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Abstract. Singular spectrum analysis (SSA) is a method of time-series analysis based on the
singular value decomposition of an associated Hankel matrix. We present an approach to SSA using
an effective and numerically stable high-degree polynomial approximation of a spectral projector,
which also provides a means of time-series forecasting. Several numerical examples illustrating the
algorithm are given.
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1. Introduction. Singular spectrum analysis (SSA) is a well-established method
of time-series analysis (see [2], [3], [15], [16], and the recent monographs [4] and [5]).
The main idea of SSA is to select a number of significant principal components from
the singular value decomposition (SVD) of the so-called trajectory matrix of a given
time series, and hence to reconstruct a time series showing characteristic traits, e.g.,
the trend, periodicities, or signal (as opposed to random noise) of the original series.

SVD is a fundamental and very well studied process of numerical linear alge-
bra with a long history (cf. [12], [1]). However, it is computationally expensive and
thus problematic in real-time signal processing; therefore truncated forms of the SVD
which only provide partial information (see [14], [17]) and alternative methods (see
[7], [11], [13], and, specifically for Hankel-type matrices, [9]) have been proposed.
Recently, combinations of SSA/SVD with a wavelet transform have attracted some
attention [6], [18], [19].

The procedure of classical SSA is as follows. Let x1, x2, . . . , xN ∈ R, N ∈ N, be
(part of) a time series, let M≤N/2 be a positive integer, and let K = N−M+1. Set

X = (xij)
M,K
i,j=1 =



x1 x2 x3 . . . xK
x2 x3 x4 . . . xK+1

...
...

...
. . .

...
xM xM+1 xM+2 . . . xN


 .(1.1)

X is called the trajectory matrix. Obviously xij = xi+j−1, so that the matrix X
has identical entries on the diagonals i + j = const, i.e., it is a Hankel matrix. One
can consider X as multivariate data with M characteristics and K = N −M + 1
observations X1, X2, . . . , XK , where

Xj =




xj
...

xj+M−1


 ∈ R

M (j ∈ {1, . . . ,K}).
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APPROXIMATE SINGULAR SPECTRUM ANALYSIS 933

The SVD ofX is based on the spectral decomposition of the lag-covariance matrix
R = XXT ∈ R

M×M . Note that R is symmetric and positive semidefinite. Therefore,
it has a complete set of eigenvectors and can be diagonalized in the form

R = UΛUT ,(1.2)

where Λ is the diagonal M ×M matrix of eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0, and

U = (U1, U2, . . . , UM ) =




u11 u21 . . . uM1

u12 u22 . . . uM2

...
...

. . .
...

u1M u2M . . . uMM




is an orthogonal matrix of eigenvectors of the matrix R. Denoting d = max{i ∈
{1, . . . ,M} | λi > 0} and Vi = XTUi/

√
λi (i = 1, . . . , d), we can write the SVD of

the trajectory matrix X,

X =
d∑

i=1

√
λiUiV

T
i = X1 + · · ·+Xd,(1.3)

where Xi =
√
λiUiV

T
i are rank-one biorthogonal matrices; we have rankX = d.

Now a subset of the SVD components X1, . . . ,Xd is selected by choosing a set of
indices I ⊂ {1, . . . , d}, resulting in the decomposition

X = XI +XĪ , where XI =
∑
i∈I

Xi and XĪ =
∑
i/∈I

Xi.

If I is suitably chosen, XI will represent some characteristic feature of the original
time series which can be exhibited by removing XĪ . Unfortunately, however, XI itself
is not in general the trajectory matrix of some time series, as it does not necessarily
have Hankel structure. This obstacle is overcome by diagonal averaging over the
diagonals i+ j = const, which allows us to extract a time series x̃k (k ∈ {1, . . . , N})
from any M ×K matrix Y by the formula

x̃k =




1

k

k∑
i=1

yi, k−i+1 for 1 ≤ k ≤M − 1,

1

M

M∑
i=1

yi, k−i+1 for M ≤ k ≤ K,

1

N−k+1

M∑
i=k−K+1

yi, k−i+1 for K + 1 ≤ k ≤ N.

