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1. Introduction. We consider the periodic discrete-time algebraic Riccati equa-
tion (P-DARE) with period p ≥ 2:

Xj−1 = AH
j XjAj −AH

j XjBj(Rj + BH
j XjBj)

−1BH
j XjAj + Hj

= AH
j Xj(I + GjXj)

−1Aj + Hj ,
(1.1)

where, for all j, Aj = Aj+p, Hj = Hj+p and Xj = Xj+p are n×n matrices, Bj = Bj+p

are n×m matrices, and Rj = Rj+p are m×m matrices; Bj is of full column rank, Rj

is Hermitian positive definite (Rj > 0), Gj = BjR
−1
j BH

j = Gj+p, and Hj is Hermi-

tian positive semidefinite (p.s.d.) with Hj = CH
j Cj . Equation (1.1) arises frequently

in solving periodic discrete-time linear optimal control problems [1], [2]. Appropri-
ate assumptions on the coefficient matrices guarantee the existence and uniqueness
of the Hermitian p.s.d. stabilizing solution set {Xj}pj=1 to the P-DARE (1.1) (see
Theorem 2.5 of section 2). Note that for the case p = 1 we have a single Riccati
equation for which backward perturbation bounds and residual bounds are known
[15], [16].

A forward perturbation analysis of the P-DARE (1.1) is presented by Lin and
Sun [12], where perturbation bounds and condition numbers of the Hermitian p.s.d.
stabilizing solution set to the P-DARE are obtained [12, sections 3 and 4]. In this
paper, we present a backward perturbation analysis of the P-DARE (1.1).

Backward perturbation analysis is motivated by the following fact. Let an ap-
proximate Hermitian p.s.d. solution set {X̃j}pj=1 to the P-DARE (1.1) be given. For
example, the approximate solution set may come from a numerical algorithm for ap-
proximating the exact Hermitian p.s.d. stabilizing solution set {Xj}pj=1. Then there
are two questions associated with the approximate solution set: (1) Is the approxi-
mate solution set the exact solution set of a slightly perturbed P-DARE? (2) Is the
approximate solution set close to the exact solution set {Xj}pj=1? The result of a
backward perturbation analysis may be a backward error, or a residual bound. The
purpose of backward perturbation analysis of the P-DARE (1.1) is to test the stability

∗Received by the editors September 23, 2002; accepted for publication (in revised form) by
V. Mehrmann July 22, 2003; published electronically August 6, 2004. This work was supported by the
Swedish Strategic Research Foundation Grant entitled “Matrix Pencil Computations in Computer-
Aided Control System Design: Theory, Algorithms and Software Tools.”

http://www.siam.org/journals/simax/26-1/41492.html
†Department of Computing Science, Ume̊a University, S-901 87 Ume̊a, Sweden (jisun@cs.umu.se).

1



2 JI-GUANG SUN

of a computation or an algorithm and to ascertain the accuracy of an approximate
solution set.

In matrix computations, developing backward errors and residual bounds is a
part of the subject of perturbation theory (see [7], [13], and [17]). In recent years, the
study of backward errors and residual bounds of matrix equations has been developed
considerably. Taking full account of the special structure of the Sylvester equation,
Higham [6] evaluates the backward error of an approximate solution to the matrix
equation and determines the sensitivity of the equation to perturbations in the data.
After that, K̊agström [9] evaluates the normwise backward error of an approximate
solution to the generalized Sylvester equation, and determines the sensitivity of the
equation; Ghavimi and Laub [4] present a new backward error criterion, together with
a sensitivity measure, for assessing solution accuracy of nonsymmetric and symmetric
continuous-time algebraic Riccati equations. Normwise backward errors and residual
bounds for continuous-time and discrete-time algebraic Riccati equations are obtained
by the author [14], [15], [16]. This work, as a generalization of the results given by [15]
and [16], derives normwise backward errors and residual bounds for an approximate
Hermitian p.s.d. solution set to the P-DARE (1.1).

We begin in section 2 with pd-stable matrices and the Hermitian p.s.d. stabilizing
solution set to the P-DARE (1.1). In sections 3 and 4 we derive normwise backward
errors and residual bounds for an approximate Hermitian p.s.d. solution set to the P-
DARE (1.1), respectively. The results will be illustrated by simple numerical examples
in section 5.

2. Preliminaries.

2.1. Notation. Throughout this paper, Cn and Hn denote the set of n × n
complex and n × n Hermitian matrices, respectively, and Cp

n and Hp
n denote the p-

tuple product spaces Cn × · · · × Cn and Hn × · · · × Hn, respectively. A denotes the

conjugate of a matrix A, AT denotes the transpose of A, and AH = A
T
. I stands

for the identity matrix, In is the identity matrix of order n, and 0 is the null matrix.
The set of all eigenvalues of A is denoted by λ(A). The spectral radius ρ(A) is
defined by ρ(A) = max{|λj | : λj ∈ λ(A)}. An n × n matrix Φ is said to be d-
stable if ρ(Φ) < 1. The symbol ‖ ‖F is the Frobenius norm, and ‖ ‖2 is the spectral
norm and the Euclidean vector norm. For A = (a1, . . . , an) = (αij) ∈ Cn and a
matrix B, A ⊗ B = (αijB) is a Kronecker product, and vecA is a vector defined by
vecA = (aT1 , . . . , a

T
n )T . For A ∈ Cn we have [5, pp. 32–34]

vecAT = ΠvecA,

where Π is the vec-permutation matrix which can be expressed by

Π =
n∑

k,l=1

eke
T
l ⊗ ele

T
k ,

in which ek denotes the kth column of In. In order to save the space of the matrix
representation, we use the following notation [12]:

diag{Nj}pj=1 =

⎛⎜⎝ N1 · · · 0
...

. . .
...

0 · · · Np

⎞⎟⎠ , cyc{Nj}pj=1 =

⎛⎜⎜⎜⎜⎝
0 · · · 0 N1

N2
. . . 0

...
. . .

. . .
...

0 · · · Np 0

⎞⎟⎟⎟⎟⎠ .
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2.2. On pd-stable matrices. We first cite some definitions from [12].
Let Φ1, . . . ,Φp ∈ Cn. If there are complex numbers α1, . . . , αp such that

det
[
diag{αjI}pj=1 − cyc{Φj}pj=1

]
= 0,

then α1 · · ·αp is an eigenvalue of the matrix set {Φj}pj=1.

