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Addendum to \A Krylov{Schur Algorithm forLarge Eigenproblems"G. W. StewartABSTRACTIn this addendum to an earlier paper by the author, it is shown how tocompute a Krylov decomposition corresponding to an arbitrary Rayleigh-Quotient. This decomposition can be used to restart an Arnoldi process,with a selection of the Ritz vectors corresponding to the Rayleigh quotient.In [3] the author introduced a decomposition of the formAU = UB + ubH; (1)where A is a matrix of order n and (U u) has full column rank. It was shown that thecolumn space of (U u) (called the subspace of the decomposition) is a (possibly restarted)Krylov subspace of A and conversely that every Krylov subspace has such a represen-tation, so that the Krylov decomposition (1) is a characterization of Krylov subspaces.Arnoldi and Lanczos decompositions are special cases of Krylov decompositions.The advantage of working with Krylov decompositions is that their subspaces remaininvariant under two classes of transformations. The �rst, called a similarity , transformsthe decomposition intoA(UW�1) = (UW�1)(WBW�1) + u(bHW ) � A ~U = ~B + u~bH;where W is any nonsingular matrix. The second, called a translation, transforms thedecomposition to the form AU = U ~B + ~ubH;where ~B = B + gbH; ~u = u� Ug
 ; and ~bH = 
bH;for any vector g and any scalar 
 6= 0.The computational algorithms in [3] were based on similarities. Translations wereused primarily in the derivation of the properties of Krylov decompositions. The purposeof this note is to show that translations have a computational role to play in restarting anArnoldi process with a selection of Rayleigh{Ritz approximations to a set of eigenvectors.1



2 Krylov{Schur AddendumThe Rayleigh{Ritz method for producing these approximations does not depend onwhether the subspace in question is a Krylov subspace. It can be presented in di�erentways. The one we give here leads most directly to the main result of this note. Let Ube a basis for the subspace U in question and let V be such that V HU is nonsingular.Then the matrix B = (V HU)�1V HAU (2)has the property that (�; Uw) is an eigenpair of A, then (�; w) is an eigenpair of B.Speci�cally, Bw = (V HU)�1V HAUw = �(V HU)�1V HUw = �w:By continuity one might expect that if U contains an approximate eigenvector of A,then it can be found by computing an appropriate eigenpair (�; w) of B and formingUw. This is the essence of the Rayleigh{Ritz method (for an analysis of the method see[1]). The matrix B is called a Rayleigh quotient (with respect to U and V ) because (2)is a generalization of the ordinary Rayleigh quotient vHAu=vHu.It was observed in [3] that the matrixB in the Krylov decomposition (1) is a Rayleighquotient. Speci�cally, let (V v)H be a left inverse of (U u). Then V HU = I andV Hu = 0. It follows from (1) that B = V HAU is a Rayleigh quotient, which can beused in the Rayleigh{Ritz procedure.In some cases, however, we may not have the freedom to choose V . For example, inthe harmonic Rayleigh{Ritz method, which has superior properties for approximatinginterior eigenvalues [2], [4, pp. 292{294], we must take V = (A� �I)U , where � is nearthe eigenvalues of interest. The following theorem shows that although B in (1) need notbe the Rayleigh quotient with respect to V there is a translated Krylov decompositionwhose Rayleigh quotient is.Theorem 1. In the Krylov decomposition (1) let V HU be nonsingular. Then withg = (V HU)�1V Hu, we have B + gbH = (V HU)�1V HAU: (3)Proof. By translation, AU = U(B + gbH) + (u� Ug)bH (4)is a Krylov decomposition. Moreover, by the de�nition of g, we have V H(u� Ug) = 0.Hence (3) follows on multiplying (4) by (V HU)�1V H.We have shown in e�ect that if B is the Rayleigh quotient of a Krylov decomposition,all other Rayleigh quotients with respect to U are rank-one modi�cations of B. Forharmonic Ritz vectors the formulas simplify, since from (1)V = (A� �I)U = U(B � �I) + ubH:



Krylov{Schur Addendum 3In practical implementations of Krylov method, (U u) will be orthogonal, so thatV HU = (B � �I)H and V Hu = b:Hence, g = (B � �I)�Hb and the Rayleigh quotient isB + (B � �I)�HbbH:Thus there is no need to form V explicitly. For the symmetric case this formula is dueto Morgan [2].The importance of this result, however, is not in the fact that it provides formulasfor Rayleigh quotients. That could be done from the original decomposition. Insteadthe key fact is that Rayleigh quotient is part of the Krylov decomposition (4). Thismeans that we can use the decomposition to restart the an Arnoldi process with selectedRitz vectors via the Krylov{Schur method described in the original paper.Speci�cally, suppose that in the decomposition (1) the matrix (Uu) is orthonormal.We compute the partitioned Schur decomposition�T11 T120 T22� = �WH1WH2 � (B + gbH)(W1 W2);where T11 contains the Ritz values corresponding to the Ritz vectors we wish to retain.It then follows that the Krylov decompositionA(UW1) = (UW1)T11 + (u� Ug)bHW1is a Krylov decomposition containing those Ritz vectors. The matrix UW1 is orthonor-mal, but the the vector u� Ug is not orthogonal to the columns of UW1. However, bya second translation we can orthogonalize it. The resulting decomposition is an orthog-onal Krylov decomposition, which can be extended by the Arnoldi process in the usualway.AcknowledgementI am indebted to the Mathematical and Computational Sciences Division of the NationalInstitute of Standards and Technology for the use of their research facilities.References[1] Z. Jia and G. W. Stewart. An analysis of the Rayleigh{Ritz method for approxi-mating eigenspaces. Mathematics of Computation, 70:637{647, 2001.
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