(1.4)

Applying this to XI to construct a time series (zt), we obtain the SSA decompo-
sition of the original series

xt = zt + εt , t ∈ {1, . . . , N}.(1.5)

(It is not difficult to verify that the residual series (εt) results from diagonal averaging
of XĪ .)
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934 V. MOSKVINA AND K. M. SCHMIDT

An interesting practical application of SSA is the extraction of a signal from
a time series perturbed by noise. Since one expects, in light of such asymptotic
results as Corollary 6.1 in [5], that the signal will correspond to larger eigenvalues of
the lag-covariance matrix, while eigenvalues associated with noise components should
be small, this means that the first SVD components will be selected, cutting off
at a certain eigenvalue size λcut > 0. Thus the index set will have the structure
I = {1, . . . , l} with some l ∈ {1, . . . , d} such that λl ≥ λcut > λl+1. Ideally, the
series (zt) in (1.5) can then be associated with signal and the residual series (εt) with
noise. For an extensive discussion of the problem of choosing the values for the two
SSA parameters, viz. the lagM and the number l of SVD components included in the
reconstruction, see [5]. A common choice forM is the maximal valueM = �N/2
. The
value of l (or, equivalently, of the cut-off point λcut) must depend on the properties
of the given time series. If l is too small (underfitting), then we miss part of the
signal; alternatively, if l is too large (overfitting), then we approximate a part of noise
together with the signal.

In the present paper we develop a method of computing XI (and hence the
reconstructed series (xt)) in this situation without actually performing the spectral
decomposition of the lag-covariance matrix, i.e., without calculating its eigenvalues
and eigenvectors. For large time series and correspondingly large matrices, this will
offer a faster alternative and open the way for noise-reduction applications of the SSA
method.

This paper is organized as follows. We first observe that the selection of the part
XI from the SVD of the trajectory matrix can be replaced by applying a spectral
projector of the lag-covariance matrix; in the case at hand, this will be the orthogonal
projector onto the eigenspace for eigenvalues in the interval [λcut,∞). In section 3,
we then proceed to find a polynomial approximation of the characteristic function of
this interval, which permits a direct approximate calculation of the spectral projector.
We use an iterative method which avoids the problems inherent in a naive evaluation
of the approximating polynomial, which would be inefficient and highly unstable.
Section 4 presents a geometric forecasting algorithm based on the approximate spec-
tral projector. The examples studied in section 5 demonstrate the workings and the
practical applicability of our method. It turns out that even a relatively rough and
inexpensive approximation, corresponding to an SSA with a “fuzzy cut-off,” can yield
a very high degree of noise suppression and an excellent reconstruction of the signal.

2. Polynomial approximation of the spectral projector. For the construc-
tion of the matrix XI after choosing the index set I, it is sufficient to find the or-
thogonal projector P onto the subspace of R

M spanned by the eigenvectors Uj with
j ∈ I,

P =
∑
j∈I

UjU
T
j .(2.1)

Indeed, one then has, using (1.3) and the orthonormality of the eigenvectors,

PX =
∑
j∈I

d∑
i=1

√
λiUjU

T
j UiV

T
i =

∑
j∈I

√
λjUjV

T
j = XI .

Thus, XI is obtained by a simple matrix multiplication once P is known. The matrix
P , on the other hand, can be represented as a function of the matrix R. Generally,
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APPROXIMATE SINGULAR SPECTRUM ANALYSIS 935

given a function f : R → R, one can define the matrix

f(R) =

M∑
j=1

f(λj)UjU
T
j .(2.2)

(This holds for general symmetric matrices and, in analogous form, for self-adjoint
operators in Hilbert space, provided f is measurable with respect to the spectral
measure; see [10, Theorem VII.2].)

