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Abstract. We present a numerical method for computing the SVD-like decomposition B =
QDS where Q is orthogonal, S is symplectic, and D is a permuted diagonal matrix. The method
can be applied directly to compute the canonical form of the Hamiltonian matrices of the form
JBT B, where J = [—OI é . It can also be applied to solve the related application problems such as
the gyroscopic systems and linear Hamiltonian systems. Error analysis and numerical examples show
that the eigenvalues of JBT B computed by this method are more accurate than those computed by
the methods working on the explicit product JBT B or BJBT.
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1. Introduction. It is shown in [18] that every real matrix B € R"*?™ has an
SVD-like decomposition

m q

coo M3
OO OO K
oMo o3
cocoow

—p—
P 0
T q 0
(1.1) QBS:p 0
n—2p—gq 0

where matrix @ is real orthogonal, S is real symplectic, and ¥ is positive diagonal.

DEFINITION 1.1. Let J=[_9 'r].

1. A matriz S € R¥*™X2™ s called symplectic if SJST = .J.

2. A matriv U € R2™>2™ s called orthogonal symplectic if UTU = I and
vJut =J.

3. A matriz A € R*™*2™ s called Hamiltonian if JA = (JA)T.

The SVD-like decomposition (1.1) is closely related to the canonical forms of the
real skew-symmetric matrix BJBT and the real Hamiltonian matrix JBT B. By (1.1)
and the symplectic property of S, we have the Schur-like form for BJBT

0 0]x% 0
0 o0lo0 o0

1.2 BJBT = T
0 o0lo0 o0
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and the structured canonical form for JBT B,

0 0 0% 0 0
0 0 0/l0 00
0 0 0/l0 0 0
1. BTB = —l=. 7S
(1.3) J S_ZQOOOOOS STS
0 —-I 0|0 0 0
0 0 0/l0 00

(Note that the condensed matrix I' is still Hamiltonian.) In fact, let 3 = diag(oy, ..., 0p).
With appropriate permutations, (1.2) can be transformed to the real Schur form of

BJBT,
. 0 o? 0 0127
dlag<[U% 0],...,{05 [ 0,...,0 ],

2(m—p—q)

In this paper we will develop a numerical method to compute the SVD-like de-
composition (1.1). Our main goal is to use it to compute the structured canonical
form (1.3) of the Hamiltonian matrices JBT B.

The eigenvalue problem of such Hamiltonian matrices has a variety of applications.
One example is the linear Hamiltonian system [19]

i(t) = JAz(1), z(0) = o,

where A € R?™*2™ s real symmetric positive definite. The solution of such a Hamil-
tonian system satisfies

(1.4) o (1) Ax(t) = 2l Azg VYt >0.

This shows one fundamental principle of the Hamiltonian system, the conservation
law. The solution z(t) can be computed by using the structured canonical form
of the Hamiltonian matrix JA. Since A is positive definite, one can compute the
factorization A = BT B, say, the Cholesky factorization. After having computed the
SVD-like decomposition of B, one has

0 X2

} S~ = 8rs—1.

(Note that T' is slightly different from that in (1.3), because here A is nonsingular.)
The solution can be computed by the following formula:

z(t) = Sel'S™1x.

It is easily verified that for any ¢, e'? is symplectic. If S is exactly symplectic, then
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one can verify that
2T () Az(t) = 2T ()T H(JA)x(t) = (S 'S ag) T T 1(STS™1)Se " S ag = 2l Axy.

Numerically, for the solution z(t) to obey the conservation law (1.4), one needs to
compute the eigenvalues of JA and the symplectic matrix S accurately.
Another example involves the gyroscopic system [8, 13, 17]

§+Ci+Gqg=0, q0)=q, ¢0)=aq.

where G € R™*™ is symmetric and C € R™*™ is skew-symmetric. This system is
related to the eigenvalue problem of the matrix

e[ T VD e

When G is positive semidefinite it has a full rank factorization G = LLT. By using
the equality

1 1
-C I ——C I -C I
I 0 | = 2 J| 2 ,
I 0 I 0
F' is similar to the Hamiltonian matrix
1 T 1
1C’ I I 0 —EC I —=C I ——C I
I 0 I 0 LT 0 LT 0

Then the eigenvalue problem of F' can be solved by computing the SVD-like decom-
o)

The eigenvalues of JBT B can be computed in many ways. For example, one
can use the structure preserving method [2, 3]. Since the eigenvalues of JBT B and
BJBT are the same, a more efficient and reliable way is to use the QR method or
the Jacobi method (e.g., [15, 11]) to compute the eigenvalues of the skew-symmetric
matrix BJBT. A common problem of these methods is that they cannot compute
the symplectic matrix S simultaneously. Another problem is that the methods work
on the explicit matrix product JBT B or BJBT. The method that will be developed
in this paper computes the SVD-like decomposition of B. So it computes both the
eigenvalues of JBT B and the matrix S simultaneously. Moreover, since it works only
on the factor B, the eigenvalues of JBT B can be computed more accurately. This
trick is not new; see, e.g., [9, 14]. It has been also used to develop other singular value
and eigenvalue methods [5, 12, 1, 10].

The basic idea of the method is introduced in section 2, and the reduction and
iteration processes are described in section 3. In these two sections we focus on a
matrix B with B.JBT nonsingular. A detail reduction process for a general matrix B
is presented in section 4. The first order error bound for the computed eigenvalues is
provided in section 5. Numerical examples are given in section 6. The conclusion is
given in section 7.

In this paper || - || denotes the spectral norm.

1
e _ic
position of [ 2,
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2. The basic idea. We use the following procedure to compute an SVD-like
decomposition. First compute a condensed form of B by using only orthogonal trans-
formations. Then use the condensed form to construct the SVD-like decomposition.
The method for computing the condensed form is actually the implicit version of the
QR-like method for the real skew-symmetric matrix BJB”. In order to describe the
method in a simple way, in this and the next sections for a matrix B under consid-
eration we assume that B.JBT is nonsingular. With this assumption B is necessarily
of full row rank and has an even number of rows. A detailed process for a general
matrix B will be presented in section 4.

For a nonsingular skew-symmetric matrix K € R??*?P one can apply the QR-like
algorithm to compute its Schur form. The algorithm consists of two steps. First apply
a reduction procedure (see section 3) to K to obtain a bidiagonal-like form
21) ko= | - ).

where ()1 is real orthogonal and T' € RP*P is upper bidiagonal. Then apply the
QR-like SVD iteration to T to compute the SVD

T =Z,AZT,
where Zy, Zs are real orthogonal and A is positive diagonal. Let Q = Ql[zol ZOQ]'
Then we have the Schur-like form
T | 0 A

When K = BJBT, we will develop an implicit version of the method by operating
only on the factor B. Since (QT BU)J(QT BU)T = QT (BJBT)Q for any orthogonal
symplectic matrix U, we intend to determine an orthogonal matrix @ and an orthog-
onal symplectic matrix U such that R = QT BU is block upper triangular and the
product RJRT has the Schur-like form. Similarly we need two steps to compute such
a decomposition. We first determine an orthogonal matrix (; and an orthogonal
symplectic matrix U; such that

T | B1 B
QlBU1_|:O Bd )

where Bj, Bs, B3 € RP*™_ and

T T T T
(2.2) QfBJBTQl _ [B1B2 ByBi DB;Bj ] _ [ 0 B, B}

—BsBT 0 -BsBY 0

has the bidiagonal-like form (2.1). (This implies that ByBY = ByBT and B;BY is
upper bidiagonal.) We then apply an implicit version of the QR-like SVD iteration
to B1 BT, to obtain

(2.3) R, = ZIBW, Ry = ZT BsW,

where Z1, Z,, W are orthogonal and R;RY = A is positive diagonal. Let Q =
Ql[zol Zoz] and U = Ul[‘g/ V?,] (which is orthogonal symplectic). Then
Ry Ry

RQTBU[ 0 R

}, Ry = ZT' ByW.
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By (2.2) and (2.3), we have QT(BJBT)Q = RJRT = [ % 4].

