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Abstract. We present a numerical method for computing the SVD-like decomposition B =
QDS−1, where Q is orthogonal, S is symplectic, and D is a permuted diagonal matrix. The method
can be applied directly to compute the canonical form of the Hamiltonian matrices of the form
JBTB, where J = [ 0

−I
I
0
]. It can also be applied to solve the related application problems such as

the gyroscopic systems and linear Hamiltonian systems. Error analysis and numerical examples show
that the eigenvalues of JBTB computed by this method are more accurate than those computed by
the methods working on the explicit product JBTB or BJBT .
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1. Introduction. It is shown in [18] that every real matrix B ∈ R
n×2m has an

SVD-like decomposition

QTBS =

⎛
⎜⎜⎝

p q m− p− q p q m− p− q

p Σ 0 0 0 0 0
q 0 I 0 0 0 0
p 0 0 0 Σ 0 0
n− 2p− q 0 0 0 0 0 0

⎞
⎟⎟⎠,(1.1)

where matrix Q is real orthogonal, S is real symplectic, and Σ is positive diagonal.

Definition 1.1. Let J = [ 0
−Im

Im
0 ].

1. A matrix S ∈ R
2m×2m is called symplectic if SJST = J .

2. A matrix U ∈ R
2m×2m is called orthogonal symplectic if UTU = I and

UJUT = J .

3. A matrix A ∈ R
2m×2m is called Hamiltonian if JA = (JA)T .

The SVD-like decomposition (1.1) is closely related to the canonical forms of the
real skew-symmetric matrix BJBT and the real Hamiltonian matrix JBTB. By (1.1)
and the symplectic property of S, we have the Schur-like form for BJBT ,

BJBT = Q

⎡
⎢⎢⎣

0 0 Σ2 0
0 0 0 0

− Σ2 0 0 0
0 0 0 0

⎤
⎥⎥⎦QT ,(1.2)
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COMPUTING SVD-LIKE DECOMPOSITION 1059

and the structured canonical form for JBTB,

JBTB = S

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 Σ2 0 0
0 0 0 0 0 0
0 0 0 0 0 0

− Σ2 0 0 0 0 0
0 −I 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦S−1 =: SΓS−1.(1.3)

(Note that the condensed matrix Γ is still Hamiltonian.) In fact, let Σ = diag(σ1, . . . , σp).
With appropriate permutations, (1.2) can be transformed to the real Schur form of
BJBT ,

diag

([
0 σ2

1

−σ2
1 0

]
, . . . ,

[
0 σ2

p

−σ2
p 0

]
, 0, . . . , 0︸ ︷︷ ︸

n−2p

)
,

and (1.3) can be transformed to the real Jordan canonical form of JBTB,

diag

⎛
⎜⎜⎜⎝
[

0 σ2
1

−σ2
1 0

]
, . . . ,

[
0 σ2

p

−σ2
p 0

]
,

[
0 0
−1 0

]
, . . .

[
0 0
−1 0

]
︸ ︷︷ ︸

q

, 0, . . . , 0︸ ︷︷ ︸
2(m−p−q)

⎞
⎟⎟⎟⎠ .

In this paper we will develop a numerical method to compute the SVD-like de-
composition (1.1). Our main goal is to use it to compute the structured canonical
form (1.3) of the Hamiltonian matrices JBTB.

The eigenvalue problem of such Hamiltonian matrices has a variety of applications.
One example is the linear Hamiltonian system [19]

ẋ(t) = JAx(t), x(0) = x0,

where A ∈ R
2m×2m is real symmetric positive definite. The solution of such a Hamil-

tonian system satisfies

xT (t)Ax(t) = xT
0 Ax0 ∀t ≥ 0.(1.4)

This shows one fundamental principle of the Hamiltonian system, the conservation
law. The solution x(t) can be computed by using the structured canonical form
of the Hamiltonian matrix JA. Since A is positive definite, one can compute the
factorization A = BTB, say, the Cholesky factorization. After having computed the
SVD-like decomposition of B, one has

JA = S

[
0 Σ2

−Σ2 0

]
S−1 =: SΓS−1.

(Note that Γ is slightly different from that in (1.3), because here A is nonsingular.)
The solution can be computed by the following formula:

x(t) = SeΓtS−1x0.

It is easily verified that for any t, eΓt is symplectic. If S is exactly symplectic, then
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1060 HONGGUO XU

one can verify that

xT (t)Ax(t) = xT (t)J−1(JA)x(t) = (SeΓtS−1x0)
TJ−1(SΓS−1)SeΓtS−1x0 = xT

0 Ax0.

Numerically, for the solution x(t) to obey the conservation law (1.4), one needs to
compute the eigenvalues of JA and the symplectic matrix S accurately.

Another example involves the gyroscopic system [8, 13, 17]

q̈ + Cq̇ + Gq = 0, q(0) = q0, q̇(0) = q1.

where G ∈ R
m×m is symmetric and C ∈ R

m×m is skew-symmetric. This system is
related to the eigenvalue problem of the matrix

F =

[
−C −G
I 0

]
=

[
−C −I
I 0

] [
I 0
0 G

]
.

When G is positive semidefinite it has a full rank factorization G = LLT . By using
the equality

[
−C −I
I 0

]
=

⎡
⎣ −1

2
C I

I 0

⎤
⎦J

⎡
⎣ 1

2
C I

I 0

⎤
⎦ ,

F is similar to the Hamiltonian matrix

J

⎡
⎣ 1

2
C I

I 0

⎤
⎦[

I 0
0 LLT

]⎡⎣ −1

2
C I

I 0

⎤
⎦ = J

⎡
⎣ −1

2
C I

LT 0

⎤
⎦T ⎡

⎣ −1

2
C I

LT 0

⎤
⎦ .

Then the eigenvalue problem of F can be solved by computing the SVD-like decom-

position of [
− 1

2C

LT

I
0 ].

The eigenvalues of JBTB can be computed in many ways. For example, one
can use the structure preserving method [2, 3]. Since the eigenvalues of JBTB and
BJBT are the same, a more efficient and reliable way is to use the QR method or
the Jacobi method (e.g., [15, 11]) to compute the eigenvalues of the skew-symmetric
matrix BJBT . A common problem of these methods is that they cannot compute
the symplectic matrix S simultaneously. Another problem is that the methods work
on the explicit matrix product JBTB or BJBT . The method that will be developed
in this paper computes the SVD-like decomposition of B. So it computes both the
eigenvalues of JBTB and the matrix S simultaneously. Moreover, since it works only
on the factor B, the eigenvalues of JBTB can be computed more accurately. This
trick is not new; see, e.g., [9, 14]. It has been also used to develop other singular value
and eigenvalue methods [5, 12, 1, 10].

The basic idea of the method is introduced in section 2, and the reduction and
iteration processes are described in section 3. In these two sections we focus on a
matrix B with BJBT nonsingular. A detail reduction process for a general matrix B
is presented in section 4. The first order error bound for the computed eigenvalues is
provided in section 5. Numerical examples are given in section 6. The conclusion is
given in section 7.

In this paper ‖ · ‖ denotes the spectral norm.
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COMPUTING SVD-LIKE DECOMPOSITION 1061

2. The basic idea. We use the following procedure to compute an SVD-like
decomposition. First compute a condensed form of B by using only orthogonal trans-
formations. Then use the condensed form to construct the SVD-like decomposition.
The method for computing the condensed form is actually the implicit version of the
QR-like method for the real skew-symmetric matrix BJBT . In order to describe the
method in a simple way, in this and the next sections for a matrix B under consid-
eration we assume that BJBT is nonsingular. With this assumption B is necessarily
of full row rank and has an even number of rows. A detailed process for a general
matrix B will be presented in section 4.

