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Abstract. Any spectral function can be written as a composition of a symmetric function
f : R

n �→ R and the eigenvalue function λ(·) : S �→ R
n, often denoted by (f ◦ λ), where S is

the subspace of n × n symmetric matrices. In this paper, we present some nonsmooth analysis
for such spectral functions. Our main results are (a) (f ◦ λ) is directionally differentiable if f is
semidifferentiable, (b) (f ◦λ) is LC1 if and only if f is LC1, and (c) (f ◦λ) is SC1 if and only if f is
SC1. Result (a) is complementary to a known (negative) fact that (f ◦λ) might not be directionally
differentiable if f is directionally differentiable only. Results (b) and (c) are particularly useful for
the solution of LC1 and SC1 minimization problems which often can be solved by fast (generalized)
Newton methods. Our analysis makes use of recent results on continuously differentiable spectral
functions as well as on nonsmooth symmetric–matrix-valued functions.
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1. Introduction. There has been growing interest in the variational analysis of
spectral functions. This growing trend is probably due to the following reasons. On
one hand, spectral functions have important applications to some fundamental prob-
lems in applied mathematics such as semidefinite programs and engineering problems.
See a survey paper by Lewis and Overton [14] for many such applications. On the
other hand, efficient nonsmooth analysis tools have only been available in the past
few years; see the book by Rockafellar and Wets [26]. In this paper, we study some
nonsmooth properties of spectral functions which have not been reported in the liter-
ature. Our study is inspired by recent progress on spectral functions [13, 15, 16] and
progress on symmetric–matrix-valued functions [2, 27, 3, 28, 11].

Let S be the space of n × n real symmetric matrices endowed with the inner
product 〈X,Y 〉 := trace(XY ) for any X,Y ∈ S. ‖X‖ is the Frobenius norm of
X. Let λ(·) : S → R

n be the eigenvalue function such that λi(X), i = 1, . . . , n,
yield eigenvalues of X for any X ∈ S and are patterned in nonincreasing order, i.e.,
λ1(X) ≥ · · · ≥ λn(X). A function f : R

n → R is symmetric on an open set Ω ⊆ R
n

if f is invariant under coordinate permutation, i.e.,

f(x) = f(Px) for any permutation matrix P and any x ∈ Ω.

For simplicity, we assume that Ω is R
n in this paper (all results remain valid when

restricted to some open symmetric set Ω). Formally, a spectral function is a composi-
tion of a symmetric function f : R

n → R and the eigenvalue function λ(·) : S → R
n;
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that is, the spectral function (f ◦ λ) : S → R is given by

(f ◦ λ)(X) := f(λ(X)), X ∈ S.

For more explanation leading to this definition, see [16]. Typical spectral functions
include the kth largest eigenvalue of a symmetric matrix [14, 15] and the Schatten
p-norm of a symmetric matrix (p ≥ 1).

It is well known that the eigenvalue function λ(·) is not everywhere differentiable.
So it is natural to expect that the composite function (f ◦λ) could be not everywhere
differentiable no matter how smooth f is. It was therefore surprising when Lewis
claimed in [13] that (f ◦ λ) is indeed (strictly) differentiable at X ∈ S if and only if f
is (strictly) differentiable at λ(X). Moreover, it is further proved in [16] that (f ◦ λ)
is twice (continuously) differentiable at X ∈ S if and only if f is twice (continuously)
differentiable at λ(X). Those two results on derivatives play an important role in this
paper. It is also known that (f ◦ λ) is convex if and only if f is convex [5]. Since
the eigenvalue function is Lipschitz continuous, (f ◦ λ) is locally Lipschitzian if f is.
Then the generalized gradient ∂(f ◦ λ) in the sense of Clarke [4] is well defined. A
beautiful formula for calculating elements in ∂(f ◦ λ) can be found in [13]. Several
other subgradients of (f ◦ λ) are studied in [15]; see also [8].