The set of all eigenvalues of {Φj}pj=1 is denoted by λ
(
{Φj}pj=1

)
. We have [12]

λ
(
{Φj}pj=1

)
= λ(ΦpΦp−1 · · ·Φ1).

Consequently, if we define the spectral radius ρ
(
{Φj}pj=1

)
by

ρ
(
{Φj}pj=1

)
= max

{
|λj | : λj ∈ λ

(
{Φj}pj=1

)}
,

then

ρ
(
{Φj}pj=1

)
= ρ(ΦpΦp−1 · · ·Φ1).

Let Φ1, . . . ,Φp ∈ Cn. The matrix p-tuple {Φj}pj=1 is said to be pd-stable if the
matrix ΦpΦp−1 · · ·Φ1 is d-stable.

Let Φ1, . . . ,Φp ∈ Cn. Define the linear operator L : Hp
n → Hp

n by

L(W1, . . . ,Wp) =
(
W1 − ΦH

2 W2Φ2, . . . ,Wp−1 − ΦH
p WpΦp,Wp − ΦH

1 W1Φ1

)
,

(W1, . . . ,Wp) ∈ Hp
n.

(2.1)

It is known [12] that the matrix L defined by

L = Ipn2 −

⎛⎜⎜⎜⎜⎝
0 ΦT

2 ⊗ ΦH
2 · · · 0

...
. . .

. . .
...

...
. . . ΦT

p ⊗ ΦH
p

ΦT
1 ⊗ ΦH

1 · · · · · · 0

⎞⎟⎟⎟⎟⎠(2.2)

is a matrix representation of L on the space

Hpn2 ≡
{(

wT
1 , . . . , w

T
p

)T
: wj = vecWj , Wj ∈ Hn ∀j

}
.

Lemma 2.1 (see [12, Lemma 2.1]). The linear operator L defined by (2.1) is
singular provided that there is an eigenvalue λk ∈ λ

(
{Φj}pj=1

)
with |λk| = 1.

Lemma 2.2 (see [12, Lemma 2.2]). Let Φ = cyc{Φj}pj=1, where Φj ∈ Cn ∀j. If
{Φj}pj=1 is pd-stable, then Φ is d-stable.

Assume that {Φj}pj=1 is pd-stable. By Lemma 2.2 the matrix L defined by (2.2)

is nonsingular, and thus L−1 exists. In such a case, we define the quantity l by

l = ‖L−1‖−1,

where the operator norm ‖ ‖ for L−1 is induced by the Frobenius norm ‖ ‖F on Hp
n.

Note that Hp
n is not a subspace of Cp

n, but by [12, Appendix (I)] we have

l = ‖L−1‖−1
2 ,(2.3)
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i.e., the induced operator norms of L−1 on Cp
n and Hp

n are equal.
Let the matrix set {Φj}pj=1 be pd-stable. Define

spd = min

{
max

1≤j≤p
‖Ej‖2 : ρ

({
(I − Ej)

−1Φj

}p
j=1

)
= 1, Ej ∈ Cn ∀j

}
.(2.4)

The quantity spd measures the smallest max1≤j≤p ‖Ej‖2 such that
{
(I − Ej)

−1Φj

}p
j=1

has an eigenvalue on the unit circle. Note that the computation of spd may be a rather
difficult computational problem in the general case.

Lemma 2.3. Let {Φj}pj=1 be pd-stable, and let L be the linear operator defined
by (2.1) with L of (2.2) as its matrix representation. Let l and spd be the quantities
defined by (2.3) and (2.4), respectively, and let

φj = ‖Φj‖2, φ = max
1≤j≤p

φj .(2.5)

Then

l

φ2 + φ
√

φ2 + l + l
≤ spd.(2.6)

Proof. Let the matrices E∗
j ∈ Cn (j = 1, . . . , p) satisfy

spd = max
1≤j≤p

‖E∗
j ‖2 with ρ

({
(I − E∗

j )−1Φj

}p
j=1

)
= 1.

By Lemma 2.1 the transformation

⎛⎜⎜⎜⎝
W1

...
Wp−1

Wp

⎞⎟⎟⎟⎠ 	→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

W1 −
[
(I − E∗

2 )
−1

Φ2

]H
W2

[
(I − E∗

2 )
−1

Φ2

]
...

Wp−1 −
[(
I − E∗

p

)−1
Φp

]H
Wp

[(
I − E∗

p

)−1
Φp

]
Wp −

[
(I − E∗

1 )
−1

Φ1

]H
W1

[
(I − E∗

1 )
−1

Φ1

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
is singular, where Wj ∈ Hn for all j; i.e., there are Hermitian matrices W ∗

1 , . . . ,W
∗
p

with Wk 
= 0 for some index k ∈ {1, . . . , p} such that

W ∗
1 −

[
(I − E∗

2 )
−1

Φ2

]H
W ∗

2

[
(I − E∗

2 )
−1

Φ2

]
= 0,

...

W ∗
p −

[
(I − E∗

1 )
−1

Φ1

]H
W ∗

1

[
(I − E∗

1 )
−1

Φ1

]
= 0.

(2.7)

Let Nj ∈ Cn be defined by

I + Nj =
(
I − E∗

j

)−1
, j = 1, . . . , p.(2.8)

Then (2.7) can be written as

L

⎛⎜⎝ W ∗
1
T

...

W ∗
p
T

⎞⎟⎠
T

=

⎛⎜⎜⎝
(
ΦH

2 W ∗
2 N2Φ2 + ΦH

2 NH
2 W ∗

2 Φ2 + ΦH
2 NH

2 W ∗
2 N2Φ2

)T
...(

ΦH
1 W ∗

1 N1Φ1 + ΦH
1 NH

1 W ∗
1 Φ1 + ΦH

1 NH
1 W ∗

1 N1Φ1

)T
⎞⎟⎟⎠

T

,

(2.9)
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or equivalently, by letting vecW ∗
j = w∗

j (j = 1, . . . , p), we have

L

⎛⎜⎝ w∗
1
...
w∗

p

⎞⎟⎠ =
(
cyc
{
ΩT

j

}p
j=1

)T ⎛⎜⎝ w∗
1
...
w∗

p

⎞⎟⎠ ,(2.10)

where

Ωj =
(
ΦT

j N
T
j

)
⊗ ΦH

j + ΦT
j ⊗

(
ΦH

j NH
j

)
+
(
ΦT

j N
T
j

)
⊗
(
ΦH

j NH
j

)
∀j.