The most condensed form that we can compute for B is

Riy Rip|Ris Riu] _ [Ri Re
0 0 [Rs O L0 Rs|’

(2.4) R=Q"BU = [

where Ri1, Roz € RP*P Ryq is upper triangular, Ra3 is lower triangular, and RnRg3 =:
A is positive diagonal. The detailed procedure will be presented in the next section.
Let A = diag(é1,...,0p). After having obtained such a decomposition the eigenvalues
of BJBT and JBT B are simply +ié1,.. .,+i0,. Define ¥ = VA. The symplectic
matrix S in the SVD-like decomposition can be computed by the formula

RN —(RLETH(RLENT | —RLETY —(RBYH)(RLEHT

0 I ~RI»1 0

2.

25) U 0 0 RT 5T 0 ’
0 0 RT,y-1 I

and the SVD-like decomposition of B is
p m—p p m-—p
Tra D (2 0 0 0
(2.6) Q" BS= » ( 0 0 > 0 .
Note this is the decomposition only in the case that BJBY is nonsingular.

The method is summarized by the following algorithm.

ALGORITHM. Given a real matrix B € R?’*2™ with B.JB” nonsingular, the algo-
rithm computes the eigenvalues of JBT B and BJB” or the SVD-like decomposition
(2.6).

Step 1. Determine the orthogonal matrix (1 and the orthogonal symplectic matrix
U; such that

(2.7) QTBU, = By B | Bis 314] _. [Bl BQ} ’

0 0 ‘ ng 0 0 BB

where Bii, Bog € RPXP By; is upper triangular, Bss is lower triangular,
BHB% is upper bidiagonal, and BlBg = BgBlT.
Step 2. Determine the orthogonal matrices Z1, Z5, W such that

(2.8) Ry = Z{ BuW, Rys = Z3 BasW,
where Ri; is upper triangular, Ros is lower triangular, and
Ry Ry = diag(6y,...,6,) = A

is positive diagonal.

Step 3. If only the eigenvalues of JBT B or BJBT are required, compute the nonzero
eigenvalues +idy, ..., +id, and stop. If the decomposition (2.6) is required,
go to Step 4.

Step 4.
(a) Update @ = Q1[5 4], U = Uy diag(W,1,W,I), and

R= Rll R12 ‘ R13 R14
0 0 [Ry 0 |

where R12 = ZlTBlg, R13 = Z;FBBW, and R14 = ZlTBl4.
(b) Compute ¥ = VA.
(¢) Use the formula (2.5) to compute S.
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3. Reduction and iteration. We need the following elementary matrices in
our algorithm.
1. Set of Householder matrices:

H(I) = {H =1, — 2uu” Ju"u | u € R™, u; =0, Vj €71},

where 7 is a subset of {1,...,n} giving the range of the columns and rows that H
operates on.
2. Set of Givens matrices:

GG,j)={G|G=1,—(1— oz)(eieiT + ejejT) + ﬁ(eiejT — ejeiT), o + %=1}
3. Set of symplectic Householder matrices:

HS(I):{HS|HS:: [Ig 2],]—[67‘((1')}.

4. Sets of symplectic Givens matrices:
(a) Gi(k) ={Gs | Gs € G(k,n + k) C R2nx2n},
(b) G5(i.j) ={Gs = [§ &11G €G(i.h)}. , ., , ,
L Gs = I, — (1 — a)(ee; +eje; +eppieny; +entpjen,
(C) gg(%‘]) _ {Gs 2T ( T)( JTJ +T + ) +; _+J)
+B(eie, j +€jeny; — entje; —enyiej), o+ 7 =1
where 1 <i < j <n.

5. Sets of symplectic permutations:
(a) P; = {[g 21| P is a permutation}.
(b) P3(k) ={Ps | Ps = Izn — (ekeg + en+kez;+k;) + (€k€$+k - en-l-ke{)}-
In the algorithm Steps 3 and 4 are simple. So we consider only the implementations
for Step 1 and 2.

3.1. Implicit bidiagonal-like reduction. We use the following displays with
a 6 x 8 matrix B to illustrate the reduction process. In the displays, “0” and “z”
denote a zero and an arbitrary element, respectively. Note that our goal is to reduce B
to a condensed form (2.7) such that the explicit product BJB” has a bidiagonal-like
form (2.1).

At the first stage we reduce the columns and rows 1 and 4 of BJBT implicitly.
For this we first perform three orthogonal symplectic transformations Ui 1, Vi,U 2
successively, where Uy 1,U12 € H*(1 : 4) and Vi € G{(1), on the columns of B to
annihilate B(4,2 : 4), B(4,1), and B(4,6 : 8):1

T T T xT|T T T T
T T T x|T T T T
T T T xT|T T T T
00 0 0|z O 0 O
T T T xT|T T X T
T T T xT|T T T T

We then perform a Householder transformation Hy; € H(1: 3,5 : 6) on the rows of

1Here we use the MATLAB forms to denote the entries, rows, and columns of a matrix.

b



Downloaded 09/30/14 to 129.237.46.100. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1064 HONGGUO XU

B to annihilate B(2:3,1) and B(5:6,1):

r r x xz|Tr T T X

0 z z z|x 2 = =

0 2z =z z|x o = x

00 0 0|l 0 0 O

0 z z z|x 2 = =

0 z z z|x = x

Now the product B(JB?T) has the form

(2 =z 2|2 o 2]
r r x r|Tr T x X z z |0 x =z 0 2z z|xz o x
0 z 2z z|x 2 = = zr z |0 = =z z 0 2|0 = =z
0 2z z z|x o = x z z |0 xz x| |z x 0|0 2 =z
0 0 0 0|l 0 O O z 0 0[0 0 Of |2 0 0[]0 0 O
0 z 2z z|x 2 = = z z |0 = =z zr x 2|0 0 =z
0 z z z|x = = = zr z |0 = =z r x xx|0 x 0

|z = |0 = |

(Since BJBT is skew-symmetric, its diagonal elements are zero.) We still need to
reduce the first column and row of BJBT. For this we have to form the first column
(but not the whole product) of BJBT explicitly, which has the pattern

ylz[O T T T x}T
Determine a Householder matrix Hq 2 € H(2: 3,5 : 6) such that
T
H172y1=[0 0 0 =z =z 0] .