The above results show that (f ◦ λ) inherits smoothness properties from f . How-
ever, this is not the case for directional differentiability. The punctured hyperbola
example constructed by Lewis [13] shows that (f ◦ λ) is not necessarily directionally
differentiable if f is directionally differentiable only. We will show that a sufficient
condition for directional differentiability of (f ◦λ) at X ∈ S is the semidifferentiability
of f at λ(X) (see Proposition 3.2). This result suggests that f should have differ-
entiability properties stronger than directional differentiability in order for (f ◦ λ) to
inherit the same properties from f . In fact, we will show that (f ◦λ) is min(1, ρ)-order
semismooth if and only if f is ρ-order semismooth (see Proposition 3.5), generaliz-
ing a recent result of Sun and Sun [28] which proves that the eigenvalue function is
strongly semismooth. As mentioned earlier, (f ◦λ) is (twice) differentiable if and only
if f is (twice) differentiable. We are also interested in the case when f is an LC1

function (also called a C1,1 function in the literature), i.e., f is once continuously dif-
ferentiable and its derivative function ∇f(·) is locally Lipschitz. Another interesting
case is when f is an SC1 function, i.e., f is not only an LC1 function, but also its
derivative function is semismooth. For both cases, we will show that (f ◦λ) is an LC1

(respectively, SC1) function (see Propositions 4.3 and 4.5). The importance of LC1

and SC1 functions is that they constitute a class of minimization problems which can
be solved by Newton-type methods (see [6, 20, 22]) and by penalty-type methods (see
[31, 30]).

The property of semismoothness, as introduced by Mifflin [17, 18] for functionals
and scalar-valued functions and further extended by Qi and Sun [23] for vector-valued
functions, is of particular interest due to the key role it plays in the superlinear
convergence analysis of certain generalized Newton methods [10, 21, 23]. Recent
attention in research on semismoothness is on symmetric–matrix-valued functions
which have important applications to semidefinite complementarity problems [29, 27,
2, 3, 28, 11]. Several important results have been established and inspired our research

in this paper. For example, the absolute matrix-valued function |X| :=
√
X2, X ∈ S,

is strongly semismooth [27, 3]; the eigenvalue function λ(·) is strongly semismooth
[28]. This latter result is found to be particularly useful in quadratic convergence
analysis of Newton methods for inverse eigenvalue problems. Another useful result is
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a lemma of Chen and Tseng [2] about the locally upper Lipschitzian property of certain
orthogonal matrices yielding the spectral decomposition of a symmetric matrix.

Notation used in this paper is as follows: vectors in R
n are viewed as columns

and capital letters such as X,Y , etc. always denote matrices in S. For X ∈ S, we
denote by Xij the (i, j)th entry of X. We use ◦ to denote the Hadamard product
between two matrices, i.e.,

X ◦ Y = [XijYij ]
n
i,j=1.

Let the operator diag : S → R
n be defined by diag[X] := (X11, . . . , Xnn)T , while for

µ ∈ R
n, Diag[µ1, . . . , µn] denotes the diagonal matrix with its ith diagonal entry µi.

Sometimes we write Diag[µ] instead of Diag[µ1, . . . , µn] for simplicity. Let P denote
the set of all permutation matrices in R

n×n. For any given µ ∈ R
n, Pµ denotes the

stabilizer of µ defined by

Pµ := {P ∈ P| Pµ = µ}.

Throughout, ‖ · ‖ denotes the Frobenius norm for matrices and the 2-norm for vec-
tors. For any linear mapping L : S → S, we define its operator norm ‖|L|‖ :=
max‖X‖=1 ‖LX‖. For any x ∈ R

n, X ∈ S, and any scalar γ > 0, we denote the γ-ball
around x in R

n and the γ-ball around X in S, respectively, by

N (x, γ) := {y ∈ R
n| ‖y − x‖ ≤ γ},

B(X, γ) := {Y ∈ S| ‖Y −X‖ ≤ γ}.

For any µ ∈ R
n and P ∈ P, we will frequently use the following fact:

Diag[Pµ] = PDiag[µ]PT .

