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Abstract� We present a new numerical iterative method for computing selected eigenpairs of a right de�nite
two�parameter eigenvalue problem� The method works even without good initial approximations and is able to
tackle large problems that are too expensive for existing methods� The new method is similar to the Jacobi�
Davidson method for the eigenvalue problem� In each step we �rst compute Ritz pairs of a small projected right
de�nite two�parameter eigenvalue problem and then expand the search spaces using approximate solutions of
appropriate correction equations� We present two alternatives for the correction equations� introduce a selection
technique that makes it possible to compute more than one eigenpair� and give some numerical results�
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�� Introduction� We are interested in computing one or more eigenpairs of a right de�nite
two�parameter eigenvalue problem

A�x � �B�x� �C�x�
�����

A�y � �B�y � �C�y�

where Ai� Bi� and Ci are given real symmetric ni�ni matrices for i � �� 	 and �� � � R
 x � R
n� 


y � R
n� � A pair ��� �� is called an eigenvalue if it satis�es ����� for nonzero vectors x� y� The

tensor product x � y is the corresponding eigenvector� The condition for right de�niteness is
that the determinant ����xTB�x xTC�x

yTB�y yTC�y

�������	�

is strictly positive for all nonzero vectors x � R
n� 
 y � R

n� � Right de�niteness and symmetry
of matrices Ai� Bi� and Ci imply that there exist n�n� linearly independent eigenvectors for the
problem ����� �	��

Multiparameter eigenvalue problems of this kind arise in a variety of applications ���
 par�
ticularly in mathematical physics when the method of separation of variables is used to solve
boundary value problems �	���

Two�parameter problems can be expressed as two coupled generalized eigenvalue problems�
On the tensor product space S 
� R

n� � R
n� of the dimension N 
� n�n� we de�ne matrices

�� � B� � C� � C� �B��

�� � A� � C� � C� �A�������

�� � B� �A� �A� �B��

Since the tensor product of symmetric matrices is symmetric
 �i is a symmetric matrix for
i � �� �� 	� Atkinson �	
 Theorem ����	� proves that right de�niteness of ����� is equivalent to the
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�

condition that �� is positive de�nite� He also shows that matrices �
��
� �� and �

��
� �� commute

and that the problem ����� is equivalent to the associated problem

��z � ���z�
�����

��z � ���z�

for decomposable tensors z � S
 z � x� y� The eigenvectors of ����� are ���orthogonal
 i�e� if
x� � y� and x� � y� are eigenvectors of ����� corresponding to di�erent eigenvalues
 then

�x� � y��
T���x� � y�� �

����xT�B�x� xT� C�x�

yT� B�y� yT� C�y�

���� � �������

Decomposable tensors xi � yi for i � �� � � � � N form a complete basis for S�

There exist numerical methods for right de�nite two�parameter eigenvalue problems� First
of all
 the associated problem ����� can be transformed in such a way that it can be solved by
numerical methods for simultaneous diagonalization of commutative symmetric matrices ���
 	���
This is only feasible for problems of low dimension as the size of the matrices of the associated
problem is N � N � Among other methods we mention those based on Newton�s method ���

the gradient method ��
 �
 ��
 and the Minimal Residual Quotient Iteration ���� A de�ciency of
these methods is that they require initial approximations close enough to the solution in order
to avoid misconvergence�

The continuation method ���
 ��� overcomes problems with initial approximations but since
the ordering of the eigenvalues is not necessarily preserved in a continuation step we have to
compute all eigenvalues
 even if we are interested only in a small portion� In this paper we
introduce a new numerical method which is similar to the Jacobi�Davidson method for the one�
parameter eigenvalue problem ����� The method can be used to compute selected eigenpairs and
does not need good initial approximations�

Our method computes the exterior eigenvalue ��� �� of ����� which has the maximum value
of � cos��� sin� for a given �� We also present a version that computes the interior eigenpair
closest to a given pair ���� ���
 i�e� the one with minimum ��� ���

� � ��� ���
��

The outline of the paper is as follows� We generalize the Rayleigh�Ritz approach to right
de�nite two�parameter eigenvalue problems in x	� In x� we present a Jacobi�Davidson type
method for right de�nite two�parameter eigenvalue problems and introduce two alternatives for
the correction equations� We discuss how the method can be used for exterior and interior
eigenvalues in x�� In x� we present a selection technique that allows to compute more than one
eigenpair� The time complexity is given in x� and some numerical examples are presented in x��
Conclusions are summarized in x��

�� Subspace methods and Ritz pairs� The Jacobi�Davidson method ���� is one of the
subspace methods that may be used for the numerical solution of one�parameter eigenvalue
problems� The common principle of subspace methods is to compute accurate eigenpairs from
low dimensional subspaces� This approach reduces computational time and memory usage and
thus enables us to tackle larger problems that are too expensive for methods that work in the
entire space�

A subspace method works as follows� We start with a given search subspace from which
approximations for eigenpairs are computed �extraction�� In the extraction we usually have
to solve the same type of eigenvalue problem as the original one
 but of a smaller dimension�
After each step we expand the subspace by a new direction �expansion�� The idea is that as
the search subspace grows
 the eigenpair approximations will converge to an eigenpair of the



original problem� In order to keep computation costs low
 we usually do not expand the search
space to the whole space� If the process does not converge in a certain number of iterations then
the method is restarted with a few selected approximations as the basis of a new search space�
In this section we discuss the extraction
 in the next section the algorithm and the expansion�

The Rayleigh�Ritz approach de�nes approximations for the eigenpairs that can be extracted
from the given subspace �see for instance ������ We generalize the Rayleigh�Ritz approach
for the two�parameter eigenvalue problem as follows� Suppose that the k�dimensional search
subspaces Uk of Rn� and Vk of Rn� are represented by matrices Uk � R

n��k and Vk � R
n��k

with orthonormal columns
 respectively� The Ritz�Galerkin conditions

�A� � �B� � �C��u � Uk�

�A� � �B� � �C��v � Vk�

where u � Uknf�g and v � Vknf�g
 lead to the smaller projected right de�nite two�parameter
problem

UT
k A�Ukc � �UT

k B�Ukc� �UT
k C�Ukc�

�	���
V T
k A�Vkd � �V T

k B�Vkd� �V T
k C�Vkd�

where u � Ukc �� �
 v � Vkd �� �
 c� d � R
k 
 and �� � � R�

We say that an eigenvalue ��� �� of �	��� is a Ritz value for the two�parameter eigenvalue
problem ����� and subspaces Uk�Vk� If ��� �� is an eigenvalue of �	��� and c � d is the corre�
sponding eigenvector
 then u � v is a Ritz vector
 where u � Ukc and v � Vkd� Altogether we
obtain k� Ritz pairs that are approximations to the eigenpairs of ������ It is easy to check that
if u � v is a Ritz vector corresponding to the Ritz value ��� �� then � and � are equal to the
tensor Rayleigh quotients ����

� � ���u� v� �
�u� v�T���u� v�

�u� v�T���u� v�
�

�uTA�u��v
TC�v�� �uTC�u��v

TA�v�

�uTB�u��vTC�v�� �uTC�u��vTB�v�
�

� � ���u� v� �
�u� v�T���u� v�

�u� v�T���u� v�
�

�uTB�u��v
TA�v�� �uTA�u��v

TB�v�

�uTB�u��vTC�v�� �uTC�u��vTB�v�
�

In order to obtain Ritz values we have to solve small right de�nite two�parameter eigenvalue
problems� For this purpose one of the available numerical methods that computes all eigenpairs
of a small right de�nite two�parameter eigenvalue problem can be used� For instance
 the
associated problem ����� can be solved using methods for simultaneous diagonalization of two
commutative symmetric matrices ���
 	���

�� Jacobi�Davidson method� The Jacobi�Davidson method ���� is a subspace method
where approximate solutions of certain correction equations are used to expand the search space�
Jacobi�Davidson type methods restrict the search for a new direction to the subspace that is
orthogonal or skew�orthogonal to the last chosen Ritz vector�

Jacobi�Davidson type methods have been successfully applied to the eigenvalue problem
���
 �	�
 to the generalized eigenvalue problem ����
 and to the singular value problem ����� In
this paper we show that a Jacobi�Davidson type method can be applied to the right de�nite
two�parameter problem as well�

A brief sketch of the Jacobi�Davidson type method for the right de�nite two�parameter
problem is presented in Algorithm �� In Step 	b we have to decide which Ritz pair to select� We
give details of this step in x� where we discuss how to deal with exterior and interior eigenvalues�



�

In Step 	e we have to �nd new search directions in order to expand the search subspaces� We
will discuss two possible correction equations for Step 	e later in this section�

Algorithm �

�� Start� Choose initial nontrivial vectors u and v�
a� Compute u� � u	kuk
 v� � v	kvk and set U� � �u��
 V� � �v���
b� Set k � ��

	� Iterate� Until convergence or k 
 kmax do

a� Solve the projected right de�nite two�parameter eigenvalue problem

UT
k A�Ukc � �UT

k B�Ukc� �UT
k C�Ukc�

�����
V T
k A�Vkd � �V T

k B�Vkd� �V T
k C�Vkd�

b� Select an appropriate Ritz value ��� �� and the corresponding Ritz vector u � v

where u � Ukc
 v � Vkd�

c� Compute the residuals

r� � �A� � �B� � �C��u�
���	�

r� � �A� � �B� � �C��v�

d� Stop if �k � � where

�k � �kr�k
� � kr�k

�����������

e� Compute new search directions s and t�
f� Expand the search subspaces� Set

Uk�� � RGS�Uk� s��

Vk�� � RGS�Vk� t��

where RGS denotes the repeated Gram�Schmidt orthonormalization�
g� Set k � k � ��
h� Restart� If the dimension of Uk and Vk exceeds lmax then replace Uk
 Vk with new

orthonormal bases of dimension lmin�

To apply this algorithm we need to specify a tolerance �
 a maximum number of steps kmax

a maximum dimension of the search subspaces lmax
 and a number lmin � lmax that speci�es the
dimension of the search subspaces after a restart�

A larger search space involves a larger projected problem �	���� The existing methods are
able to solve only low�dimensional two�parameter problems in a reasonable time� Therefore
 we
expand search spaces up to the preselected dimension lmax and then restart the algorithm� For
a restart we take the most promising lmin eigenvector approximations as a basis for the initial
search space�

Suppose that we have computed new directions s and t for the search spaces Uk�� and Vk��

respectively� We expand the search spaces simply by adding new columns to the matrices Uk

and Vk� For the reasons of e�ciency and stability we want orthonormal columns and there�
fore we orthonormalize s against Uk and t against Vk by a stable form of the Gram�Schmidt
orthonormalization�

The next theorem expresses that if the residuals ���	� are small then the Ritz value ��� �� is
a good approximation to an eigenvalue of ������ This justi�es the criterion in Step 	d�



Theorem ���� If ��� �� is a Ritz value and r�� r� are the residuals ������ then there exists

an eigenvalue ��� �� of the right de�nite two�parameter problem �	�	� such that

��� ��� � ��� ��� � k��k
h
�kB�kkr�k� kB�kkr�k�

� � �kC�kkr�k� kC�kkr�k�
�
i
������

Proof� In order to prove ����� we consider the associated problem ������ First we derive a
relation between the residuals ���	� and the residuals of the associated problem� We denote

p� � ���u� v�� ����u� v��
�����

p� � ���u� v�� ����u� v��

where u� v are the normalized Ritz vectors from Step 	b� From ����� and ���	� it follows that

p� � r� � C�v �C�u� r��

p� � r� �B�v �B�u� r�

and we have the bounds

kp�k � kC�kkr�k� kC�kkr�k�
�����

kp�k � kB�kkr�k� kB�kkr�k�

Now we return to the residuals ������ As �� is a symmetric positive de�nite matrix we can
transform ����� into

�
����
� p� � G�w � �w�

�����
�
����
� p� � G�w � �w�

where w � �
���
� �u � v� and Gi � �

����
� �i�

����
� for i � �� 	� The matrices G� and G� are

symmetric and commute because the matrices ���
� �� and ���

� �� commute� As a result there
exists a common orthonormal basis of eigenvectors w�� � � � � wN such that

G�wi � �iwi�
�����

G�wi � �iwi�

where ��i� �i�
 i � �� � � � � N 
 are the eigenvalues of ������ In the eigenvector basis we can
decompose w as w �

PN
j�� �jwj� From ����� and ����� we get

�
����
� p� �

NX
j��

�j��j � ��wj �

�����

�
����
� p� �

NX
j��

�j��j � ��wj

and

k�
����
� p�k

� � k�
����
� p�k

� �

NX
j��

��j

�
��j � ��� � ��j � ���

�
�



�

Since
PN

j�� �
�
j � � it follows that

min
j�������N

�
��j � ��� � ��j � ���

�
� k�

����
� p�k

� � k�
����
� p�k

�

������
� k��k�kp�k

� � kp�k
���

Finally
 when we insert ����� into ������ we obtain ������

In the next theorem we show that if the Ritz vector u� v is close to an eigenvector x� y of
problem �����
 then the residuals r� and r� from ���	� are of order O�ku� xk� and O�kv � yk�

respectively� This shows that the criterion in Step 	d will be ful�lled if the Ritz vector u � v
approximates an eigenvector of ����� well enough�

Theorem ���� Let ��� �� be an eigenvalue of �	�	� and let x � y be the corresponding

eigenvector� If the Ritz vector is u� v� where u � x� s and v � y � t� then we can bound the
error of the corresponding Ritz value ��� �� asp

��� ��� � ��� ��� � O�ksk� � ktk��������

and the norm of the residuals r�� r� from ����� as

kr�k � kA� � �B� � �C�kksk�O�ksk� � ktk���
����	�

kr�k � kA� � �B� � �C�kktk�O�ksk� � ktk���

Proof� We write the residuals ���	� as

r� � ��A� � �B� � �C��s� ��� ��B�u� ��� ��C�u�
������

r� � ��A� � �B� � �C��t� ��� ��B�v � ��� ��C�v�

When we multiply equations ������ by uT and vT 
 respectively
 and take into account that
uT r� � vT r� � � then we obtain�

uTB�u uTC�u
vTB�v vTC�v

� �
�� �
�� �

�
� �

�
sT �A� � �B� � �C��s
tT �A� � �B� � �C��t

�
�������

The system ������ is nonsingular because of right de�niteness� From ������ we get ������� The
bound ����	� is now a result of ������ and �������

In the following two subsections the expansion for our Jacobi�Davidson method is discussed�
We present two alternatives for the correction equations for the right de�nite two�parameter
eigenvalue problem� Let ��� �� be a Ritz value that approximates the eigenvalue ��� �� of �����
and let u� v be its corresponding Ritz vector� Let us assume that u and v are normalized�

���� Correction equation with orthogonal projections� The �rst alternative for the
correction equations is a generalization of the approach used in ���� for the one�parameter
eigenvalue problem� We are searching for orthogonal improvements of the vectors u and v of
the form

A��u� s� � �B��u� s� � �C��u� s��������

A��v � t� � �B��v � t� � �C��v � t��������

where s � u and t � v� We treat the equations ������ and ������ separately�



Let

r� � �A� � �B� � �C��u�

r� � �A� � �B� � �C��v

be the residuals of Ritz vector u�v and Ritz value ��� ��� The orthogonal projections of A�� B�

and C� onto the subspace u� are given by

eA� � �I � uuT �A��I � uuT ��eB� � �I � uuT �B��I � uuT ��eC� � �I � uuT �C��I � uuT ��

respectively� It follows that

A� � eA� �A�uu
T � uuTA� � �uTA�u�uu

T �

B� � eB� �B�uu
T � uuTB� � �uTB�u�uu

T �

C� � eC� � C�uu
T � uuTC� � �uTC�u�uu

T �

Since

eA�u � eB�u � eC�u � ��

we can rewrite ������ as

� eA��� eB��� eC��s � �r��

�
uT ��A���B���C��s

�
u������B�u���� ��C�u�������

From Theorem ��	 it follows that k�����B�u���� ��C�uk � O�ksk�� ktk��� Asymptotically
�i�e� when u � v is close to an eigenvector of ������
 s and t are �rst order corrections and
�� � ��B�u � �� � ��C�u represents some second order correction� Ignoring this contribution
results in

� eA� � � eB� � � eC��s � �r� �

�
uT ��A� � �B� � �C��s

�
u�������

Because the left�hand side and r� have no component in u
 the factor uT ��A� � �B� � �C��s
in ������ must vanish and we obtain the equation