For a nonsingular skew-symmetric matrix K ∈ R
2p×2p one can apply the QR-like

algorithm to compute its Schur form. The algorithm consists of two steps. First apply
a reduction procedure (see section 3) to K to obtain a bidiagonal-like form

QT
1 KQ1 =

[
0 T

−TT 0

]
,(2.1)

where Q1 is real orthogonal and T ∈ R
p×p is upper bidiagonal. Then apply the

QR-like SVD iteration to T to compute the SVD

T = Z1ΔZT
2 ,

where Z1, Z2 are real orthogonal and Δ is positive diagonal. Let Q = Q1[
Z1

0
0
Z2

].
Then we have the Schur-like form

QTKQ =

[
0 Δ

−Δ 0

]
.

When K = BJBT , we will develop an implicit version of the method by operating
only on the factor B. Since (QTBU)J(QTBU)T = QT (BJBT )Q for any orthogonal
symplectic matrix U , we intend to determine an orthogonal matrix Q and an orthog-
onal symplectic matrix U such that R = QTBU is block upper triangular and the
product RJRT has the Schur-like form. Similarly we need two steps to compute such
a decomposition. We first determine an orthogonal matrix Q1 and an orthogonal
symplectic matrix U1 such that

QT
1 BU1 =

[
B1 B2

0 B3

]
,

where B1, B2, B3 ∈ R
p×m, and

QT
1 BJBTQ1 =

[
B1B

T
2 −B2B

T
1 B1B

T
3

−B3B
T
1 0

]
=

[
0 B1B

T
3

−B3B
T
1 0

]
(2.2)

has the bidiagonal-like form (2.1). (This implies that B1B
T
2 = B2B

T
1 and B1B

T
3 is

upper bidiagonal.) We then apply an implicit version of the QR-like SVD iteration
to B1B

T
3 , to obtain

R1 = ZT
1 B1W, R3 = ZT

2 B3W,(2.3)

where Z1, Z2,W are orthogonal and R1R
T
3 = Δ is positive diagonal. Let Q =

Q1[
Z1

0
0
Z2

] and U = U1[
W
0

0
W ] (which is orthogonal symplectic). Then

R = QTBU =

[
R1 R2

0 R3

]
, R2 = ZT

1 B2W.
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1062 HONGGUO XU

By (2.2) and (2.3), we have QT (BJBT )Q = RJRT = [ 0
−Δ

Δ
0 ].

The most condensed form that we can compute for B is

R = QTBU =

[
R11 R12 R13 R14

0 0 R23 0

]
=:

[
R1 R2

0 R3

]
,(2.4)

where R11, R23 ∈ R
p×p, R11 is upper triangular, R23 is lower triangular, and R11R

T
23 =:

Δ is positive diagonal. The detailed procedure will be presented in the next section.
Let Δ = diag(δ1, . . . , δp). After having obtained such a decomposition the eigenvalues

of BJBT and JBTB are simply ±iδ1, . . . ,±iδp. Define Σ =
√

Δ. The symplectic
matrix S in the SVD-like decomposition can be computed by the formula

U

⎡
⎢⎢⎣
RT

23Σ
−1 −(RT

23Σ
−1)(RT

12Σ
−1)T −RT

13Σ
−1 −(RT

23Σ
−1)(RT

14Σ
−1)T

0 I −RT
14Σ

−1 0

0 0 RT
11Σ

−1 0
0 0 RT

12Σ
−1 I

⎤
⎥⎥⎦ ,(2.5)

and the SVD-like decomposition of B is

QTBS =

( p m− p p m− p

p Σ 0 0 0
p 0 0 Σ 0

)
.(2.6)

Note this is the decomposition only in the case that BJBT is nonsingular.
The method is summarized by the following algorithm.
Algorithm. Given a real matrix B ∈ R

2p×2m with BJBT nonsingular, the algo-
rithm computes the eigenvalues of JBTB and BJBT or the SVD-like decomposition
(2.6).
Step 1. Determine the orthogonal matrix Q1 and the orthogonal symplectic matrix

U1 such that

QT
1 BU1 =

[
B11 B12 B13 B14

0 0 B23 0

]
=:

[
B1 B2

0 B3

]
,(2.7)

where B11, B23 ∈ R
p×p, B11 is upper triangular, B23 is lower triangular,

B11B
T
23 is upper bidiagonal, and B1B

T
2 = B2B

T
1 .

Step 2. Determine the orthogonal matrices Z1, Z2,W such that

R11 = ZT
1 B11W, R23 = ZT

2 B23W,(2.8)

where R11 is upper triangular, R23 is lower triangular, and

R11R
T
23 = diag(δ1, . . . , δp) =: Δ

is positive diagonal.
Step 3. If only the eigenvalues of JBTB or BJBT are required, compute the nonzero

eigenvalues ±iδ1, . . . ,±iδp and stop. If the decomposition (2.6) is required,
go to Step 4.

Step 4.
(a) Update Q = Q1[

Z1

0
0
Z2

], U = U1 diag(W, I,W, I), and

R =

[
R11 R12 R13 R14

0 0 R23 0

]
,

where R12 = ZT
1 B12, R13 = ZT

1 B13W , and R14 = ZT
1 B14.

(b) Compute Σ =
√

Δ.
(c) Use the formula (2.5) to compute S.
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COMPUTING SVD-LIKE DECOMPOSITION 1063

3. Reduction and iteration. We need the following elementary matrices in
our algorithm.

1. Set of Householder matrices:

H(I) = {H = In − 2uuT /uTu | u ∈ R
n, uj = 0, ∀j �∈ I},

where I is a subset of {1, . . . , n} giving the range of the columns and rows that H
operates on.

2. Set of Givens matrices:

G(i, j) = {G | G = In − (1 − α)(eie
T
i + eje

T
j ) + β(eie

T
j − eje

T
i ), α2 + β2 = 1}.

3. Set of symplectic Householder matrices:

Hs(I) =

{
Hs | Hs :=

[
H 0
0 H

]
, H ∈ H(I)

}
.

4. Sets of symplectic Givens matrices:
(a) Gs

1(k) = {Gs | Gs ∈ G(k, n + k) ⊂ R
2n×2n}.

(b) Gs
2(i, j) = {Gs = [G0

0
G ] | G ∈ G(i, j)}.

(c) Gs
3(i, j) =

{
Gs

∣∣∣∣Gs = I2n − (1 − α)(eie
T
i + eje

T
j + en+ie

T
n+i + en+je

T
n+j)

+β(eie
T
n+j + eje

T
n+i − en+je

T
i − en+ie

T
j ), α2 + β2 = 1

}
,

where 1 ≤ i < j ≤ n.
5. Sets of symplectic permutations:

(a) Ps
1 = {[P0

0
P ] | P is a permutation}.

(b) Ps
2(k) = {Ps | Ps = I2n − (eke

T
k + en+ke

T
n+k) + (eke

T
n+k − en+ke

T
k )}.

In the algorithm Steps 3 and 4 are simple. So we consider only the implementations
for Step 1 and 2.

3.1. Implicit bidiagonal-like reduction. We use the following displays with
a 6 × 8 matrix B to illustrate the reduction process. In the displays, “0” and “x”
denote a zero and an arbitrary element, respectively. Note that our goal is to reduce B
to a condensed form (2.7) such that the explicit product BJBT has a bidiagonal-like
form (2.1).

At the first stage we reduce the columns and rows 1 and 4 of BJBT implicitly.
For this we first perform three orthogonal symplectic transformations U1,1, V1, U1,2

successively, where U1,1, U1,2 ∈ Hs(1 : 4) and V1 ∈ Gs
1(1), on the columns of B to

annihilate B(4, 2 : 4), B(4, 1), and B(4, 6 : 8):1

⎡
⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x
x x x x x x x x
x x x x x x x x
0 0 0 0 x 0 0 0
x x x x x x x x
x x x x x x x x

⎤
⎥⎥⎥⎥⎥⎥⎦ .