Premultiply B by H; 2. Since H; 2 does not work on rows 1 and 4, it does not change
the pattern of B. After this transformation

r r x T|lxr x T X 0 0 Ojx = O

0 z =z 2zl o = 0 0 z|0 o =z
|0z z x|z T T X r |0 x 0|0 =z =z
B= 0 00 Ol O 0 0]’ BJB" = z 0 0]0 0 O
0O z =z x|z o = zr x |0 0 =z

0O z 2 x|z o x 0 2 |0 « O

The second stage is similar. We reduce the columns and rows 2 and 5 of BJBT.
We first perform transformations Us i, Va,Us 2, where Uz 1,Uso € H*(2 : 4) and
V2 € G§(2), on the columns of B to annihilate B(5,3 : 4), B(5,2), and B(5,7 : 8).
Then perform a Householder transformation Hs; € H(2 : 3,6) on the rows of B
to annihilate B(3,2) and B(6,2). Next we determine a Householder transformation
Hsy 2 € H(3,6) from the vector

y2 = (BJBT)(1,2)=[0 0 = 0 = x]T,
such that

Hyoyo=[0 0 0 0 z x]"
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Premultiplying B by H o,

OO OO O8
OO OoOo8 8
8 ©OOI8 8 8
8 O OI8 8 8
8 8 8|8 8 8
8 8 O|8 8 8
8 O OI8 8 8
8 ©OO8 8 8

and

BJBT =

o8 8cooc o
8 8 oo o
8 Ooolooc o
oo oo8 8
oo o8 8 ©

OO oOooOoR

Now the product BJBT is in the bidiagonal-like form.

At the third stage we perform transformations Us 1, V3, Us 2, where Us 1,Us 2 €
H*(3 : 4) and V3 € G5(3), on the columns of B to annihilate B(6,4), B(6,3), and
B(6,38):

o o|lor &

OO OO O8
OO OoOR &8 8
o OOk 8 R
8 8 8|8 8 8
8 8 O|8 8 8
8 O OI8 8 8
o OOk 8 R

0

We have got the form (2.7). Note that the symplectic transformations performed at
the last stage do not change the bidiagonal-like form of BJBT.

3.2. Implicit QR-like SVD iteration. We will give the implicit version of the
implicit shift QR-like SVD iteration [11, sect. 8.6] on By;BL. For a technical rea-
son related to decoupling and deflation, before iteration we transform Bs3 to a lower
Hessenberg form such that By; BZ; is lower bidiagonal. The transformations can be
performed as follows. For j =1,...,p—1, we construct a sequence of Givens matrices
G; € G(j,7 + 1) such that (B11B3;)Gy - Gp—1 becomes lower bidiagonal. (To con-
struct G; we need to compute (B11B33)(j,j : j+1).) Update Bys := G} - G{ Bas.
Then B3 becomes lower Hessenberg. Bj; is still upper triangular, but now BHBQTS
is lower bidiagonal.

When some diagonal or subdiagonal elements of By; BZ; are zero we can decouple
it into smaller unreduced lower bidiagonal blocks. With the assumption that B.JBT
is nonsingular all diagonal elements of By; B1; are nonzero. This is obvious from the

T
factorization BJBT = Ql[_B}) By, B“OB%]QlT. Moreover, Bj; is nonsingular. Hence
23

its diagonal elements are nonzero. The jth subdiagonal element of By;B1; has the
form? By1(j+1,j+1)Bas(j,j+1). Because B11(j+1,5+1) # 0, the jth subdiagonal

2This is why we transform Bo3z to a lower Hessenberg form. In the upper bidiagonal case the
jth superdiagonal element of Bl1B2T3 is in a dot product form Bi1(j,5)B23(5 + 1,7) + B11(j,7 +
1)Ba23(j+1,7+1). It may happen that this dot product is small but all four elements are not small.
When this happens, we have the difficulty of doing the decoupling or deflation.
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element of BHBQT3 is zero if and only if the jth superdiagonal element of Bs3 is zero.
With this observation, in practice when some superdiagonal elements of Bsgs are zero
or suitably small we set them to be zero and decouple By1 B2, into smaller unreduced
lower bidiagonal blocks. We then perform the following implicit version of the QR-like
SVD iterations to each pair of small diagonal blocks from By; and Bs3 corresponding
to each unreduced block in By; BL; to compute (2.8). The criterion for decoupling or
deflation that we use is

(3.1)  |Baz(j, g+ 1) < e(|Baz(f, )| + [Baz(j + 1,5)| + [Bas(j + 1,5 + 1)),

where ¢ is the machine precision. With this criterion decoupling or deflation will cause
an error in B of order ¢||B||.

We use the matrices Bi1, Boz with size 4 x 4 to illustrate one step of iteration.
Initially By; is upper triangular, Bz is lower Hessenberg, and By; BZ; is lower bidi-
agonal. Without loss of generality we assume that By Bi; is unreduced. Let § > 0
be a shift.®> Let A be the leading 2 x 2 principal submatrix of By Bl;Bo3BY. We
first determine a Givens matrix G; € G(1,2), in which the leading 2 x 2 principal
submatrix is a Givens rotation that transforms A — 61 to an upper triangular form.
Perform G4 on the rows of Bij:

By =

oo ® 8
oo 8 8
o8 8 8
88 8 8

where “®” denotes an unwanted nonzero element. Now the product becomes

r ® 0 0
z x 0 0
BHB;S 1o x =z 0
0 0 =z =

Perform a Givens transformation Wi € G(1,2) on the columns of By; to annihilate
B11(2,1) and perform it also on the columns of Bag:

B = 5 Baz =

o8 K
o8R8 &8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 ©
8 8 © O

T
0
0
0
This transformation does not change the pattern of BHBQT?). Next we determine a

Givens matrix S; € G(1,2) to annihilate (B11B%;)(1,2). (Again, in order to construct
S we need to compute (B11B%;)(1,1:2).) Perform S; on the rows of Bas:

z z ® 0

z x « 0
B23 = )

T r T T

T r x T

3We actually use the Wilkinson shift, one of the eigenvalues of the tailing 2 x 2 principal sub-

matrix of BllngngBTl.
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and now

BB, =

oR® 8 8
o8 8 O
8 8 © O
8 oo o

To annihilate (B11B%)(3,1) we first perform a Givens transformation Wa € G(2,3)
on the columns of Baz to annihilate Bag(1, 3). Perform W; also on the columns of Byi:

B = s Bos =

oOR®R K8 8
o8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 ©
8 8 oo

x
0
0
0

Then we perform a Givens transformation G € G(2,3) on the rows of Bj; to annihi-
late Bll(-?), 2)

r T T x
0 =z » «x
B = 0 0 = =
0 0 0 =z
At this stage
z 0 0 O
r z ® 0
BHB%;’ 1oz 2z 0
0 0 z =«