2. Miscellaneous. In this section, we review some basic concepts on continuity
and differentiability of vector-valued functions in order to avoid confusion with other
concepts not treated in this paper. Those concepts also apply to the spectral function
(f ◦ λ) and its gradient map ∇(f ◦ λ) (if it exists) since the symmetric matrix space
S can be cast as a vector space of dimension n(n + 1)/2. All those concepts except
semismoothness and their equivalent characterizations can be found in the book [26].
We also list some perturbation results on symmetric matrices for later use.

2.1. Basic concepts. Consider the mapping F : R
k �→ R

�. We say F is contin-
uous at x ∈ R

k if F (y) → F (x) as y → x, and F is continuous if F is continuous at
every x ∈ R

k. F is strictly continuous (also called “locally Lipschitz continuous”) at
x ∈ R

k [26, Chap. 9] if there exist scalars κ > 0 and δ > 0 such that

‖F (y) − F (z)‖ ≤ κ‖y − z‖ ∀y, z ∈ R
k with ‖y − x‖ ≤ δ, ‖z − x‖ ≤ δ,

and F is strictly continuous if F is strictly continuous at every x ∈ R
k. If δ can be

taken to be ∞, then F is Lipschitz continuous with Lipschitz constant κ. Define the
function lipF : R

k → [0,∞] by

lipF (x) := lim sup
y,z→x

y �=z

‖F (y) − F (z)‖
‖y − z‖ .

Then F is strictly continuous at x if and only if lipF (x) is finite.
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We say F is directionally differentiable at x ∈ R
k if

F ′(x;h) := lim
τ→0+

F (x + τh) − F (x)

τ
exists ∀h ∈ R

k,

and F is directionally differentiable if F is directionally differentiable at every x ∈ R
k.

We say F is semidifferentiable at x ∈ R
k if the limit

lim
τ↘0

ĥ→h

F (x + τ ĥ) − F (x)

τ

exists for every direction h ∈ R
n. It is easy to see that the limit (if it exists) equals

F ′(x;h). F is differentiable (in the Fréchet sense) at x ∈ R
k if there exists a linear

mapping ∇F (x) : R
k �→ R

� such that

F (x + h) − F (x) −∇F (x)h = o(‖h‖).

We say that F is continuously differentiable if F is differentiable at every x ∈ R
k

and ∇F is continuous. If F is strictly continuous, then F is almost everywhere
differentiable by Rademacher’s theorem; see [4] and [26, Sec. 9J]. Then the generalized
Jacobian ∂F (x) of F at x (in the Clarke sense) is well defined.

Definition 2.1 (semismoothness). Suppose that F : R
k → R

� is a strictly
continuous function. F is said to be semismooth at x ∈ R

k if F is directionally
differentiable at x and for any V ∈ ∂F (x + h),

F (x + h) − F (x) − V h = o(‖h‖).(1)

F is said to be ρ-order semismooth (0 < ρ < ∞) at x if F is semismooth at x and

F (x + h) − F (x) − V h = O(‖h‖1+ρ).(2)

In particular, F is called strongly semismooth at x if F is 1-order semismooth at x.
We say F is semismooth (respectively, ρ-order semismooth) if F is semismooth

(respectively, ρ-order semismooth) at every x ∈ R
k. Convex functions and piece-

wise continuously differentiable functions are examples of semismooth functions. The
composition of two (respectively, ρ-order) semismooth functions is also a (respectively,
ρ-order) semismooth function. The characterization below obtained by Sun and Sun
[27, Thm. 3.7] provides a convenient way for proving ρ-order semismoothness and
semismoothness as well. For more applications of this result, see [3, 28].