Inverting L and taking 2-norm of the two sides of (2.10) we get

ν2 + 2ν − l

φ2
≥ 0,(2.11)

where

ν = max
1≤j≤p

νj with νj = ‖Nj‖2 ∀j,(2.12)

and by (2.11),

ν ≥

√
1 +

l

φ2
− 1 =

l

φ2 + φ
√

φ2 + l
.(2.13)

Observe that the relations of (2.8) imply

Nj = (I + Nj)E
∗
j

and

‖Nj‖2 ≤ (1 + ‖Nj‖2)‖E∗
j ‖2.

Hence, we have

‖E∗
j ‖2 ≥ ‖Nj‖2

1 + ‖Nj‖2
,

and

max
1≤j≤p

‖E∗
j ‖2 ≥

max
1≤j≤p

‖Nj‖2

1 + max
1≤j≤p

‖Nj‖2
=

ν

1 + ν
.

Combining it with (2.13) gives the inequality (2.6).
From Lemma 2.3 we get the following lemma.
Lemma 2.4. Let {Φj}pj=1 be pd-stable, and let L be the linear operator defined by

(2.1) with L in (2.2) as its matrix representation. Moreover, let l and φ be defined by
(2.3) and (2.5), respectively. If Ej ∈ Cn (j = 1, . . . , p) satisfy

max
1≤j≤p

‖Ej‖2 <
l

φ2 + φ
√

φ2 + l + l
,

then the matrix set {(Φj + Ej)}pj=1 is pd-stable.
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2.3. The Hermitian p.s.d. stabilizing solution set. By [2], the matrix pair
sets {(Aj , Bj)}pj=1 and {(Aj , Cj)}pj=1 are said to be pd-stabilizable and pd-detectable,
respectively, if the pairs (Aj ,Bj) and (Aj , Cj) are d-stabilizable and d-detectable,
respectively, for j = 1, . . . , p, where

Aj = Aπj(p) · · ·Aπj(1),

Bj = (Aπj(p) · · ·Aπj(2)Bπj(1), Aπj(p) · · ·Aπj(3)Bπj(2), . . . , Aπj(p)Bπj(p−1), Bπj(p)),

Cj =
(
CT

πj(1)
, AT

πj(1)
CT

πj(2)
, AT

πj(1)
AT

πj(2)
CT

πj(3)
, . . . , AT

πj(1)
· · ·AT

πj(p−1)C
T
πj(p)

)T
,

(2.14)

and πj( ) is a permutation defined by

πj(k) =

⎧⎨⎩
k − j + 1 + p for k = 1, . . . , j − 1 and j ≥ 2,

k − j + 1 for k = j, . . . , p.
(2.15)

Note that the pair (A,B) is d-stabilizable if wHB = 0 and wHA = λwH for
some constant λ implies |λ| < 1 or w = 0, and that the pair (A,C) is d-detectable if
(AH , CH) is d-stabilizable.

Let Xj ∈ Hn (j = 1, . . . , p) and {Xj}pj=1 be a solution set to the P-DARE (1.1).

If the matrix set {(I + GjXj)
−1Aj}pj=1 is pd-stable, then {Xj}pj=1 is said to be a

stabilizing solution set to (1.1). If Xj ≥ 0 for all j, then {Xj}pj=1 is said to be a
Hermitian p.s.d. solution set.

The following result is a basic result on the existence and uniqueness of Hermitian
p.s.d. stabilizing solution sets to the P-DARE (1.1). (See [1], [2], [12].)

Theorem 2.5. For the P-DARE (1.1), if {(Aj , Bj)}pj=1 and {(Aj , Cj)}pj=1 are
pd-stabilizable and pd-detectable, respectively, then there is a unique Hermitian p.s.d.
stabilizing solution set {Xj}pj=1 to the P-DARE (1.1).

The result will be illustrated by Example 5.1 of section 5.

Throughout this paper, the matrix pair sets {(Aj , Bj)}pj=1 and {(Aj , Cj)}pj=1 of
(1.1) are assumed to be pd-stabilizable and pd-detectable, respectively.

3. Backward errors.

3.1. Definitions. Let {X̃j}pj=1 approximate the unique Hermitian p.s.d. stabi-

lizing solution set to the P-DARE (1.1), and assume that the matrices I +GjX̃j (j =
1, . . . , p) are nonsingular. Moreover, let ∆Aj ,∆Gj ,∆Hj be the corresponding per-
turbations in the coefficient matrices Aj , Gj , Hj (j = 1, . . . , p) of (1.1), respectively.

The normwise backward error η({X̃j}pj=1) of the approximate solution set {X̃j}pj=1

can be defined by

η({X̃j}pj=1) = max
1≤j≤p

min
{(∆Aj ,∆Gj ,∆Hj)}p

j=1∈E

∥∥∥∥(∆Aj

αj
,

∆Gj

βj
,

∆Hj

γj

)∥∥∥∥
F

,(3.1)
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where the set E is defined by

E =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(∆Aj ,∆Gj ,∆Hj)}pj=1 :

∆Aj ∈ Cn, ∆Gj ,∆Hj ∈ Hn,

X̃j−1

= (Aj + ∆Aj)
HX̃j

[
I + (Gj + ∆Gj)X̃j

]−1

(Aj + ∆Aj)

+Hj + ∆Hj ,

j = 1, . . . , p

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.2)

and αj , βj , γj (j = 1, . . . , p) are positive parameters. Taking αj = βj = γj = 1 for

j = 1, . . . , p yields the normwise absolute backward error ηabs({X̃j}pj=1), and taking
αj = ‖Aj‖F , βj = ‖Gj‖F , γj = ‖Hj‖F (j = 1, . . . , p) yields the normwise relative

backward error ηrel({X̃j}pj=1).

