ON MATRICES WITH SIGNED NULL-SPACES*

SI-JU KIM ${ }^{\dagger}$, BRYAN L. SHADER ${ }^{\ddagger}$, AND SUK-GEUN HWANG ${ }^{\S}$

Abstract

We denote by $\mathcal{Q}(A)$ the set of all matrices with the same sign pattern as A. A matrix A has signed null-space provided there exists a set \mathcal{S} of sign patterns such that the set of sign patterns of vectors in the null-space of \widetilde{A} is \mathcal{S} for each $\widetilde{A} \in \mathcal{Q}(A)$. Some properties of matrices with signed null-spaces are investigated.

Key words. totally L-matrices, signed compounds, signed null-spaces
AMS subject classification. 05C50
PII. S0895479801396221

1. Introduction. The sign of a real number a is defined by

$$
\operatorname{sign}(a)=\left\{\begin{aligned}
-1 & \text { if } a<0, \\
0 & \text { if } a=0, \text { and } \\
1 & \text { if } a>0
\end{aligned}\right.
$$

A sign pattern is a $(0,1,-1)$-matrix. The sign pattern of a matrix A is the matrix obtained from A by replacing each entry with its sign. We denote by $\mathcal{Q}(A)$ the set of all matrices with the same sign pattern as A.

Let A be an m by n matrix and b an m by 1 vector. The linear system $A x=b$ has signed solutions provided there exists a collection \mathcal{S} of n by 1 sign patterns such that the set of sign patterns of the solutions to $\widetilde{A} x=\tilde{b}$ is \mathcal{S} for each $\widetilde{A} \in \mathcal{Q}(A)$ and $\tilde{b} \in \mathcal{Q}(b)$. This notion generalizes that of a sign-solvable linear system (see [1] and references therein). The linear system, $A x=b$, is sign-solvable provided each linear system $\widetilde{A} x=\tilde{b}(\widetilde{A} \in \mathcal{Q}(A), \tilde{b} \in \mathcal{Q}(b))$ has a solution and all solutions have the same sign pattern. Thus $A x=b$ is sign-solvable if and only if $A x=b$ has signed solutions and the set \mathcal{S} has cardinality 1 .

The matrix A has signed null-space provided $A x=0$ has signed solutions. Thus A has signed null-space if and only if there exists a set \mathcal{S} of sign patterns such that the set of sign patterns of vectors in the null-space of \widetilde{A} is \mathcal{S} for each $\widetilde{A} \in \mathcal{Q}(A)$. An L-matrix is a matrix A, with the property that each matrix in $\mathcal{Q}(A)$ has linearly independent rows. A square L-matrix is a sign-nonsingular $(S N S)$-matrix. A totally L-matrix is an m by n matrix such that each m by m submatrix is an $S N S$-matrix. It is known that totally L-matrices have signed null-spaces [3]. We also have the fact as a corollary of some results in this paper. Thus matrices with signed null-spaces generalize totally L-matrices.

A vector is mixed if it has a positive entry and a negative entry. A matrix is rowmixed if each of its rows is mixed. A signing is a nonzero diagonal $(0,1,-1)$-matrix.

[^0]A signing is strict if each of its diagonal entries is nonzero. A matrix B is strictly row-mixable provided there exists a strict signing D such that $B D$ is row-mixed.

In this paper, some properties of matrices with signed null-spaces are investigated, and we show that there exists an m by n matrix A with signed null-space such that A contains a totally L-matrix with m rows as its submatrix and the columns of A are distinct up to multiplication by -1 for any $n \in\{m, m+1, \ldots, 2 m\}$.

We use the following standard notation throughout the paper. If k is a positive integer, then $\langle k\rangle$ denotes the set $\{1,2, \ldots, k\}$. Let A be an m by n matrix. If α is a subset of $\{1,2, \ldots, m\}$ and β is a subset of $\{1,2, \ldots, n\}$, then $A[\alpha \mid \beta]$ denotes the submatrix of A determined by the rows whose indices are in α and the columns whose indices are in β. We sometimes use $A[* \mid \beta]$ instead of $A[\langle m\rangle \mid \beta]$. The submatrix complementary to $A[\alpha \mid \beta]$ is denoted by $A(\alpha \mid \beta)$. In particular, $A(-\mid \beta)$ denotes the submatrix obtained from A by deleting columns whose indices are in β. We write $\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ for the n by n diagonal matrix whose (i, i)-entry is d_{i}. Let $J_{m, n}$ denote the m by n matrix, all of whose entries are 1 , and let e_{i} denote the column vector, all of whose entries are 0 except for the i th entry, which is 1 .
2. Matrices with signed null-space. We say that an m by n matrix $A=$ [$a_{i j}$] contains a mixed cycle provided there exist distinct $i_{1}, i_{2}, \ldots, i_{k}$ and distinct $j_{1}, j_{2}, \ldots, j_{k}$ such that

$$
a_{i_{t}, j_{t}} a_{i_{t}, j_{t+1}}<0 \text { for } t=1, \ldots, k-1 \text { and } a_{i_{k}, j_{k}} a_{i_{k}, j_{1}}<0
$$

An m by $n(0,1,-1)$-matrix has signed m th compound provided each of its m by m submatrices having term rank m is an $S N S$-matrix.