Lemma 2.2. Suppose that F : R
k → R

� is strictly continuous and directionally
differentiable in a neighborhood of x. Then for any ρ ∈ (0,∞) the following two
statements are equivalent:

(a) for any V ∈ ∂F (x + h),

F (x + h) − F (x) − V h = O(‖h‖1+ρ);

(b) for any h ∈ R
k such that F is differentiable at x + h,

F (x + h) − F (x) −∇F (x + h)h = O(‖h‖1+ρ).(3)

In particular, the following two statements are equivalent:
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(c) for any V ∈ ∂F (x + h),

F (x + h) − F (x) − V h = o(‖h‖);

(d) for any h ∈ R
k such that F is differentiable at x + h,

F (x + h) − F (x) −∇F (x + h)h = o(‖h‖).

Finally we assume that F : R
k �→ R

� is continuously differentiable. We say that
F is an LC1 function if ∇F is strictly continuous, and that F is an SC1 function if
F is an LC1 function and ∇F is semismooth. For more discussion on LC1 and SC1

functions and their roles in superlinear convergence analysis of certain generalized
Newton methods for some minimization problems, see [22, 20, 6]. We note that the
LC1 problem is also known as C1,1 data in [9], where second-order analysis of the
underlying function is conducted. For further development along this line, see [30, 31]
and the references therein.

2.2. Perturbation results for symmetric matrices. In this subsection, we
review some useful perturbation results for the spectral decomposition of real sym-
metric matrices. These results will be used in the next section to analyze properties
of the spectral function (f ◦ λ).

Let O denote the group of n×n real orthogonal matrices. For each X ∈ S, define
the set of orthogonal matrices giving the ordered spectral decomposition of X by

OX := {P ∈ O| PTXP = Diag[λ(X)]}.

Clearly OX is nonempty for each X ∈ S. The following lemma, proved in [2, Lem. 3],
gives a key perturbation result for eigenvectors of symmetric matrices. For a different
yet simple proof of this lemma, see [28].

Lemma 2.3. For any X ∈ S, there exist scalars η > 0 and ε > 0 such that

min
P∈OX

‖P −Q‖ ≤ η‖X − Y ‖ ∀ Y ∈ B(X, ε), ∀Q ∈ OY .(4)

We will also need the following perturbation results of von Neumann [19]; see also
[1].

Lemma 2.4. For any X,Y ∈ S, we have

‖λ(X) − λ(Y )‖ ≤ ‖X − Y ‖ and |λi(X) − λi(Y )| ≤ ‖X − Y ‖2 ∀ i = 1, . . . , n,

where ‖ · ‖2 is the 2-norm.
Last, we need the following classical result [25, Thm. 1] showing that, for any

X ∈ S and any H ∈ S, the orthonormal eigenvectors of X + τH may be chosen to
be analytic in τ . As is remarked in [12, p. 122], the existence of such orthonormal
eigenvectors depending smoothly on τ is one of the most remarkable results in the
analytic perturbation theory for symmetric operators.

Lemma 2.5. For any X ∈ S and any H ∈ S, there exist P (τ) ∈ O, τ ∈ R,
whose entries are power series in τ , convergent in a neighborhood of τ = 0, and
P (τ)T (X + τH)P (τ) is diagonal.

3. Directional differentiability and semismoothness of spectral func-
tions. This section includes two main results. Proposition 3.2 says that the spectral
function (f ◦ λ) is directionally differentiable if f is semidifferentiable. Without this
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condition, the punctured hyperbola example [13] shows that (f ◦ λ) is not necessarily
directionally differentiable. Proposition 3.5 says that (f ◦ λ) inherits semismoothness
from f . The following preliminary results, which shall be used from time to time
in our proofs, are due to the symmetry of f . For example, parts (a), (c), and (d)
of Lemma 3.1 follow from differentiating both sides of the equality f(µ) = f(Pµ)
(P ∈ P) and the chain rule. Part (b) is a direct consequence from the definition of
semidifferentiability and the symmetry of f .

Lemma 3.1. Suppose f : R
n �→ R is symmetric. Then we have the following

results:
(a) f is directionally differentiable at µ ∈ R

n along h ∈ R
n if and only if f is

directionally differentiable at Pµ along Ph for any P ∈ P.
(b) f is semidifferentiable at µ ∈ R

n if and only if f is semidifferentiable at Pµ
for any P ∈ P.

