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ON MATRICES WITH SIGNED NULL-SPACES*
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Abstract. We denote by Q(A) the set of all matrices with the same sign pattern as A. A
matrix A has signed null-space provlded there exists a set S of sign patterns such that the set of sign
patterns of vectors in the null-space of Ais S for each A € Q(A). Some properties of matrices with
signed null-spaces are investigated.
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1. Introduction. The sign of a real number a is defined by

1 ifa<0,
sign(a) = 0 ifa=0,and
1 ifa>0.

A sign pattern is a (0,1, —1)-matrix. The sign pattern of a matriz A is the matrix
obtained from A by replacing each entry with its sign. We denote by Q(A) the set of
all matrices with the same sign pattern as A.

Let A be an m by n matrix and b an m by 1 vector. The linear system Az = b
has signed solutions provided there exists a collection S of n by 1 sign patterns such
that the set of sign patterns of the solutions to Az = b is S for each A € Q(A) and
b € Q(b). This notion generalizes that of a sign-solvable linear system (see [1] and
references therem) The linear system, Ax = b, is sign-solvable provided each linear
system Az = b (A € Q(A), b € Q(b)) has a solution and all solutions have the same
sign pattern. Thus Ax = b is sign-solvable if and only if Az = b has signed solutions
and the set S has cardinality 1.

The matrix A has signed null-space provided Az = 0 has signed solutions. Thus
A has signed null-space if and only if there exists a set S of sign patterns such that
the set of sign patterns of vectors in the null-space of Ais S for each A € Q(A).
An L-matriz is a matrix A, with the property that each matrix in Q(A) has linearly
independent rows. A square L-matrix is a sign-nonsingular (SN S)-matrix. A totally
L-matriz is an m by n matrix such that each m by m submatrix is an SN S-matrix.
It is known that totally L-matrices have signed null-spaces [3]. We also have the fact
as a corollary of some results in this paper. Thus matrices with signed null-spaces
generalize totally L-matrices.

A vector is mized if it has a positive entry and a negative entry. A matrix is row-
mized if each of its rows is mixed. A signing is a nonzero diagonal (0,1, —1)-matrix.
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A signing is strict if each of its diagonal entries is nonzero. A matrix B is strictly
row-mizable provided there exists a strict signing D such that BD is row-mixed.

In this paper, some properties of matrices with signed null-spaces are investigated,
and we show that there exists an m by n matrix A with signed null-space such that
A contains a totally L-matrix with m rows as its submatrix and the columns of A are
distinct up to multiplication by —1 for any n € {m,m +1,...,2m}.

We use the following standard notation throughout the paper. If k is a positive
integer, then (k) denotes the set {1,2,...,k}. Let A be an m by n matrix. If «
is a subset of {1,2,...,m} and f§ is a subset of {1,2,...,n}, then A[a|g3] denotes
the submatrix of A determined by the rows whose indices are in a and the columns
whose indices are in 5. We sometimes use A[«|(] instead of A[(m)|3]. The submatrix
complementary to A[a|S] is denoted by A(a|B). In particular, A(—|3) denotes the
submatrix obtained from A by deleting columns whose indices are in 5. We write
diag(di,ds, ..., dy) for the n by n diagonal matrix whose (i,%)-entry is d;. Let Jy,
denote the m by n matrix, all of whose entries are 1, and let e; denote the column
vector, all of whose entries are 0 except for the ¢th entry, which is 1.

2. Matrices with signed null-space. We say that an m by n matrix A =
la;;] contains a mized cycle provided there exist distinct i1,4s,...,4; and distinct
J1,J2, - - -, J& such that

iy iy Qiy Gy < 0 for t = 1,.. .,k — 1 and Wiy g Qg g1 < 0.

An m by n (0,1, —1)-matrix has signed mth compound provided each of its m by
m submatrices having term rank m is an SN S-matrix.

We make use of the following results of matrices with signed null-spaces.

THEOREM 2.1 (see [3]). Let A be a strictly row-mizable m by n matriz. Then
the following three conditions are equivalent.

(a) A has signed null-space.

(b) A has term rank m, and its mth compound is signed.

(¢c) AD has no mized cycle for each strict signing such that AD is row-mized.