We make use of the following results of matrices with signed null-spaces.
ThEOREM 2.1 (see [3]). Let A be a strictly row-mixable m by n matrix. Then the following three conditions are equivalent.
(a) A has signed null-space.
(b) A has term rank m, and its mth compound is signed.
(c) $A D$ has no mixed cycle for each strict signing such that $A D$ is row-mixed.

THEOREM 2.2 (see [2], [3]). If a strictly row-mixable matrix A has signed nullspace, then there exist matrices B and C (possibly with no rows) and nonzero vectors b and c such that B and C are strictly row-mixable matrices with signed null-spaces,

$$
\left[\begin{array}{l}
B \\
b
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
c \\
C
\end{array}\right]
$$

have signed null-spaces, and, up to permutation of rows and columns,

$$
A=\left[\begin{array}{cc}
B & O \\
b & c \\
O & C
\end{array}\right]
$$

The converse also holds.
Let A be an m by $n(0,1,-1)$-matrix. The matrix B is conformally contractible to A provided there exists an index k such that the rows and columns of B can be permuted so that B has the form

$$
\left[\begin{array}{cc|c|r}
A[\langle m\rangle \mid\langle n\rangle \backslash\{k\}] & x & y \\
\hline 0 & \cdots & 0 & 1
\end{array}\right],
$$

where $x=\left[x_{1}, \ldots, x_{m}\right]^{T}$ and $y=\left[y_{1}, \ldots, y_{m}\right]^{T}$ are $(0,1,-1)$-vectors such that $x_{i} y_{i} \geq$ 0 for $i=1,2, \ldots, m$, and the sign pattern of $x+y$ is the k th column of A.

Let B be conformally contractible to A. It is known that A has signed null-space if and only if B has signed null-space [3]. All matrices we consider from now on are assumed to be $(0,1,-1)$-matrices.

ThEOREM 2.3 (see [4]). Let an m by n matrix A have a k by $k+1$ submatrix B whose complementary submatrix in A has term rank $m-k$. If there is a matrix B^{*} obtained from B by replacing some nonzero entries with 0 's if necessary such that $J_{2,3}$ is the zero pattern of a matrix obtained from B^{*} by a sequence of conformal contractions, then A does not have signed null-space.

Let M be an m by n strictly row-mixable matrix of the form

$$
M=\left[\begin{array}{ccc}
& & 0 \tag{2.1}\\
& * & \\
\vdots \\
& & 0 \\
& 1 & 1
\end{array}\right] .
$$

Proposition 2.4. M has signed null-space if and only if

$$
A=\left[\begin{array}{cccccc}
& & & & & 0 \\
& & & M & & \\
& & & & \\
& & & & & 0 \\
\hline 0 & \cdots & 0 & 1 & -1 & 1
\end{array}\right]
$$

has signed null-space.
Proof. Let M have signed null-space, and let C be any $m+1$ by $m+1$ submatrix of A. If C contains the last column of A, then $C(m+1 \mid m+1)$ is an m by m submatrix of M. Hence $C(m+1 \mid m+1)$ is an $S N S$-matrix, or $C(m+1 \mid m+1)$ has identically zero determinant by Theorem 2.1. Thus C is an $S N S$-matrix, or C has identically zero determinant. Hence we may assume that C does not contain the last column of A. If C contains neither the $n-1$ th column nor the nth column, then clearly C has identically zero determinant. If C contains only one of the $(n-1)$ th column or the nth column, then $C(m+1 \mid m+1)$ is an m by m submatrix of M. Hence $C(m+1 \mid m+1)$ is an $S N S$-matrix, or $C(m+1 \mid m+1)$ has identically zero determinant. Therefore, C is an $S N S$-matrix, or C has identically zero determinant. Let C contain both the $(n-1)$ th column and the nth column of A. Then $C(m+1 \mid m+1)$ is an $S N S$-matrix, or $C(m+1 \mid m+1)$ has identically zero determinant. If $C(m+1 \mid m+1)$ has identically zero determinant, then there exists an s by t zero submatrix of $C(m+1 \mid m+1)$ such that $s+t=m+1$. From this, it is easy to show that C has a p by q zero submatrix such that $p+q=m+2$; i.e., C has identically zero determinant. Let $C(m+1 \mid m+1)$ be an $S N S$-matrix. Since C is conformally contractible to $C(m+1 \mid m+1), C$ is also an $S N S$-matrix. Thus the $(m+1)$ th compound of A is signed. Since M has signed null-space, the term rank of M is m, and hence the term rank of A is $m+1$. Thus A has signed null-space by Theorem 2.1. The converse is trivial.

We say that A is a single extension of M in Proposition 2.4. Proposition 2.4 means that a strictly row-mixable matrix has signed null-space if and only if its single extension has signed null-space.