(c) f is differentiable at µ ∈ R
n if and only if f is differentiable at Pµ for any

P ∈ P. In particular, ∇f(Pµ) = P∇f(µ). Moreover, if P ∈ Pµ, then
∇f(µ) = P∇f(µ). Consequently, (∇f(µ))i = (∇f(µ))j if µi = µj for some
i, j ∈ {1, . . . , n}.

(d) f is twice differentiable at µ ∈ R
n if and only if f is twice differentiable at

Pµ for any P ∈ P. In this case we have ∇2f(Pµ) = P∇2f(µ)PT .
The next result states that under the condition of semidifferentiability the direc-

tional differentiability of f is inherited by the spectral function (f ◦ λ). Without this
condition, this result is no longer valid as the punctured hyperbola example in [13, p.
587] illustrates.

Proposition 3.2. Let X ∈ S be given. The following results hold.
(a) Suppose that f is semidifferentiable at λ(X). Then (f ◦ λ) is directionally

differentiable at X.
(b) Conversely, if (f◦λ) is directionally differentiable at X, then f is directionally

differentiable at λ(X).
(c) Suppose that f is both strictly continuous and directionally differentiable at

λ(X). Then (f ◦ λ) is directionally differentiable at X.
Proof. (a) Let H ∈ S and define

X(τ) = X + τH, τ ∈ R.

Then by Lemma 2.5 there exists P (τ) ∈ O, τ ∈ R, whose entries are power series
in τ , convergent in a neighborhood I of τ = 0, and PT (τ)X(τ)P (τ) is diagonal.
Consequently the corresponding eigenvalues

µi(τ) = [PT (τ)X(τ)P (τ)]ii, i = 1, . . . , n,

are also power series in τ , convergent for τ ∈ I. Denote

µ(τ) := (µ1(τ), . . . , µn(τ))T .

Then we have the expansion

µ(τ) = µ(0) + τµ′(0) + o(τ).(5)

The fact that the elements of µ(τ) are eigenvalues of X(τ) yields

lim
τ↘0

(f ◦ λ)(X + τH) − (f ◦ λ)(X)

τ
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= lim
τ↘0

f(µ(τ)) − f(µ(0))

τ

= lim
τ↘0

f(µ(0) + τµ′(0) + o(τ)) − f(µ(0))

τ

= f ′(µ(0);µ′(0)),

where the last equality uses the semidifferentiability of f at λ(X). This proves that
(f ◦ λ) is directionally differentiable at X.

(b) The proof of this part is standard and follows by restricting the spectral
function to the subspace of diagonal matrices and application of Lemma 3.1(a).

(c) This part follows directly from (a) since the strict continuity and directional
differentiability of f at λ(X) imply the semidifferentiability of f at λ(X).

The sufficient condition of semidifferentiability in Proposition 3.2(a) cannot be
replaced by directional differentiability in general. However, it can be so if f has the
separable form

f(x) = g(x1) + · · · + g(xn),(6)

where g : R → R is directionally differentiable. The proof is simple by noticing in the
preceding argument for (a) that

f(µ(τ)) =

n∑
i=1

g(µi(τ)) =

n∑
i=1

(g(µi(0) + τg′(µi(0);µ′
i(0)) + o(τ))).

Hence for this special case we have

(f ◦ λ)′(X;H) =

n∑
i=1

g′(µi(0);µ′
i(0)).

The next result on differentiability of spectral functions will be used in our analysis
of semismoothness (Proposition 3.5) and LC1 property (Proposition 4.3) of spectral
functions.

Lemma 3.3 (see [13, Thm. 1.1 and Cor. 2.5]). Let X ∈ S. (f ◦λ) is differentiable
at X if and only if f is differentiable at λ(X). In this case the gradient of (f ◦ λ) at
X is

∇(f ◦ λ)(X) = V Diag[∇f(µ)]V T(7)

for any orthogonal matrix V ∈ O and µ ∈ R
n satisfying X = V Diag[µ]V T .