We then perform a Householder transformation H1,1 ∈ H(1 : 3, 5 : 6) on the rows of

1Here we use the MATLAB forms to denote the entries, rows, and columns of a matrix.
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1064 HONGGUO XU

B to annihilate B(2 : 3, 1) and B(5 : 6, 1):⎡
⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 0 0 0 x 0 0 0
0 x x x x x x x
0 x x x x x x x

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Now the product B(JBT ) has the form

⎡
⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 0 0 0 x 0 0 0
0 x x x x x x x
0 x x x x x x x

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x
x x x 0 x x
x x x 0 x x
x x x 0 x x
x 0 0 0 0 0
x x x 0 x x
x x x 0 x x
x x x 0 x x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 x x x x x
x 0 x 0 x x
x x 0 0 x x
x 0 0 0 0 0
x x x 0 0 x
x x x 0 x 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

(Since BJBT is skew-symmetric, its diagonal elements are zero.) We still need to
reduce the first column and row of BJBT . For this we have to form the first column
(but not the whole product) of BJBT explicitly, which has the pattern

y1 =
[

0 x x x x x
]T

.

Determine a Householder matrix H1,2 ∈ H(2 : 3, 5 : 6) such that

H1,2y1 =
[

0 0 0 x x 0
]T

.

Premultiply B by H1,2. Since H1,2 does not work on rows 1 and 4, it does not change
the pattern of B. After this transformation

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 0 0 0 x 0 0 0
0 x x x x x x x
0 x x x x x x x

⎤
⎥⎥⎥⎥⎥⎥⎦ , BJBT =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 x x 0
0 0 x 0 x x
0 x 0 0 x x
x 0 0 0 0 0
x x x 0 0 x
0 x x 0 x 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

The second stage is similar. We reduce the columns and rows 2 and 5 of BJBT .
We first perform transformations U2,1, V2, U2,2, where U2,1, U2,2 ∈ Hs(2 : 4) and
V2 ∈ Gs

1(2), on the columns of B to annihilate B(5, 3 : 4), B(5, 2), and B(5, 7 : 8).
Then perform a Householder transformation H2,1 ∈ H(2 : 3, 6) on the rows of B
to annihilate B(3, 2) and B(6, 2). Next we determine a Householder transformation
H2,2 ∈ H(3, 6) from the vector

y2 = (BJBT )(:, 2) =
[

0 0 x 0 x x
]T

,

such that

H2,2y2 =
[

0 0 0 0 x x
]T

.
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COMPUTING SVD-LIKE DECOMPOSITION 1065

Premultiplying B by H2,2,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x
0 x x x x x x x
0 0 x x x x x x
0 0 0 0 x 0 0 0
0 0 0 0 x x 0 0
0 0 x x x x x x

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

and

BJBT =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 x x 0
0 0 0 0 x x
0 0 0 0 0 x
x 0 0 0 0 0
x x 0 0 0 0
0 x x 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Now the product BJBT is in the bidiagonal-like form.
At the third stage we perform transformations U3,1, V3, U3,2, where U3,1, U3,2 ∈

Hs(3 : 4) and V3 ∈ Gs
1(3), on the columns of B to annihilate B(6, 4), B(6, 3), and

B(6, 8):

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x
0 x x x x x x x
0 0 x x x x x x
0 0 0 0 x 0 0 0
0 0 0 0 x x 0 0
0 0 0 0 x x x 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

We have got the form (2.7). Note that the symplectic transformations performed at
the last stage do not change the bidiagonal-like form of BJBT .

3.2. Implicit QR-like SVD iteration. We will give the implicit version of the
implicit shift QR-like SVD iteration [11, sect. 8.6] on B11B

T
23. For a technical rea-

son related to decoupling and deflation, before iteration we transform B23 to a lower
Hessenberg form such that B11B

T
23 is lower bidiagonal. The transformations can be

performed as follows. For j = 1, . . . , p−1, we construct a sequence of Givens matrices
Gj ∈ G(j, j + 1) such that (B11B

T
23)G1 · · ·Gp−1 becomes lower bidiagonal. (To con-

struct Gj we need to compute (B11B
T
23)(j, j : j+1).) Update B23 := GT

p−1 · · ·GT
1 B23.

Then B23 becomes lower Hessenberg. B11 is still upper triangular, but now B11B
T
23

is lower bidiagonal.
When some diagonal or subdiagonal elements of B11B

T
23 are zero we can decouple

it into smaller unreduced lower bidiagonal blocks. With the assumption that BJBT

is nonsingular all diagonal elements of B11B
T
23 are nonzero. This is obvious from the

factorization BJBT = Q1[
0

−BT
23B11

B11B
T
23

0 ]QT
1 . Moreover, B11 is nonsingular. Hence

its diagonal elements are nonzero. The jth subdiagonal element of B11B
T
23 has the

form2 B11(j+1, j+1)B23(j, j+1). Because B11(j+1, j+1) �= 0, the jth subdiagonal

2This is why we transform B23 to a lower Hessenberg form. In the upper bidiagonal case the
jth superdiagonal element of B11BT

23 is in a dot product form B11(j, j)B23(j + 1, j) + B11(j, j +
1)B23(j +1, j +1). It may happen that this dot product is small but all four elements are not small.
When this happens, we have the difficulty of doing the decoupling or deflation.
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1066 HONGGUO XU

element of B11B
T
23 is zero if and only if the jth superdiagonal element of B23 is zero.

With this observation, in practice when some superdiagonal elements of B23 are zero
or suitably small we set them to be zero and decouple B11B

T
23 into smaller unreduced

lower bidiagonal blocks. We then perform the following implicit version of the QR-like
SVD iterations to each pair of small diagonal blocks from B11 and B23 corresponding
to each unreduced block in B11B

T
23 to compute (2.8). The criterion for decoupling or

deflation that we use is

|B23(j, j + 1)| ≤ ε(|B23(j, j)| + |B23(j + 1, j)| + |B23(j + 1, j + 1)|),(3.1)

where ε is the machine precision. With this criterion decoupling or deflation will cause
an error in B of order ε‖B‖.

We use the matrices B11, B23 with size 4 × 4 to illustrate one step of iteration.
Initially B11 is upper triangular, B23 is lower Hessenberg, and B11B

T
23 is lower bidi-

agonal. Without loss of generality we assume that B11B
T
23 is unreduced. Let δ > 0

be a shift.3 Let A be the leading 2 × 2 principal submatrix of B11B
T
23B23B

T
11. We

first determine a Givens matrix G1 ∈ G(1, 2), in which the leading 2 × 2 principal
submatrix is a Givens rotation that transforms A − δI to an upper triangular form.
Perform G1 on the rows of B11:

B11 =

⎡
⎢⎢⎣

x x x x
⊗ x x x
0 0 x x
0 0 0 x

⎤
⎥⎥⎦ ,

where “⊗” denotes an unwanted nonzero element. Now the product becomes

B11B
T
23 =

⎡
⎢⎢⎣
x ⊗ 0 0
x x 0 0
0 x x 0
0 0 x x

⎤
⎥⎥⎦ .

Perform a Givens transformation W1 ∈ G(1, 2) on the columns of B11 to annihilate
B11(2, 1) and perform it also on the columns of B23:

B11 =

⎡
⎢⎢⎣
x x x x
0 x x x
0 0 x x
0 0 0 x

⎤
⎥⎥⎦ , B23 =

⎡
⎢⎢⎣
x x 0 0
x x x 0
x x x x
x x x x

⎤
⎥⎥⎦ .

This transformation does not change the pattern of B11B
T
23. Next we determine a

Givens matrix S1 ∈ G(1, 2) to annihilate (B11B
T
23)(1, 2). (Again, in order to construct

S1 we need to compute (B11B
T
23)(1, 1 : 2).) Perform S1 on the rows of B23:

B23 =

⎡
⎢⎢⎣
x x ⊗ 0
x x x 0
x x x x
x x x x

⎤
⎥⎥⎦ ,

3We actually use the Wilkinson shift, one of the eigenvalues of the tailing 2 × 2 principal sub-
matrix of B11BT

23B23BT
11.
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COMPUTING SVD-LIKE DECOMPOSITION 1067

and now

B11B
T
23 =

⎡
⎢⎢⎣

x 0 0 0
x x 0 0
⊗ x x 0
0 0 x x

⎤
⎥⎥⎦ .

