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Addendum to “A Krylov—Schur Algorithm for
Large Eigenproblems”

G. W. Stewart
ABSTRACT

In this addendum to an earlier paper by the author, it is shown how to
compute a Krylov decomposition corresponding to an arbitrary Rayleigh-
Quotient. This decomposition can be used to restart an Arnoldi process,
with a selection of the Ritz vectors corresponding to the Rayleigh quotient.

In [3] the author introduced a decomposition of the form
AU = UB + ub™, (1)

where A is a matrix of order n and (U u) has full column rank. It was shown that the
column space of (U u) (called the subspace of the decomposition)is a (possibly restarted)
Krylov subspace of A and conversely that every Krylov subspace has such a represen-
tation, so that the Krylov decomposition (1) is a characterization of Krylov subspaces.
Arnoldi and Lanczos decompositions are special cases of Krylov decompositions.

The advantage of working with Krylov decompositions is that their subspaces remain
invariant under two classes of transformations. The first, called a similarity, transforms
the decomposition into

AUW™Y) = (UWHY(WBW™) + u(b"W) = AU = B + ub™,

where W is any nonsingular matrix. The second, called a translation, transforms the
decomposition to the form

AU = UB + ab",
where
u—Ug

B=B+gbt, a= — and IN)H:’ybH,

for any vector g and any scalar vy # 0.

The computational algorithms in [3] were based on similarities. Translations were
used primarily in the derivation of the properties of Krylov decompositions. The purpose
of this note is to show that translations have a computational role to play in restarting an
Arnoldi process with a selection of Rayleigh—Ritz approximations to a set of eigenvectors.
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The Rayleigh—Ritz method for producing these approximations does not depend on
whether the subspace in question is a Krylov subspace. It can be presented in different
ways. The one we give here leads most directly to the main result of this note. Let U
be a basis for the subspace U in question and let V be such that VHU is nonsingular.
Then the matrix

B =WH~tviay (2)

has the property that (u, Uw) is an eigenpair of A, then (p,w) is an eigenpair of B.
Specifically,

Bw = (VIU)y"'WHAUw = p(VIU)"VHTw = pow.

By continuity one might expect that if ¢/ contains an approximate eigenvector of A,
then it can be found by computing an appropriate eigenpair (y,w) of B and forming
Uw. This is the essence of the Rayleigh-Ritz method (for an analysis of the method see
[1]). The matrix B is called a Rayleigh quotient (with respect to U and V') because (2)
is a generalization of the ordinary Rayleigh quotient v Awu/vHu.

It was observed in [3] that the matrix B in the Krylov decomposition (1) is a Rayleigh
quotient. Specifically, let (V v) be a left inverse of (U u). Then VMU = I and
VHy = 0. It follows from (1) that B = VHAU is a Rayleigh quotient, which can be
used in the Rayleigh—Ritz procedure.

In some cases, however, we may not have the freedom to choose V. For example, in
the harmonic Rayleigh—Ritz method, which has superior properties for approximating
interior eigenvalues [2], [4, pp.292-294], we must take V = (A — kI)U, where £ is near
the eigenvalues of interest. The following theorem shows that although B in (1) need not
be the Rayleigh quotient with respect to V there is a translated Krylov decomposition
whose Rayleigh quotient is.

Theorem 1. In the Krylov decomposition (1) let VEU be nonsingular. Then with
g = (VHU)"'WHy, we have

B+ gt = (vHu)TlvH AL, (3)
Proof. By translation,
AU = U(B + gb™) + (u — Ug)d™ (4)

is a Krylov decomposition. Moreover, by the definition of ¢, we have VH(u —Ug) = 0.
Hence (3) follows on multiplying (4) by (VEU)~'VH, m

We have shown in effect that if B is the Rayleigh quotient of a Krylov decomposition,
all other Rayleigh quotients with respect to U are rank-one modifications of B. For
harmonic Ritz vectors the formulas simplify, since from (1)

V=(A-sU =U(B - rl)+ ubl.
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In practical implementations of Krylov method, (U u) will be orthogonal, so that
VHT = (B— kD) and VHu =b.
Hence, g = (B — xI)"Hb and the Rayleigh quotient is
B+ (B — xI)~Hpptl,

Thus there is no need to form V explicitly. For the symmetric case this formula is due
to Morgan [2].

The importance of this result, however, is not in the fact that it provides formulas
for Rayleigh quotients. That could be done from the original decomposition. Instead
the key fact is that Rayleigh quotient is part of the Krylov decomposition (4). This
means that we can use the decomposition to restart the an Arnoldi process with selected
Ritz vectors via the Krylov—Schur method described in the original paper.

Specifically, suppose that in the decomposition (1) the matrix (Uu) is orthonormal.
We compute the partitioned Schur decomposition

Ty T\ _ (W) H
( 0 T22) - (W2H (B+gb )(Wl W2)7

where 177 contains the Ritz values corresponding to the Ritz vectors we wish to retain.
It then follows that the Krylov decomposition

A(UWY) = (UW) Ty + (u— Ug)btw,y

is a Krylov decomposition containing those Ritz vectors. The matrix UWj is orthonor-
mal, but the the vector u — Ug is not orthogonal to the columns of UW;. However, by
a second translation we can orthogonalize it. The resulting decomposition is an orthog-
onal Krylov decomposition, which can be extended by the Arnoldi process in the usual
way.
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