THEOREM 2.2 (see [2], [3]). If a strictly row-mizable matriz A has signed null-
space, then there exist matrices B and C (possibly with no rows) and nonzero vectors
b and c such that B and C are strictly row-mizable matrices with signed null-spaces,

[v] e 6]

have signed null-spaces, and, up to permutation of rows and columns,

B O
A= b ¢
o C

The converse also holds.

Let A be an m by n (0,1, —1)-matrix. The matrix B is conformally contractible
to A provided there exists an index k such that the rows and columns of B can be
permuted so that B has the form

Alm) M\ {RY [ |y
0 -~ 0 J1]-1]

where z = [z1,...,2,])7 and y = [y1,...,ym|T are (0,1, —1)-vectors such that z;y; >
0 for i =1,2,...,m, and the sign pattern of x + y is the kth column of A.
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Let B be conformally contractible to A. It is known that A has signed null-space
if and only if B has signed null-space [3]. All matrices we consider from now on are
assumed to be (0,1, —1)-matrices.

THEOREM 2.3 (see [4]). Let an m by n matriz A have a k by k + 1 submatriz
B whose complementary submatrixz in A has term rank m — k. If there is a matriz
B* obtained from B by replacing some nonzero entries with 0’s if necessary such that
Jo,3 is the zero pattern of a matriz obtained from B* by a sequence of conformal
contractions, then A does not have signed null-space.

Let M be an m by n strictly row-mixable matrix of the form

0

(2.1) M = * .

0
1 1
PROPOSITION 2.4. M has signed null-space if and only if

0
M

0
o -~ 0 1 -1 ‘ 1
has signed null-space.

Proof. Let M have signed null-space, and let C' be any m+ 1 by m + 1 submatrix
of A. If C contains the last column of A, then C(m+1|m+1) is an m by m submatrix
of M. Hence C'(m + 1|m + 1) is an SN S-matrix, or C'(m + 1|m + 1) has identically
zero determinant by Theorem 2.1. Thus C is an SN S-matrix, or C' has identically
zero determinant. Hence we may assume that C' does not contain the last column of
A. If C contains neither the n — 1th column nor the nth column, then clearly C has
identically zero determinant. If C' contains only one of the (n—1)th column or the nth
column, then C(m + 1jm + 1) is an m by m submatrix of M. Hence C'(m + 1|m + 1)
is an SNS-matrix, or C'(m + 1jm + 1) has identically zero determinant. Therefore,
C'is an SN S-matrix, or C has identically zero determinant. Let C' contain both the
(n — 1)th column and the nth column of A. Then C(m+1|m+ 1) is an SN S-matrix,
or C(m+1|m+1) has identically zero determinant. If C'(m+ 1|m+ 1) has identically
zero determinant, then there exists an s by ¢ zero submatrix of C(m + 1|m + 1) such
that s +¢ =m 4+ 1. From this, it is easy to show that C' has a p by ¢ zero submatrix
such that p+ ¢ = m +2; i.e., C has identically zero determinant. Let C'(m+ 1|m + 1)
be an SN S-matrix. Since C is conformally contractible to C(m + 1|m + 1), C' is also
an SN S-matrix. Thus the (m + 1)th compound of A is signed. Since M has signed
null-space, the term rank of M is m, and hence the term rank of A is m+ 1. Thus A
has signed null-space by Theorem 2.1. The converse is trivial. 0

We say that A is a single extension of M in Proposition 2.4. Proposition 2.4
means that a strictly row-mixable matrix has signed null-space if and only if its single
extension has signed null-space.

Let
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be an m by n matrix, and let

G \ (@]
0 1 -1 1
1 0 -1 0

H=|"0 - 0 0
0O -~ 0 1

ProprOSITION 2.5. The m by n strictly row-mixzable matriz G has signed null-
space if and only if H has signed null-space.