From (3.1) and (3.2) we see that the backward error η({X̃j}pj=1) of an approximate

Hermitian solution set {X̃j}pj=1 to the P-DARE (1.1) is a measure of “smallest”

perturbations ∆Aj/αj ,∆Gj/βj ,∆Hj/γj (j = 1, . . . , p) such that {X̃j}pj=1 is just a
Hermitian solution set to the perturbed P-DARE

X̃j−1 = (Aj + ∆Aj)
HX̃j [I + (Gj + ∆Gj)X̃j ]

−1(Aj + ∆Aj) + Hj + ∆Hj ,

j = 1, . . . , p.
(3.3)

Moreover, from (3.1) and (3.2) we see that

η({X̃j}pj=1) = max
1≤j≤p

ηj ,(3.4)

where each ηj is defined by

ηj = min
(∆Aj ,∆Gj ,∆Hj)∈Ej

∥∥∥∥(∆Aj

αj
,

∆Gj

βj
,

∆Hj

γj

)∥∥∥∥
F

,(3.5)

in which the set Ej is defined by

Ej =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(∆Aj ,∆Gj ,∆Hj) :

∆Aj ∈ Cn, ∆Gj ,∆Hj ∈ Hn,

X̃j−1

=(Aj+∆Aj)
HX̃j

[
I+(Gj+∆Gj)X̃j

]−1

(Aj + ∆Aj)

+Hj+∆Hj

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(3.6)

Consequently, the problem of estimating the backward error η({X̃j}pj=1) is re-
duced to the problem of estimating ηj for j = 1, . . . , p.
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3.2. Estimates of ηj (j = 1, . . . , p). For each j ∈ {1, . . . , p} define

L̃j = X̃j(I + GjX̃j)
−1 ∈ Hn, K̃j = L̃jAj ∈ Cn,(3.7)

and define the residual R̂j by

R̂j = X̃j−1 −AH
j X̃j(I + GjX̃j)

−1Aj −Hj ,(3.8)

where X̃0 = X̃p. Moreover, define

qj(∆Aj ,∆Gj)

= −K̃H
j ∆GjL̃j∆Gj(I + L̃j∆Gj)

−1K̃j + K̃H
j ∆Gj(I + L̃j∆Gj)

−1L̃j∆Aj

+∆AH
j L̃j∆Gj(I + L̃j∆Gj)

−1K̃j − ∆AH
j (I + L̃j∆Gj)

−1L̃j∆Aj .

(3.9)

Then by [15, section 2], the jth equation of (3.3) is equivalent to

K̃H
j ∆Aj + ∆AH

j K̃j − K̃H
j ∆GjK̃j + ∆Hj = R̂j + qj(∆Aj ,∆Gj).(3.10)

3.2.1. The real case. We now consider the case that all the coefficient matri-
ces Aj , Gj , Hj ; the perturbations ∆Aj ,∆Gj ,∆Hj ; and the approximate solution set

{X̃j}pj=1 are real. In such a case, (3.10) can be written as

K̃T
j ∆Aj + ∆AT

j K̃j − K̃T
j ∆GjK̃j + ∆Hj = R̂j + qj(∆Aj ,∆Gj).(3.11)

Define the matrix Tj by

Tj =
(
αj

[
In ⊗ K̃T

j +
(
K̃T

j ⊗ In

)
Π
]
, −βjK̃

T
j ⊗ K̃T

j , γjIn2

)
,(3.12)

where Π is the vec-permutation matrix. Then (3.11) is equivalent to the nonlinear
system

Tj

⎛⎜⎜⎜⎜⎜⎜⎜⎝

vec∆Aj

αj

vec∆Gj

βj

vec∆Hj

γj

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= vecR̂j + vecqj(∆Aj ,∆Gj).(3.13)

By using the technique described by [15, section 2] we can prove the following result.

Theorem 3.1. For each j ∈ {1, . . . , p}, let Tj be the matrix defined by (3.12),
and define τj , ρj , µj, and νj by

τj =
∥∥∥T †

j

∥∥∥
2
, ρj =

∥∥∥T †
j vecR̂j

∥∥∥
2
,

µj =
(
α2
j + β2

j ‖K̃j‖2
2

)
‖L̃‖2, νj = βj‖X̃j‖2

∥∥∥(I + GjX̃j)
−1
∥∥∥

2
,

(3.14)
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where T †
j denotes the Moore–Penrose inverse of Tj, and L̃j , K̃j, and R̂j are the ma-

trices defined by (3.7) and (3.8). If

ρj ≤ min

⎧⎨⎩ 1

νj
,

τj

τjνj + 2µj +
√

(τjνj + 2µj)2 − τ2
j ν

2
j

⎫⎬⎭ ,(3.15)

then

lj ≤ ηj ≤ uj ,(3.16)

where

uj =
2τjρj

τj(1 + νjρj) +
√
τ2
j (1 + νjρj)2 − 4τj(τjνj + µj)ρj

,

lj = ρj −
µju

2
j

τj(1 − νjuj)
.

(3.17)

From Theorem 3.1 and the relation (3.4) we get the nonlinear estimates

l∗ ≡ max
1≤j≤p

lj ≤ η({X̃j}pj=1) ≤ max
1≤j≤p

uj ≡ u∗.(3.18)

Note that

uj = ρj +
µj

τj
ρ2
j + O(ρ3), lj = ρj −

µj

τj
ρ2
j + O(ρ3), j = 1, . . . , p.

Consequently, we have the linear estimates

ηj ≈ ρj ∀j, and η({X̃j}pj=1) ≈ max
1≤j≤p

ρj(3.19)

as max1≤j≤p ρj → 0 (j → ∞).

3.2.2. The complex case. Let

αj

[
In ⊗ K̃H

j + (K̃T
j ⊗ In)Π

]
= Uj,1 + iΩj,1,

−βjK̃
T ⊗ K̃H

j = Uj,2 + iΩj,2,

vec∆Aj = xj + iyj , vec∆Gj = uj + ivj , vec∆Hj = zj + iwj ,

vecR̂j = rj + isj , vecqj(∆Aj ,∆Gj) = aj + ibj , i =
√
−1,

where Uj,k and Ωj,k (k = 1, 2) are real matrices, and xj , yj , uj , vj , zj , wj , rj , sj , aj , bj
are real vectors. Moreover, let

T
(c)
j =

⎛⎝ Uj,1 −Ωj,1 Uj,2 −Ωj,2 γjIn2 0

Ωj,1 Uj,1 Ωj,2 Uj,2 0 γjIn2

⎞⎠ ,(3.20)
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and

χj =

(
xT
j

αj
,
yTj
αj

,
uT
j

βj
,
vTj
βj

,
zTj
γj

,
wT

j

γj

)T

.

