FT and E2 which 
implies that O"~ is also the largest eigenvalue of E2 + jjiF. It follows that the first 
element of jj must be zero. Apply the same argument to FT F we can also show that 
the first element of C must be zero, i.e., ui B = 0, vie = O. Hence 

[ 
V1 ] [ U1 ] T [ U1 ] [ V1 .] F 0 = 0"1 0 ' F 0 = 0"1 0 . 

Now we assume that the theorem is true for B with less than k columns and C with 
one column. We consider the case that B has k columns and C is a column vector. 
Partition B = [B1, b], D = [D1, d], where B1 and D1 have k -1 columns. Denote 

- [A B1] - [b] F = cr D1 ' f = d . 

By the assumption of the theorem, 0"1 is the largest singular value of F. Therefore 

the induction assumption implies that ui B1 = 0 and (0"1, [ ~1 ] , [ ~1 ]) is the 

largest singular triplet of F. Since F = [F,j], it follows that [Ur, oll = Urb = O. 

Hence, ui B = 0 and (0"1, [ ~1 ] , [ ~1 ]) is the largest singular triplet of F. We 

can similarly prove the same for C having more that one columns. 0 
The result of the above theorem in essentially says that we can not, in general, 

expect the left and right largest singular vectors of a matrix to have many zero entries. 
Therefore, in order to find sparse low-rank approximations, we need to relax the 
requirement on the reconstruction errors. For example, we may try to find low-rank 
approximations XkDk Yt with reconstruction error 

IIA - XkDkY[II} :::; (1 + T)IIA - UkEk V[II} 
while requiring that Xk and Yk has as few nonzero entries as possible. (Notice that 
bestk(A) = UkEk vt.) We now consider the following optimization problem, 

(2.1) min {nnz(Xk) + nnz(Yk) IliA - XkDkytll} :::; (1 + T)IIA - UkEkVtll}}. 

We next further elaborate the above for the case of rank-one approximation. For 
given vectors x and y, it is easy to verify that 

mjn IIA _ xdyT II} = IIAII} _ (II:~ ~:II) 2 

T I 2 2 (xT Ay ) 2 = IIA - U10"1V1 IF + 0"1 - IIxlillyll 

=. (1+b1 (1- (lIx~~I~lro"lr)) IIA- U10"1Vill}, 

where b1 = O"U(O"~ + ... + O"~). Therefore the parameter T in (2.1) can be written as 
T = b1~ and the optimization problem (2.1) becomes 
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It is easy to see that N(f.) is the smallest sum of numbers of rows and columns of 
sub matrices of A with 2-norm greater than or equal to vr=1I1AII. The following 
theorem gives an upper bound of N(f.). 

THEOREM 2.2. Let {u, (J", v} be the largest singular trzplet of A, and let w a vector 
consisting of the elements of u and v sorted such that 

IwI! 2: IW21 2: ... 2: IWm+n I· 

Denote E = 1;/(2 + 2vr=1 + 1;). Then for any 0 :S I; < 1, 

N(I;) :S k( E) == min { k I wi + w~ ... + w~ 2: 2(1- E) } . 

Proof It can be verified that f. = 4E(I- 2E)/(I- E)2, and E < 1/3 for 0 :S I; < 1. 
Let k = k(E), and denote i(k) and j(k), the number of the elements of u and v, 
respectively, in the vector w(1 : k). Set 

_ pT [ u(1 : i(k» ] 
x - 1 0 ' 

_pT [V(l: j (k»] 
y - 2 0 ' 

where Pl and P2 are the permutations determined by w = P[uT , vTjT satisfying 
u = P1U, V = P2v, and 

By Theorem 3.1 of [9], we obtain that 

IIA - xdyTII} :S (1 + blE)IIA - ul(J"lvfll}· 

Therefore N(I;) :S k, completing the proof. 0 
It is easy to see that f. can be considered as a measure of accuracy of the rank­

one approximation (as compared with that obtained by the largest singular triplet of 
A) while N(I;) a measure of its degree of sparsity. Obviously, N(f.) is a decreasing 
function. 