Let

$$
G=\left[\begin{array}{ccccccc}
& & & & & 0 \\
& & & & & & \vdots \\
& & & & & & \\
0 & \cdots & 0 & 1 & 1 & 1
\end{array}\right]
$$

be an m by n matrix, and let

$$
H=\left[\right]
$$

Proposition 2.5. The m by n strictly row-mixable matrix G has signed nullspace if and only if H has signed null-space.

Proof. Let G have signed null-space, and let $C=\left[c_{i j}\right]$ be an $m+2$ by $m+2$ submatrix of H. That is, $C=H[* \mid \beta]$ for some $\beta \subset\langle n+2\rangle$. If $n+2 \in \beta$, then $H[\langle m+1\rangle \mid \beta \backslash\{n+2\}]$ is an $S N S$-matrix, or it has identically zero determinant since $H(m+2 \mid n+2)$ is a single extension of G. Hence C is an $S N S$-matrix, or C has identically zero determinant. Similarly, we can show that C is an $S N S$-matrix or C has identically zero determinant if $n+1 \in \beta$. Hence we may assume that β contains neither $n+1$ nor $n+2$. Then it is easy to show that C has identically zero determinant if β contains at most two among $n-2, n-1$, and n. Let $\{n-2, n-1, n\} \subset \beta$. Then $H[\langle m\rangle \mid \beta \backslash\{n-1, n\}]$ is an $S N S$-matrix or it has identically zero determinant since G has signed null-space. If $H[\langle m\rangle \mid \beta \backslash\{n-1, n\}]$ has identically zero determinant, then clearly C has identically zero determinant. Let $H[\langle m\rangle \mid \beta \backslash\{n-1, n\}]$ be an $S N S$-matrix. Then $H[\langle m-1\rangle \mid \beta \backslash\{n-2, n-1, n\}]$ is an $S N S$-matrix since $c_{m m}=1$. Since C is in the form of

$$
\left[\right]
$$

and $C[m, m+1, m+2 \mid m, m+1, m+2]$ is also an $S N S$-matrix, C is an $S N S$-matrix. The converse is trivial.

We say that H is a double extension of G in Proposition 2.5. That G should have a row with exactly three ones is necessary in Proposition 2.5 . For example, let

$$
A=\left[\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
1 & -1 & 0 & 0
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{rrrrrr}
1 & 1 & 1 & -1 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 & 0 & 1
\end{array}\right]
$$

Then B is a double extension of A that has signed null-space. But $B[1,2,3,4 \mid 1,2,3,4]$ is a mixed submatrix of A, and hence B does not have signed null-space.

Corollary 2.6. Every totally L-matrix has signed null-space.
Proof. From Propositions 2.4 and 2.5, we have the result.
Proposition 2.7. Let A be a strictly row-mixable m by n matrix with no duplicate columns up to multiplication by -1 . If A has signed null-space and is not conformally contractible to a matrix, then it has at least two rows with exactly three nonzero entries.

Proof. Without loss of generality, we may assume that each row of A has at least three nonzero entries and A has no zero column. Notice that $m \geq 2$ comes from the
condition. We prove the result by induction on m. Trivially, we have the result for $m=2$. Let $m \geq 3$. By Theorem 2.2, A can be rearranged as

$$
A=\left[\begin{array}{ll}
B & O \\
b & c \\
O & C
\end{array}\right]
$$

where matrices B and C (possibly with no rows) are strictly row-mixable matrices which have signed null-spaces, and vectors b and c are nonzero.

$$
\left[\begin{array}{c}
B \\
b
\end{array}\right] \quad \text { and }\left[\begin{array}{c}
c \\
C
\end{array}\right]
$$

also have signed null-spaces. Let $A[\alpha \mid \beta]=\left[\begin{array}{c}B \\ b\end{array}\right]$ and $A[\gamma \mid \delta]=\left[\begin{array}{c}c \\ C\end{array}\right]$ such that $|\alpha|=$ $k,|\beta|=s,|\gamma|=l$, and $|\delta|=t$. Then $k+l-1=m$ and $s+t=n$.

Let $k>1$ and $l>1$. If $A[\alpha \mid \beta]$ has one of the unit vectors $\pm e_{k}$ as a column, then we can assume that $A[\alpha \mid \beta]$ is of the form

$$
\left[\begin{array}{cc}
B^{\prime} & O \\
b^{\prime} & 1
\end{array}\right] .
$$