So (B11B1;)(3,1) has been annihilated and the bulge has been chased to the (2,3)
place. In a similar way we can chase the bulge down-rightwards until it disappears.
The rest of the reductions are illustrated by the following displays, where Bi; and
Bys are displayed simultaneously, the Givens transformation G; € G(j, 7+ 1) operates
only on the rows of By1, S; € G(j,j + 1) operates only on the rows of Bz, and
W, € G(j,j + 1) operates on the columns of both By; and Bas.

r r x x z x 0 O r r T x z x 0 O
0 z =z =z z x x 0 S 0 2 = =z r r x ®
00 z x|’ r r x x 0 0 =z x|’ r r x x
|10 0 0 = T T x X 0 0 0 =z xr T T x|
(2 =z z =z z x 0 O r Tr T X x x 0 0]
Wa, 0 = = =z x x x 0 Gs 0 =z » «x zr x x 0
0 0 =z x|’ r xr T T 0 0 z x|’ r r x T
10 0 ® = r r x x 0 0 0 =z T T T T
(2 = = =« z xz 0 O
53, 0 z =z = z xz x 0
0 0 =z x|’ r r T T
10 0 0 = T r T

We have finished one step of iteration.
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We now check the superdiagonal elements of Bas. If some of them satisfy (3.1),
we replace them by zero and decouple or deflate By; BZ;. We then run another step of
iteration on By; and Bajs or a pair of diagonal blocks from them. Repeat the iterations
and finally B3 becomes lower triangular and we have (2.8).

The algorithm costs about two to three times as much as the QR-like algorithm
applied to the explicit product BJBT.

4. General case. For a general matrix B € R"*?™ additional work needs to be
done. If rank B < n, initially we need to compute a factorization

(4.1) Bz@o[%ﬂ,

where Qg is orthogonal and By is of full row rank. This can be done by the QR
factorization with the column pivoting method (see [6]), the rank-revealing QR (see
[7]), or the SVD algorithm (see [11, sect. 8.6]).

Next we apply the reduction process to By. But now we have to modify the
above reduction process slightly. The reason is that even if By is of full row rank,
the product BoJBI may be singular. In this case at certain stages of reductions
some diagonal elements of block By; or Bss will be zero and we need to deflate the
zero eigenvalues of ByJ BOT . Because of this, we have to reduce matrix By to a more
generalized condensed form

p q m—-p—q P q m-=p—4q
p [ Bi1 B Bis Bi4s  Bis Bis
(4.2) QgBoUg = q 0 B22 0 824 0 0 ;
P 0 0 0 By, 0 0
where @5 is orthogonal, U; is orthogonal symplectic, B1;, B2s are nonsingular and
upper triangular, Bsy is nonsingular and lower triangular, By; B, is upper bidiagonal,
and

p q p

P 0 0 BllBg:;
(4.3) Q3 BoJBoQ2 = ¢ 0 0 0
P —B34B,ir1 0 0

The reduction procedure will be illustrated below. We then apply the same iteration
procedure described in subsection 3.2 to By1, B34 to compute

Ry = Z{ BuW, Rsy = Z3 BsuW,

where 71, Z5, W are orthogonal, R;; is upper triangular, R34 is lower triangular, and
A := Ry R%) is positive diagonal. Similarly, combining them with (4.2) and (4.1) we
can determine the orthogonal matrix @ and the orthogonal symplectic matrix U to
obtain the generalized version of (2.4),

p qg m—p—q p q m—-p—4q
p Rii Rio Ri3 Riys Ris R
T _q 0  Roa 0 Ry 0 0
Q BU = P 0 0 0 R34 0 0
n—2p—q 0 0 0 0 0 0
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Let ¥ = v/A. The symplectic matrix S can be computed by the formula

X —XRLENHT —X(RGEHT | -RLETY -X(RLGETHT —X(REETHT
I 0 —RES! 0 0

—RE>!
RE Y1
REL»!
RE,»!

o O OO O
o O OO
O O O~
O~ OO
~N O OO

where X = RI,3~!. Finally we have the SVD-like decomposition

p q m—-p—q p g Mm—p—4g
P > 0 0 0 0 0
T _q 0 Ry 0 0 0 0
QBS_p 0 O 0 > 0 0
n—2p—q \0 O 0 0 0 0

(If necessary one can multiply the symplectic matrix diag(] ,R;;,I I, R, T) from
the right to replace Ros by I.)

In the following we will show the reduction procedure for computing the condensed
form (4.2). The procedure consists of two steps. In step 1 we will reduce By to

p m—-—p—q (¢ p m—p—q ¢

_ p[Bu B Bis Bia Bis 0
(4.4) QY¥BU, = q| 0 0 Baz 0 0 0],
p 0 0 ng B34 0 0

where Q5 is orthogonal, U, is orthogonal symplectic, Bi1, Bas are nonsingular and up-
per triangular, and Bsy is nonsingular and lower triangular, such that QI (ByJBI)Q2
has the bidiagonal-like form (4.3). In step 2 we will perform only orthogonal sym-
plectic transformations on the columns to transform (4.4) to (4.2). Note that step 2
does not change the bidiagonal-like form of Q% (ByJBl)Qs.

Let us describe step 1 in an inductive way. Suppose that at a certain stage we
have reduced By to

p(By B Bz Bu B 0
Bo=gq| 0 0 By O 0 0
r\ 0 By By Byu By 0
Jom—=j—q¢ q J m—=j—q q
g (N O OO O o
e e O e I
(4.5) = q 0 0o N o 0 0,
j 0 o [LIDN 0o o
r—i\o L OO [ o
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and
Jor—=3 q¢ J r—J
j 000N\
p=ilo [] oo []
(4.6) BoJ By = 4 0o 0 o0 0 o0 [
i [N 0 0 0 o
r—i\ 7 ] o oo []

where r = p or p+ 1, j < p. (Initially we partition By to the block form with
j=q=0,and r = p if By has 2p (even) rows or r = p + 1 if By has 2p + 1 (odd)
rows.) Note that in (4.5) when j = p = r it is just (4.4) and we are done.

If j < p, we continue the reduction process. We first perform orthogonal symplec-
tic transformations on the columns of By to annihilate Bo(p+¢+j+1,7+1:m—q)
and Bo(p+qg+j+1, m—+j+2: 2m—q), and then perform a Householder transformation
on the rows of By to annihilate Bo(j+2: p,j+1) and By(p+q+5i+2: p+q+r,j+1).
After this step we have two cases.

(a) Bo(j+1,j4+1) # 0. We determine another Householder matrix to annihilate
the elements from j + 2 to p and from p+ ¢+ j + 3 to p + ¢ + 7 on the (§ + 1)th
column/row of ByJBYL. Premultiply By by this Householder matrix. Then By and
BoJBY again have the block forms (4.5) and (4.6), respectively, but j := j + 1. We
have done one step of regular reduction as in subsection 3.1.

(b) Bo(j + 1,5 +1) = 0. We need to deflate the zero eigenvalue of ByJBI. We
have two subcases:

(bl) r=p+1and
(b2) r=p.