3. Penalized optimization problems for sparse rank-one approxima­
tions. As is discussed in the previous section, we want to construct a low-rank 
approximation of A with low degree of sparsity and good (but not necessarily the 
best) approximation accuracy. A natural way is to consider the following optimal 
problem of minimizing a penalized cost function for a fixed 'r} 

(3.1) min { 'r}(nnz(x)+nnz(y» +I;} 
x,y,£; 

with the inequality constrains I; 2: 0 and 

where bl is defined in Section 1. However, the above problem is not straightforward 
to be solved and the goal of this section is to reduce it into a more amendable form. 

First we consider how to remove the constrains, let x and y be the vectors that 
achieve the value of N(f.). Obviously, denoting 

* (xT Ay )2 
f. = 1 - Ilxlillyll (J"l :S I; 
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gives N(e) N(e*). Therefore the accuracy measure e c,an be replaced by 1 -
(xT Ay/(llxlillyll O"d)2, and the optimization problem (3.1) is reduced to 

min { 1J(nnz(x) + nnz(y)) + ( 1 - (lIxil~l~r 0"1 r) } , 
or equivalently, 

More generally, we can consider the following optimization problem 

by introducing penalty factors a and {3 and using an arbitrary p-norm instead of the 
2-norm. The parameters a and {3 can be chosen by the following formula 

>..f-L a= , 
(1 - >..)m 

{3_>..(1-f-L) 
- (1- >..)n' >.., f-L E [0,1) 

because with this choice of a and {3, the objective function in (3.2) becomes, after 
multiplying by the constant (1 - >..), 

>.. (f-L nn:x) + (1- f-L) nn:(y)) + (1 - >..)~. 

and the parameter>.. and f-L have the following interpretations: >.. balances the degree of 
sparsity and the reconstruction error of the rank-one approximation while f-L balances 
the degrees of sparsity of the left and right factors of the rank-one approximation xdyT. 
In general," we choose f-L = 1/2 to keep the sparsity structure of the approximation 
symmetrici.f no other reasons dictate us to do otherwise. 

Now the optimization problem (3.2) is still combinatorial in nature although it 
does not have any constrains. To this end we will derive an upper bound for N( a, {3, p) 
which will then lead to an. approximate and simplified formulation of (2.1). Let us 
define a matrix function 

(3.3) NH(a,{3,p)=~}n{ai+{3j- (~:r}, 
where H = (hij). It is easy to see that if let S = (Sij) with Sij the largest singular 
value of submatrices consisting of the intersection of i rows and j columns of A, then 

N(a,{3,p) = Ns(a,{3,p). 

Therefore a component-wise lower bound of S can lead to an upper bound of N(a, {3, p) 
and then an approximate variation of (3.2). In the next we will derive such lower 
bounds. 

Let {u, 0", v} be the largest singular triplet of matrix A. Denote by R = (rij) the 
Rayleigh quotient 

, I u(I)T A{I, J)v(J) I 
rij = III~i~=j lIu(I)lIlIv(J)1I . 
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FIG. 3.1. Plots of the matrices S, R, and T. 

Obviously,8ij 2: iij and Ns (a,{3,p) ::; NR(a, (3,p). Obviously, (3.3) with H = 
R is also a combinatorial optimization problem. To circumenvent this, we impose 
constrains on the vectors x and y as we did in [9]. Let it and v be the sorted versions 
of u and v, respectively, such that 

and let I and J be the index vectors satisfying it = u(I) and v = v(J). Denote by 
T = (iij) the Rayleigh quotient of the truncated vectors of it and v 

ii' = lu(I(l :i))TA(I(~ :i).,J(l :j)~v(J(l :j))1 <Ii"~ 
J lIu(I(l : z))lIllv(J(l : J))II - J 

Since 8ij 2: iij 2: tij, we have 

Of course, problem (3.3) with different H will give different optimal solutions, i.e., the 
solution of the simple variation (3.3) with H = T may differ from that for H = S, the 
solution of (3.2). However, the difference between the solutions is not large because 
the matrix T is similar to S. To show this, let us consider a small numerical example. 
(We have also tested other small matrices and found similar behavior. 1) 