The result below shows that semismoothness implies semidifferentiability.
Lemma 3.4. Let F : R

k �→ R
� and x ∈ R

k. Suppose that F is semismooth at x.
Then F is semidifferentiable at x.

Proof. An equivalent characterization of semismoothness of F at x is that the
limit

lim
ĥ→h

τ↘0

{
V ĥ| V ∈ ∂F (x + τ ĥ)

}
(8)

exists for any h ∈ R
k and equals F ′(x;h); see [23]. Let h ∈ R

k be given. For any

τ ↘ 0 and ĥ → h, choose any element V ∈ ∂F (x + τ ĥ); we then have

lim
ĥ→h

τ↘0

(
F (x + τ ĥ) − F (x)

)
/τ = lim

ĥ→h

τ↘0

(
F (x + τ ĥ) − F (x) − τV ĥ + τV ĥ

)
/τ
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= lim
ĥ→h

τ↘0

o(τ‖ĥ‖)/τ + lim
ĥ→h

τ↘0

V ĥ = F ′(x;h).

Hence F is semidifferentiable at x.
The converse of the above result is not true, i.e., a semidifferentiable function is

not necessarily semismooth. For example, let F : R
n �→ R be defined by

F (x) :=

{
‖x‖2 sin( 1

‖x‖ ) if x �= 0,

0 if x = 0.

This function is locally Lipschitzian, differentiable everywhere, smooth everywhere
except at the origin, and semidifferentiable at 0. But it is not semismooth at 0 [24].

Now we present the second main result in this section. The sufficient part says
that the spectral function (f ◦ λ) inherits semismoothness from f , which can also be
obtained by using a recent result of Sun and Sun [28] that the eigenvalue function λ(·)
is strongly semismooth and the fact that compositions of ρ-order semismooth functions
are ρ-order semismooth [7]. However, we include a different proof here because it is
direct and suggests a proof technique in analyzing SC1 property of spectral functions
in the next section.

Proposition 3.5. For any symmetric function f : R
n �→ R, the spectral function

(f ◦ λ) is semismooth if and only if f is semismooth. If f is ρ-order semismooth
(0 < ρ < ∞), then (f ◦ λ) is min{1, ρ}-order semismooth.

Proof. Suppose f is semismooth. Then f is strictly continuous and semidifferen-
tiable (Lemma 3.4). Hence (f ◦λ) is strictly continuous and directionally differentiable
(Lemma 3.2). Let D := {X ∈ S| (f ◦ λ) is differentiable at X}.

Fix any X ∈ S. By Lemma 2.3, there exist scalars η > 0 and ε > 0 such that (4)
holds. We will show that, for any H ∈ S with X + H ∈ D and ‖H‖ ≤ ε, we have

(f ◦ λ)(X + H) − (f ◦ λ)(X) − 〈∇(f ◦ λ)(X + H), H〉 = o(‖H‖),(9)

where o(·) and O(·) depend on f and X only. Then it follows from Lemma 2.2 that
(f ◦ λ) is semismooth at X. Since the choice of X ∈ S was arbitrary, (f ◦ λ) is
semismooth. Now choose any Q ∈ OX+H . Then Lemma 2.3 implies that there exists
P ∈ OX satisfying

‖P −Q‖ ≤ η‖H‖.

For simplicity, let r denote the left-hand side of (9), i.e.,

r := (f ◦ λ)(X + H) − (f ◦ λ)(X) − 〈∇(f ◦ λ)(X + H), H〉.

We also let

∆1 := f(λ(X + H)) − f(λ(X)) − 〈∇f(λ(X + H)), λ(X + H) − λ(X)〉

and

∆2 := 〈∇f(λ(X + H)), λ(X + H) − λ(X) − diag[QTHQ]〉.