For the first subcase the deflation is illustrated by a matrix with j =2, p=4, r =5,
qg=2,and m=8:

&
o
Il
coocoooocjcocos
coocooloojcoococo
coocooloojocoococo

SO oo oo oo R R

[ el Nl ool No R RS
8 8 o oo ol 8 8 8
8 8 o oo olk 8 8 8
8 8 OO0 oooory &8 8 8

8 8 8 8 8ok (8 8 8 8
8 8 8 8 88 88 8 8 8

8 8 8 8 8ok 8 8 8
8 8 8 8 olook 8 8 8

8 8 8 oolools 8 8 8
8 8 o oo ol’8 8 8 8
8 8 o oo olk 8 8 8
8 8 o oocook 8 8 8
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and

v =<9 o o
- 2
O = B
n .=
Sho & %m
LnMJe mm T 1
£ B S coooloocloocoooo
rwg o ©
n
rmm.m . P cocooocjoocjocoocooc oo
T 1 2 ® 9 T 1 -
oo s tlooclococoo so == 3 co & slocoloo g0 mm B a8 aocolcoo s a
£5 = 3
co 8 gloocloocoo & 225 co s rlcoocjcco s Ea 888 aooccooo 8 R
O < a Snp—"
o rRooloocloocococo .mwmm R 8o ojlcoocooclcococo B e 8 8 8 Rloojlooo 8 8
wm
< =2 O
R Rooloocloocococo fmmw Roooloooloocoo =y 88 8 8colo® 8 8 8
S o
[ R 2\l
Rooolooloocoococo S - coocolococoolcooco =5 S e e aloo|l®a s s s
O g~ 2~
coocolocoolcooco o
ceeeEereeee Wm.(/m e 888 8lcolsss sy
coococjloocjococ oo n g~ coococjlcocoojlooc oo =
= Efo fmmy(\z 8RB B[R 8(8R8AR -8R
co golooclooco 8 & mlunJD co nolocooc|loo v & 0
5972 c VW 88 8 880y 8888
3 -
coo 8loocjlooco 8 8 L oM coo 8loococjloo 8 8 RIS
- A o 88 8 8loocjlocooco 88
cCoooloojlo 8 gooO - CoOOoO0Coo0 ROO S g —
=R Z2 o 8 8 8 8loocjcoco 8 8
coocoloo|ls sococo 5 3% coocolcocols v o SE=
: ! enﬂ}: L 1 th 8 8 8 0o/ o 8 8
O = 5
l W\o)wq I S e g s 8coloocjlccococo
o Qoo o< Ho pma
Aa) S~ E 8a) £ <~ Sooocloojlocoocoocoo
~ O/I\/I\W ~ .1t27
] 8979 5 1 X cocoocoloojlcoococoo
Eab .lno L I
DAY~ = I
= O o Y o
e Ra 20 % )
T 2 = mﬁ.ﬂ
eaTOm = O =
£ oS 8 = o &8
2209 .
o< R = <f = 5 oo
[ET) N ~ H w e

dydesloseuinol/bio we s mmm//:dny ass ‘yb1iAdod Jo asuadl| N VIS 01 198 Igns uoNgLISIPY 00T 9t 2E2°62T 01 ¥T/0S/60 papeojumoq

Then perform Givens transformations Gy € G(8,9) and Gz € G(7,8) on the rows of
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By to annihilate the unwanted elements By(8,11) and By(7,10):

O g g < L O
E S T3 = s W
g=li o~ =
e EHTZ =
— =} = B +
~(.UV.da < B =
F Egeo =la <
~H B on = 0 -
: g RE = _ - g
coocoloocjcocoocoo Mcmm coocoloocoloococo S & coocoloocooclooc oo 4
[ R P =
coocoocloocjcoocoococo M@%m coocooclcoocolooco o B2 coocojcocoocjloocoo S
— -
[ <%} = [oN
8 8 8 yooooo 8 8 Mm4am [e=)e el )l ol e ) (oo N Nl MDO.w oo oo cooloo oo &
S =" o ] =
8 8 8 8coocjcoco 8 8 hmmmub 8 8 8 8lcoococjoo 8 8 de BRRRRBOOOOCO R R <
Ho < ® A
88 8 8coc|jlcoco 8. BmGLm 88 8 vccoclcoo 8 8 cmm 888 ycococjcooasy
Josr
2,
88 8 8coclcoo s s nDOcmmm tsssloooloo sy g s s 8scocolco sy g
= @
R o o
8RB BoOo|O 888\ mwmm 88 8 RoocOlo 8 as ¥R B8 8ROOOORER
= 2 3~ U« ]
8 8 8 8loo|y 88 8 8 Mmom.ux 8 8 8 ¥loooly 8 88 mm BR s acoolgasa
2 g ¥ oaw L5 0
8 8 8 B8 888388 8 8 anool 8 8 8 B8 3 38818 8 mocm 8 8 8 88 838 188 888 g
g —~ W < O m
888 88O|ls 8 8 8 8 w%fmpm_ 8 8 8 8|go 8wy ayy G 8 8 8 8|y 8oy sgagsyg w
[ 5]
L= -
S g8 .= o
888 8oocoors g2 7F 888 Bocooloo s 9 E B8 8 Bocooco 8 2
I = 1 =
888 scocoocas 583 E 8 8 8 8lcocoocjoo 8 8 & = 8 8 8§ ycoococjcoo 8 8 o
—= =~ o —= =
Q [ =B <
Y 8sooclcojlcoocoococo memp 8 8 8 §oooloo 8 8 %mo 8 8 § y§coococjcoo 8 8 D
th.lO.m < g
Yoo oclcoojcoocoocoo MMCm 8 yo0oolcoocojlooc oo mn Y yooccocoocjcoocoo To.ﬁ
0= 8 D n o+ B
coocoocloocjcoocoo Laublmmlpmo 3cocolcocoocjcooc oo £ B Soocojcocojcoocoo .JO__
L 1 ) = L 1 o L 1 =
tMvmm L o A -
I w2 E I g 5 I - T
=) mB <= =) = g =) nw
Q) 2 o g5 e e Q ©
= = © < o —
ymnalm.w ‘nhané DDO_
AL A =R !
1% L o © =4 ° =]
2 g WU as tCW < |l
528 ~oiZ SR = 0
zEL e Z 2 2 SIS

dydesloseuinol/bio we s mmm//:dny ass ‘yb1iAdod Jo asuadl| N VIS 01 198 Igns uoNgLISIPY 00T 9t 2E2°62T 01 ¥T/0S/60 papeojumoq
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For the second subcase the reduction procedure is illustrated by a matrix with