Proof. Let G have signed null-space, and let C' = [¢;;] be an m + 2 by m + 2
submatrix of H. That is, C = H[|3] for some 8 C (n+2). If n+ 2 € 3, then
H[(m+1)|3\ {n+2}] is an SN S-matrix, or it has identically zero determinant since
H(m + 2|n + 2) is a single extension of G. Hence C is an SN S-matrix, or C' has
identically zero determinant. Similarly, we can show that C' is an SN S-matrix or C'
has identically zero determinant if n + 1 € 5. Hence we may assume that 3 contains
neither n+1 nor n+2. Then it is easy to show that C' has identically zero determinant
if § contains at most two among n—2, n—1, and n. Let {n—2, n—1, n} C 5. Then
H[(m)|B\ {n — 1,n}] is an SNS-matrix or it has identically zero determinant since
G has signed null-space. If H[(m)|8 \ {n — 1,n}] has identically zero determinant,
then clearly C' has identically zero determinant. Let H[(m)|8 \ {n — 1,n}] be an
SNS-matrix. Then H[(m —1)|5\ {n —2,n—1,n}] is an SNS-matrix since ¢, = 1.
Since C' is in the form of

H[(m—l}|ﬂ\{n—2,n—1,n}” *

1 1 1
O 0 1 -1
1 0 -1
and C[m,m+1,m+2/m,m+1,m+ 2] is also an SN S-matrix, C'is an SN S-matrix.
The converse is trivial. O

We say that H is a double extension of G in Proposition 2.5. That G should have
a row with exactly three ones is necessary in Proposition 2.5. For example, let

1 1 1 -1
A= 1 -1 0 0
and
1 1 1 -1 0 0
1 -1 0 0 0 O
b= 0 1 -1 01 0
1 0 -1 0 0 1

Then B is a double extension of A that has signed null-space. But BJ[1,2,3,4|1, 2, 3, 4]
is a mixed submatrix of A, and hence B does not have signed null-space.

COROLLARY 2.6. FEvery totally L-matrix has signed null-space.

Proof. From Propositions 2.4 and 2.5, we have the result. ]

PROPOSITION 2.7. Let A be a strictly row-mizable m by n matriz with no du-
plicate columns up to multiplication by —1. If A has signed null-space and is not
conformally contractible to a matriz, then it has at least two rows with exactly three
nonzero entries.

Proof. Without loss of generality, we may assume that each row of A has at least
three nonzero entries and A has no zero column. Notice that m > 2 comes from the
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condition. We prove the result by induction on m. Trivially, we have the result for
m = 2. Let m > 3. By Theorem 2.2, A can be rearranged as

B O
A= b ¢ |,
o C

where matrices B and C' (possibly with no rows) are strictly row-mixable matrices
which have signed null-spaces, and vectors b and ¢ are nonzero.

R

also have signed null-spaces. Let A[a|f] = [f] and A[y|6] = [¢] such that |o| =
k, |8l =s, |y|=1,and |6| =t. Then k+1—1=m and s+t =n.
Let k> 1 and I > 1. If Aa|f] has one of the unit vectors ey as a column, then

we can assume that Afe|d] is of the form
Y]
b1

Let B have no duplicate columns up to multiplication by —1. By induction, B
and hence A have at least two rows with exactly three nonzero entries. Thus we are
done. Therefore, we assume that B’ has duplicate columns up to multiplication by
—1. Then b # 0. If b’ has at least two nonzero entries, then Aa|f] is a strictly row-
mixable matrix with no duplicate columns up to multiplication by —1. Since A[a|f]
is not conformally contractible to a matrix, B has at least one row with exactly three
nonzero entries. Let b have exactly one nonzero entry. Let the columns 1,2 of B’ be
a pair of duplicate columns up to multiplication by —1, and let p be the number of
nonzero entries in the column 1 of B'. Let D be a strict signing such that M = B'D
is row-mixed. Since B has signed null-space, M has no mixed cycle, and hence the
columns 1 and 2 of M must be identical or p = 1. If p > 2, then the matrix M’
obtained from M by multiplying the column 2 by —1 has a mixed cycle. Thus M "isa
row-mixed matrix with signed null space, which is impossible by Theorem 2.1. Hence
p = 1. Therefore, every duplicate column of B' is of the form e; or —e; for some i.
Hence B’ has only one pair of duplicate columns, which are e; or —e; for some i(< k).
The matrix obtained from B’ by deleting one of the duplicate columns, which are e; or
—e;, satisfies the conditions of the hypothesis if its ith row has at least three nonzero
entries. This implies that B has at least one row with exactly three nonzero entries.
Let C' = Aly|{s} U6]. Similarly, C' has a row i with exactly three nonzero entries
for some i(# 1). Hence C has at least one row with exactly three nonzero entries.
Therefore, A has at least two rows with exactly three nonzero entries. Similarly, in
the case in which A[y|6] has one of the unit vectors +e; as a column, we have the
result. Assume that Afa|f] and A[v|6] do not have the unit vectors +ej and +eq,
respectively, as columns. Since b is nonzero, the k by s 4+ 1 matrix B* obtained from
Ala|f] by adding ey as a column is a strictly row-mixable matrix with no duplicate
columns up to multiplication by —1. Since B has signed null-space, B* also has signed
null-space. Applying the similar method above to B*, we can derive that B has at
least one row with exactly three nonzero entries. Similarly, C' also has at least one