EXAMPLE 1. L~t m = 10, and n = 8, and 1 = min(m, n). We construct A as 
(using the notation of MATLAB) 

[U, r] = qr(rand(m,l»; 
[V, r] = qr(rand(n,l»; 
A = U*diag(10*rand(l,l»*V'; 

First, we compare the three matrices 5, R, and T. Figure 3.1 plots the matrices S, 
R, and T. In general, 8ij, iij, and iij are close to each other if i andj are not small, 
i.e., large discrepancy in 8ij, iij and iij may occur only when the indexes i and j 
are small. Below we list the average values and the maximums of the relative errors 
between 8ij, iij, and iij. Note that the maximums occur generally with small indexes 
i and j. 

lOnly small matrices are used in our examples since computing S and R involves exhaustive 
search. 



8 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON 

average max 
(Sij - rij)/sij 2.5809e-02 l.071ge-01 
(rij - tij)/rij 4.3807e-02 2.8485e-01 

Second, we compute the indexes iH and jH of the optimal solution of (3.3) with 
different choices of H and corresponding values hij . for p = 1, 2, respectively. Below 
we list the computed results. 

S 6 
R 5 
T 6 

p=l 
J 
3 
3 
4 

8.72648 7 
8.35768 8 
8.79437 8 

p=2 
J 
6 
6 
6 

9.50874 
9.52802 
9.51918 

The example furthermore shows that larger total number of nonzeros generally implies 
higher accuracy of the approximation determined by the optimal problems. 

REMARK. Let (is,js), (iR,jR), and (iT,jT) be the integers which achieve the 
minimums Ns(>',j.l,p), NR(>',j.l,p), and NT(>',j.l,p), respectively. It seems that in 
most cases, we can expect 

Unfortunately, the above assertion is difficult to verify in general. However, we can 
prove the following weaker form 

sf! . < rf . + cSRi: . - erPl (a(iR - is) + (3(jR - is)) !s,Js - 'R,}R 's,1s 

provided is +is :::; iR + iR, where CSR = maXi.iCsfj - rfj)/sfj · 
It is easy to see that the above follows straightforwardly from the definitions of 

NR(>',j.l,P), Ns(>',j.l,p) and the following result. A similar result can also be proved 
for riR,jR and tiT,jT· 

PROPOSITION 3.1. Let g(x) and hex) satisfy (1 - c)g(x) :::; hex) :::; g(x), where 
g(x) 2: 0 and 0 :::; c < l. Define Xl and X2 such that . 

f(x!) - g(Xl) = min{f(x) - g(x)}, f(X2) - h(x2) = min{f(x) - hex)}. 

Proof Let ml = f(x!) - g(xt) and m2 = f(X2) - h(x2). By the assumption of 
the proposition 

f(x) - h(x):::; f(x) - (1- c)g(x) = f(x) - g(x) + cg(x). 

It follows that 
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Therefore, ml - m2 ~ cg(xt), and 

completing the proof. 0 
Reduction to I-D form. Compared with the computations of 8ij and rij, the 

computation of tij is much easier. However, the corresponding optimization prob­
lem (3.3) with H = T still involves optimization among a 2-D index set {i,j},i = 
I, ... , m, j = I, ... ,n. What we do next is to further simplify it into an optimization 
problem that only involves an I-D index set. Our strategy is to develop a continuous 
version of the optimization problem (3.3) with H = T by introducing some smooth 
interpolating functions. Next we will try to find equivalent formulation of this con­
tinuous optimization problem, and then transform it back into discrete format. 

To this end, let u and v be written as u = PI u and v = P2v. Motivated by 
Theorem 2.2, we partition 

__ [ u(l: kU(f)) ] 
U - U(ku(f): m) , 

__ [ v(l : kv(f)) ] 
v - V(kv(f): n) , 

where k,,(f) is the number of elements of u, in w(l : kef)) and kv(f) is the number of 
elements of v in w(1 : kef)). Now 

_ pT [ u(l : ku(f)) ] 
x-I 0 ' 

_ pT [ v(1 : kv(f)) ] y - 2 0 . 