If S ⊂ R contains the eigenvalues with indices in I but no other, then clearly
P = χS(R), where

χS(λ) =

{
1, λ ∈ S,
0, λ /∈ S

is the characteristic function of the set S.
Of course, rewriting the definition of P in this way seems of little benefit. Note,

however, that for a polynomial function p, p(R) can be evaluated directly, interpreting
the powersRn in the sense of matrix multiplication. Using the spectral representation

R =

M∑
j=1

λjUjU
T
j ,

it is not hard to see that this calculation, for which no knowledge of the eigenvalues
and eigenvectors of R is required, gives the same result as formula (2.2).

Even if f is not a polynomial, we can use this to find approximations for f(R)
based on the following observation. Let (pn)n∈N be a sequence of polynomials such
that

lim
n→∞ sup

j∈{1,...,M}
|f(λj)− pn(λj)| = 0;

then limn→∞ pn(R) = f(R) in the Euclidean operator norm. Indeed, denoting by ‖·‖
the Euclidean norm on R

M , we have for all v ∈ R
M

‖(pn(R)− f(R))v‖2
=

∥∥∥∥∥∥
M∑
j=1

(pn(λj)− f(λj))UjU
T
j v

∥∥∥∥∥∥
2

=

M∑
j=1

|pn(λj)− f(λj)|2
∣∣UT

j v
∣∣2

≤ sup
j∈{1,...,M}

|pn(λj)− f(λj)|2 ‖v‖2 → 0 (n→ ∞).

In the situation at hand, we wish to omit eigenvalues below λcut and include all
others, so here f = χ[λcut,∞). In order to obtain an approximation of the corresponding
spectral projector P , we replace f by an approximating polynomial p. Of course, we
can expect to find only a good polynomial approximation on a compact interval, as
the polynomial will grow rapidly near ±∞. However, we need only to approximate f
at the eigenvalues of R or, as these are unknown, on an interval which contains them.
We already know that the eigenvalues are nonnegative; furthermore, if ‖·‖ denotes
any matrix norm satisfying

‖Rv‖ ≤ ‖R‖ ‖v‖ (v ∈ R
M )

D
ow

nl
oa

de
d 

02
/2

8/
14

 to
 1

31
.2

51
.2

54
.1

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



936 V. MOSKVINA AND K. M. SCHMIDT

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

f(x)

polynomial approximation p(x)

λcut
||R||

Fig. 2.1. Function f(x) and a polynomial approximation p(x) of degree 6.

for some norm ‖·‖ on R
M , it follows that λ1 ≤ ‖R‖. Hence it is sufficient to approxi-

mate f on the interval [0, ‖R‖] (see Figure 2.1).
Then we substitute the matrix P̃ = p(R) for the actual projector P to construct

X̃I = P̃X, and hence reconstruct the time series without noise. In general, P̃ will
not be a projector, but if p is a good approximation to f on [0, ‖R‖], it will be close
to the projector P . Moreover, P̃ can always be interpreted as a weighted sum of the
spectral projectors UjU

T
j onto the eigenspaces for the individual λj by means of (2.2),

P̃ =

M∑
j=1

p(λj)UjU
T
j .

(In our approximation, we shall actually have weights p(λj) ∈ [0, 1]—see below.)
Thus, even if p is only a coarse approximation of f , the resulting reconstructed time
series is meaningful as a mixture of SVD components with a “fuzzy cut-off,” which may
even have advantages over the usual SSA reconstruction that uses a sharp selection
of SVD components.

The number of components included in the projector P is l = trP ; similarly
we take tr P̃ as an indicator of how much of the original series is included in the
reconstruction. The size of tr P̃ and its closeness to an integer can be used to assess
whether the cut-off point λcut was suitably chosen. As a further guide to the choice of
the cut-off point, one can obtain a rough estimate of the spectrum of R by performing
either standard SSA or the approximate procedure outlined in the present paper with
a small lag M ; if this smaller window covers a stable structure (periodics) in the
original time series, the corresponding eigenvalues will not change very much with
increasing M and can thus give an idea of the spectral structure of R. However, this
preliminary step will miss out on large-scale structures, which will become apparent
only when the approximate SSA with the large lag M is calculated.