row with exactly three nonzero entries. Hence we have the result when £ > 1 and
[>1.
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Let Kk = 1. Then s = 1 since the columns of A are distinct up to multiplication
by —1. Hence we may assume that A = [a;;] is of the form

1 c
ol
If C has no duplicate columns up to multiplication by —1, then we have the result for
C by induction, and hence we have the result for A. Let C have duplicate columns
up to multiplication by —1. Then the duplicate columns of C' are of the form e; or
—e; for some 7, as we have shown before. This implies that the number of identical

columns of C' up to multiplication by —1 is at most 3. Therefore, we may assume
that the zero pattern of A is of the form

1 v - u vooeee W W w 0 or 1 T
T
T
v
S
v b)
v
v
T

where v = (1,1,0), v =(1,1), w = (1,0), and = = (1,1, 1), and the unspecified entries
are zero. Let € be the set of indices of columns in A corresponding to [‘;] Then we
may also assume that Aly \ {1}|e] has no duplicate columns up to multiplication by
—1, and the columns are also different from the ones of A(1le) up to multiplication
by —1. If [i] is vacuous, we are done since [ > 3 and every row but the first row of A
has at least three nonzero entries. Let only T be vacuous. Notice that each column
of S has at least two nonzero entries. Hence each row of S has at most one nonzero
entry. For, suppose that a row of S has two nonzero entries. Since the columns of
Aly\ {1}]€] are distinct up to multiplication by —1, we may assume that there exists
a submatrix of A whose zero pattern is

1 1
10
0 1

— = %
— =%
e}
=
O O = =
O R O
_ 0 O =
¥ == %
— % = %

where * is 0 or 1. By Theorem 2.3, A does not have signed null-space. This is a
contradiction. Next, suppose that a row r of Ay \ {1}|(n)] has four nonzero entries.
Since each row of S has at most one nonzero entry and each column of S has at least
two nonzero entries, we have a submatrx of A whose zero pattern is

1 11
11 0
0 0 1

— =%
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which is also impossible by Theorem 2.3. Hence each row of A[vy\ {1}|(n)] has exactly
three nonzero entries. Thus we have the result when 7T is vacuous. Let T' be nonva-
cuous. Notice that the submatrix of A corresponding to T is a strictly row-mixable
matrix with signed null-space. Let T’ be the matrix obtained from 7T by deleting zero
columns. Then we may assume that T is of the form [O T']. If the submatrix A’
of A corresponding to T has no duplicate columns up to multiplication by —1, then
A’ has at least two rows with exactly three nonzero entries by induction. Hence we
have the result. Suppose that A’ has duplicate columns up to multiplication by —1.
It is easy to show that such columns of A’ have exactly one nonzero entry as we have
shown above. We want to show that the number of identical columns of A’ is at most
three. Suppose that there are four identical columns in A" up to multiplication by —1.
We may assume that the zero pattern of the submatrix consisting of such duplicate
columns of A" is of the form
11 1 1
|

Since A[v\{1}|¢] has no duplicate columns up to multiplication by —1, we may assume
that A[y\ {1}|€] has a submatrix whose zero pattern is

1 *x =%
1 *x %

* 1 %
*llor**l,
1 1 1 111

where * is 0 or 1. Hence we can have a submatrix N of A whose zero pattern is

11 % o+ = 1 1 1 *x % =x
1 0 0 1 % =«
1 0 1 % =«
or| 0 1 0 = 1 x|,
01 = 1 1
00 1 1 1 0 0 1 % x 1
000 1 11
where * is 0 or 1. By Theorem 2.3, A does not have signed null-space. This is a

contradiction. Thus we can assume that T is of the form

T T
o T

where T} is a block diagonal matrix whose diagonal blocks are either [1 1] or [1 1 1],
and the submatrix of A corresponding to [;"i] has no duplicate columns up to multi-
3