Thus, problem (3.3) with H = T and p = I can be rewritten equivalently as 

where h(ku( f), kv( f)) = xT Ay/(lIxllllyll O"t}. We obtain an approximate continuous 
optimization problem 

(3.4) F(a,{3) = ~in{a¢(f)+{31j!(f) -W(f)}, 

if we require that the function ¢(f), 1j!(f), and W(f) be approximations of the piece­
constant functions k,,(f), kV(f), and Ih(ku(f), kv(f))l, respectively, 

¢(f) ~ kU(f), 1j!(f) ~ kV(f), W(f) ~ Ih(k,,(f), kv(f))l. 

It is easy to verify that the optimal f satisfies 

a¢'(f) + (31j!'(f) - W'(f) = o. 
if ¢, 1j!, and ware differentiable. 

Now we find smooth functions that interpolate ku(f) and kv(f). Specifically, we 
choose functions ¢( f) and 1j!( f) defined by the following integral equations, 

(rf>( f) . 

io x(t)dt == I - f, 

("'(f) 
io y(t)dt = I - f, 
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~~7."~'~2~"~'~'~05~'~'~"~~'.'~"· .,..., 

FIG. 3.2. Plot jar the piece-constant junction ku(£) and its interpolation ¢(£). 

where x(t) and yet) interpolate {un and {vj}, respectively, see Figure 3.2 for an 
illustration. Because of the above definitions, 

it makes sense to choose· 

(3.5) 
1 cc 

wee) = - --, 
2 1- e 

where c E (0, 1] is a constant to be determined. 

If x(t) and yet) are continuous, then <p(e) and 'tf;(e) are differentiable and 

<pI (e) = - x(}(e)) ~ --d-, 
'f' u kuCf) 

since X(<p(e)) ~ utCf) and X('tf;(e)) ~ VLCf)" On the other hand, 

w'(e) = c 

(1-e)2' 

the optimal e approximately satisfies 

a (3 c 
~ + -2- - (1 )2 = 0, 
u kuCf ) VkvCf) - e 

or equivalently, 

Note that 
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; 
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; 

as ., 
\. 

00 

FIG. 3.3. Plot for the discrete curves <l>(k) (solid line) and 1l!(k) (dashdot line). 

we conclude that the optimal f approximately satisfies 

Now we can transform back to the following discrete optimization problem, 

(3.6) 

where the integers i(k) and j(k) are determined by k and satisfy the following 

(3.7) { 
i(k)+j(k) 

. -2 -2 
mIll {U;(k)' Vj(k)} 

k 

11 

i.e., i(k) = kif), j(k) = kv(f), provided k = kef). Differing from the discrete problem 
(3.3), (3.6) is a 1-D problem and is easy to solve. 

To make our following discussions concrete, we introduce the following functions, 

with i, j, and k satisfying (3.7). It should be pointed out that the indexes i = i(k) 
and j = j(k) may not be uniquely determined by k if IWkl = IWk+ll. We will have 
a detailed discussion about this in the next section. Ignoring, for the moment, the 
possibility of being multi-valued, we can easily see that the discrete function \Ii ( k) is 
decreasing while <I>(k) is increasing. Figure 3.3 plots for the graphs of \Ii(k) and <I>(k) 
for a matrix of order 2331 x 1398. In the next section, we will propose a discrete 
globally convergent method to solve the minimization problem (3.6). 

4. Discrete secant iteration. Based upon the monotonicity of the discrete 
functions <I> ( k) and \Ii ( k), we use the following secant iteration for the optimization 
problem (3.6). 
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where C~, and c% are the current secants for ~ and W, resp.ectively, and lfJ is the 
floor function giving the largest integer no greater than f. Obviously, it is guaranteed 
that the solution is unique. However, there are some computational issues that need 
to be discussed before we present our discrete secant method based on the above 
iteration. We first need to investigate whether the cost function in (3.6) is well-defined 
or not. 