It is common to express the eigenvalues of the lag-covariance matrix as a frac-
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APPROXIMATE SINGULAR SPECTRUM ANALYSIS 937

tion of their sum, called eigenvalue share (see [5] for details). Fortunately, the sum
of the eigenvalues of P is known without calculating them, since by virtue of the
diagonalization (1.2) we have

M∑
j=1

λj = trR,

and the trace can easily be obtained as the sum of diagonal elements of R.

3. The iterative approximation procedure. The approximation of functions
of a real variable by polynomials is notoriously problematic. An accurate approxi-
mation requires polynomials of high degree, which in turn leads to strong oscillations
and quick growth outside the interval of approximation, and to costly and numerically
unstable computations. Therefore, one often prefers the use of localized substitutes
for polynomial approximation, e.g., splines. In some situations, however, such as the
present case, polynomials are the only type of function whose values can be calculated.

The following observation provides a numerically stable iterative method of cal-
culating highly accurate polynomial approximations of a characteristic function (see
Figure 3.1).

Proposition 3.1. Let p1(x) = 3x2 − 2x3 and let pn be the nth iteration of p1,
i.e., pn(x) = p1(p1(. . . p1(x)) . . .) (p1 applied n times). Then for n ∈ N, pn is strictly
increasing on [0, 1] and fixes the points 0, 1

2 , and 1. Furthermore,

lim
n→∞ pn(x) =




0, x ∈
(
−

√
3−1
2 , 1

2

)
,

1
2 , x = 1

2 ,

1, x ∈
(

1
2 ,

1+
√

3
2

)
;

the convergence is uniform on [−
√

3−1
2 + ε, 1

2 − ε] ∪ [ 12 + ε, 1+
√

3
2 − ε] for any ε > 0.

The base polynomial p1 is characterized as the lowest-degree polynomial fixing
the points 0, 1

2 , and 1, and with zero derivative at 0 and 1. The steepness of the flank
for the nth iteration is

p′n

(
1

2

)
=

(
3

2

)n

.

The above proposition gives an approximation of the characteristic function χ[1/2,∞)

on the interval [0, 1]. By a suitable scaling transformation, we can always assume that
we are dealing with a matrix with eigenvalues in [0, 1] and a cut-off point at 1

2 . Indeed,
we can replace the matrix R by the matrix

B =




1

2λcut
R if λcut ≥ ‖R‖/2,
1

2(‖R‖ − λcut)
(R+ (‖R‖ − 2λcut)I) otherwise;

then χ[λcut,∞)(R) = χ[ 12 ,∞)(B). (Here I is the identity M ×M matrix.)

Remark. One may be tempted to consider calculating and storing the coefficients
of the polynomial pn instead of applying the above iterative procedure to the indi-
vidual matrix B (or number x when evaluating pn(x)). However, this alternative
approach has severe disadvantages which make it wholly impractical. Indeed, pn is
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938 V. MOSKVINA AND K. M. SCHMIDT

0

0.5

1

n=1, degree 3
n=3, degree 27
n=5, degree 243
n=10, degree 59049

0.5 1

Fig. 3.1. The approximating polynomials pn.

a polynomial of degree 3n, and hence the calculation of pn(B) by the Horner scheme
requires 3n−1 matrix multiplications, as compared to the mere 2n matrix multiplica-
tions in the iterative method. Furthermore, the evaluation of the polynomial is highly
unstable in view of its very large coefficients; thus even for numbers x ∈ [0, 1], p4(x)
cannot be correctly calculated in double precision (in single precision, the problem
already appears in p3(x)).

In contrast, the iterative method, in addition to its numerical stability, provides
the possibility of monitoring the progress of the approximation, stopping when the
desired accuracy is reached, rather than fixing the degree of the approximating poly-
nomial in advance.