plication by —1. Continuing this process, we can assume that T is of the form

T1 *
o . J
T,
where T; = [O TZ-,] fori =1,2,...,qand TZ/ are block diagonal matrices whose diagonal

blocks are either [1 1] or [1 1 1] fori=1,2,...,q— 1.
Let \; be the set of indices of rows in A corresponding to 7;. Let ¢; and 6;
be the set of indices of nonzero columns in A and zero columns in A corresponding
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to T;, respectively. It is easy to show that each row of A[\;|e; U 8;+1] has at most
three nonzero entries for ¢ = 1,2,...,¢ — 1 by a method similar to that used in the
case in which only T" is vacuous. If the submatrix A, of A corresponding to T, has

no duplicate columns up to multiplication by —1, then A; satisfies the hypothesis.
Hence we have the result. If A; has duplicate columns up to multiplication by —1,

111

then we may assume that 7, ; = [T; T, ], where T; is a block diagonal matrix whose
diagonal blocks are [1 1] or [1 1 1]. As we have shown above in the case in which T'
is vacuous, each row of qu has exactly three nonzero entries. If T(; has at least two
rows, then we are done.

Thus we may assume that T; =[111]. Then A[{m — 1)|n — 2,n — 1,n| cannot
have a row whose zero pattern is equal to (1,1, 1) because, if so, then A has J 3 as a
submatrix, and this is impossible by Theorem 2.3. If A[m—1|n—2,n—1,n] = O, then
we are done. Hence we may assume that the zero pattern of Ajm — 1jn —2,n — 1,n]
is either [1 1 0] or [1 0 0].

Let the zero pattern of Ajm — 1|n — 2,n — 1,n| be [1 1 0]. If the rth row of
Al{m — 2)|n — 2,n — 1,n] has the zero pattern (1,1,0) for some r, then there exist

distinct 41,72,...,%; and distinct ji,j2,...,Jk such that a;, j,, i, 1.5, are
nonzero, where i1 = 1,4, = r, and jr = n — 2. There also exist distinct p1,p2,...,ps
and distinct g1, qo,...,q such that a,, ¢, 0ps.q15---,ap, q, are nonzero, where p; =

1, pp =m —1, and ¢ = n — 2. Choosing some entries from these entries, we have a
matrix which is conformally contractible to a matrix whose zero pattern is Js 3. This
is impossible by Theorem 2.3. We can apply a method similar to that used above to
show that A[(m — 2)|n] = O. Hence each row of A[(m — 2)|n —2,n — 1,n] has a zero
pattern of the forms (0,0,0), (1,0,0), or (0,1,0). Let Tl;_l have at least two rows. It
is easy to show that, if each row of A[A;_1|eg—1 U by U €] has at least four nonzero
entries, we have a submatrix of A which is conformally contractible to a matrix whose
zero pattern is Jy 3 by the method just used above. By Theorem 2.3, it is impossible.
Hence some row of A[A\;_1|e;—1 U8y U €] has exactly three nonzero entries. Thus we
have the result when T(;A has at least two rows. Therefore, we may assume that T(;71
is either [1 1] or [1 1 1]. Notice that T, = 7, = [1 1 1].

Let T(;71 =[111]. If Al{m — 2)|n — 2,n — 1,n] # O, then we can show that
there exists a submatrix of A which is conformally contractible to a matrix whose
zero pattern is Ja 3. This is impossible. Hence we may assume that A[(m — 2)|n —
2,n —1,n] = O. Then A[(m — 1)|{n — 3)] has at least two rows with exactly three
nonzero entries by induction. Hence we are done. Let T(;_l = [1 1]. Notice that
A[(m — 2)|n — 4,n — 3] has no submatrix whose zero pattern is J 2 by Theorem 2.1.
That is, all rows of A[(m—2)|n—4, n—3] except for one row have at least one zero entry.
Since the conformal contraction of A[(m —1)|(m — 3)] on the last row has signed null-
space, A[{m —1)|(n—3)] has at least one row with exactly three nonzero entries. Thus
we have the result if A[(m —2)|n—2,n—1,n] = 0. Let A[(m—2)|n—2,n—1,n] # O.
Since we are done if the (m — 2)nd row of A has exactly three nonzero entries, we
may assume that the (m — 2)nd row of A has at least four nonzero entries. Deleting
the cases in which a contradiction occurs, we may assume that the zero pattern of
Aim—=2,m—1,mln—6,n—5n—4,n—3,n—2,n—1,n]is