Let B^{\prime} have no duplicate columns up to multiplication by -1 . By induction, B^{\prime} and hence A have at least two rows with exactly three nonzero entries. Thus we are done. Therefore, we assume that B^{\prime} has duplicate columns up to multiplication by -1 . Then $b^{\prime} \neq 0$. If b^{\prime} has at least two nonzero entries, then $A[\alpha \mid \beta]$ is a strictly rowmixable matrix with no duplicate columns up to multiplication by -1 . Since $A[\alpha \mid \beta]$ is not conformally contractible to a matrix, B has at least one row with exactly three nonzero entries. Let b^{\prime} have exactly one nonzero entry. Let the columns 1,2 of B^{\prime} be a pair of duplicate columns up to multiplication by -1 , and let p be the number of nonzero entries in the column 1 of B^{\prime}. Let D be a strict signing such that $M=B^{\prime} D$ is row-mixed. Since B^{\prime} has signed null-space, M has no mixed cycle, and hence the columns 1 and 2 of M must be identical or $p=1$. If $p \geq 2$, then the matrix M^{\prime} obtained from M by multiplying the column 2 by -1 has a mixed cycle. Thus M^{\prime} is a row-mixed matrix with signed null space, which is impossible by Theorem 2.1. Hence $p=1$. Therefore, every duplicate column of B^{\prime} is of the form e_{i} or $-e_{i}$ for some i. Hence B^{\prime} has only one pair of duplicate columns, which are e_{i} or $-e_{i}$ for some $i(<k)$. The matrix obtained from B^{\prime} by deleting one of the duplicate columns, which are e_{i} or $-e_{i}$, satisfies the conditions of the hypothesis if its i th row has at least three nonzero entries. This implies that B has at least one row with exactly three nonzero entries. Let $C^{\prime}=A[\gamma \mid\{s\} \cup \delta]$. Similarly, C^{\prime} has a row i with exactly three nonzero entries for some $i(\neq 1)$. Hence C has at least one row with exactly three nonzero entries. Therefore, A has at least two rows with exactly three nonzero entries. Similarly, in the case in which $A[\gamma \mid \delta]$ has one of the unit vectors $\pm e_{1}$ as a column, we have the result. Assume that $A[\alpha \mid \beta]$ and $A[\gamma \mid \delta]$ do not have the unit vectors $\pm e_{k}$ and $\pm e_{1}$, respectively, as columns. Since b is nonzero, the k by $s+1$ matrix B^{*} obtained from $A[\alpha \mid \beta]$ by adding e_{k} as a column is a strictly row-mixable matrix with no duplicate columns up to multiplication by -1 . Since B has signed null-space, B^{*} also has signed null-space. Applying the similar method above to B^{*}, we can derive that B has at least one row with exactly three nonzero entries. Similarly, C also has at least one row with exactly three nonzero entries. Hence we have the result when $k>1$ and $l>1$.

Let $k=1$. Then $s=1$ since the columns of A are distinct up to multiplication by -1 . Hence we may assume that $A=\left[a_{i j}\right]$ is of the form

$$
\left[\begin{array}{cc}
1 & c \\
O & C
\end{array}\right]
$$

If C has no duplicate columns up to multiplication by -1 , then we have the result for C by induction, and hence we have the result for A. Let C have duplicate columns up to multiplication by -1 . Then the duplicate columns of C are of the form e_{i} or $-e_{i}$ for some i, as we have shown before. This implies that the number of identical columns of C up to multiplication by -1 is at most 3 . Therefore, we may assume that the zero pattern of A is of the form

where $u=(1,1,0), v=(1,1), w=(1,0)$, and $x=(1,1,1)$, and the unspecified entries are zero. Let ϵ be the set of indices of columns in A corresponding to $\left[\begin{array}{c}S \\ T\end{array}\right]$. Then we may also assume that $A[\gamma \backslash\{1\} \mid \epsilon]$ has no duplicate columns up to multiplication by -1 , and the columns are also different from the ones of $A(1 \mid \epsilon)$ up to multiplication by -1 . If $\left[\begin{array}{c}S \\ T\end{array}\right]$ is vacuous, we are done since $l \geq 3$ and every row but the first row of A has at least three nonzero entries. Let only T be vacuous. Notice that each column of S has at least two nonzero entries. Hence each row of S has at most one nonzero entry. For, suppose that a row of S has two nonzero entries. Since the columns of $A[\gamma \backslash\{1\} \mid \epsilon]$ are distinct up to multiplication by -1 , we may assume that there exists a submatrix of A whose zero pattern is

$$
\left[\begin{array}{llll}
1 & 1 & * & * \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{lllll}
1 & 1 & 1 & * & * \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & * \\
0 & 0 & 1 & * & 1
\end{array}\right]
$$

where ${ }^{*}$ is 0 or 1 . By Theorem 2.3, A does not have signed null-space. This is a contradiction. Next, suppose that a row r of $A[\gamma \backslash\{1\} \mid\langle n\rangle]$ has four nonzero entries. Since each row of S has at most one nonzero entry and each column of S has at least two nonzero entries, we have a submatrx of A whose zero pattern is

$$
\left[\begin{array}{llll}
1 & 1 & 1 & * \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

which is also impossible by Theorem 2.3. Hence each row of $A[\gamma \backslash\{1\} \mid\langle n\rangle]$ has exactly three nonzero entries. Thus we have the result when T is vacuous. Let T be nonvacuous. Notice that the submatrix of A corresponding to T is a strictly row-mixable matrix with signed null-space. Let T^{\prime} be the matrix obtained from T by deleting zero columns. Then we may assume that T is of the form $\left[O T^{\prime}\right]$. If the submatrix A^{\prime} of A corresponding to T^{\prime} has no duplicate columns up to multiplication by -1 , then A^{\prime} has at least two rows with exactly three nonzero entries by induction. Hence we have the result. Suppose that A^{\prime} has duplicate columns up to multiplication by -1 . It is easy to show that such columns of A^{\prime} have exactly one nonzero entry as we have shown above. We want to show that the number of identical columns of A^{\prime} is at most three. Suppose that there are four identical columns in A^{\prime} up to multiplication by -1 . We may assume that the zero pattern of the submatrix consisting of such duplicate columns of A^{\prime} is of the form