If IWkl > IWk+d, i(k) and j(k) are uniquely determined by k; i(k) is the number 
of the u-components of subvector w(l : k) and j(k) is the number of the v-components 
of w(l : k). In this case, both ~(k) and W(k) are well-defined. If IWkl = IWk+ll, i(k) 
and j(k) are ill-defined. Therefore W(k) may have three different values depending 
on the choices of i(k) and j(k), see Figure 4.1 for a detailed illustration. However, 
~(k) is unique regardless whether IWkl and IWk+ll are equal or not. We now discuss 
several important computation details. 

w-CONSTANT INTERVALS. We call (a, b] a w-constant interval if a and b satisfy 

Iwal> IWa+d = ... = IWbl >Iwb+d· 

For any integer k E (a, b], i(k) and j(k) can be any integers in the u-constant interval 
(i(a), i(b)] and v-constant interval (j(a), j(b)] , respectively, 

i(k) E (i(a), i(b)] , j(k) E (j(a), j(b)]. 

However, we do not need to pay attention to the w-constant interval if it does not 
contain the optimal solution k* . 

. BRACKETING INTERVALS. A w-constant interval is called a bracketing interval 
if the optimal k* E [a, b]. Since W(k) is ill-defined in (a, b), the optimal k* should 
satisfy that 

min I~(i + j) - W(i + j)l· 
i(a)~i9(b ),j( a)~j ~j(b) 

It is easy to see that ~(k) is uniquely defined and is a linear function in the interval 
(a, b) while W(k) may have multiple values depending on i and j. Figure 4.1 plots 
for the graph of ~(k) many possible graphs for W(k) in a bracketing interval. 

The existence of bracketing intervals make the problem (3.6) more complicated. 
Fortunately, bracketing intervals seldom occur and the length of the occurred brack­
eting interval is general very small. 

CHOOSING THE SECANTS {j~, AND CW,. There are many ways to choose the 
secants C~, and OW, which are to be used in the next iteration. For the initial o~o 
and CWo, we set 

{j~o = (~(ko + d) - ~(ko))/d, and OWo = (w(ko + d) - W(ko))/d. 

with d::::; !(m + n - ko), for example, d = min(lOO, [Hm + n - ko)]). In general, one 
can choose o~/ = (~/-~,-d/(k,-k,-d and oW, = (w/-~/-d/(k/-k/-d. However 
a better way is to compute ccp/ and CW/ by 

and C,T, _ W max - cpmin 
U'I'/- , 

kmax - kmin 

if we know that k* E [kmin, kmax], where 

~min = ~(kmin), ~max = ~(kmax)' 
Wmin = W(kmin), Wmax = W(kmax). 
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FIG. 4.1. The curves <liCk) (solid line) and the possible curve lJ!(k) (deshed lines) with'\ = fL = 
0.5. 

Initially, we set kmin = ko. 
AVOIDING INFINITE LOOP. To avoid infinite loop of the secant iteration, we need 

to slightly modify k/+1 at the /-th iteration so that . 

k/ + 1 < k/+1 
kmin + 1 < k/+1 

< kmax -1, 
< k/-l, 

if k/:::; k*, 
if k/ 2:: k*. 

or 

Now we are ready to present an algorithm for solving the discrete optimization prob­
lem (3.6). 

Algorithm DSI (DISCRETE SECANT ITERATION). 
1. [Initialization] 

. 11 S t - P - -2 - -2 - -2 . . or w = w, w" <- W", Ui <- ui' Vj <- Vj' 

1.2 Determine the smallest ko such that i(ko) 2:: 1, 
j(ko) 2:: 1, and compute <1>0 = <1>(ko) and Wo 
w(ko). 

1.3 Check convergence. If Wo :::; <1>0, stop, otherwise 
determine the secant 5<1>0 and 5wo for next secant 
iteration. 

2. For 1= 1,2, .. " until convergence, 

2.1 One Newton-like iteration. k = k/ + [6::=i~J 
2.2 Determine the w-constant interval (a, b) of which 

covers k, and compute 

Wa = w(a), Wb = web), <1>a = <1>(a), <1>b = <1>(b). 