To annihilate (B11B
T
23)(3, 1) we first perform a Givens transformation W2 ∈ G(2, 3)

on the columns of B23 to annihilate B23(1, 3). Perform W2 also on the columns of B11:

B11 =

⎡
⎢⎢⎣
x x x x
0 x x x
0 ⊗ x x
0 0 0 x

⎤
⎥⎥⎦ , B23 =

⎡
⎢⎢⎣
x x 0 0
x x x 0
x x x x
x x x x

⎤
⎥⎥⎦ .

Then we perform a Givens transformation G2 ∈ G(2, 3) on the rows of B11 to annihi-
late B11(3, 2):

B11 =

⎡
⎢⎢⎣
x x x x
0 x x x
0 0 x x
0 0 0 x

⎤
⎥⎥⎦ .

At this stage

B11B
T
23 =

⎡
⎢⎢⎣
x 0 0 0
x x ⊗ 0
0 x x 0
0 0 x x

⎤
⎥⎥⎦ .

So (B11B
T
23)(3, 1) has been annihilated and the bulge has been chased to the (2, 3)

place. In a similar way we can chase the bulge down-rightwards until it disappears.
The rest of the reductions are illustrated by the following displays, where B11 and
B23 are displayed simultaneously, the Givens transformation Gj ∈ G(j, j+1) operates
only on the rows of B11, Sj ∈ G(j, j + 1) operates only on the rows of B23, and
Wj ∈ G(j, j + 1) operates on the columns of both B11 and B23.⎡

⎢⎢⎣
x x x x
0 x x x
0 0 x x
0 0 0 x

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
x x 0 0
x x x 0
x x x x
x x x x

⎤
⎥⎥⎦ S2−→

⎡
⎢⎢⎣
x x x x
0 x x x
0 0 x x
0 0 0 x

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
x x 0 0
x x x ⊗
x x x x
x x x x

⎤
⎥⎥⎦

W3−→

⎡
⎢⎢⎣
x x x x
0 x x x
0 0 x x
0 0 ⊗ x

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
x x 0 0
x x x 0
x x x x
x x x x

⎤
⎥⎥⎦ G3−→

⎡
⎢⎢⎣
x x x x
0 x x x
0 0 x x
0 0 0 x

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
x x 0 0
x x x 0
x x x x
x x x x

⎤
⎥⎥⎦

S3−→

⎡
⎢⎢⎣
x x x x
0 x x x
0 0 x x
0 0 0 x

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
x x 0 0
x x x 0
x x x x
x x x x

⎤
⎥⎥⎦ .

We have finished one step of iteration.
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1068 HONGGUO XU

We now check the superdiagonal elements of B23. If some of them satisfy (3.1),
we replace them by zero and decouple or deflate B11B

T
23. We then run another step of

iteration on B11 and B23 or a pair of diagonal blocks from them. Repeat the iterations
and finally B23 becomes lower triangular and we have (2.8).

The algorithm costs about two to three times as much as the QR-like algorithm
applied to the explicit product BJBT .

4. General case. For a general matrix B ∈ R
n×2m additional work needs to be

done. If rankB < n, initially we need to compute a factorization

B = Q0

[
B0

0

]
,(4.1)

where Q0 is orthogonal and B0 is of full row rank. This can be done by the QR
factorization with the column pivoting method (see [6]), the rank-revealing QR (see
[7]), or the SVD algorithm (see [11, sect. 8.6]).

Next we apply the reduction process to B0. But now we have to modify the
above reduction process slightly. The reason is that even if B0 is of full row rank,
the product B0JB

T
0 may be singular. In this case at certain stages of reductions

some diagonal elements of block B11 or B23 will be zero and we need to deflate the
zero eigenvalues of B0JB

T
0 . Because of this, we have to reduce matrix B0 to a more

generalized condensed form

QT
2 B0U2 =

⎛
⎝

p q m− p− q p q m− p− q

p B11 B12 B13 B14 B15 B16

q 0 B22 0 B24 0 0
p 0 0 0 B34 0 0

⎞
⎠,(4.2)

where Q2 is orthogonal, U2 is orthogonal symplectic, B11, B22 are nonsingular and
upper triangular, B34 is nonsingular and lower triangular, B11B

T
34 is upper bidiagonal,

and

QT
2 B0JB0Q2 =

⎛
⎝

p q p

p 0 0 B11B
T
34

q 0 0 0
p −B34B

T
11 0 0

⎞
⎠.(4.3)

The reduction procedure will be illustrated below. We then apply the same iteration
procedure described in subsection 3.2 to B11, B34 to compute

R11 = ZT
1 B11W, R34 = ZT

2 B34W,

where Z1, Z2,W are orthogonal, R11 is upper triangular, R34 is lower triangular, and
Δ := R11R

T
34 is positive diagonal. Similarly, combining them with (4.2) and (4.1) we

can determine the orthogonal matrix Q and the orthogonal symplectic matrix U to
obtain the generalized version of (2.4),

QTBU =

⎛
⎜⎜⎝

p q m− p− q p q m− p− q

p R11 R12 R13 R14 R15 R16

q 0 R22 0 R24 0 0
p 0 0 0 R34 0 0
n− 2p− q 0 0 0 0 0 0

⎞
⎟⎟⎠.D
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COMPUTING SVD-LIKE DECOMPOSITION 1069

Let Σ =
√

Δ. The symplectic matrix S can be computed by the formula

U

⎡
⎢⎢⎢⎢⎢⎣

X −X(RT
12Σ

−1)T −X(RT
13Σ

−1)T −RT
14Σ

−1 −X(RT
15Σ

−1)T −X(RT
16Σ

−1)T

0 I 0 −RT
15Σ

−1 0 0
0 0 I −RT

16Σ
−1 0 0

0 0 0 RT
11Σ

−1 0 0

0 0 0 RT
12Σ

−1 I 0
0 0 0 RT

13Σ
−1 0 I

⎤
⎥⎥⎥⎥⎥⎦ ,

where X = RT
34Σ

−1. Finally we have the SVD-like decomposition

QTBS =

⎛
⎜⎜⎝

p q m− p− q p q m− p− q

p Σ 0 0 0 0 0
q 0 R22 0 0 0 0
p 0 0 0 Σ 0 0
n− 2p− q 0 0 0 0 0 0

⎞
⎟⎟⎠.

(If necessary one can multiply the symplectic matrix diag(I,R−1
22 , I; I,R

T
22, I) from

the right to replace R22 by I.)

In the following we will show the reduction procedure for computing the condensed
form (4.2). The procedure consists of two steps. In step 1 we will reduce B0 to

QT
2 B0Ũ2 =

⎛
⎝

p m− p− q q p m− p− q q

p B11 B12 B13 B14 B15 0
q 0 0 B23 0 0 0
p 0 0 B33 B34 0 0

⎞
⎠,(4.4)

where Q2 is orthogonal, Ũ2 is orthogonal symplectic, B11, B23 are nonsingular and up-
per triangular, and B34 is nonsingular and lower triangular, such that QT

2 (B0JB
T
0 )Q2

has the bidiagonal-like form (4.3). In step 2 we will perform only orthogonal sym-
plectic transformations on the columns to transform (4.4) to (4.2). Note that step 2
does not change the bidiagonal-like form of QT

2 (B0JB
T
0 )Q2.