g
—
]
=
+
T 1 m T
OO OO oo o oo o = SO OO OO0 o oo
E R 88 8occoo 8 8 | . | m coococoloocloocoo
< ool o
2 R8 8 8 Y8cjocoocoo 8 8 OO 8 8 Yoo o 8o m 88 8 8 8 8 8
2 8 8 8 clcooco 8 8 oo 8 8 8cjlcoococ o g m 8 8 8 8 8coocjlcoo 8 8
a8 88 3cococoo 8. o R0 o0colocloococ oo cmc 888 8 8cocjcoo 8 8
8 8 8 8 8ol 8 8 8 8 80000 oc oo uhb 8 8 8 8 Y§yjoojoo 8 8
=
B R 8 8 8o 8 8 88 ISl el ool (ol oo ool o] % 88 8 8 8000 &8 8 8
88 3 8 8ols 8 8 8 8 [N eNeNoNollo} oo ol o) m 8 8 8 8 Rjloo(y8 8 8 8
3
88 8 8 8 RIS |’ 8’ 8 K OO |8 Koo o 8 8K m 88 8 8 88 88 888
s 888 a8loesaesa co 8o slolcoco 8 8y m RO O O O [ O | S S S S
oq 8 8 8 8 8cjlcoco 8 8 cCoo 8 ROCOO 8 R rm 8 88 8 8o0coc|lco v 8
&
g 88 88 3cjcooco 88 COoOocooLo 8 8OO B 4 88 8 8 8oo|loo 8 8
wn 3
1m 8 8 8 8 3cjlooco 88 OCOoOOCOoOIDIR8 8O OO mm 8 8 8 8 80oocjlcoo 8 8
Jav] L | &3
— R 80 0colcjcooc oo I ﬂoaw 8 8 8 8 3cocjcoo 8 8
! R Roocolojcocooc oo JBO mc KR Yoo ocloocjocooc oo
S )
(<]
) rtoococoloclccococo 2 mW7 soococoloocjloocoo
I L ' M o & L
(<]
& I mm Il
. z .
v oS &0 O Q
: g3
= mm
[N} Cm
: 3 X
= b A A

dydesloseuinol/bio we s mmm//:dny ass ‘yb1iAdod Jo asuadl| N VIS 01 198 Igns uoNgLISIPY 00T 9t 2E2°62T 01 ¥T/0S/60 papeojumoq
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and

BoJBl =

OO 8 8logoooc oo oo
OO 8 OO0 o0 oo
8 8 ©OQ0look8 8 oo O
8 8 OQ0oloog o8 o0
8 8 OQoloook 8 ©o O
OO oo o oo
O oo oo oooc o oo
8 OO0 oo ok 8 8 O
O8 OO0 OIR8 88 ©O

SO OO oo oooco o ORR
SO oo o0ooOo 8 R

To maintain the block Bs3 in upper triangular form and to maintain the condition
r > p we first perform a permutation to move the 5th row of By to the bottom and
then perform another permutation to move row 6 to row 5:

By =

[l elo ool ol ool o)
OO O OO oo oo0oc oo

OO OO OO0 OR8rR
SO oo oo oocoos8 R

8 8 8 Ooolook 8 8 8
8 8 8 Oologolkg 8 8 8
8 8 8 ©OO0look 8 8 8
8 8 8 O0olook 8 8 8

88 83 8 83/lo8|8 8 8 8

8 8 8 8 88 88888
8 8 8 8 83|00t 8 8 8
8 8 8 8 oot 8 8 8
8 8 8 0O0oloooig 8 8 8
8 8 8 O0oloos 88 8
8 8 8 O0oloo’t 8 8 8
8 8 8 O0looi 8 8 8

and

BoJBY =

SO OR gloolooc oo
S OO R O o000 o0 O
8 8 8 ©OOoloolsg oo o
8 8 8 oolooosy oo
(el ev e o Nol ol ol loNeol N o)
SO OoO oo oo
8 8 OO ook 8 o0
8 O8 OO0k’ 8 oo
O8 8 OO0 ok 8 ©O

OO OO OO OO OR
SO oo oo 8 &

Now By and BoJB{ have the forms (4.5) and (4.6), respectively, but p := p — 1 and
q:=q+ 1.

Because By is of full row rank, the submatrix consisting of the third and fourth
block rows in (4.5) must be of full row rank. Then both Bz and the (1,1) block
of Bsy (in lower triangular form) must be nonsingular. Hence during the reductions
no diagonal element in Bs4 will be zero, and for deflation we need only to check the
diagonal elements of By;. In practice if By1(J,j) satisfies

|Bll(j7.7)| < 8||B||7
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we set it to zero and perform the deflation step described in case b.

Repeating the above reduction process, we will get (4.4).

We now perform a sequence of orthogonal symplectic transformations to transform
(4.4) to (4.2). This is illustrated in the case when p =2, ¢ = 3, and m = 6:

0

oy

o

|
o oloocolos
o oloocoloo
o oloocoloco

OOl O OoOR R

O OO O OoOR &

8 8loo 88 8

8 8|O8 8|&8 8
8 I8 8 8|8 8
8 |00 Ok 8
8 OO O OoOK 8
O OO O OoOR 8
O OO O OO

Perform the symplectic Givens transformations G; € G5(1,4), G2 € G5(2,4) on the
columns of By to annihilate By (6 : 7,4):

&

I
[l e] el el an] Bl
[l o] ol ol B
[l en] Ben R e i) RS
o oloo g8 &
8 8 oOo8R 8|8 8
8 8|8 8 8|8 8
8 R|lOoO0o K8 8
8 OO K8 8
(vl en] ol Ban] B IR S
[l o] Nl RS
O ol o oo o
[l w] Nl el e Nl an]

In the same way we can annihilate By(6: 7,5) and By(6: 7,6):

oy
o
|
ocoloocolos

O OO O OR K

[l en] Renl e i) R SR ]

S o|loorR|R®R &R

o oloR 8|8 8
O OlR8 8 88 8
8 88 8 8|8 8
8 OI8 8 8|8 8
o olooc olr R
o olooc olr 8
o olooc oy 8
o olooc ols’ 8

Finally perform a symplectic permutation P € P to move columns 3 and 9 to columns
6 and 12, respectively. We have the form (4.2),

oy
o
|
coloocolos

O OO O OR KR

O oloo 8|8 R

O OolOoR 8|8 R
O OIR 8 8|8 8
O OO O OR R
8 8|8 8 88 8
8 OR 8 88 8
O OO O OoOR R
O OO O OR R
[e=Rien] Ren i el RS TR
[e>lien] Renli el an) § SR

5. Error analysis. We only give an error analysis about the eigenvalues. We
will provide the first order perturbation bound for a simple nonzero eigenvalue of
JBTB or BT.JB. We will then use the perturbation bound to give the relative error
bound for the computed eigenvalues.
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5.1. Perturbation about eigenvalues. All nonzero eigenvalues of BJBT and
JBBT are purely imaginary and they are in conjugate pairs. For real perturbations
the perturbation results for both eigenvalues in a conjugate pair are the same. For
this reason in the following we consider only the eigenvalues iA with A > 0.

Suppose that i) is a simple nonzero eigenvalue of BJBT and z is a corresponding
unit norm eigenvector. Define another unit norm vector

_ JBTz
T8
with 3 = ||JBTx||. Premultiplying the equation by JBT B, we have

JBT By = i\y.

Hence y is a unit norm eigenvector of JBT B corresponding to i\. By using the
conjugate transpose of the above equation we have

(Jy)* (JBTB) = iA(Jy)".