2.3 If [a, b) does not contain the optimal k*, compute 
k/+1 by 

if Wa :::; <Pa 
if W b > <1>b ' 

and determine the secant 5<1>/+1 and 5W/+l for next 
secant iteration, otherwise turn to step 3. 

3. Compute k* E "[a, b). 
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TABLE 5.1 

Average of the discrete secant iterations. 

j 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

ash958 9.1 8.1 8.2 8.0 8.1 7.4 7.6 7.2 7.2 6.8 
illcl033 9.2 9.2 8.3 8.1 7.6 7.1 7.4 7.2 7.1 6.5 .. 

12.7 10.4 10.0 9.9 9.4 9.3 9.1 8.8 8.6 8.8 CISI 

cacm 10.8 10.5 9.8 10.0 9.5 9.4 9.2 9.1 9.0 8.9 
med 13.1 11.6 10.8 10.4 9.9 9.6 9.5 9.2 9.2 8.8 
npl 12.8 11.8 11.5 11.6 11.1 11.8 10.9 10.7 10.8 10.8 
orsirr2 9.7 9.3 8.8 8.6 8.3 8.1 7.7 7.5 7.7 7.4 
e20rlOOO 11.8 11.6 ·10.8 10.7 10.5 10.2 10.1 9.7 9.4 9.5 

After several iterations, if I is the first integer such that if Wr < <PI, we then set 
kmax = kl and the interval [kmin, kmax] which contains the optimal k* can be made 
smaller and smaller. Otherwise the sequence {k l } converges monotonically to k*. 
Therefore the above algorithm is guaranteed to converge. 

5. Numerical Experiments. In this section, we will present several numerical 
experiments to illustrate the discrete secant method we proposed. The test matrices 
used are the same as in [9]. (The reader is referred to [9] for detailed descriptions.) 
In all of the numerical tests we use 4 Lanczos bidiagonalization iterations to compute 
the approximate largest singular vectors of the deflated matrices Ai = A - XiDi y7 
at each iteration step. The penalty factors ()' and fJ in (3.6) are chosen as follows, 

j (}'=-, 
m 

j 
fJ = -, 

n 

>. 
and j = 2(1 _ >')' 

i.e., 11 = 1/2. The parameter>. is chosen as following. 

>. = (0.1:0.1:1.0)./(1.1:0.1:2.0) 

~ [.09 .17 .23 .26 .33 .38 .41 .44 .47 .50], 

which gives 

j= 0.05:0.05:0.5. 

For simplicity, we choose c = 1 in (3.5). 
First we look at the speed of convergence of the Discrete Secant Iteration (DSI) 

algorithm. DSI is globally convergent. In general, it needs about 10 iterations to 
obtain the optimal k*. In Table 5.1 we list the average of the number of iterations for 
each matrix and j. 

Although it is possible that the optimal integer k* is in a w-constant interval 
which will lead to a little bit complex case, bracketing intervals seldom occur and 
the length b - a of the occurred bracketing intervals are small in general. Among all 
the eight tested matrices, bracketing intervals never occurred for matrices illc1033, 
npl, orsirr2, and e20r1000 and all the choice of j = 0.05: 0.05: 0.50 while for the 
other four matrices the largest length of bracketing intervals are generally 2. See the 
table listed below, where the integer p in the form p(q) is the maximal length of the 
q bracketing intervals occurred. 
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FIG. 5.1. Plots for ranks (left) and numbers of nonzeros of X k and Yk (right) vs starting epsilon 
for the variable tolerance, mixed sorting approach (top) and the penalized approach (bottom). 

r 0.05 0.10 0.15 0.20 0.25 0.30· 0.35 0.40 0.45 0.50 

ash958 2(1) 2(1) 2(1) 2(1) 
CISI 

cacm 
med 

2(2) 
2(1) 

2(1) 
2(2) 4(3) 2(3) 2(2) 2(4) 2(1) 2(1) 2(2) 

2(1) 

We now compare the ranks and the numbers of the non zeros of the factors Xk and 
Yk computed by the mixed sorting approach SLRA with variable tolerance discussed 
in [9] and the penalized method. The initial parameter f is, as we did in [9], that 

f = 0.05 : 0.05 : 0.5. 