Then (3.10) is equivalent to

T
(c)
j χj =

(
rj
sj

)
+

(
aj
bj

)
.

Referring to [10], [11], and the proof of Theorem 3.1, we can prove the following
result.

Theorem 3.2. For each j ∈ {1, . . . , p}, let T
(c)
j be the matrix defined by (3.20).

Define µj and νj by (3.14), and define τ
(c)
j and ρ

(c)
j by

τ
(c)
j =

∥∥∥∥T (c)
j

†
∥∥∥∥

2

, ρ
(c)
j =

∥∥∥∥T (c)
j

†
(

rj
sj

)∥∥∥∥
2

.

If

ρ
(c)
j ≤ min

⎧⎨⎩ 1

νj
,

τ
(c)
j

τ
(c)
j νj + 2µj +

√
(τ

(c)
j νj + 2µj)2 − τ

(c)
j

2
ν2
j

⎫⎬⎭ ,

then we have

l
(c)
j ≤ ηj ≤ u

(c)
j ,

where

u
(c)
j =

2τ
(c)
j ρ

(c)
j

τ
(c)
j (1 + νjρ

(c)
j ) +

√
τ

(c)
j

2
(1 + νjρ

(c)
j )2 − 4τ

(c)
j (τ

(c)
j νj + µj)ρ

(c)
j

,

l
(c)
j = ρ

(c)
j −

µju
(c)
j

2

τ
(c)
j (1 − νju

(c)
j )

.

From Theorem 3.2 and the relation (3.4) we get

l(c) ≡ max
1≤j≤p

l
(c)
j ≤ η({X̃j}pj=1) ≤ max

1≤j≤p
u

(c)
j ≡ u(c).

4. Residual bounds. In this section we prove the following result.
Theorem 4.1. Let {X̃j}pj=1 be an approximate Hermitian solution set to the

P-DARE (1.1) such that the matrices I + GjX̃j (j = 1, . . . , p) are nonsingular, and

the matrix set {(I + GjX̃j)
−1Aj}pj=1 is pd-stable. Define the residuals R̂j by

R̂j = X̃j−1 −AH
j X̃j(I + GjX̃j)

−1Aj −Hj , j = 1, . . . , p,(4.1)

where X̃0 = X̃p, and define the linear operator L : Hp
n → Hp

n by

L(W1, . . . ,Wp−1,Wp) =
(
W1 − Φ̃H

2 W2Φ̃2, . . . ,Wp−1 − Φ̃H
p WpΦ̃p,Wp − Φ̃H

1 W1Φ̃1

)
,

(4.2)
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where W1, . . . ,Wp ∈ Hn, and the matrices Φ̃j are defined by

Φ̃j = (I + GjX̃j)
−1Aj , j = 1, . . . , p.(4.3)

Moreover, let

φ = max
1≤j≤p

φj with φj = ‖Φ̃j‖2 ∀j,

γ = max
1≤j≤p

γj with γj =
∥∥∥(I + GjX̃j)

−1Gj

∥∥∥
2

∀j,
(4.4)

and

l =
∥∥L−1

∥∥−1
, ε =

∥∥∥L−1(R̂1, . . . , R̂p)
∥∥∥
F
,(4.5)

where the operator norm ‖ ‖ for L−1 is induced by the Frobenius norm ‖ ‖F on Cp
n. If

ε <
l

γ(2φ2 + 2φ
√

φ2 + l + l)
,(4.6)

then for the unique Hermitian p.s.d. stabilizing solution set {Xj}pj=1 to the P-DARE
(1.1) we have

∥∥∥(X̃1 −X1, . . . , X̃p −Xp)
∥∥∥
F
≤ 2lε

(1 + γε)l +
√

(1 + γε)2l2 − 4(φ2 + l)γlε
≡ r(ε).

(4.7)

As a corollary of Theorem 4.1, we have the estimate

∥∥∥(X̃1 −X1, . . . , X̃p −Xp)
∥∥∥
F
≤ 2ε

1 + γε
=

2
∥∥∥L−1(R̂1, . . . , R̂p)

∥∥∥
F

1 + γ
∥∥∥L−1(R̂1, . . . , R̂p)

∥∥∥
F

.

Moreover, from (4.7) we obtain a relative error bound brel(X̃j) for each X̃j (1 ≤
j ≤ p):

‖X̃j −Xj‖F
‖Xj‖F

≤ ‖X̃ −X‖F /‖X̃j‖F
1 − ‖X̃ −X‖F /‖X̃j‖F

≤ r(ε)/‖X̃j‖F
1 − r(ε)/‖X̃j‖F

≡ brel(X̃j).(4.8)

Proof of Theorem 4.1. The proof is completed by the following three steps.
Step 1. Perturbation equation.
Let

X = diag{Xj}pj=1, X̃ = diag{X̃j}pj=1,

∆X = diag{∆Xj}pj=1 with ∆Xj = X̃j −Xj , j = 1, . . . , p,

A = cyc{Aj}pj=1, G = diag{Gj}pj=1,

H = diag(H2, . . . , Hp, H1), R̂ = diag(R̂2, . . . , R̂p, R̂1).

Then (1.1) and (4.1) can be expressed by

X = AHX(I + GX)−1A + H(4.9)
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and

R̂ = X̃ −AHX̃(I + GX̃)−1A−H,(4.10)

respectively. By simple matrix operations, we can get from (4.9) and (4.10) the per-
turbation equation [16, section 3]

∆X−AH(I+X̃G)−1∆X(I+GX̃)−1A = R̂

+AH(I+X̃G)−1∆X(I+GX̃)−1G∆X
[
I+(I+GX̃)−1G∆X

]−1

(I+GX̃)−1A,

(4.11)

or equivalently,

L(∆X1, . . . ,∆Xp−1,∆Xp) = (R̂2, . . . , R̂p, R̂1) + (f2(∆X2), . . . , fp(∆Xp), f1(∆X1)),

(4.12)

where L is the linear operator defined by (4.2), R̂j (j = 1, . . . , p) are the residuals
defined by (4.1), and the functions fj(∆Xj) (j = 1, . . . , p) are defined by

fj(∆Xj)

= AH
j (I + X̃jGj)

−1∆Xj(I + GjX̃j)
−1Gj∆Xj [I + (I + GjX̃j)

−1Gj∆Xj ]
−1

×(I + GjX̃j)
−1Aj .