1 110100
001 1/1 10
00001 11
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It is easy to show that A[(m —2)|n—1,n] = O by using a method similar to that used
above. If the columns of A[m—2, m—1|n—4,n—2] are identical up to multiplication by
—1, then it is easy to find a strict signing D such that AD is a row-mixed matrix and
Alm—2,m—1|n—4,n—2]D contains a mixed cycle. This is impossible by Theorem 2.1.
Hence the columns of A[(m — 1)|(n)] are not identical up to multiplication by —1.
Therefore, A[(m — 1)|(n — 2)] satisfies the hypothesis. Thus we have the result when
the zero pattern of Afm — 1jn —2,n —1,n] is [1 1 0].

In the case in which the zero pattern of Ajm — 1|jn —2,n — 1,n] is [1 0 0], the
last row of A[(m — 1)|(n — 3)] must have two or three nonzero entries. If it has two
nonzero entries, then we are done. Let it have three nonzero entries. Then we have
a submatrix of A which is conformally contractible to a matrix whose zero pattern is
Ja 3 if A[(m —2)|n —2,n —1,n] # O by a method similar to that used above. Hence
we have A[(m — 2)|n — 2,n — 1,n] = O. Therefore, A[(m — 1)|(n — 3)] has at least
two rows with exactly three nonzero entries by induction. Thus we have the result
for k = 1. Similarly, we have the same result for [ = 1. 0

3. Matrices containing totally L-matrices. Let A be a matrix with signed
null-space. A is a mazimal matriz with signed null-space if any matrix obtained from
A by replacing a zero entry with a nonzero entry does not have signed null-space.

LEMMA 3.1. An m by m + 2 totally L-matriz is a maximal matriz with signed
null-space.

Proof. Let A be an m by m + 2 totally L-matrix. Let A* be an m by m + 2
matrix obtained from A by replacing a zero entry with 1 or —1. Notice that every
m by m submatrix of A* has term rank m. Since A* has a row with four nonzero
entries, A* is not a totally L-matrix. Therefore, there exists an m by m submatrix of
A* that is not an SN S-matrix. Hence A* does not have signed null-space by Theorem
2.1. O

LEMMA 3.2. Let A be an m by m + 2 totally L-matriz, and let x be an m by 1
column vector which has at least two nonzero entries. Then B = [A x| does not have
signed null-space.

Proof. We will prove the result by induction on m. The statement is clear for
m = 2. We may assume that

B:[bij]:|:M IOQX:|7

where I, is the identity matrix of order 2. If by,—1,m43 = 0 OF by my3 = 0, say,
bim,m+3 = 0, then B(m|m + 2) does not have signed null-space by induction. Hence
we have the result by Theorem 2.3. Therefore, we may assume that the last two
positions of x have nonzero entries. Since a totally L-matrix is a maximal matrix
with signed null-space, B(—|m + 2) does not have signed null-space. Hence B does
not have signed null-space. a

We say that an m by m + 2 totally L-matrix contains k double-extensions (or
m — 2k — 2 single-extensions) if A is obtained from

1 1 10
1 -1 0 1
by a sequence of m — 2k — 2 single-extensions and k double-extensions up to row and

column permutations and multiplication of rows and columns by —1.
PROPOSITION 3.3. Let A be an m by n matriz with signed null-space whose
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columns are nonzero and distinct up to multiplication by —1. If A contains an m by
m + 2 totally L-matriz with k double-extensions, then n < 2m — 2k.

Proof. We will prove the result by induction on k. Let T} be an m by m + 2
totally L-matrix with k& double-extensions contained in A. Notice that each column
of A which does not correspond to Ty has exactly one zero entry by Lemma 3.2. If
k = 0, then it is known [1] that T}, has a signed rth compound for each r = 1,2,...,m.
Hence we can have the identity matrix I,,, as a submatrix of A. Since Ty has exactly
two columns with exactly one nonzero entry, n < m+ 2+ (m — 2) = 2m = 2m — 2k.
Let k # 0. By Proposition 2.4 and Lemma 3.2, we may assume that A is of the form