Figure 5.1 plots the ranks (left) and the total number of non zeros of Xk and Yk (right) 
computed by the mixed sorting approach SLRA with variable tolerance f (top) and the 
penalized schemes (bottom). The numerical results show that the penalized method 
is more "robust" than the mixed sorting SLRA because of that the ranks and the 
numbers of non zeros of the factor~ Xk and Yk computed by the penalized method are 
not sensitive depending on the choice of the parameter .>t. 
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FIG. 5.2. Plots for the relative density of the computed Xk and Yk by SLRA with variable 
tolerance and mixed sorting approach (+-dots) and the penalized method (a-dots). 

Though we choose A such that the corresponding parameter, are the same as (, 
the computed ranks and the numbers of nonzeros of X/c and Y/c are not comparable 
because the ranks and/or the numbers of nonzeros may not be equal, respectively, 
even if , = (. To show the efficiency of the penalized method, let us define the 
relative density function f by 

f(k) = nnz(X/c) + nnz(Y/c). 
k*m k*n 

In Figure 5.2, we plot, respectively, the relative density function corresponding the 
mixed sorting SLRA (+-dots) and the penalized method (o-dots). In general, the func­
tion f corresponding to the penalized method locate left and blow that corresponding 
to the mixed sorting SLRA. That means penalized method generally produce an ap­
proximation with lower rank and more sparse factors than the mixed sorting SLRA. 

Finally, we point out that for those matrices which are close to rank-deficient 
the penalized method may produce approximations with large change in rank for 
sometime special choice of ,. See, for example, the boxed numbers in the following 
table for the test matrix watson4. We list, in the table, the ranks of the computed 
approximat"ions B/c = X/cD/cY{ using the penalized SLRA with different choice of 'Y 
and 4 Lanczos bidiagonalization iterations for computing approximately the largest 
singular vectors at each step. All the approximations achieve the same reconstruction 
error. 

'Y .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 I 
k 138 11911 159 12241 172 169 177 182 188 141711 

The reason is that the computed singular vectors Ui and Vi of A i - 1 = A-Xi-1Di-l Yi~l 
at some iteration step of SLRA are far away from the exact ones, which leads to that 
the computed di may be much smaller than the largest singular value of the deflated 
matrix Ai and the rank k is increased in order to achieve the same accuracy because 

Fortunately, increasing the iterq.tion number a little bit more used for the Lanczos 
bidiagonalization will reduce the sensitiveness. For this test matrix watson4, if we use 
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FIG. 5.3. Plots for the singular values (solid line) of the matrix llatson4 and the computed 
diagonal elements of Dk (dot line) with 'Y = 0.2, using 4 Lanczos iterations (left) or 5 Lanczos 
iterations (right) for computing the largest singular vectors. 

5 Lanczos bidiagonalizations, the ranks are reduced to 150, 152, and 178 corresponding 
to 'Y = 0.1,0.2, and 0.5, respectively. Figure 5.3 plots· the singular values (solid line) 
of the matrix watson4 and the computed diagonal elements of Dk with 'Y = 0.2. 

q. Concluding Remarks. Computing low-rank approximations of matrices is 
a very important matrix computation problem that has many applications in informa­
tion retrieval and data mining. The large sizes and sparsity properties of the matrices 
arising from these applications entail that we find low-rank approximations that them­
selves also possess some sparsity properties. We continue our research on this problem 
following the general framework proposed in [9]: we formulate the sparse low-rank ap­
proximation problem as a penalized optimization problem, and derive simpler form 
of the optimization problem that is more amendable for numerical computations. In 
particular, we manage to avoid exhaustive combinatorial search to solve the penalized 
optimization problem. Numerical experiments show that the penalized methods are 
more robust and produce approximations with lower ranks and more sparse factor. 
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