(4.13)

Since the matrix set {Φ̃j}pj=1 is pd-stable, the operator L is invertible. Conse-
quently, the perturbation equation (4.12) can be expressed by

(∆X1, . . . ,∆Xp−1,∆Xp)

= L−1[(R̂2, . . . , R̂p, R̂1) + (f2(∆X2), . . . , fp(∆Xp), f1(∆X1))].

(4.14)

Define the function g(∆X1, . . . ,∆Xp−1,∆Xp) on Hp
n by

g(∆X1, . . . ,∆Xp−1,∆Xp)

= L−1[(R̂2, . . . , R̂p, R̂1) + (f2(∆X2), . . . , fp(∆Xp), f1(∆X1))].

(4.15)

Obviously, g( ) can be regarded as a continuous mapping M : Hp
n → Hp

n, and the set
of solutions to (4.14) is just the set of fixed points of the mapping M.

Step 2. Estimates of some fixed points of M.
From the definition (4.15) we get

‖g(∆X1, . . . ,∆Xp)‖F ≤ ε +
‖(f2(∆X2), . . . , fp(∆Xp), f1(∆X1))‖F

l
,(4.16)

where ε and l are defined by (4.5). Moreover, from (4.13) we get

‖fj(∆Xj)‖F ≤
φ2
jγj‖∆Xj‖2

F

1 − γj‖∆Xj‖2
F

≤ φ2γ‖∆Xj‖2
F

1 − γ‖(∆X1, . . . ,∆Xp)‖F
, j = 1, . . . , p,(4.17)
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where φj , φ, γj , γ are defined by (4.4). Here we assume that the set {∆Xj}pj=1 satisfies

1 − γ‖(∆X1, . . . ,∆Xp)‖F > 0.(4.18)

Combining (4.16) and (4.17) gives

‖g(∆X1, . . . ,∆Xp)‖F ≤ ε +
φ2γ‖(∆X1, . . . ,∆Xp)‖2

F

l(1 − γ‖(∆X1, . . . ,∆Xp)‖F )
.(4.19)

By using the technique described by [16, section 4] we can prove that if ε satisfies
the condition (4.6), then the mapping M has a fixed point (∆X∗

1 , . . . ,∆X∗
p ) in the

set

Sr(ε) = {(∆X1, . . . ,∆Xp) ∈ Hp
n : ‖(∆X1, . . . ,∆Xp)‖F ≤ r(ε)} ,(4.20)

where r(ε) is defined by (4.7).
Note that the condition (4.6) implies that for any (∆X1, . . . ,∆Xp) ∈ Sr(ε) the

inequality (4.18) holds. In fact, if (∆X1, . . . ,∆Xp) ∈ Sr(ε), then we have

γ‖(∆X1, . . . ,∆Xp)‖F ≤ γr(ε) (by (4.20))

≤ 2γε

1 + γε
(by (4.7))

<
l

φ2 + φ
√

φ2 + l + l
(by (4.6))

≤ 1.

Step 3. On the matrix set {X̃j − ∆X∗
j }

p
j=1.

Let

∆X∗ = diag(∆X∗
1 , . . . ,∆X∗

p )

and

Y = X̃ − ∆X∗ = diag(Y1, . . . , Yp).

Then from Step 1 we see that Y is a Hermitian solution to the DARE (4.9); i.e., Y
satisfies

Y = AHY (I + GY )−1A + H,(4.21)

or equivalently,

Y −AH(I + Y G)−1Y (I + GY )−1A

= H + AH(I + Y G)−1Y GY (I + GY )−1A.
(4.22)

Observe the following two facts:
1. The matrix on the right-hand side of (4.22) is Hermitian p.s.d.
2. The matrix (I + GY )−1A can be written as

(I + GY )−1A = [I − (I + GX̃)−1G∆X∗](I + GX̃)−1A,
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or equivalently,

cyc
{
(I + GjYj)

−1Aj

}p
j=1

= cyc

{[
I − (I + GjX̃j)

−1Gj∆X∗
j

]−1

Φ̃j

}p

j=1

,(4.23)

where the matrices Φ̃j are defined by (4.3), and by the hypotheses the matrix set

{Φ̃j}pj=1 is pd-stable. Moreover, for j = 1, . . . , p we have∥∥∥(I + GjX̃j)
−1Gj∆X∗

j

∥∥∥
2

≤
∥∥∥(I + GjX̃j)

−1Gj

∥∥∥
2
‖∆X∗

j ‖2

≤ γjr(ε) (by (4.4) and (4.20))

≤ 2γlε

(1 + γε)l +
√

(1 + γε)2l2 − 4(φ2 + l)γlε
(by (4.4) and (4.7))

≤ 2γε

1 + γε

<
l

φ2 + φ
√

φ2 + l + l
(by (4.6)).

Consequently, by Lemma 2.4, the matrix set {[I − (I +GjX̃j)
−1Gj∆X∗

j ]−1Φ̃j}pj=1 is

pd-stable. By (4.23), the matrix set
{
(I + GjYj)

−1Aj

}p
j=1

is pd-stable. Further, by

Lemma 2.2, the matrix

cyc
{
(I + GjYj)

−1Aj

}p
j=1

= (I + GY )−1A

is d-stable.
Hence, the Hermitian matrix Y = diag(Y1, . . . , Yp), as a solution to (4.22), is

positive semidefinite [3, Proposition 2.1]; and so the matrix Y , as a Hermitian solution
to the DARE (4.21), is positive semidefinite and stabilizing. By the uniqueness of
the stabilizing solution to the DARE (4.21) [8, Proposition 1], we have Y = X =
diag{Xj}pj=1, the unique Hermitian p.s.d. stabilizing solution to the DARE (4.9).
Thus, the matrix set {Yj}pj=1 is just the unique Hermitian p.s.d. stabilizing solution
set to the P-DARE (1.1).

Overall, we have proved the estimate

‖(X̃1 −X1, . . . , X̃p −Xp)‖F = ‖(∆X∗
1 , . . . ,∆X∗

p )‖F ≤ r(ε).