� eA� � � eB� � � eC��s � �r��������

Since � and � are unknown
 we replace them by the current approximations � and � 
 respectively�
This can be again considered as neglecting second order terms of asymptotically small s and t�
From ������ we thus obtain the correction equation

� eA� � � eB� � � eC��s � �r�

which can be rewritten as

�I � uuT ��A� � �B� � �C���I � uuT �s � �r�����	��

In a similar way we obtain the correction equation for the vector v

�I � vvT ��A� � �B� � �C���I � vvT �t � �r�����	��



�

From ���	�� and ���	�� it is clear that the orthogonal projections preserve the symmetry
of the matrices� Another advantage of orthogonal projections is that they are stable and easy
to implement� The systems ���	�� and ���	�� for s and t are not of full rank but they are
consistent� We solve them only approximately with a Krylov subspace method with initial guess
�
 for instance by a few steps of MINRES� If we do just one step of MINRES
 then s � r�
 t � r�
and then
 in the sense that we expand the search spaces by the residuals
 we have an Arnoldi
type method
 similar to the situation for the standard eigenproblem �����

���� Correction equation with skew projections� In this approach the equations for
the corrections s and t are treated simultaneously� Let us assume that we are looking for
improvements of the form

A��u� s� � �� � d��B��u� s� � �� � d��C��u� s��
���		�

A��v � t� � �� � d��B��v � t� � �� � d��C��v � t��

where s � u and t � v� If we neglect terms containing mutual products of d�
 d� 
 s
 t then we
obtain a pair of equations

�A� � �B� � �C��s � �r� � d�B�u� d�C�u�
���	��

�A� � �B� � �C��t � �r� � d�B�v � d�C�v�

If we de�ne

M �

�
A� � �B� � �C� �

� A� � �B� � �C�

�
and

r �

�
r�
r�

�
�

then we can reformulate ���	�� as

M

�
s
t

�
� �r � d�

�
B�u
B�v

�
� d�

�
C�u
C�v

�
����	��

Let V � R
�n��n���� be a matrix with orthonormal columns such that

span�V � � span

��
B�u
B�v

�
�

�
C�u
C�v

��
and let W � R

�n��n���� be

W �

�
u �
� v

�
�

With the skew projection

P � I � V �W TV ���W T

onto span�V �� along span�W �
 it follows that

Pr � r and P

�
B�u
B�v

�
� P

�
C�u
C�v

�
� �����	��



Therefore
 from multiplying ���	�� by P we obtain

PM

�
s
t

�
� �r����	��

Furthermore
 since s � u and t � v it follows that

P

�
s
t

�
�

�
s
t

�
and the result is the correction equation

PMP

�
s
t

�
� �r����	��

for s � u and t � v�
The correction equation ���	�� is again not of full rank but consistent and it is often su�cient

to solve it only approximately �e�g� by a few steps of GMRES�� As before
 if we do one step of
GMRES then s � r� and t � r��

The Jacobi�Davidson method for the one�parameter problem can be viewed as an accelerated
inexact Newton scheme ����� In a similar manner we now show that the Jacobi�Davidson type
method for the right de�nite two�parameter eigenvalue problem with correction equation ���	��
can be interpreted as an inexact Newton scheme�

If ��� �� is an eigenvalue of ����� with corresponding eigenvector x� y then � and � satisfy
the equation �

aTB�x aTC�x
bTB�y bTC�y

� �
�
�

�
�

�
aTA�x
bTA�y

�
���	��

for �xed vectors a� b� Let us assume that the system ���	�� is nonsingular and de�ne

F �x� y� �

�
F��x� y�
F��x� y�

�
�

�
A�x� �B�x� �C�x
A�y � �B�y � �C�y

�
�

where �� � satisfy the equation ���	���
Lemma ���� The Jacobian of F is equal to

DF �x� y� �

�
I �

�
B�x C�x
B�y C�y

���
aT �
� bT

� �
B�x C�x
B�y C�y

���� �
aT �
� bT

�	�
R� �
� R�

�
�

where Ri � Ai � �Bi � �Ci for i � �� 	�
Proof� It follows from ���	�� that

� �
�




�
�aTA�x��b

TC�y�� �aTC�x��b
TA�y�

�
�

���	��

� �
�




�
�aTB�x��b

TA�y�� �aTA�x��b
TB�y�

�
�

where 
 � �aTB�x��b
TC�y� � �aTC�x��b

TB�y� denotes the determinant of ���	��� It is easy to
see that the derivatives of ���	�� are

��

�x
�x� y� �

bTC�y



aTR��

��

�y
�x� y� � �

aTC�x



bTR��

��

�x
�x� y� � �

bTB�y



aTR��

��

�y
�x� y� �

aTB�x



bTR��



�

Now we can write derivatives of F� and F� as

�F�
�x

�x� y� �

�
I �

�




�
�bTC�y�B� � �bTB�y�C�

�
xaT

�
R��

�F�
�y

�x� y� �
�




�
�aTC�x�B� � �aTB�x�C�

�
xbTR��

������
�F�
�x

�x� y� �
�




�
�bTB�y�C� � �bTC�y�B�

�
yaTR��

�F�
�y

�x� y� �

�
I �

�




�
�aTB�x�C� � �aTC�x�B�

�
xbT

�
R��

The proof now follows from ������ and the formula�
aTB�x aTC�x
bTB�y bTC�y

���
�

�




�
bTC�y �aTC�x
�bTB�y aTB�x

�
�

If we take a� b �xed such that ���	�� is nonsingular then it is known that Newton�s method
converges quadratically� If we take a� b variable
 but converging to certain vectors such that
���	�� is nonsingular then we get asymptotically at least quadratic convergence� If we take a � u

b � v
 where u� v are the current approximations for x� y then ���	�� is nonsingular because of
right de�niteness
 and one step of Newton�s method for F coincides with the correction equation
���	��� This shows that the Jacobi�Davidson type method with the correction equation ���	��
is a Newton scheme
 accelerated by the projection of ����� onto the subspace of all previous
approximations� Therefore
 we expect locally at least quadratic convergence of the Jacobi�
Davidson method when the correction equations are solved exactly�

There is a connection between the Jacobi�Davidson correction equation ���	�� and Newton�s
method for the right de�nite two�parameter eigenvalue problem in ����� Eigenpairs of the two�
parameter problem ����� are solutions of the equation

G�x� y� �� �� 
�


����
A�x� �B�x� �C�x

A�y � �B�y � �C�y
�
� �x

Tx� ��
�
� �y

T y � ��


���� � ��������

If we apply Newton�s method to ������ and use u� v� �� � as an initial approximation
 then we
have to solve the system
���

A� � �B� � �C� � �B�u �C�u
� A� � �B� � �C� �B�v �C�v
uT � � �
� vT � �


���

���

s
t
d�
d�


��� �


���
�r�
�r�
�
�


��� �����	�

Lemma ���� The Jacobi
Davidson correction equation ������� where s � u and t � v� is
equivalent to Newton�s equation ������� That is� if �s� t� is a solution of ������� then there exist

unique d�� d� such that �s� t� d�� d�� is a solution of ������� and if �s� t� d�� d�� is a solution of

������ then �s� t� is a solution of �������

Proof� We can rewrite the equation ����	� as

M

�
s
t

�
� �r � d�

�
B�u
B�v

�
� d�

�
C�u
C�v

�



and s � u
 t � v
 which is exactly the equation ���	�� that appears in the derivation of the
Jacobi�Davidson correction equation ���	��� The proof now follows from the relations ���	���

�� Selection of Ritz values� In this section we present di�erent options for the selection
of Ritz values in Step 	b of Algorithm ��

���� Exterior eigenvalues� First we discuss how to obtain the eigenvalue ��� �� of �����
with the maximum value of �� We denote such an eigenvalue by ��max� �max�� We show that
if we select the Ritz value ��� �� with the maximum value of � in each Step 	b of Algorithm �

then the Ritz pairs will converge monotonically to an eigenpair of ������

Lemma ���� Let ��� �� be the Ritz value for problem �	�	� and subspaces U �V with the

maximum value of �� Then

� � max
u�U� v�V
u�v ���

�u� v�T���u� v�

�u� v�T���u� v�
������

Proof� Let the columns of U and V be orthonormal bases for U and V
 respectively� It follows
from �����
 ����� and �	��� that if ��� �� is a Ritz pair then � is an eigenvalue of a symmetric
de�nite pencil

�U � V �T���U � V �� ��U � V �T���U � V �����	�

From the Minimax Theorem ���
 p� ���� it follows that

� � max
w�U�V
w ���

wT��w

wT��w
�

Since pencil ���	� is related to the two�parameter problem �	��� we can restrict w to a decom�
posable tensor w � u� v
 where u � U and v � V� From this ����� follows�

If we select the Ritz value ��k� �k� in Step 	b of Algorithm � with the maximum �k
 then it
follows from Lemma ��� that

�k � �k�� � �max�

We can not guarantee that the eigenvalue ��� �� of ����� to which ��k� �k� converges is equal
to ��max� �max�
 but convergence to a local optimum also may happen in the Jacobi�Davidson
method for the symmetric eigenproblem and in any Newton�type method� Our numerical ex�
amples indicate that we usually do obtain the eigenvalue with the largest value of ��

We can use the algorithm to obtain the eigenvalue ��� �� of ����� with the maximum value
of � cos�� � sin� for a given parameter � if we apply the orthogonal linear substitution

� � �� cos�� �� sin��

� � �� sin�� �� cos�

to the problem ������ The associated two�parameter problem with this substitution is now

A�x � ���cos�B� � sin�C��x� ���� sin�B� � cos�C��x�
�����

A�y � ���cos�B� � sin�C��y � ���� sin�B� � cos�C��y�

The operator determinant �� remains unchanged and the substituted problem ����� is right
de�nite as well� Using orthogonal linear substitutions we can thus obtain exterior eigenvalues
of ����� in chosen directions in the ��� ���plane�



�

���� Interior eigenvalues� Suppose that we are interested in the eigenvalue ��� �� of �����
closest to a speci�c target ���� ���� Let us denote such an eigenvalue as ��int� �int��

Similar to the algorithm for exterior eigenvalues we decide to select the Ritz value nearest
to the target in each Step 	b of Algorithm �� The convergence for interior Ritz values is not
so nice as for the exterior ones� If a Ritz value ��� �� is close enough to ��max� �max� then the
Ritz vector corresponding to ��� �� is a good approximation to the eigenvector corresponding to
��max� �max�� On the contrary
 if ��� �� is close to ��int� �int� then the Ritz vector corresponding
to ��� �� may be a poor approximation to the eigenvector corresponding to ��int� �int�
 just as in
the real symmetric eigenproblem�

Numerical examples in x� show that although the convergence is very irregular
 the method
can still be used to compute the eigenvalue closest to the target� It turns out that for interior
eigenvalues good approximations for new search directions are needed which may be obtained
with more GMRES steps for the correction equations� The number of GMRES steps is of
large in�uence� The more steps of GMRES we take
 the better updates for the approximate
eigenvectors will be added to the search spaces� If we take too many steps then the method often
converges to an eigenvalue ��� �� �� ��int� �int�� On the other hand
 if we take too few GMRES
steps then we need many outer iterations or we have no convergence at all�

If we are interested in interior eigenvalues of a symmetric eigenproblem Ax � �x then one
often uses harmonic Ritz values� The question remains how to generalize harmonic Ritz values
to a right de�nite two�parameter eigenvalue problem� We believe that any progress on this
subject can lead to better methods for interior eigenvalues�

Remark� It is easy to see that Step 	b of Algorithm � can be modi�ed in a similar manner
if we are interested in the eigenvalue ��� �� of ����� with the maximum value of �� � ���

�� Computing more eigenpairs� Suppose that we are interested in p 
 � eigenpairs of
������ In one�parameter problem various de�ation techniques can be applied in order to compute
more than one eigenpair� In this section we �rst show di�culties that are met when we try to
translate standard de�ation ideas from one�parameter problems to two�parameter problems� We
then propose a selection method for Ritz vectors that makes it possible to obtain more than one
eigenpair for two�parameter problems�

If ��� z� is an eigenpair of a symmetric matrix A then all other eigenpairs can be computed
from the projection of A onto the subspace z�� Similarly
 if ��� �� is an eigenvalue of ����� and
x � y is the corresponding eigenvector then all other eigenvectors lie in the subspace �x � y��

of the dimension n�n� � �� By comparing the dimensions it is clear that the subspace �x� y��

can not be written as U �V
 where U � R
n� and V � R

n� � Therefore
 this kind of de�ation can
not be applied to Algorithm ��

Another popular de�ation of a symmetric matrix A is to use the matrix A� � A � �zzT �
Matrix A� has the same eigenvalues as matrix A except for � which is transformed into �� A
generalization of this approach would be to transform the two�parameter problem ����� into a
two�parameter problem with the same eigenvalues as of ����� except for the eigenvalue ��� ��
which should be transformed into ��� ��� Since in a two�parameter problem there can exist
eigenvalues ��� �� and ���� ��� with eigenvectors x�y and x��y�
 respectively
 such that ��� �� ��
���� ��� and x � x�
 this approach would again work only if we apply the associated problem
����� in the tensor product space S�

We propose the following approach� Suppose that we have already found p eigenvalues ��i� �i�
and eigenvectors xi � yi
 i � �� � � � � p� Based on the fact that eigenvectors are ���orthogonal
�see ������ we adjust Algorithm � so that in Step 	b we consider only those Ritz vectors u � v



which satisfy

j�u� v�T���xi � yi�j � � for i � �� � � � � p�����

for an � 
 �� Suppose that we are interested in eigenvalues with the maximum values of ��
Then in Step 	b we �rst order Ritz pairs ��i� �i�� ui � vi by their � values so that �i 	 �j for
i � j and then we select the Ritz pair that satis�es ����� and has the minimal index� In the case
of interior eigenvalues a di�erent ordering is used�

If none of the Ritz pairs meets ����� then we take the Ritz pair with index �
 but in this
case the algorithm is not allowed to stop� This is achieved by a change of the stopping criterion
in Step 	d where in addition to a small residual norm ����� we now also require that the Ritz
vector u� v satis�es ������ This guarantees that the method does not converge to the already
computed eigenpairs�

The bound � should not be taken too small to avoid that none of the Ritz vectors is su�ciently
���orthogonal to the set of already computed eigenvectors� In numerical experiments in x� we
use

� �
�

	
max

i�������p
j�xi � yi�

T���xi � yi�j

and that value successfully prevents the method from converging to the already computed eigen�
pairs�

All other steps of Algorithm � remain unchanged� Numerical results in x� show that this
approach enables us to compute more than one eigenpair�

	� Time complexity� We examine the time complexity of one outer iteration step of Al�
gorithm �� First assume that matrices Ai� Bi� and Ci are dense� Let n � n� � n�
 let k be
the dimension of the search spaces
 and let m be the number of GMRES �MINRES� steps for a
correction equation� The two steps that largely determine the time complexity are Step 	a and
Step 	e�

In Step 	a we �rst construct the smaller projected problem ������ As we need to compute
only the last row �and column� of matrices in ����� we need O�n�� for the construction of the
smaller problem� We solve ����� by solving its associated problem with matrices of size k� and
thus we need O�k�� ���� As in practice only very small values of k are used we can assume that
k � O�n��	� and the time complexity of Step 	a is O�n���

If we use correction equations ���	��
 ���	�� with orthogonal projections and performm steps
of MINRES then the time complexity of Step 	e is O�mn�� when we perform m matrix�vector
multiplications� We obtain the same time complexity for Step 	e when we use the correction
equation ���	�� with skew projections and do m steps of GMRES� The only di�erence is that
we are working with one matrix of size 	n while we are working with two matrices of size n if
we use orthogonal projections�

Based on the above assumptions the time complexity of one outer step of Algorithm � is
O�mn��� Also important is the storage requirement� If an algorithm works with matrices Ai� Bi�
and Ci as Algorithm � does then it requires O�n�� memory� The methods that work with the
associated system ����� need O�n
� memory
 which may exceed memory fast
 even for modest
values of n�

In many applications
 for instance when two�parameter Sturm�Liouville problems ��� are
discretized
 we deal with sparse two�parameter problems where matrices Ai� Bi
 and Ci are
large and sparse� Because MINRES and GMRES are methods intended for sparse matrices the
Jacobi�Davidson type method can in principle handle very large sparse problems� For such
problems the time complexities of Steps 	a and 	e are rather expressed as � MV � O�k�� and
�m MV
 respectively
 where MV stands for a matrix�vector multiplication with a n� n matrix�



�


� Numerical examples� We present some numerical examples obtained with Matlab ����
If the dimension of the matrices is n � n� � n� � ��� then none of the existing methods that
work in the tensor product space is able to compute all eigenpairs in a reasonable time �����
Therefore
 we construct right de�nite two�parameter examples where the exact eigenpairs are
known
 which enables us to check the obtained results�

We construct our right de�nite two�parameter examples in the following way� We take
matrices

Ai � QiFiQ
T
i � Bi � QiGiQ

T
i � Ci � QiHiQ

T
i ������

where Fi
 Gi
 and Hi are diagonal matrices and Qi is a random orthogonal matrix for i � �� 	�
We select diagonal elements of matrices F�� F�� G�� and H� as uniformly distributed random
numbers from the interval ��� �� and diagonal elements of G� and H� as uniformly distributed
random numbers from the interval ��� 	�� The determinant ���	� is clearly strictly positive for
nonzero x� y and the obtained two�parameter problem is right de�nite� All matrices are of
dimension n� n�

Let us denote Fi � diag�fi�� � � � � fin�
 Gi � diag�gi�� � � � � gin�
 and Hi � diag�hi�� � � � � hin�� It
is easy to see that eigenvalues of the two�parameter problem ����� are solutions of linear systems

f�i � �g�i � �h�i�

f�j � �g�j � �h�j

for i� j � �� � � � � n� This enables us to compute all the eigenvalues from the diagonal elements of
Fi� Gi�Hi for i � �� 	� In order to construct a two�parameter problem that has the point ��� ��
in the interior of the convex hull of all the eigenvalues we take the shifted problem

�A� � ��B� � ��C��x � ��� ���B�x� ��� ���C�x�

�A� � ��B� � ��C��y � ��� ���B�y � ��� ���C�y�

where the shift ���� ��� is the arithmetic mean of all the eigenvalues� Figure ��� shows the
distribution of eigenvalues obtained for n � ����

Fig� ���� Distribution of eigenvalues for a right de�nite two�parameter problem of size n � 	���
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For the following numerical examples we use GMRES instead of MINRES in the correction
equation with orthogonal projections because MINRES is not standard available in Matlab ����



Example 	� In the �rst example we use the Jacobi�Davidson type method for the exterior
eigenvalues� Our goal is to compute the eigenvalue ��max� �max� with the maximum value of ��
We are interested in the number of iterations that the Jacobi�Davidson method needs for su��
ciently accurate approximations and also in the percentage of the convergence to the eigenvalue
��max� �max� for a test set of 	�� di�erent initial vectors�

We test both alternatives for the correction equations using various numbers of GMRES
steps� Each combination is tested on the same set of 	�� random initial vectors� The algorithm
is restarted after every �� iterations with the current eigenvector approximation
 so lmax � ��
and lmin � �� The value � � ���� is used for the test of convergence and �ops count in Matlab
are used for a measure of time complexity�

Table ���

Statistics of the Jacobi�Davidson type method for the eigenvalue ��max� �max� using di�erent correction equa�
tions and number of GMRES steps for right de�nite two�parameter problems of size n � 	�� and n � ���� average
number of outer iterations� percentage of convergence to ��max� �max�� and average number of �ops over 	
� tri�
als with di�erent random initial vectors� Correction equations� JO�m
 � orthogonal projections and m steps of
GMRES� JS�m
 � skew projections and m steps of GMRES�

correction n � ��� n � 	��
equation iterations percentage �ops iterations percentage �ops

JO����JS��� ����� ����� � ��� 
 ��� ���� ����� � ��� 
 ���

JO�	� ���� ����� � 	�	 
 ��� ���� ����� � 	�� 
 ���

JO��� 	��� ����� � ��� 
 ��� 	��� ����� � ��� 
 ���

JO��� 	��� ���	 � ��� 
 ��� 	��� ���	 � 	�� 
 ���

JO���� 	��� ���� � ��� 
 ��� ���� ���� � ��� 
 ���

JO��	� 	��� ���� � 	�	 
 ��� �	�� ���� � ��	 
 ���

JO���� ���� 	��� � ��� 
 ��� ���� ��� � ���� 
 ���

JS�	� ���� ����� � ��� 
 ��� ���� ����� � ��� 
 ���

JS��� ���� ����� � ��� 
 ��� �	�� ����� � ��� 
 ���

JS��� ���� ����� � ��� 
 ��� �	�� ����� � ��	 
 ���

JS���� ���	 ���� � 	�� 
 ��� ���� ���� � ��� 
 ���

JS��	� ���� �	�� � ��	 
 ��� ���� ���� � ��� 
 ���

JS���� ���� ���� � ��� 
 ��� ���� ���� � ���� 
 ���

Table ��� contains results obtained for n � ��� and n � 	��� JO�m� and JS�m� denote that
m steps of GMRES are used for the correction equation with orthogonal projections or with skew
projections
 respectively� For each combination we list the average number of outer iterations
for convergence
 the percentage of eigenvalues that converged to the eigenvalue ��max� �max�

and the average number of �ops in Matlab
 all obtained on the same set of 	�� di�erent initial
vectors�

The results in Table ��� indicate that the method is likely to converge to an unwanted
eigenvalue if we solve the correction equation too accurately
 i�e� if too many GMRES steps are
used to solve the correction equation� A comparison of the �ops suggests that the best approach
is to do a few steps of GMRES� We also see that for larger n the number of GMRES steps has
more impact on the time complexity than the number of outer iterations� The reason is that for
larger n the factor k� becomes relatively smaller compared to mn��

The correction equations with orthogonal projections behave similarly to the one with skew
projections but require less operations� The experiments suggest to use the correction equations
with orthogonal projections in combination with a small number of GMRES steps in each outer