Let us describe step 1 in an inductive way. Suppose that at a certain stage we
have reduced B0 to

B0 =

⎛
⎝

j m− j − q q j m− j − q q

p B11 B12 B13 B14 B15 0
q 0 0 B23 0 0 0
r 0 B32 B33 B34 B35 0

⎞
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j m− j − q q j m− j − q q

j � 0

p− j 0 0

q 0 0 � 0 0 0

j 0 0 � 0 0

r − j 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,(4.5)
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1070 HONGGUO XU

and

B0JB0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j p− j q j r − j

j 0 0 0 �� *

p− j 0 0 0

q 0 0 0 0 0

j �� 0 0 0 0

r − j * 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,(4.6)

where r = p or p + 1, j ≤ p. (Initially we partition B0 to the block form with
j = q = 0, and r = p if B0 has 2p (even) rows or r = p + 1 if B0 has 2p + 1 (odd)
rows.) Note that in (4.5) when j = p = r it is just (4.4) and we are done.

If j ≤ p, we continue the reduction process. We first perform orthogonal symplec-
tic transformations on the columns of B0 to annihilate B0(p+ q+ j +1, j +1 : m− q)
and B0(p+q+j+1,m+j+2 : 2m−q), and then perform a Householder transformation
on the rows of B0 to annihilate B0(j+2 : p, j+1) and B0(p+q+j+2 : p+q+r, j+1).
After this step we have two cases.

(a) B0(j+1, j+1) �= 0. We determine another Householder matrix to annihilate
the elements from j + 2 to p and from p + q + j + 3 to p + q + r on the (j + 1)th
column/row of B0JB

T
0 . Premultiply B0 by this Householder matrix. Then B0 and

B0JB
T
0 again have the block forms (4.5) and (4.6), respectively, but j := j + 1. We

have done one step of regular reduction as in subsection 3.1.
(b) B0(j + 1, j + 1) = 0. We need to deflate the zero eigenvalue of B0JB

T
0 . We

have two subcases:
(b1) r = p + 1 and
(b2) r = p.

For the first subcase the deflation is illustrated by a matrix with j = 2, p = 4, r = 5,
q = 2, and m = 8:

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x x x x x 0 0
0 x x x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x x 0 0 0 0 0 0
0 0 0 0 0 0 x x x x x 0 0 0 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦D
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COMPUTING SVD-LIKE DECOMPOSITION 1071

and

B0JB
T
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 x x 0 0 0
0 0 0 0 0 0 0 x x 0 0
0 0 0 x 0 0 0 0 0 x x
0 0 x 0 0 0 0 0 0 x x
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
x 0 0 0 0 0 0 0 0 0 0
x x 0 0 0 0 0 0 0 0 0
0 x 0 0 0 0 0 0 0 0 0
0 0 x x 0 0 0 0 0 0 x
0 0 x x 0 0 0 0 0 x 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For the explicit product we can perform a sequence of Givens transformations G1 ∈
G(8, 9) and G2 ∈ G(7, 8) on both the columns and rows to annihilate (B0JB

T
0 )(2, 8),

(B0JB
T
0 )(1, 7) and (B0JB

T
0 )(8, 2), (B0JB

T
0 )(7, 1). With repartitioning we again have

the form (4.6) but with q = 3:

B0JB
T
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 x x 0 0
0 0 0 0 0 0 0 0 x 0 0
0 0 0 x 0 0 0 0 0 x x
0 0 x 0 0 0 0 0 0 x x
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
x 0 0 0 0 0 0 0 0 0 0
x x 0 0 0 0 0 0 0 0 0
0 0 x x 0 0 0 0 0 0 x
0 0 x x 0 0 0 0 0 x 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.(4.7)

The corresponding implicit version is as follows. We first perform a sequence of the
symplectic Givens transformations U1 ∈ Gs

2(2, 3), U2 ∈ Gs
2(1, 2) on the columns of B0

to annihilate B0(2, 2) and B0(1, 1):

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 x x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x ⊗ 0 0 0 0 0 0
0 0 0 0 0 0 x x x x ⊗ 0 0 0 0 0
0 0 0 0 0 0 x x x x x 0 0 0 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then perform Givens transformations G1 ∈ G(8, 9) and G2 ∈ G(7, 8) on the rows of
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1072 HONGGUO XU

B0 to annihilate the unwanted elements B0(8, 11) and B0(7, 10):

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 x x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x x 0 0 0 0 0 0
0 0 0 0 0 0 x x x x x 0 0 0 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now by using the pattern of B0 one can see that B0JB
T
0 has the form (4.7). To

transform B0 back to the block form (4.5) next we perform a symplectic permutation
P1 ∈ Ps

1 to move the columns 1 and 9 of B0 to columns 6 and 14, respectively. Then
we perform a symplectic permutation P2 ∈ Ps

2(6) to interchange the columns 6 and 14.
With repartitioning,

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x x x x 0 0 0
0 x x x x x x x x x x x x 0 0 0
0 0 x x x x x x x x x x x 0 0 0
0 0 x x x x x x x x x x x 0 0 0
0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 x x x 0 0 0 0 0 0 0 0
0 0 0 0 0 x x x x 0 0 0 0 0 0 0
0 0 0 0 0 x x x x x 0 0 0 0 0 0
0 0 x x x x x x x x x x x 0 0 0
0 0 x x x x x x x x x x x 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that these permutations do not change the form of B0JB
T
0 . To maintain the

block B23 in upper triangular form we perform a row permutation to move row 7 to
row 5:

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x x x x 0 0 0
0 x x x x x x x x x x x x 0 0 0
0 0 x x x x x x x x x x x 0 0 0
0 0 x x x x x x x x x x x 0 0 0
0 0 0 0 0 x x x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 x x x x 0 0 0 0 0 0 0
0 0 0 0 0 x x x x x 0 0 0 0 0 0
0 0 x x x x x x x x x x x 0 0 0
0 0 x x x x x x x x x x x 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then B0 and B0JB
T
0 again have the forms (4.5) and (4.6), respectively, but now

r := r − 1 and q := q + 1.
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COMPUTING SVD-LIKE DECOMPOSITION 1073

For the second subcase the reduction procedure is illustrated by a matrix with
j = 2, p = 5, r = 5, q = 1, and m = 8:

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x x x x x x 0
0 x x x x x x x x x x x x x x 0
0 0 0 x x x x x x x x x x x x 0
0 0 0 x x x x x x x x x x x x 0
0 0 0 x x x x x x x x x x x x 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x x 0 0 0 0 0 0
0 0 0 0 0 0 x x x x x 0 0 0 0 0
0 0 0 x x x x x x x x x x x x 0
0 0 0 x x x x x x x x x x x x 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

B0JB
T
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 x x 0 0 0
0 0 0 0 0 0 0 x x 0 0
0 0 0 x x 0 0 0 0 x x
0 0 x 0 x 0 0 0 0 x x
0 0 x x 0 0 0 0 0 x x
0 0 0 0 0 0 0 0 0 0 0
x 0 0 0 0 0 0 0 0 0 0
x x 0 0 0 0 0 0 0 0 0
0 x 0 0 0 0 0 0 0 0 0
0 0 x x x 0 0 0 0 0 x
0 0 x x x 0 0 0 0 x 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proceeding with the analogous transformations as in the first subcase, until the row
permutation step, we can obtain

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x x x x x 0 0
0 x x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x x 0 0 0 0 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦D
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1074 HONGGUO XU

and

B0JB
T
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 x x 0 0
0 0 0 0 0 0 0 0 x 0 0
0 0 0 x x 0 0 0 0 x x
0 0 x 0 x 0 0 0 0 x x
0 0 x x 0 0 0 0 0 x x
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
x 0 0 0 0 0 0 0 0 0 0
x x 0 0 0 0 0 0 0 0 0
0 0 x x x 0 0 0 0 0 x
0 0 x x x 0 0 0 0 x 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To maintain the block B23 in upper triangular form and to maintain the condition
r ≥ p we first perform a permutation to move the 5th row of B0 to the bottom and
then perform another permutation to move row 6 to row 5:

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x x x x x 0 0
0 x x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x x 0 0 0 0 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