Note that the function r(ε) defined by (4.7) has the Taylor expansion at ε = 0:

r(ε) = ε +
γφ2

l
ε2 + O(ε3) as ε → 0.

Consequently, for sufficiently small ‖L−1(R̂1, . . . , R̂p)‖F , we have the first order esti-
mate

‖(X̃1 −X1, . . . , X̃p −Xp)‖F <∼ ε =
∥∥∥L−1(R̂1, . . . , R̂p)

∥∥∥
F
.
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5. Numerical results. We now use a simple numerical example to illustrate
our results of sections 3 and 4. All computations were performed using MATLAB,
version 6.1. The relative machine precision is 2.22 × 10−16.

Example 5.1. Consider the P-DARE (1.1) with n = 2, p = 3, and

A1 =

(
0 0

10m 0

)
, A2 =

(
0 1
0 0

)
, A3 =

(
0 0
0 1

)
,

B1 =

(
1 0
0 1

)
, B2 =

(
1 0
0 1

)
, B3 =

(
1
0

)
,

C1 =

(
1 0
0 1

)
, C2 = (1, 0), C3 = (0, 0),

R1 =

(
1 0
0 1

)
, R2 =

(
1 0
0 1

)
, R3 = 1.

(5.1)

By Gj = BjR
−1
j BT

j and Hj = CT
j Cj (j = 1, 2, 3), we have

G1 =

(
1 0
0 1

)
, G2 =

(
1 0
0 1

)
, G3 =

(
1 0
0 0

)
,

H1 =

(
1 0
0 1

)
, H2 =

(
1 0
0 0

)
, H3 =

(
0 0
0 0

)
.

(5.2)

Thus, the corresponding P-DARE (1.1) can be written⎧⎨⎩
X3 = AT

1 (I + G1X1)
−1A1 + H1,

X1 = AT
2 (I + G2X2)

−1A2 + H2,
X2 = AT

3 (I + G3X3)
−1A3 + H3,

(5.3)

where Aj and Gj , Hj are the matrices of (5.1) and (5.2), respectively.
By (5.1), (2.14), and (2.15), we get the matrices Aj , Bj , and Cj (j = 1, 2, 3) with

A1 = A3A2A1 =

(
0 0
0 0

)
,

B1 = (A3A2B1, A3B2, B3) =

(
0 0 0 0 1
0 0 0 1 0

)
,

C1 =
(
CT

1 , AT
1 C

T
2 , AT

1 A
T
2 C

T
3

)T
=

(
1 0 0 0
0 1 0 0

)T

,

A2 = A2A1A3 =

(
0 0
0 0

)
,

B2 = (A2A1B3, A2B1, B2) =

(
10m 0 1 1 0
0 0 0 0 1

)
,

C2 =
(
CT

3 , AT
3 C

T
1 , AT

3 A
T
1 C

T
2

)T
=

(
0 0 0 0
1 0 1 0

)T

,

A3 = A1A3A2 =

(
0 0
0 0

)
,

B3 = (A1A3B2, A1B3, B1) =

(
0 0 0 1 0
0 0 10m 0 1

)
,

C3 =
(
CT

2 , AT
2 C

T
3 , AT

2 A
T
3 C

T
1

)T
=

(
1 0 0 0
0 0 0 0

)T

.
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Table 5.1

Estimates of relative backward errors (k = 12).

m l∗ u∗ crel(X1, X2, X3)

0 8.8 × 10−13 8.8 × 10−13 2.7

1 5.7 × 10−11 5.7 × 10−11 7.1 × 10

2 5.7 × 10−9 5.7 × 10−9 7.1 × 103

3 3.5 × 10−7 7.8 × 10−7 7.1 × 105

4 ∗ ∗ 7.1 × 107

It can be verified that the matrix pairs (Aj ,Bj) are d-stabilizable, and (Aj , Cj) are
d-detectable for j = 1, 2, 3; i.e., the matrix pair sets {(Aj , Bj)}3

j=1 and {(Aj , Cj)}3
j=1

are pd-stabilizable and pd-detectable, respectively. By Theorem 2.5, the P-DARE
(5.3) has a unique symmetric p.s.d. stabilizing solution set {Xj}3

j=1. It is easy to

verify that the set {Xj}3
j=1 with

X1 =

(
1 0
0 0

)
, X2 =

(
0 0
0 1

)
, X3 =

(
1 0
0 1

)
is the unique symmetric p.s.d. stabilizing solution set, which is independent of the
values of m.

Let the approximate symmetric p.s.d. solution sets {X̃j}3
j=1 be given by

X̃1 = X1 +

(
−0.3 −0.2
−0.2 0.8

)
× 10−k, X̃2 = X2 +

(
0.1 0.1
0.1 −0.2

)
× 10−k,

X̃3 = X3 +

(
−0.2 0.3

0.3 0.6

)
× 10−k, k = 0, 1, 2, . . . .

(5.4)

We now are going to give estimates of backward errors and residual bounds for the
approximate symmetric p.s.d. solution sets.

Estimates of backward errors. Some numerical results on backward errors of
the approximate solution sets are listed in Tables 5.1 and 5.2, where the bounds l∗

and u∗ are computed by (3.17)–(3.18), and the values of the relative condition number
crel(X1, X2, X3) listed in Table 5.1 are computed by [12, (4.24)] with

ξj = ‖Xj‖F , αj = ‖Aj‖F , γj = ‖Gj‖F , ηj = ‖Hj‖F , j = 1, 2, 3.

The cases when the condition (3.15) of Theorem 3.1 is violated are denoted by asterisks
in Tables 5.1 and 5.2.

From the results listed in Table 5.1 we see that the relative backward error in-
creases as the relative conditioning of the P-DARE deteriorates.

The results listed in Tables 5.1 and 5.2 show that the relative backward errors
are very small (η({X̃j}3

j=1)
<∼ 5.7 × 10−9) in the cases of k = 12 and m ≤ 2, and

in the cases of m = 1 and k ≥ 10; this means that in such cases each approximate
symmetric p.s.d. solution set {X̃j}3

j=1 is an exact symmetric p.s.d. solution set to a
slightly perturbed P-DARE.