Ay Ao o)
1 -1 00 0

A3117100
0 1 1 1 0

Ol 1 o 1 0 1

Then A(m — 1,m|n — 1,n) has signed null-space, and it contains an m — 2 by m
totally L-matrix with & — 1 double-extensions. The columns of A(m — 1, m|n — 1,n)
are distinct up to multiplication by —1 because, if not, then A3 has a column of the
forms (0,1)7 or (0, —1)7, say, (0,1)7. Then A has a submatrix

01 -1 0
11 1 -1

(3.1) B = 0 0 1 E
0 1 0 1

which is not an SN S-matrix. Since A contains an m by m + 2 totally L-matrix,
the complementary submatrix to B in A has term rank m — 4. Hence A does not
have signed null-space by Theorem 2.1. This is a contradiction. Therefore, n — 2 <
2(m —2) —2(k —1) =2m — 2k — 2 by induction. Thus we have n < 2m — 2k. o

Let [ be the number of single-extensions contained in A. Then we have | = m —
2k — 2. Hence we can restate the result of Proposition 3.3 in terms of I: n < m+41+2.

COROLLARY 3.4. Let T be an m by m + 2 totally L-matriz which contains no
single-extensions. Then there is mo m by n matrix A with signed null-space such
that A contains T properly, and the columns of A are nonzero and distinct up to
multiplication by —1.

Proof. Let A be an m by n matrix with signed null-space, and let A contain T'.
Since T' contains no single-extensions, [ = 0. Hence n < m + 1+ 2 = m + 2. Hence
A=T. o

Let M be an m by n matrix of the form in (2.1) with signed null-space, and let
A be the m 4+ 1 by n + 2 matrix such that

0 0
1 0
11

Since A(—|n + 2) is conformally contractible to M, A(—|n + 2) has signed null-space.
Since M has signed null-space, A has signed null-space by Theorem 2.1. Let T} be
an m by m + 2 totally L-matrix with k& double-extensions. Let {i1,is,...,4;} with
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i1 < i < -+ < 4 be the set of indices of rows used when single-extensions are
constructed in Ty. Notice that T} does not contain any e;;, j = 1,2,...,l. The
remark above and Proposition 2.5 imply that

(32) T = [Tk €31 €Cig .- eil]

is an m by 2m — 2k matrix whose columns are distinct up to multiplication by —1,
and it has signed null-space.

Let j be the index of a row of T} used when a double-extension is done, and
suppose that T}, does not have e; as a column. [T} e;] has a submatrix of the form in
(3.1), and hence it does not have signed null-space, as we have shown in the proof of
Proposition 3.3.

Let 7; be the set of all matrices of the form in (3.2). Notice that columns of
A € T}, are nonzero and distinct up to multiplication by —1. We can express the m
by n matrices A with n = 2m — 2k in Proposition 3.3 in terms of elements of 7j.

PROPOSITION 3.5. In Proposition 3.3, n = 2m — 2k if and only if there exists
a permutation matriz QQ such that A is equal to TQ up to multiplication of rows and
columns by —1 for some T € T.

Proof. Let A be an m by n matrix such that A = T'Q) for some permutation matrix
Q and T € 7j,. Then m = 2k+142, and hencen = m+2+1=m+2+(m—2—2k) =
2m — 2k. Conversely, let A be an m by 2m — 2k matrix satisfying the conditions in
Proposition 3.3. Let T} be an m by m + 2 totally L-matrix with & double-extensions
contained in A. Then there exists a permutation matrix ) and strict signings D, F
such that DAQE is a submatrix of matrix 7" of the form in (3.2) by Lemma 3.2 and
the remark above. Since T is an m by 2m — 2k matrix, A = DTQ~'E. Since T € 7y,
we have the result. O

COROLLARY 3.6. Let m be a positive integer with m > 2, and let n be any integer
in {m,m+1,...,2m}. Then there exists an m by n matriz A with signed null-space
such that A contains a totally L-matriz with m rows as its submatriz and the columns
of A are nonzero and distinct up to multiplication by —1.

Proof. Let n be any integer in {m,m + 1,...,2m}. If n < m + 2, then we can
take an m by n totally L-matrix as such a matrix A. If n > m + 2, there exists
an m by m + 2 totally L-matrix T,,_,,—2 with n —m — 2 single-extensions. Hence
there exists an m by n matrix A € 7,,_,, 2 which contains T}, _,,_o by the remark
above. |
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