B0JB
T
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 x x 0 0 0
0 0 0 0 0 0 0 x 0 0 0
0 0 0 x 0 0 0 0 x x x
0 0 x 0 0 0 0 0 x x x
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
x 0 0 0 0 0 0 0 0 0 0
x x 0 0 0 0 0 0 0 0 0
0 0 x x 0 0 0 0 0 x x
0 0 x x 0 0 0 0 x 0 x
0 0 x x 0 0 0 0 x x 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now B0 and B0JB
T
0 have the forms (4.5) and (4.6), respectively, but p := p− 1 and

q := q + 1.
Because B0 is of full row rank, the submatrix consisting of the third and fourth

block rows in (4.5) must be of full row rank. Then both B23 and the (1, 1) block
of B34 (in lower triangular form) must be nonsingular. Hence during the reductions
no diagonal element in B34 will be zero, and for deflation we need only to check the
diagonal elements of B11. In practice if B11(j, j) satisfies

|B11(j, j)| < ε‖B‖,
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COMPUTING SVD-LIKE DECOMPOSITION 1075

we set it to zero and perform the deflation step described in case b.
Repeating the above reduction process, we will get (4.4).
We now perform a sequence of orthogonal symplectic transformations to transform

(4.4) to (4.2). This is illustrated in the case when p = 2, q = 3, and m = 6:

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x 0 0 0
0 x x x x x x x x 0 0 0
0 0 0 x x x 0 0 0 0 0 0
0 0 0 0 x x 0 0 0 0 0 0
0 0 0 0 0 x 0 0 0 0 0 0
0 0 0 x x x x 0 0 0 0 0
0 0 0 x x x x x 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Perform the symplectic Givens transformations G1 ∈ Gs
3(1, 4), G2 ∈ Gs

3(2, 4) on the
columns of B0 to annihilate B0(6 : 7, 4):

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x 0 0
0 x x x x x x x x x 0 0
0 0 0 x x x x x 0 0 0 0
0 0 0 0 x x 0 0 0 0 0 0
0 0 0 0 0 x 0 0 0 0 0 0
0 0 0 0 x x x 0 0 0 0 0
0 0 0 0 x x x x 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In the same way we can annihilate B0(6 : 7, 5) and B0(6 : 7, 6):

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x x x
0 x x x x x x x x x x x
0 0 0 x x x x x 0 0 0 0
0 0 0 0 x x x x 0 0 0 0
0 0 0 0 0 x x x 0 0 0 0
0 0 0 0 0 0 x 0 0 0 0 0
0 0 0 0 0 0 x x 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Finally perform a symplectic permutation P ∈ Ps
1 to move columns 3 and 9 to columns

6 and 12, respectively. We have the form (4.2),

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x x x
0 x x x x x x x x x x x
0 0 x x x 0 x x 0 0 0 0
0 0 0 x x 0 x x 0 0 0 0
0 0 0 0 x 0 x x 0 0 0 0
0 0 0 0 0 0 x 0 0 0 0 0
0 0 0 0 0 0 x x 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

5. Error analysis. We only give an error analysis about the eigenvalues. We
will provide the first order perturbation bound for a simple nonzero eigenvalue of
JBTB or BTJB. We will then use the perturbation bound to give the relative error
bound for the computed eigenvalues.
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1076 HONGGUO XU

5.1. Perturbation about eigenvalues. All nonzero eigenvalues of BJBT and
JBBT are purely imaginary and they are in conjugate pairs. For real perturbations
the perturbation results for both eigenvalues in a conjugate pair are the same. For
this reason in the following we consider only the eigenvalues iλ with λ > 0.

Suppose that iλ is a simple nonzero eigenvalue of BJBT and x is a corresponding
unit norm eigenvector. Define another unit norm vector

y =
JBTx

β

with β = ‖JBTx‖. Premultiplying the equation by JBTB, we have

JBTBy = iλy.

Hence y is a unit norm eigenvector of JBTB corresponding to iλ. By using the
conjugate transpose of the above equation we have

(Jy)∗(JBTB) = iλ(Jy)∗.

So Jy is a unit norm left-eigenvector of JBTB. The relation between x, y is summa-
rized as follows:

By = iαx, JBTx = βy,(5.1)

where α = λ
β . Taking the conjugate transpose of the second equation in (5.1) and

postmultiplying it by Jy,

βy∗Jy = x∗By.

Premultiplying the first equation in (5.1) by x∗,

x∗By = iα.

The reciprocal of the condition number of iλ corresponding to the matrix JBTB is
κ = |(Jy)∗y| = |y∗Jy|. Combining the above two equations,

κ =
α

β
.(5.2)

Since κ ≤ 1 we have α ≤ β. Because λ = αβ and β = ‖JBTx‖ ≤ ‖B‖, we have

λ

‖B‖ < α ≤
√
λ ≤ β ≤ ‖B‖.(5.3)

The first order perturbation bound is given in the following lemma.
Lemma 5.1. Suppose that iλ (λ > 0) is a simple eigenvalue of BJBT and

JBTB, and x, y are the corresponding unit norm eigenvectors with respect to BJBT

and JBTB, respectively, satisfying (5.1). Let E be a real perturbation matrix and let
B̂ = B + E. When ‖E‖ is sufficiently small both matrices B̂JB̂T and JB̂T B̂ have a

purely imaginary eigenvalue iλ̂ such that∣∣∣∣∣ iλ̂− iλ

iλ

∣∣∣∣∣ =

∣∣∣∣2Im (y∗Ex)

α

∣∣∣∣ + O(‖E‖2) ≤ 2‖E‖
α

+ O(‖E‖2).

Proof. The proof follows from the result in [4] for a formal matrix product.
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COMPUTING SVD-LIKE DECOMPOSITION 1077

5.2. Error analysis. Again we consider only the case that BJBT is nonsingular.
The general case can be analyzed in the same way. Because of rounding error, the
algorithm in section 2 actually computes a block upper triangular matrix R satisfying

R =

[
R1 R2

0 R3

]
=

[
R11 R12 R13 R14

0 0 R23 0

]
= QT (B + E)U,

where Q is orthogonal, U is orthogonal symplectic, and E is an error matrix satisfying
‖E‖ ≤ cε‖B‖ for some constant c. Suppose that iλ (λ > 0) is a simple eigenvalue
of BJBT and JBTB with unit norm eigenvectors x, y satisfying (5.1). When ‖E‖ is

sufficiently small by Lemma 5.1 there is an eigenvalue iλ̂ of RJRT and JRTR such that∣∣∣∣∣ iλ̂− iλ

iλ

∣∣∣∣∣ =
2|Im (y∗Ex)|

α
+ O(‖E‖2) ≤ 2cε

‖B‖
α

+ O(ε2).(5.4)

However, the eigenvalues computed by the algorithm are ±iδ1, . . . ,±iδp, where
δ1, . . . , δp are the diagonal elements of R11R

T
23. Because of rounding error the product

RJRT is not exactly in the Schur-like form. By a straightforward analysis it satisfies

RJRT =

[
0 Δ

−Δ 0

]
+

[
F11 F12

−FT
12 0

]
=: Γ + F,(5.5)

where Δ = diag(δ1, . . . , δp), F12 is strictly upper triangular, F11 = −FT
11, and ‖F‖ ≤

dε‖B‖2 for some constant d. So the computed eigenvalues are the exact ones of Γ and

iλ̂ in (5.4) is an eigenvalue of Γ + F . When ‖F‖ is sufficiently small and we apply

the perturbation result [16, sect. 4.2.2], [11, sect. 7.2.2] to Γ + F for iλ̂ there exists a
corresponding eigenvalue of Γ, say iδk, such that

|iλ̂− iδk| = |z∗Fz| + O(‖F‖2),

where z =
√

2
2 (ek + iep+k) is the unit norm eigenvector of iδk (which is obvious from

the structure of Γ). Because F11 is real skew-symmetric and F12 is strictly upper
triangular,

z∗Fz =
1

2
(e∗kF11ek + 2ie∗kF12ek) = 0.