So Jy is a unit norm left-eigenvector of JBT B. The relation between z, y is summa-
rized as follows:

(5.1) By = iax, JBTz = By,

where a = % Taking the conjugate transpose of the second equation in (5.1) and

postmultiplying it by Jy,
By*Jy = =™ By.
Premultiplying the first equation in (5.1) by x*,
x* By = ia.

The reciprocal of the condition number of i\ corresponding to the matrix JBT B is
k= |(Jy)*y| = ly*Jy|. Combining the above two equations,

et
5.2 K= —.
(5.2) 3
Since k < 1 we have a < 3. Because A = a3 and 3 = ||JBTz|| < ||B||, we have
A
(5:3) B <esVvAsA<IBl

The first order perturbation bound is given in the following lemma.

LeEMMA 5.1.  Suppose that i\ (A > 0) is a simple eigenvalue of BJBT and
JBT B, and x, y are the corresponding unit norm eigenvectors with respect to BJBT
and JBT B, respectively, satisfying (5.1). Let E be a real perturbation matriz and let
B =B+ E. When |E| is sufficiently small both matrices BJBT and JBT B have a

purely imaginary eigenvalue i\ such that

i — i\
i

2| Bl
(0%

’ 9Im (y* Ex)

+O(|E]?) < +O(|E]*).

Proof. The proof follows from the result in [4] for a formal matrix product. 0
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5.2. Error analysis. Again we consider only the case that B.JB” is nonsingular.
The general case can be analyzed in the same way. Because of rounding error, the
algorithm in section 2 actually computes a block upper triangular matrix R satisfying

R:[Rl Rz]:{Rn Ris Ri3 R

_ T
0 Rs 0 0 Ry 0 |=@ BFEU

where @ is orthogonal, U is orthogonal symplectic, and F is an error matrix satisfying
|IE|| < ce||B]| for some constant c. Suppose that ¢A (A > 0) is a simple eigenvalue
of BJBT and JBT B with unit norm eigenvectors z, y satisfying (5.1). When | E|| is
sufficiently small by Lemma 5.1 there is an eigenvalue i\ of RJRT and JRT R such that

iA—iA| _ 2[Im (y*Ex)| 2 1Bl 2
4 = E|*) < 2ce— .
(5.4) - L20l 1 0(1B)?) < 228 4+ 0(%)
However, the eigenvalues computed by the algorithm are +idq, ..., £0,, where
01,...,6, are the diagonal elements of RHRQTB. Because of rounding error the product

RJRT is not exactly in the Schur-like form. By a straightforward analysis it satisfies

0 A:| |: F11 F12

T _
(5.5) RJR _[_A 0 o

} =T+ F

where A = diag(é1,...,6,), Fia is strictly upper triangular, F; = —Ff;, and ||F| <
de||B||? for some constant d. So the computed eigenvalues are the exact ones of I' and
i\ in (5.4) is an eigenvalue of I' + F. When ||F|| is sufficiently small and we apply
the perturbation result [16, sect. 4.2.2], [11, sect. 7.2.2] to I' + F for i\ there exists a
corresponding eigenvalue of I'; say 6y, such that

i — i8] = |2 F2| + O(| FI]2),

where z = g(ek + iepyk) is the unit norm eigenvector of 6y, (which is obvious from
the structure of I'). Because Fj; is real skew-symmetric and Fio is strictly upper

triangular,
1
2*Fz = i(eZFnek + 2ie; Fiser) = 0.

Hence |i\ — i6;| = O(¢2). Combining it with (5.4) we have the error bound for 6y,

0y, —iX| _ 2|Im (y*Ex)]
x|

(5.6) +0(?) < 205@ + O(e?).

(67

For comparison we also give the error bounds for the eigenvalues computed by
the numerically backward stable methods working on the explicit product BJBT or
JBT B. For both matrices explicitly forming the product will introduce an error ma-
trix of order ¢|| B||?. During the computations another error matrix will be introduced.
Here for both matrices JBT B and BJB” we assume that the error matrix is of order
e|| B||?. (This is true for matrix JBT B. But for matrix BJBT the order is €| BJBT|,
which can be much smaller than €| B||?.) With standard perturbation analysis [16,
sect. 4.2.2], [11, sect. 7.2.2] and by using the equality A = o and (5.2), for the simple
eigenvalue i)\, the methods working on BJBT give an eigenvalue i\, satisfying

B|? B B
< cseu +0(e%) = (CSEU) 151l +0(e%)

idg — i)
‘ B

(5.7) -
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for some constant c,. The methods working on JB” B give an eigenvalue iAn satisfying

Ay, — i\

(5.8) —

[0

B|? B B
< che—”)\l&| +0(e?) = (c;ﬁ”a') 151 +0(£?)

for some constant c¢. By (5.3),

LT
a — B =

So in general among three bounds (5.6) is the smallest and (5.8) is the biggest. When
a or [ is small, ||B]|/a or ||B||/8 can be much bigger than 1. Since A\ = af3, this
means that our method can compute tiny eigenvalues more accurately.

6. Numerical examples. We tested and compared the following numerical
methods for computing the eigenvalues of the matrices BJBT and JB” B.
SSVD. The SVD-like method presented in this paper;
CSVD. The SVD-like method applied to the matrix L”, where L is the Cholesky
factor computed from the explicitly formed matrix A := BT B;
SQR. QR method (bidiagonal-like reduction plus SVD) for BJBT;
JAC. Jacobi method [15] for BJBT;
HAM. Hamiltonian method [2, 3] for JBT B.
All tests were done on a Dell PC with a Pentium 4 processor. All computations were
performed in MATLAB version 6.1 with machine precision ¢ ~ 2.22 x 10716,
Example 6.1.

™ 0
B_Q|:O T5:|7
where
2 1
1 2 1
T = 1 2 1 ,

1 2 1
1 2

and Q = 5I19 —eel with e = [1 ... 1]T. (Q/5 is a Householder matrix.) ||B| =
3.62 x 10%, |BJBT| = ||JBTB| = ||B||> = 1.31 x 10".

This example is supposed to test the numerical behavior when no cancellation
occurs in forming the product BJBT. Note that

0 7w

BJBT =Q [ _pi0 g

10
}Qﬁ JBTB:ZS[ 0 T}

-7 0

Both matrices have exact eigenvalues £i25[2 cos(k7w/12)]?° (k = 1,...,5). Since all
elements of B are integers, no rounding error is introduced in forming the products
BJBT and JBTB.

The exact eigenvalues and the relative errors of computed eigenvalues are reported
in Table 6.1.

In this example for each eigenvalue i\, & = 3 = VA and k = 1. From Table 6.1
it is clear that SSVD gives eigenvalues with relative errors about % times smaller
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TABLE 6.1
Example 6.1: Ezact eigenvalues and relative errors.

Eigenvalue relssvp relcsvp relsgr reljac rel g Anm

+44.77 x 1075 | 4.0 x 10712 4.7x 1077 2.9 x 10~ 1.2 x 1076 6.0 x 106
+i2.50 x 101 3.8x10715  42x10712 6.0x10712 29x10712 4.6 x 10712
+42.56 x 10* 20x1071%  20x1071% 92x1071 36x107% 57x10°15
+41.48 x 106 1.1x1071% 14x1071 16x1071% 16x10"1% 1.7x10°15
+41.31 x 107 7.1 x 10~16 0 1.4x 10716  85x 10716 57x10"16

TABLE 6.2
Ezxzample 6.1: Residuals and errors.