Since (f ◦ λ) is differentiable at X + H ∈ D, it follows from Lemma 3.3 that f is
differentiable at λ(X +H). Hence, ∆1 and ∆2 are well defined. Note that ∇f(λ(X +
H)) and λ(X + H) − λ(X) are column vectors. We write their inner product in the
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form of 〈·, ·〉 rather than xT y for x, y ∈ R
n in order to be consistent with the inner

product in S. Using the gradient formula (7), we then have

〈∇(f ◦ λ)(X + H), H〉 = 〈QDiag[∇f(λ(X + H))]QT , H〉
= 〈Diag[∇f(λ(X + H))], QTHQ〉 = 〈∇f(λ(X + H)),diag[QTHQ]〉,

yielding

r = ∆1 + ∆2.

Since f is semismooth at λ(X) and λ(X + H) → λ(X) as ‖H‖ → 0, it follows from
Lemmas 2.2 and 2.4 that

∆1 = o(‖λ(X + H) − λ(X)‖) = o(‖H‖).

It remains to show ∆2 = o(‖H‖) in order to show r = o(‖H‖). Let H̃ := QTHQ and
O := PTQ. For simplicity, we let µ := λ(X + H) and β := λ(X). Since

Diag[µ] = QT (X + H)Q = OTDiag[β]O + H̃,

we have
n∑

k=1

OkiOkjβk + H̃ij =

{
µi if i = j,
0 else, i, j = 1, . . . , n.

(10)

Since O = PTQ = (P −Q)TQ + I and ‖P −Q‖ ≤ η‖H‖, it follows that

Oij = O(‖H‖) for i �= j.(11)

Since P,Q ∈ O, we have O ∈ O so that OTO = I. This and (11) imply

1 = O2
ii +

∑
k �=i

O2
ki = O2

ii + O(‖H‖2), i = 1, . . . , n.(12)

Then, for i = 1, . . . , n, the relations (10)–(12) yield

µi − βi − (QTHQ)ii =

n∑
k=1

O2
kiβk + H̃ii − βi − H̃ii

= O2
iiβi +

∑
k �=i

O2
kiβk − βi = βi − βi + O(‖H‖2) = O(‖H‖2).

Hence we have

λ(X + H) − λ(X) − diag[QTHQ] = O(‖H‖2),

which in turn implies ∆2 = O(‖H‖2). This proves that (f ◦ λ) is semismooth.
Suppose that f is ρ-order semismooth at λ(X) (0 < ρ < ∞). Then the preceding

argument shows that

r = ∆1 + ∆2 = O(‖H‖1+ρ) + O(‖H‖2) = O(‖H‖1+min{1,ρ}).

This shows that (f ◦ λ) is min{1, ρ}-order semismooth at X.
Suppose now (f ◦ λ) is semismooth. Then (f ◦ λ) is directionally differentiable

and strictly continuous. By Proposition 3.2, f is directionally differentiable. It is well
known that (f ◦λ) is strictly continuous if and only if f is. Then the semismoothness
of f follows from restricting the spectral function (f ◦ λ) to the subspace of diagonal
matrices and using the property of semismoothness of (f ◦ λ) and Lemma 2.2.
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4. LC1 and SC1 spectral functions. The purpose of this section is to show
that the spectral function (f ◦λ) inherits LC1 and SC1 properties from f . To establish
those properties, we need two more known results. One is a result of Rockafellar and
Wets saying that any Lipschitz function has a uniform approximation of a sequence
of continuously differentiable functions (on compact domain). The other is a result
of Lewis and Sendov on twice continuously differentiable spectral functions.

Lemma 4.1 (see [26, Thm. 9.67]). Given f : R
n → R, and Ω is an open subset

in R
n. If f is strictly continuous on Ω, then there exist functions fν : R

n → R,
ν = 1, 2, . . . , continuously differentiable and converging uniformly to f on any compact
set contained in Ω. Moreover, if f is an LC1 function on Ω, then there are twice
continuously differentiable functions fν such that {∇fν} converge uniformly to ∇f
on any compact set C contained in Ω, and

∣∣∥∥∇2fν(x)
∥∥∣∣ ≤ lip ∇f(x) ∀ν.(13)

If f is symmetric, then the smooth approximants {fν} can also be selected to be
symmetric.