Hence |iλ̂− iδk| = O(ε2). Combining it with (5.4) we have the error bound for iδk,∣∣∣∣ iδk − iλ

iλ

∣∣∣∣ =
2|Im (y∗Ex)|

α
+ O(ε2) ≤ 2cε

‖B‖
α

+ O(ε2).(5.6)

For comparison we also give the error bounds for the eigenvalues computed by
the numerically backward stable methods working on the explicit product BJBT or
JBTB. For both matrices explicitly forming the product will introduce an error ma-
trix of order ε‖B‖2. During the computations another error matrix will be introduced.
Here for both matrices JBTB and BJBT we assume that the error matrix is of order
ε‖B‖2. (This is true for matrix JBTB. But for matrix BJBT the order is ε‖BJBT ‖,
which can be much smaller than ε‖B‖2.) With standard perturbation analysis [16,
sect. 4.2.2], [11, sect. 7.2.2] and by using the equality λ = αβ and (5.2), for the simple

eigenvalue iλ, the methods working on BJBT give an eigenvalue iλ̂s satisfying∣∣∣∣∣ iλ̂s − iλ

iλ

∣∣∣∣∣ ≤ csε
‖B‖2

λ
+ O(ε2) =

(
csε

‖B‖
α

)
‖B‖
β

+ O(ε2)(5.7)
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1078 HONGGUO XU

for some constant cs. The methods working on JBTB give an eigenvalue iλ̂h satisfying∣∣∣∣∣ iλ̂h − iλ

iλ

∣∣∣∣∣ ≤ chε
‖B‖2

λκ
+ O(ε2) =

(
chε

‖B‖
α

)
‖B‖
α

+ O(ε2)(5.8)

for some constant ch. By (5.3),

‖B‖
α

≥ ‖B‖
β

≥ 1.

So in general among three bounds (5.6) is the smallest and (5.8) is the biggest. When
α or β is small, ‖B‖/α or ‖B‖/β can be much bigger than 1. Since λ = αβ, this
means that our method can compute tiny eigenvalues more accurately.

6. Numerical examples. We tested and compared the following numerical
methods for computing the eigenvalues of the matrices BJBT and JBTB.
SSVD. The SVD-like method presented in this paper;
CSVD. The SVD-like method applied to the matrix LT , where L is the Cholesky

factor computed from the explicitly formed matrix A := BTB;
SQR. QR method (bidiagonal-like reduction plus SVD) for BJBT ;
JAC. Jacobi method [15] for BJBT ;
HAM. Hamiltonian method [2, 3] for JBTB.
All tests were done on a Dell PC with a Pentium 4 processor. All computations were
performed in MATLAB version 6.1 with machine precision ε ≈ 2.22 × 10−16.

Example 6.1.

B = Q

[
T 5 0
0 T 5

]
,

where

T =

⎡
⎢⎢⎢⎢⎣

2 1
1 2 1

1 2 1
1 2 1

1 2

⎤
⎥⎥⎥⎥⎦ ,

and Q = 5I10 − eeT with e = [1 . . . 1]T . (Q/5 is a Householder matrix.) ‖B‖ =
3.62 × 103, ‖BJBT ‖ = ‖JBTB‖ = ‖B‖2 = 1.31 × 107.

This example is supposed to test the numerical behavior when no cancellation
occurs in forming the product BJBT . Note that

BJBT = Q

[
0 T 10

−T 10 0

]
QT , JBTB = 25

[
0 T 10

−T 10 0

]
.

Both matrices have exact eigenvalues ±i25[2 cos(kπ/12)]20 (k = 1, . . . , 5). Since all
elements of B are integers, no rounding error is introduced in forming the products
BJBT and JBTB.

The exact eigenvalues and the relative errors of computed eigenvalues are reported
in Table 6.1.

In this example for each eigenvalue iλ, α = β =
√
λ and κ = 1. From Table 6.1

it is clear that SSVD gives eigenvalues with relative errors about ‖B‖√
λ

times smaller
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COMPUTING SVD-LIKE DECOMPOSITION 1079

Table 6.1

Example 6.1: Exact eigenvalues and relative errors.

Eigenvalue relSSV D relCSV D relSQR relJAC relHAM

±i4.77 × 10−5 4.0 × 10−12 4.7 × 10−7 2.9 × 10−6 1.2 × 10−6 6.0 × 10−6

±i2.50 × 101 3.8 × 10−15 4.2 × 10−12 6.0 × 10−12 2.9 × 10−12 4.6 × 10−12

±i2.56 × 104 2.0 × 10−15 2.0 × 10−15 9.2 × 10−15 3.6 × 10−15 5.7 × 10−15

±i1.48 × 106 1.1 × 10−15 1.4 × 10−15 1.6 × 10−15 1.6 × 10−15 1.7 × 10−15

±i1.31 × 107 7.1 × 10−16 0 1.4 × 10−16 8.5 × 10−16 5.7 × 10−16

Table 6.2

Example 6.1: Residuals and errors.

SSV D CSV D SQR JAC

errS 4.6 × 10−13 4.0 × 10−13 2.9 × 10−6 1.2 × 10−6

resB 1.3 × 10−15 − 2.8 × 10−16 8.9 × 10−16

resJA 1.6 × 10−15 1.3 × 10−15 1.7 × 10−16 3.2 × 10−16

resSCF 2.1 × 10−13 1.9 × 10−13 3.5 × 10−11 9.1 × 10−11

than other methods. CSVD is basically the same as other methods. This is because
computing the Cholesky factorization already introduced an error of order O(ε‖B‖2)
to A.

We also computed the following quantities:

errS = max{‖SJST − J‖, ‖STJS − J‖}, resB =
‖QDS−1 −B‖

‖B‖ ,

resJA =
‖S(JDTD)S−1 − JBTB‖

‖JBTB‖ , resSCF =
‖JDTD − S−1(JBTB)S‖

‖JDTD‖ ,

where QDS−1 is the SVD-like decomposition of B. These quantities are used to
measure the accuracy of the symplectic matrix S, the residual of the SVD-like de-
composition of B, the residual of the canonical form of JBTB, and the accuracy of
the eigenvectors, respectively. The matrices S and D are computed as follows. With
SSVD and CSVD, S is computed by using (2.5) and D = diag(Σ,Σ). With SQR and
JAC, after obtaining the Schur-like form

BJBT = Q

[
0 Δ

−Δ 0

]
QT ,

we set D = diag(
√

Δ,
√

Δ). Let Z := D−1QTB. Then B = QDZ and

ZJZT = D−1QTBJBTQD−1 = D−1

[
0 Δ

−Δ 0

]
D−1 = J.

So we take Z−1 as S. Since Z is symplectic, Z−1 = JZTJT . In practice we use
the formula S = JBTQD−1JT to compute S. The computed results are reported
in Table 6.2. Both SQR and JAC give slightly smaller residuals resB and resJA.
But both SSVD and CSVD give much smaller errS , indicating that the matrix S
computed by SSVD and CSVD is more “symplectic.”

Example 6.2.

B = Q

[
Σ 0
0 Σ

]([
X X
0 X−1

]
V T

)
,
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Table 6.3

Example 6.2: Exact eigenvalues and relative errors.

Eigenvalue relSSV D relCSV D relSQR relJAC relHAM

±i 6.9 × 10−15 1.1 × 10−10 2.7 × 10−14 2.8 × 10−14 5.8 × 10−10

±4i 1.2 × 10−13 6.6 × 10−9 8.0 × 10−14 8.1 × 10−14 1.5 × 10−8

±9i 5.3 × 10−15 1.2 × 10−13 2.0 × 10−15 9.9 × 10−16 2.2 × 10−13

±16i 2.8 × 10−14 6.4 × 10−13 3.4 × 10−14 3.4 × 10−14 4.9 × 10−12

±25i 1.6 × 10−15 5.5 × 10−12 1.3 × 10−15 8.5 × 10−16 1.5 × 10−10

Table 6.4

Example 6.2: Relative error bounds.