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
& & O &
\end{array}\right]
$$

Since $A[\gamma \backslash\{1\} \mid \epsilon]$ has no duplicate columns up to multiplication by -1 , we may assume that $A[\gamma \backslash\{1\} \mid \epsilon]$ has a submatrix whose zero pattern is

$$
\left[\begin{array}{lll}
1 & * & * \\
* & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \text { or }\left[\begin{array}{lll}
1 & * & * \\
* & 1 & * \\
* & * & 1 \\
1 & 1 & 1
\end{array}\right]
$$

where ${ }^{*}$ is 0 or 1 . Hence we can have a submatrix N of A whose zero pattern is

$$
\left[\begin{array}{lllll}
1 & 1 & * & * & * \\
1 & 0 & 1 & * & * \\
0 & 1 & * & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \text { or }\left[\begin{array}{llllll}
1 & 1 & 1 & * & * & * \\
1 & 0 & 0 & 1 & * & * \\
0 & 1 & 0 & * & 1 & * \\
0 & 0 & 1 & * & * & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

where ${ }^{*}$ is 0 or 1 . By Theorem 2.3, A does not have signed null-space. This is a contradiction. Thus we can assume that T^{\prime} is of the form

$$
\left[\begin{array}{cc}
T_{1}^{\prime} & T_{2}^{\prime} \\
O & T_{3}^{\prime}
\end{array}\right]
$$

where T_{1}^{\prime} is a block diagonal matrix whose diagonal blocks are either [$\left.\begin{array}{ll}1 & 1\end{array}\right]$ or $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$, and the submatrix of A corresponding to $\left[\begin{array}{c}T_{2}^{\prime} \\ T_{3}^{\prime}\end{array}\right]$ has no duplicate columns up to multiplication by -1 . Continuing this process, we can assume that T is of the form

$$
\left[\begin{array}{ccc}
T_{1} & & * \\
O & \ddots & \\
& & T_{q}
\end{array}\right]
$$

where $T_{i}=\left[O T_{i}^{\prime}\right]$ for $i=1,2, \ldots, q$ and T_{i}^{\prime} are block diagonal matrices whose diagonal blocks are either [11] or [111] for $i=1,2, \ldots, q-1$.

Let λ_{i} be the set of indices of rows in A corresponding to T_{i}. Let ϵ_{i} and δ_{i} be the set of indices of nonzero columns in A and zero columns in A corresponding
to T_{i}, respectively. It is easy to show that each row of $A\left[\lambda_{i} \mid \epsilon_{i} \cup \delta_{i+1}\right]$ has at most three nonzero entries for $i=1,2, \ldots, q-1$ by a method similar to that used in the case in which only T is vacuous. If the submatrix A_{q}^{\prime} of A corresponding to T_{q}^{\prime} has no duplicate columns up to multiplication by -1 , then A_{q}^{\prime} satisfies the hypothesis. Hence we have the result. If A_{q}^{\prime} has duplicate columns up to multiplication by -1 , then we may assume that $T_{q}^{\prime}=\left[T_{q}^{\prime \prime} T_{q}^{\prime \prime \prime}\right]$, where $T_{q}^{\prime \prime}$ is a block diagonal matrix whose diagonal blocks are $\left[\begin{array}{ll}1 & 1\end{array}\right]$ or $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$. As we have shown above in the case in which T is vacuous, each row of T_{q}^{\prime} has exactly three nonzero entries. If T_{q}^{\prime} has at least two rows, then we are done.

Thus we may assume that $T_{q}^{\prime}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$. Then $A[\langle m-1\rangle \mid n-2, n-1, n]$ cannot have a row whose zero pattern is equal to $(1,1,1)$ because, if so, then A has $J_{2,3}$ as a submatrix, and this is impossible by Theorem 2.3. If $A[m-1 \mid n-2, n-1, n]=O$, then we are done. Hence we may assume that the zero pattern of $A[m-1 \mid n-2, n-1, n]$ is either $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$ or $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$.