SSVD CSVD SQR JAC
errg 46x10718  40x10"18  29x10°6 1.2 x 1076
resp 1.3 x 10715 — 2.8 x 10716 89 x 1016

resya 1.6 x 10715  13x1071 1.7x1071% 3.2x10°16
resscr | 21x1078  19x1078 35x1071 91x10"1!

than other methods. CSVD is basically the same as other methods. This is because
computing the Cholesky factorization already introduced an error of order O(g||B||?)
to A.

We also computed the following quantities:

DS 1 - B
errg = max{||SJST — J||,||STJS — J||}, resp = W,
ros s |S(JDTD)S—' — JBTB|| I |JDTD — S~Y(JBTB)S||
AT [JBTB] ’ ser = [JDTD]| ’

where QDS™! is the SVD-like decomposition of B. These quantities are used to
measure the accuracy of the symplectic matrix .S, the residual of the SVD-like de-
composition of B, the residual of the canonical form of JB” B, and the accuracy of
the eigenvectors, respectively. The matrices S and D are computed as follows. With
SSVD and CSVD, S is computed by using (2.5) and D = diag(3, ¥). With SQR and
JAC; after obtaining the Schur-like form

BJBTzQ[OA ﬂ o

we set D = diag(v/A,VA). Let Z:= D~'Q"B. Then B = QDZ and

0 A

27727 =D 1QTBJBTQD™ ' = D! { A 0

}DI—J.

So we take Z~! as S. Since Z is symplectic, Z7! = JZTJT. In practice we use
the formula S = JBTQD~'J7 to compute S. The computed results are reported
in Table 6.2. Both SQR and JAC give slightly smaller residuals resg and res;a.
But both SSVD and CSVD give much smaller errg, indicating that the matrix S
computed by SSVD and CSVD is more “symplectic.”

Ezample 6.2.
- ¥ 0 X X T
s=efy 2] ([0 5]
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TABLE 6.3
Example 6.2: Ezact eigenvalues and relative errors.

Eigenvalue relssvp relcsvp relsgor reljac relganm
+i 6.9x1071% 11x10710 27x10"1% 28x10714 58x10°10
+4i 1.2x10713  6.6x1079 80x10~'* 81x10~1% 1.5x10°8
+9¢ 53x1071% 12x10713 20x107% 99x10716 22x10°13

+16¢ 28x 10714  64x10718 34x1071 34x1071% 4.9x10712
+25¢ 1.6 x10~1%  55x10712 13x107'® 85x10716 1.5x10"10
TABLE 6.4

Ezample 6.2: Relative error bounds.

Eigenvalue 25”%‘ € HP;\HQ € ”52”2
+4 22x10711 11x10719  56x10°7
+4i 1.1x10712 28 x10~1  56x107°
+9; 1.3x 1071 1.2x10712 1.7x10°10

+16i 78x 10713 6.9x10712 1.1x10"8
+25¢ 6.3x10712 44x10712 1.1x10°6

where ¥ = diag(5,4,3,2,1) and X = diag(100,10,1,0.1,0.01), @ is a random orthog-
onal matrix, and V is a random orthogonal symplectic matrix. |B| = 7.07 x 102,
| B||? = 5.00 x 10°.

This example is supposed to test the numerical behavior when big cancellation
takes place in forming the product BJBT (||BJBT| = 25). The exact eigenvalues
and the relative errors of the computed eigenvalues are reported in Table 6.3. For
each eigenvalue i\ the relative error bounds (5.6)—(5.8) are given in Table 6.4. (Here
we set ¢ = ¢; = ¢ = 1.)

Because for the Hamiltonian matrix JBT B its eigenvalues have relatively big
condition numbers, HAM gives less accurate eigenvalues. Again, CSVD also gives less
accurate eigenvalues because of the Cholesky factorization. The other three methods
compute the eigenvalues with the same accuracy, as predicted by the error bounds.
The residuals of the decompositions and errg, resscr are reported in Table 6.5. In
this example all these methods basically give the same results.

Ezample 6.3.
¥ 0 0l0 0 0
B=Q|0 I, 0[]0 0 0]|U",
0 0 0|/ 0 O

where ¥ = diag(1074,1072,1,10%), Q is a random orthogonal matrix, and U is a
14 x 14 random orthogonal symplectic matrix. ||B|| = 10? and || B||? = 10*.

This example is supposed to test the numerical behavior when BJB” has (two)
zero eigenvalues. The exact eigenvalues, the absolute errors for zero eigenvalues, and
the relative errors for nonzero eigenvalues are reported in Table 6.6.

In this example for zero eigenvalues SSVD gives the eigenvalues of order ¢, while
SQR, JAC, and HAM give answers about ||B|| times bigger than SSVD.* For nonzero
eigenvalues, as in Example 6.1, SSVD gives the results with relative errors about %
times smaller than those of the other methods.

4The matrix JBT B actually has two additional 2 x 2 Jordan blocks corresponding to zero eigen-

values. The corresponding eigenvalues computed by HAM are £8.37 x 10~8 £ 2.64 x 10~ 73.
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TABLE 6.5
Example 6.2: Residuals and errors.

SSVD CSVD SQR JAC
errg 88x 10712 34x10711 32x1071'2 55x10°13
resp 1.2 x 10~15 - 38x10716 16x10°15

resya 1.3x 1071  1.8x1071 21x1071% 1.0x10°15
resscr | 3.1x1072 65x10710 31x1079 3.1x107°?

TABLE 6.6
Ezxact eigenvalues and errors for Example 6.3.

Eigenvalue relssvp relsqQr relyjac relganm
O(double) | 1.7x 1071 1.1x 107 57x107% 15x10713
+410~8 1.9x 1071  89x10°6 1.3 x107° 5.9 x 106
443104 57x10713  17x107% 41x10"1 75x10°10
+i 1.3x1071%  1.1x1071 1.1x1071% 21x10°13
+410% 1.8x 10716 1.8x10716 1.3x10"1% 3.6x 1016

In this example we did not test CSVD. Because in this case it is more complicated
to compute the matrix S by SQR and JAC, we did not compare the residuals and
errs, TESSCF.

7. Conclusion. We have developed a numerical method to compute the SVD-
like decomposition of a real matrix B. The method can be simply applied to compute
the eigenvalues and canonical forms of the skew-symmetric matrix BJBT and the
Hamiltonian matrix JBT B. Unlike other numerical methods this method works only
on the factor B. In this way the eigenvalues (particularly the small eigenvalues) of
BJBT and JBT B can be computed more accurately. This has been demonstrated by
the error bound and several numerical examples. The numerical examples also show
that the symplectic matrix S computed by the proposed method is more accurate.

Acknowledgment. The author gratefully acknowledges the anonymous review-
ers for their valuable comments and suggestions on the first version of this paper.
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