Eigenvalue 2ε
‖B‖
α

ε
‖B‖2

λ
ε
‖B‖2

α2

±i 2.2 × 10−11 1.1 × 10−10 5.6 × 10−7

±4i 1.1 × 10−12 2.8 × 10−11 5.6 × 10−9

±9i 1.3 × 10−13 1.2 × 10−12 1.7 × 10−10

±16i 7.8 × 10−13 6.9 × 10−12 1.1 × 10−8

±25i 6.3 × 10−12 4.4 × 10−12 1.1 × 10−6

where Σ = diag(5, 4, 3, 2, 1) and X = diag(100, 10, 1, 0.1, 0.01), Q is a random orthog-
onal matrix, and V is a random orthogonal symplectic matrix. ‖B‖ = 7.07 × 102,
‖B‖2 = 5.00 × 105.

This example is supposed to test the numerical behavior when big cancellation
takes place in forming the product BJBT (‖BJBT ‖ = 25). The exact eigenvalues
and the relative errors of the computed eigenvalues are reported in Table 6.3. For
each eigenvalue iλ the relative error bounds (5.6)–(5.8) are given in Table 6.4. (Here
we set c = cs = ch = 1.)

Because for the Hamiltonian matrix JBTB its eigenvalues have relatively big
condition numbers, HAM gives less accurate eigenvalues. Again, CSVD also gives less
accurate eigenvalues because of the Cholesky factorization. The other three methods
compute the eigenvalues with the same accuracy, as predicted by the error bounds.
The residuals of the decompositions and errS , resSCF are reported in Table 6.5. In
this example all these methods basically give the same results.

Example 6.3.

B = Q

⎡
⎣ Σ 0 0 0 0 0

0 I2 0 0 0 0
0 0 0 Σ 0 0

⎤
⎦UT ,

where Σ = diag(10−4, 10−2, 1, 102), Q is a random orthogonal matrix, and U is a
14 × 14 random orthogonal symplectic matrix. ‖B‖ = 102 and ‖B‖2 = 104.

This example is supposed to test the numerical behavior when BJBT has (two)
zero eigenvalues. The exact eigenvalues, the absolute errors for zero eigenvalues, and
the relative errors for nonzero eigenvalues are reported in Table 6.6.

In this example for zero eigenvalues SSVD gives the eigenvalues of order ε, while
SQR, JAC, and HAM give answers about ‖B‖ times bigger than SSVD.4 For nonzero

eigenvalues, as in Example 6.1, SSVD gives the results with relative errors about ‖B‖√
λ

times smaller than those of the other methods.

4The matrix JBTB actually has two additional 2× 2 Jordan blocks corresponding to zero eigen-
values. The corresponding eigenvalues computed by HAM are ±8.37 × 10−8 ± 2.64 × 10−7i.
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Table 6.5

Example 6.2: Residuals and errors.

SSV D CSV D SQR JAC

errS 8.8 × 10−12 3.4 × 10−11 3.2 × 10−12 5.5 × 10−13

resB 1.2 × 10−15 − 3.8 × 10−16 1.6 × 10−15

resJA 1.3 × 10−15 1.8 × 10−15 2.1 × 10−16 1.0 × 10−15

resSCF 3.1 × 10−9 6.5 × 10−10 3.1 × 10−9 3.1 × 10−9

Table 6.6

Exact eigenvalues and errors for Example 6.3.

Eigenvalue relSSV D relSQR relJAC relHAM

0(double) 1.7 × 10−15 1.1 × 10−14 5.7 × 10−14 1.5 × 10−13

±i10−8 1.9 × 10−11 8.9 × 10−6 1.3 × 10−5 5.9 × 10−6

±i10−4 5.7 × 10−13 1.7 × 10−9 4.1 × 10−11 7.5 × 10−10

±i 1.3 × 10−15 1.1 × 10−13 1.1 × 10−14 2.1 × 10−13

±i104 1.8 × 10−16 1.8 × 10−16 1.3 × 10−15 3.6 × 10−16

In this example we did not test CSVD. Because in this case it is more complicated
to compute the matrix S by SQR and JAC, we did not compare the residuals and
errS , resSCF .

7. Conclusion. We have developed a numerical method to compute the SVD-
like decomposition of a real matrix B. The method can be simply applied to compute
the eigenvalues and canonical forms of the skew-symmetric matrix BJBT and the
Hamiltonian matrix JBTB. Unlike other numerical methods this method works only
on the factor B. In this way the eigenvalues (particularly the small eigenvalues) of
BJBT and JBTB can be computed more accurately. This has been demonstrated by
the error bound and several numerical examples. The numerical examples also show
that the symplectic matrix S computed by the proposed method is more accurate.

Acknowledgment. The author gratefully acknowledges the anonymous review-
ers for their valuable comments and suggestions on the first version of this paper.

REFERENCES

[1] P. Benner, R. Byers, V. Mehrmann, and H. Xu, Numerical computation of deflating sub-
spaces of skew-Hamiltonian/Hamiltonian pencils, SIAM J. Matrix Anal. Appl., 24 (2002),
pp. 165–190.

[2] P. Benner, V. Mehrmann, and H. Xu, A new method for computing the stable invariant
subspace of a real Hamiltonian matrix, J. Comput. Appl. Math., 86 (1997), pp. 17–43.

[3] P. Benner, V. Mehrmann, and H. Xu, A numerically stable, structure preserving method for
computing the eigenvalues of real Hamiltonian or symplectic pencils, Numer. Math., 78
(1998), pp. 329–358.

[4] P. Benner, V. Mehrmann, and H. Xu, Perturbation analysis for the eigenvalue problem of a
formal product of matrices, BIT, 42 (2002), pp. 1–43.

[5] A. Bojanczyk, G.H. Golub, and P. Van Dooren, The periodic Schur decomposition. Al-
gorithms and applications, in Advanced Signal Processing Algorithms, Architectures, and
Implementations III, Proc. SPIE 1770, SPIE, Bellingham, WA, 1992, pp. 31–42.

[6] P.A. Businger and G.H. Golub, Linear least squares solutions by Householder transforma-
tions, Numer. Math., 7 (1965), pp. 269–276.

[7] T. Chan, Rank revealing QR factorizations, Linear Algebra Appl., 88/89 (1987), pp. 67–82.
[8] R.J. Duffin, The Rayleigh-Ritz method for dissipative or gyroscopic systems, Quart. Appl.

Math., 18 (1960), pp. 215–221.
[9] G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix,

SIAM J. Numer. Anal., 2 (1965), pp. 205–224.

D
ow

nl
oa

de
d 

09
/3

0/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1082 HONGGUO XU

[10] G. Golub, K. Sølna, and P. Van Dooren, Computing the SVD of a general matrix prod-
uct/quotient, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 1–19.

[11] G. Golub and C.F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1996.

[12] J.J. Hench and A.J. Laub, Numerical solution of the discrete-time periodic Riccati equation,
IEEE Trans. Automat. Control, 39 (1994), pp. 1197–1210.

[13] P. Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon Press, Oxford, UK, 1966.
[14] C.B. Moler and G.W. Stewart, An algorithm for generalized matrix eigenvalue problems,

SIAM J. Numer. Anal., 10 (1973), pp. 241–256.
[15] M.H.C. Paardekooper, An eigenvalue algorithm for skew-symmetric matrices, Numer. Math.,

17 (1971), pp. 189–202.
[16] G.W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990.
[17] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001),

pp. 235–286.
[18] H. Xu, An SVD-like matrix decomposition and its applications, Linear Algebra Appl., 368

(2003), pp. 1–24.
[19] V.A. Yakubovich and V.M. Starzhinskii, Linear Differential Equations with Periodic Coef-

ficients, Vols. 1 and 2, Halstead, New York, Toronto, 1975.

D
ow

nl
oa

de
d 

09
/3

0/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