�

iteration for ��max� �max��

Example �� In the second example the convergence to the exterior eigenvalue for the two�
parameter problem of dimension n � ��� and initial vectors u � v � �� 
 
 
 ��T is examined�
We compare the convergence for 	
 ��
 and 	� GMRES steps per iteration for the correction
equation with orthogonal and the one with skew projections
 respectively� Figure ��	 shows the
log�� plot of residual norm �k ����� versus the outer iteration number k� In all six cases the Ritz
values converge to the eigenvalue ��max� �max��

Fig� ���� Convergence plot for the exterior eigenvalue ��max� �max� for n � 	�� and u � v � �	 � � � 	�T � The
plots show the log

��
of the residual norm �k ����
 versus the outer iteration number k for the Jacobi�Davidson type

method for the eigenvalue ��max� �max� using 	 �solid line
� �� �dotted line
� and 	
 �dashed line
 GMRES steps to
solve the correction equation with orthogonal projections �left plot
 and skew projections �right plot
� respectively�
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It is clear from Figure ��	 that convergence near the solution is faster if more GMRES
steps are used� Experiments indicate that if only a few steps of GMRES are applied then the
convergence near the solution is about linear�

Example �� In this example we examine the convergence of the Jacobi�Davidson type method
for the interior eigenvalues� We look for the eigenvalue closest to ��� ��� We use the same n � ���
two�parameter problem as in Example � and again test both correction equations with di�erent
number of GMRES steps on a set of 	�� di�erent initial vectors� The algorithm is restarted
after every �� iterations with the current eigenvector approximation� For the convergence test
we take � � ����� The reason for a more relaxed criterion is an irregular convergence of the
interior eigenvalues �see the peaks in Figure �����

The results
 presented in Table ��	
 show that the method may also be used e�ectively
for interior eigenvalues� In contrast to Example �
 more GMRES steps are required for one
outer iteration step� If too many steps are applied then the process converges to an unwanted
eigenvalue
 similar to Example �� On the other hand
 if we do not take enough GMRES steps
then we need many outer iteration steps and the results may be worse� This is di�erent from
Example � where the process converges in reasonable time even if only one GMRES step is
applied per Jacobi�Davidson iteration step� The correction equation with skew projections is
more e�ective than the one with orthogonal projections� It is more expensive but the probability
of coming close to the eigenvalue closest to ��� �� is higher�



Table ���

Statistics of the Jacobi�Davidson type method for the eigenvalue closest to ��� �� using di�erent correction
equations and di�erent inner iteration processes for a right de�nite two�parameter problem of size n � 	��� average
number of iterations� percentage of convergence to the eigenvalue closest to ��� ��� and average number of �ops
over 	
� trials with di�erent random initial vectors� Correction equations� JO�m
 � orthogonal projections and
m steps of GMRES� JS�m
 � skew projections and m steps of GMRES�

correction equation iterations percentage �ops

JO���� ���	 ���� � 	�� 
 ���

JO���� ���� ���	 � 	�	 
 ���
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 ���
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Fig� ���� Convergence plot for the eigenvalue closest to ��� �� for n � 	�� and u � v � �	 � � � 	�T � The plots
show the log

��
of the residual norm �k ����
 versus the outer iteration number k for the Jacobi�Davidson type

method for the eigenvalue closest to ��� �� using �� �solid line
� �� �dotted line
� and �� �dashed line
 GMRES
steps to solve the correction equation with orthogonal projections �left plot
 and skew projections �right plot
�
respectively�
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Example 
� In the last example we test the selection technique from x� for computing more
eigenpairs for the two�parameter problem of dimension n � ���� With � GMRES steps for the
correction equation with orthogonal projections we try to compute �� successive eigenvalues
with the maximum value of �� Figure ��� shows how well the �rst �� and all �� computed



�

eigenvalues agree with the desired eigenvalues
 respectively�

Fig� ���� First �
 �left plot
 and �rst �� �right plot
 computed eigenvalues with maximum value of � for
a two�parameter problem of size n � 	�� computed using selection for Ritz vectors� The Jacobi�Davidson type
method used 
 GMRES steps for the correction equation with orthogonal projections�
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The eigenvalues are not necessarily computed in the same order as their � values� This
explains the situation in Figure ��� where some eigenvalues that are in the top �� by their �
values are not among the �� computed eigenvalues� In order to obtain the top k eigenvalues
with high probability it is therefore advisable to always compute more than k eigenvalues�

�� Conclusions� We have presented a new Jacobi�Davidson type method for a right de��
nite two�parameter eigenvalue problem� It has several advantages over the existing methods� It
can compute selected eigenpairs and it does not require good initial approximations� Probably
the most important advantage is that it can tackle very large two�parameter problems
 especially
if matrices Ai� Bi 
 and Ci are sparse�

We have proposed two correction equations� On one hand orthogonal projections are more
stable than skew projections and they also preserve symmetry� On the other hand
 the correction
equation with skew projections can be viewed as an inexact Newton scheme which guarantees
asymptotically quadratic convergence� Numerical results indicate that the correction equation
with skew projections is more reliable but more expensive� It is therefore more suitable for
the interior eigenvalues while the one with orthogonal projections may be used for the exterior
eigenvalues�

Numerical results indicate that the probability of misconvergence is low when parameters
are optimal� The number of GMRES steps is important� Experiments suggest to take up to �
GMRES steps for exterior eigenvalues and more GMRES steps for interior eigenvalues� Restarts
also impact the behaviour of the method� In our experiments we restart the method after every
�� iterations with the current eigenvector approximations
 but a di�erent setting may further
improve the method�

Because standard de�ation techniques for an one�parameter problem can not be applied to
two�parameter problems
 we came up with a new selection technique for Ritz vectors�
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