4. Geometric forecasting. The (approximate) projector P can also be used
to forecast the given time series.

A simple geometric method of forecasting a time series x1, x2, . . . , xN using com-
ponents Xi, i ∈ I, of the SVD of its trajectory matrix is based on the princi-
ple of choosing the next term xN+1 in the series in such a way that the vector
x = (xN+2−M , . . . , xN , xN+1)

T is closest to the subspace of R
M spanned by the

eigenvectors Uj , j ∈ I. Taking the Euclidean norm in R
M as a measure for the close-

ness, we can express this in terms of the orthogonal projector P (see (2.1)) as the
problem of minimizing the norm of the difference vector between x and its orthogonal
projection Px,

‖(I− P )x‖2 → min,

varying xN+1.
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APPROXIMATE SINGULAR SPECTRUM ANALYSIS 939

The minimum satisfies

0 =
d

dxN+1
‖(I− P )x‖2 = 2xT (I− P )(I− P )M ,

where (I − P )M denotes the last column of the matrix (I − P ). In other words, the
minimizing vector x is orthogonal to the forecast vector f = (I − P )(I − P )M . If
fM �= 0, we thus find the recurrence for xN+1,

xN+1 = − 1

fM

M−1∑
j=1

fj xN+1−M+j .

This recurrence formula is meaningful and can be used to forecast the time series
even when the orthogonal projector P is replaced by the approximate projector P̃
calculated according to the method outlined in section 3. Note that the resulting
approximate forecast vector converges to the exact one as P̃ approaches P in the
Euclidean operator norm.

5. Numerical examples. Let us study two examples to illustrate the approxi-
mate SSA algorithm and geometric forecasting described above.

First consider the simulated time series

zt = sin(0.1t) + et,

where the et are independent identically distributed random variables et ∼ N(0, 16)
for t = 1, . . . , 2000 (white noise).

Figure 5.1 shows the result of the approximate SSA with maximal lag M = 1000,
cut-off point λcut = 1%, and an approximating polynomial of degree 243 (i.e., 5 it-
erations). The trace of the approximate projector P̃ is 21.56, indicating that SSA
components with a total weight corresponding to about 22 eigenvectors are included
in the reconstruction.

-15

-10

-5

0

5

10

15

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Initial series

Reconstruction

Fig. 5.1. sin(0.1t) + et, et ∼ N(0, 16) and its reconstruction.
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-3

0

3

40 140Initial series

Approximate SSA: polynomial of degree 27, tr(P)=172.99

Approximate SSA: polynomial of degree 243, tr(P)=21.56

Approximate SSA: polynomial of degree 59049, tr(P)=2.00

Standard SSA: 1st and 2nd eigenvalues

~

~

~

Fig. 5.2. Comparison of reconstructions using different polynomials.

In Figure 5.2 a zoomed part of the time series is presented. One can clearly
observe how the degree of the approximating polynomial, and hence the sharpness of
the cut-off in the calculation of the approximate projector, influences the quality of
the reconstruction. In the case of the polynomial of degree 59049 (i.e., 10 iterations)
the reconstruction by our approximate method reproduces the result of standard SSA;
then the number of principal components included in the latter coincides (within some
tolerance) with tr(P̃ ).

Note, however, that already the reconstruction based on the coarser approxima-
tion of Figure 5.1, with P̃ still far from the actual projector, clearly picks out the
signal from the very noisy time series.

Our second example is based on the well-known real-life data (see [8]) of monthly
averages of hotel rooms occupied from 1963–1976; this example was studied in detail
in [5]. We demonstrate by this example how different choices of the cut-off point
λcut exhibit various features of the time series in the resulting reconstructions (see
Figure 5.3).

To pick up the first eigenvalue (corresponding to the trend) we have chosen lag
M = 84 and λcut = 2%, and 15 iterations were enough to separate it from the rest of
the spectrum (tr P̃ = 1.0000). With λcut = 0.51% and 19 iterations, we also include
the second and third eigenvalues (tr P̃ = 3.0000), corresponding to the one year cycle.
For a more precise reconstruction of the initial data we have taken the cut-off point
λcut = 0.11% and 23 iterations (tr P̃ = 5.0000). By this choice we include exactly
the first five components, which describe the main structure of the series: linear
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Fig. 5.3. Occupied hotel rooms (average per month), 1963–1976.

trend, one-year and half-year periodicities. The geometric forecast based on these
components does not contradict the structure of the series.
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