Let the zero pattern of $A[m-1 \mid n-2, n-1, n]$ be $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$. If the r th row of $A[\langle m-2\rangle \mid n-2, n-1, n]$ has the zero pattern $(1,1,0)$ for some r, then there exist distinct $i_{1}, i_{2}, \ldots, i_{k}$ and distinct $j_{1}, j_{2}, \ldots, j_{k}$ such that $a_{i_{1}, j_{1}}, a_{i_{2}, j_{1}}, \ldots, a_{i_{k}, j_{k}}$ are nonzero, where $i_{1}=1, i_{k}=r$, and $j_{k}=n-2$. There also exist distinct $p_{1}, p_{2}, \ldots, p_{t}$ and distinct $q_{1}, q_{2}, \ldots, q_{t}$ such that $a_{p_{1}, q_{1}}, a_{p_{2}, q_{1}}, \ldots, a_{p_{t}, q_{t}}$ are nonzero, where $p_{1}=$ 1 , $p_{t}=m-1$, and $q_{t}=n-2$. Choosing some entries from these entries, we have a matrix which is conformally contractible to a matrix whose zero pattern is $J_{2,3}$. This is impossible by Theorem 2.3. We can apply a method similar to that used above to show that $A[\langle m-2\rangle \mid n]=O$. Hence each row of $A[\langle m-2\rangle \mid n-2, n-1, n]$ has a zero pattern of the forms $(0,0,0),(1,0,0)$, or $(0,1,0)$. Let T_{q-1}^{\prime} have at least two rows. It is easy to show that, if each row of $A\left[\lambda_{q-1} \mid \epsilon_{q-1} \cup \delta_{q} \cup \epsilon_{q}\right]$ has at least four nonzero entries, we have a submatrix of A which is conformally contractible to a matrix whose zero pattern is $J_{2,3}$ by the method just used above. By Theorem 2.3, it is impossible. Hence some row of $A\left[\lambda_{q-1} \mid \epsilon_{q-1} \cup \delta_{q} \cup \epsilon_{q}\right]$ has exactly three nonzero entries. Thus we have the result when T_{q-1}^{\prime} has at least two rows. Therefore, we may assume that T_{q-1}^{\prime} is either $\left[\begin{array}{ll}1 & 1\end{array}\right]$ or $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$. Notice that $T_{q}=T_{q}^{\prime}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$.

Let $T_{q-1}^{\prime}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$. If $A[\langle m-2\rangle \mid n-2, n-1, n] \neq O$, then we can show that there exists a submatrix of A which is conformally contractible to a matrix whose zero pattern is $J_{2,3}$. This is impossible. Hence we may assume that $A[\langle m-2\rangle \mid n-$ $2, n-1, n]=O$. Then $A[\langle m-1\rangle \mid\langle n-3\rangle]$ has at least two rows with exactly three nonzero entries by induction. Hence we are done. Let $T_{q-1}^{\prime}=\left[\begin{array}{ll}1 & 1\end{array}\right]$. Notice that $A[\langle m-2\rangle \mid n-4, n-3]$ has no submatrix whose zero pattern is $J_{2,2}$ by Theorem 2.1. That is, all rows of $A[\langle m-2\rangle \mid n-4, n-3]$ except for one row have at least one zero entry. Since the conformal contraction of $A[\langle m-1\rangle \mid\langle m-3\rangle]$ on the last row has signed nullspace, $A[\langle m-1\rangle \mid\langle n-3\rangle]$ has at least one row with exactly three nonzero entries. Thus we have the result if $A[\langle m-2\rangle \mid n-2, n-1, n]=O$. Let $A[\langle m-2\rangle \mid n-2, n-1, n] \neq O$. Since we are done if the $(m-2)$ nd row of A has exactly three nonzero entries, we may assume that the $(m-2)$ nd row of A has at least four nonzero entries. Deleting the cases in which a contradiction occurs, we may assume that the zero pattern of $A[m-2, m-1, m \mid n-6, n-5, n-4, n-3, n-2, n-1, n]$ is

$$
\left[\begin{array}{llll|lll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

It is easy to show that $A[\langle m-2\rangle \mid n-1, n]=O$ by using a method similar to that used above. If the columns of $A[m-2, m-1 \mid n-4, n-2]$ are identical up to multiplication by -1 , then it is easy to find a strict signing D such that $A D$ is a row-mixed matrix and $A[m-2, m-1 \mid n-4, n-2] D$ contains a mixed cycle. This is impossible by Theorem 2.1. Hence the columns of $A[\langle m-1\rangle \mid\langle n\rangle]$ are not identical up to multiplication by -1 . Therefore, $A[\langle m-1\rangle \mid\langle n-2\rangle]$ satisfies the hypothesis. Thus we have the result when the zero pattern of $A[m-1 \mid n-2, n-1, n]$ is $\left[\begin{array}{ll}1 & 1\end{array}\right]$.

In the case in which the zero pattern of $A[m-1 \mid n-2, n-1, n]$ is $\left[\begin{array}{ll}1 & 0\end{array}\right]$, the last row of $A[\langle m-1\rangle \mid\langle n-3\rangle]$ must have two or three nonzero entries. If it has two nonzero entries, then we are done. Let it have three nonzero entries. Then we have a submatrix of A which is conformally contractible to a matrix whose zero pattern is $J_{2,3}$ if $A[\langle m-2\rangle \mid n-2, n-1, n] \neq O$ by a method similar to that used above. Hence we have $A[\langle m-2\rangle \mid n-2, n-1, n]=O$. Therefore, $A[\langle m-1\rangle \mid\langle n-3\rangle]$ has at least two rows with exactly three nonzero entries by induction. Thus we have the result for $k=1$. Similarly, we have the same result for $l=1$.
3. Matrices containing totally L-matrices. Let A be a matrix with signed null-space. A is a maximal matrix with signed null-space if any matrix obtained from A by replacing a zero entry with a nonzero entry does not have signed null-space.