From the results listed in Table 5.2 we see that the relative backward error de-

creases as the error ‖X̃ −X‖F =
√∑3

j=1 ‖X̃j −Xj‖2
F decreases.
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Table 5.2

Estimates of relative backward errors (m = 1, crel(X1, X2, X3) ≈ 71).

k l∗ u∗ ‖X̃ −X‖F
2 ∗ ∗ 1.2 × 10−2

4 3.4 × 10−3 7.9 × 10−3 1.2 × 10−4

6 5.7 × 10−5 5.7 × 10−5 1.2 × 10−6

8 5.7 × 10−7 5.7 × 10−7 1.2 × 10−8

10 5.7 × 10−9 5.7 × 10−9 1.2 × 10−10

12 5.7 × 10−11 5.7 × 10−11 1.2 × 10−12

Computed results for this example show that

lj ≈ uj ≈ ρj , j = 1, 2, 3,

which mean that the linear estimates (3.19) are relatively sharp, while the nonlinear
estimates (3.16) do not even exist in some cases. However, it is worth pointing out
that the nonlinear estimates (3.16) guarantee the existence of the solution to the
optimization problem (3.5), while the linear estimates (3.19) would formally give
approximate bounds which might not correspond to any solution to the problem
(3.5).

Residual bounds. Here we only present a few results in the case of m = 0. In
such a case, the relative condition number crel(X1, X2, X3) ≈ 2.7. Taking k = 4 in
(5.4) we obtain an approximate symmetric p.s.d. solution set {X̃j}3

j=1, among which

each X̃j approximates Xj (1 ≤ j ≤ 3) up to 5 significant figures.

A computation by (4.7) gives

r(ε)

‖X̃1‖F
≈ 1.5 × 10−4,

r(ε)

‖X̃2‖F
≈ 1.5 × 10−4,

r(ε)

‖X̃3‖F
≈ 1.1 × 10−4.

Combining the estimates with (4.8) we get relative error bounds for X̃j (j = 1, 2, 3):

brel(X̃1) ≈ 1.5 × 10−4, brel(X̃2) ≈ 1.5 × 10−4, brel(X̃3) ≈ 1.1 × 10−4.(5.5)

From (5.5) we see that the approximate symmetric p.s.d. solution set {X̃j}3
j=1 has at

least 4 correct digits.

Note that by Theorem 4.1 the estimate (4.7) can only be applied to the case where
the condition (4.6) is satisfied; i.e.,

δ(ε) ≡ l

γ(2φ2 + 2φ
√

φ2 + l + l)
− ε > 0.

The results listed in Table 5.3 show the scope of application of the estimate (4.7) for
this example.

Example 5.2 (see [12, Example 5.1]). Consider the P-DARE (1.1) with n = 3, p =
3, and

Aj = V T
j A

(0)
j Vj , Gj = V T

j G
(0)
j Vj , Hj = V T

j H
(0)
j Vj , j = 1, 2, 3,
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Table 5.3

m crel(X1, X2, X3) δ(ε)
0 2.7 δ(ε) > 0 if and only if k ≥ 1
1 7.1 × 10 δ(ε) > 0 if and only if k ≥ 11
2 7.1 × 103 δ(ε) > 0 if and only if k ≥ 13
3 7.1 × 105 δ(ε) > 0 if and only if k ≥ 21

Table 5.4

Estimates of relative backward errors.

m l∗ u∗

0 2.2 × 10−15 2.2 × 10−15

1 1.9 × 10−15 1.9 × 10−15

2 3.8 × 10−15 3.8 × 10−15

3 1.9 × 10−14 1.9 × 10−14

4 4.0 × 10−13 4.0 × 10−13

5 5.0 × 10−12 5.0 × 10−12

6 5.0 × 10−11 5.0 × 10−11

where

A
(0)
1 = diag(0, 10−m, 1), A

(0)
2 = diag(10−9, 10−m, 1 + 10−3),

A
(0)
3 = diag(10−3, 10−m+1, 0.5),

G
(0)
j = diag

(
1

j
10−m,

1

j
10−m, j × 10−m

)
, H

(0)
j = diag

(
1

j
10m, j, j × 10−m

)
,

j = 1, 2, 3,

and

V1 = I − 2v1v
T
1 with v1 =

1√
3
(1, 1, 1)T ,

V2 = I − 2v2v
T
2 with v2 =

1√
6
(1, 1, 2)T ,

V3 = I − 2v3v
T
3 with v3 =

1√
11

(−1, 1, 3)T .

By applying the file “dare” of Control System Toolbox, we get computed symmet-
ric p.s.d. solution sets {X̃1, X̃2, X̃3} to the P-DARE (1.1). Some numerical results on
backward errors and residual bounds for the computed solution sets are listed in Tables
5.4 and 5.5, respectively, where the relative error bounds brel(X̃j) for X̃j (j = 1, 2, 3)
are defined by (4.8).

The results listed in Table 5.4 show that each computed symmetric p.s.d. solution
set {X̃1, X̃2, X̃3} by applying the file “dare” of Control System Toolbox is the exact
symmetric p.s.d. solution set to a slightly perturbed P-DARE; in other words, the
computation has proceeded stably.

From the results listed in Table 5.5 we see that the computed symmetric p.s.d.
solution sets {X̃1, X̃2, X̃3} have high relative precision when m is a small natural
number; e.g., in the case m = 3, each computed X̃j has at least 14 correct digits.
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Table 5.5

Residual bounds.

m ε r(ε) brel(X̃1) brel(X̃2) brel(X̃3)

0 8.3 × 10−13 8.3 × 10−13 2.1 × 10−13 7.5 × 10−15 3.2 × 10−13

1 1.3 × 10−14 1.3 × 10−14 2.3 × 10−15 2.3 × 10−15 1.3 × 10−15

2 3.3 × 10−13 3.3 × 10−13 6.2 × 10−15 9.6 × 10−15 3.2 × 10−15

3 2.0 × 10−11 2.0 × 10−11 3.8 × 10−14 6.0 × 10−14 2.0 × 10−14

4 4.2 × 10−9 4.2 × 10−9 8.0 × 10−13 1.2 × 10−12 4.1 × 10−13

5 5.4 × 10−7 5.4 × 10−7 1.0 × 10−11 1.6 × 10−11 5.3 × 10−12

6 5.3 × 10−5 5.3 × 10−5 1.0 × 10−10 1.6 × 10−10 5.3 × 10−11
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