Lemma 3.1. An m by $m+2$ totally L-matrix is a maximal matrix with signed null-space.

Proof. Let A be an m by $m+2$ totally L-matrix. Let A^{*} be an m by $m+2$ matrix obtained from A by replacing a zero entry with 1 or -1 . Notice that every m by m submatrix of A^{*} has term rank m. Since A^{*} has a row with four nonzero entries, A^{*} is not a totally L-matrix. Therefore, there exists an m by m submatrix of A^{*} that is not an $S N S$-matrix. Hence A^{*} does not have signed null-space by Theorem 2.1.

Lemma 3.2. Let A be an m by $m+2$ totally L-matrix, and let \mathbf{x} be an m by 1 column vector which has at least two nonzero entries. Then $B=[A \mathbf{x}]$ does not have signed null-space.

Proof. We will prove the result by induction on m. The statement is clear for $m=2$. We may assume that

$$
B=\left[b_{i j}\right]=\left[\begin{array}{c|c|c}
M^{\prime} & O & \mathbf{x} \\
I_{2} & \mathrm{x}
\end{array}\right],
$$

where I_{2} is the identity matrix of order 2 . If $b_{m-1, m+3}=0$ or $b_{m, m+3}=0$, say, $b_{m, m+3}=0$, then $B(m \mid m+2)$ does not have signed null-space by induction. Hence we have the result by Theorem 2.3. Therefore, we may assume that the last two positions of \mathbf{x} have nonzero entries. Since a totally L-matrix is a maximal matrix with signed null-space, $B(-\mid m+2)$ does not have signed null-space. Hence B does not have signed null-space.

We say that an m by $m+2$ totally L-matrix contains k double-extensions (or $m-2 k-2$ single-extensions) if A is obtained from

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right]
$$

by a sequence of $m-2 k-2$ single-extensions and k double-extensions up to row and column permutations and multiplication of rows and columns by -1 .

Proposition 3.3. Let A be an m by n matrix with signed null-space whose
columns are nonzero and distinct up to multiplication by -1 . If A contains an m by $m+2$ totally L-matrix with k double-extensions, then $n \leq 2 m-2 k$.

Proof. We will prove the result by induction on k. Let T_{k} be an m by $m+2$ totally L-matrix with k double-extensions contained in A. Notice that each column of A which does not correspond to T_{k} has exactly one zero entry by Lemma 3.2. If $k=0$, then it is known [1] that T_{k} has a signed r th compound for each $r=1,2, \ldots, m$. Hence we can have the identity matrix I_{m} as a submatrix of A. Since T_{0} has exactly two columns with exactly one nonzero entry, $n \leq m+2+(m-2)=2 m=2 m-2 k$. Let $k \neq 0$. By Proposition 2.4 and Lemma 3.2, we may assume that A is of the form

$\left[\right.$| A_{1} | A_{2} | | O | | |
| :---: | ---: | ---: | ---: | ---: | ---: |
| A_{3} | 1 | -1 | 0 | 0 | 0 |
| | 1 | 1 | -1 | 0 | 0 |
| O | 0 | 1 | 1 | 1 | 0 |
| | 1 | 0 | 1 | 0 | 1 |$]$.

Then $A(m-1, m \mid n-1, n)$ has signed null-space, and it contains an $m-2$ by m totally L-matrix with $k-1$ double-extensions. The columns of $A(m-1, m \mid n-1, n)$ are distinct up to multiplication by -1 because, if not, then A_{3} has a column of the forms $(0,1)^{T}$ or $(0,-1)^{T}$, say, $(0,1)^{T}$. Then A has a submatrix

$$
B=\left[\begin{array}{rrrr}
0 & 1 & -1 & 0 \tag{3.1}\\
1 & 1 & 1 & -1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

which is not an $S N S$-matrix. Since A contains an m by $m+2$ totally L-matrix, the complementary submatrix to B in A has term rank $m-4$. Hence A does not have signed null-space by Theorem 2.1. This is a contradiction. Therefore, $n-2 \leq$ $2(m-2)-2(k-1)=2 m-2 k-2$ by induction. Thus we have $n \leq 2 m-2 k$.

Let l be the number of single-extensions contained in A. Then we have $l=m-$ $2 k-2$. Hence we can restate the result of Proposition 3.3 in terms of $l: n \leq m+l+2$.

Corollary 3.4. Let T be an m by $m+2$ totally L-matrix which contains no single-extensions. Then there is no m by n matrix A with signed null-space such that A contains T properly, and the columns of A are nonzero and distinct up to multiplication by -1 .

Proof. Let A be an m by n matrix with signed null-space, and let A contain T. Since T contains no single-extensions, $l=0$. Hence $n \leq m+l+2=m+2$. Hence $A=T$.

Let M be an m by n matrix of the form in (2.1) with signed null-space, and let A be the $m+1$ by $n+2$ matrix such that

$$
A=\left[\begin{array}{lllll|rc}
& & & & & 0 & 0 \\
& & & & & \\
& & M & & & \vdots & \vdots \\
& & & & & 0 & 0 \\
& & & & & 1 & 0 \\
\hline 0 & \cdots & 0 & 1 & 0 & -1 & 1
\end{array}\right]
$$

Since $A(-\mid n+2)$ is conformally contractible to $M, A(-\mid n+2)$ has signed null-space. Since M has signed null-space, A has signed null-space by Theorem 2.1. Let T_{k} be an m by $m+2$ totally L-matrix with k double-extensions. Let $\left\{i_{1}, i_{2}, \ldots, i_{l}\right\}$ with
$i_{1}<i_{2}<\cdots<i_{l}$ be the set of indices of rows used when single-extensions are constructed in T_{k}. Notice that T_{k} does not contain any $e_{i_{j}}, j=1,2, \ldots, l$. The remark above and Proposition 2.5 imply that

$$
T=\left[\begin{array}{lllll}
T_{k} & e_{i_{1}} & e_{i_{2}} & \ldots & e_{i_{l}} \tag{3.2}
\end{array}\right]
$$

is an m by $2 m-2 k$ matrix whose columns are distinct up to multiplication by -1 , and it has signed null-space.

Let j be the index of a row of T_{k} used when a double-extension is done, and suppose that T_{k} does not have e_{j} as a column. $\left[T_{k} e_{j}\right]$ has a submatrix of the form in (3.1), and hence it does not have signed null-space, as we have shown in the proof of Proposition 3.3.

Let \mathcal{T}_{k} be the set of all matrices of the form in (3.2). Notice that columns of $A \in \mathcal{T}_{k}$ are nonzero and distinct up to multiplication by -1 . We can express the m by n matrices A with $n=2 m-2 k$ in Proposition 3.3 in terms of elements of \mathcal{T}_{k}.

Proposition 3.5. In Proposition 3.3, $n=2 m-2 k$ if and only if there exists a permutation matrix Q such that A is equal to $T Q$ up to multiplication of rows and columns by -1 for some $T \in \mathcal{T}_{k}$.

Proof. Let A be an m by n matrix such that $A=T Q$ for some permutation matrix Q and $T \in \mathcal{T}_{k}$. Then $m=2 k+l+2$, and hence $n=m+2+l=m+2+(m-2-2 k)=$ $2 m-2 k$. Conversely, let A be an m by $2 m-2 k$ matrix satisfying the conditions in Proposition 3.3. Let T_{k} be an m by $m+2$ totally L-matrix with k double-extensions contained in A. Then there exists a permutation matrix Q and strict signings D, E such that $D A Q E$ is a submatrix of matrix T of the form in (3.2) by Lemma 3.2 and the remark above. Since T is an m by $2 m-2 k$ matrix, $A=D T Q^{-1} E$. Since $T \in \mathcal{T}_{k}$, we have the result.

Corollary 3.6. Let m be a positive integer with $m \geq 2$, and let n be any integer in $\{m, m+1, \ldots, 2 m\}$. Then there exists an m by n matrix A with signed null-space such that A contains a totally L-matrix with m rows as its submatrix and the columns of A are nonzero and distinct up to multiplication by -1 .

Proof. Let n be any integer in $\{m, m+1, \ldots, 2 m\}$. If $n \leq m+2$, then we can take an m by n totally L-matrix as such a matrix A. If $n>m+2$, there exists an m by $m+2$ totally L-matrix T_{n-m-2} with $n-m-2$ single-extensions. Hence there exists an m by n matrix $A \in \mathcal{T}_{n-m-2}$ which contains T_{n-m-2} by the remark above.

Acknowledgment. We would like to thank the referees for their comments.

REFERENCES

[1] R. A. Brualdi and B. L. Shader, The Matrices of Sign-Solvable Linear Systems, Cambridge University Press, Cambridge, UK, 1995.
[2] K. G. Fisher, W. Morris, and J. Shapiro, Mixed dominating matrices, Linear Algebra Appl., 270 (1998), pp. 191-214.
[3] S.-J. Kim and B. L. Shader, Linear systems with signed solutions, Linear Algebra Appl., 313 (2000), pp. 21-40.
[4] S.-J. Kim and B. L. Shader, On matrices which have signed null-spaces, Linear Algebra Appl., 353 (2002), pp. 245-255.

[^0]: *Received by the editors October 8, 2001; accepted for publication (in revised form) by R. Wabben May 23, 2002; published electronically December 19, 2002.
 http://www.siam.org/journals/simax/24-2/39622.html
 ${ }^{\dagger}$ Department of Mathematics Education, Andong National University, Andong, 760-749 Republic of Korea, (sjkim@andong.ac.kr). The research of this author was supported by Andong National University.
 ${ }^{\ddagger}$ Department of Mathematics, University of Wyoming, Laramie, Wyoming 82071 (bshader@ uwyo.edu).
 §Department of Mathematics Education, Kyungpook University, Taegu, 702-701, Republic of Korea (sghwang@knu.ac.kr). The research of this author was supported by Com ${ }^{2} \mathrm{MaC}$.