In fact, [26, Thm. 9.67] contains only the first part of Lemma 4.1. But the second
part can be obtained from its proof. To see this, let ψν : R

n → R, ν = 1, 2, . . . , be
nonnegative, measurable, and bounded with

∫
Rn ψν(z)dz = 1, and the sets B

ν := {z ∈
R

n| ψν(z) > 0} form a bounded sequence that converges to {0}. Let C be a compact
set contained in Ω. We assume B

ν + C ⊆ Ω. Define

fν(x) :=

∫
Rn

f(x− z)ψν(z)dz =

∫
Bν

f(x− z)ψν(z)dz.

We observe that for x ∈ Ω

∇fν(x) =

∫
Bν

∇f(x− z)ψν(z)dz.

Then the proof argument of [26, Thm. 9.67] can be applied to the functions ∇fν

and ∇f , establishing that {∇fν} converge uniformly to ∇f on any compact set C
contained in Ω and (13) holds. Suppose f is symmetric. We further assume that the
measurable functions {ψν} are symmetric; it follows from the symmetry of f and ψν

that for any P ∈ P

fν(Px) =

∫
Rn

f(Px− z)ψν(z)dz =

∫
Rn

f(x− PT z)ψν(PT z)d(PT z) = fν(x),

i.e., {fν} are also symmetric.

To present Lewis and Sendov’s result, we suppose the symmetric function f :
R

n �→ R is twice differentiable at some points. Letting µ ∈ R
n be such a point, we

define a matrix map A(·) mapping µ to an n× n matrix:

(A(µ))ij :=

⎧⎪⎨
⎪⎩

0 if i = j,(
∇2f(µ)

)
ii
−
(
∇2f(µ)

)
ij

if i �= j and µi = µj ,

(∇f(µ))i − (∇f(µ))j
µi − µj

else.

(14)

The following results are [16, Thms. 3.3, 4.2].
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Lemma 4.2. For any X ∈ S, (f ◦ λ) is twice (continuously) differentiable at X
if and only if f is twice (continuously) differentiable at λ(X). Moreover, in this case
the Hessian of the spectral function at X is

∇2(f ◦ λ)(X)[H] = U(Diag[∇2f(λ(X)) diag[H̃]] + A(λ(X)) ◦ H̃)UT , ∀H ∈ S,(15)

where U is any orthogonal matrix in OX and H̃ = UTHU .
If f is twice continuously differentiable in a neighborhood of λ(X), say, N (λ(X), ε)

for some ε > 0, and

‖∇2f(µ)‖ ≤ κ(16)

for any µ in this neighborhood for some κ > 0, then, according to Lemmas 2.4 and
4.2, (f ◦ λ) is twice continuously differentiable in the neighborhood B(X, ε) of X and
for any Y in this neighborhood

‖|∇2(f ◦ λ)(Y )|‖ = sup
‖H‖=1

‖∇2(f ◦ λ)(Y )(H)‖

= sup
‖H‖=1

‖U(Diag[∇2f(λ(Y )) diag[UTHU ]] + A(λ(Y )) ◦ (UTHU))UT ‖

= sup
‖H‖=1

‖Diag[∇2f(λ(Y )) diag[UTHU ]] + A(λ(Y )) ◦ (UTHU)‖

≤ sup
‖H‖=1

‖Diag[∇2f(λ(Y )) diag[UTHU ]]‖ + sup
‖H‖=1

‖A(λ(Y )) ◦ (UTHU)‖

≤ κ̄ sup
‖H‖=1

‖UTHU‖ = κ̄,(17)

for some κ̄ > 0 which depends only on κ. Here we use the facts λ(Y ) ∈ N (λ(X), ε),
(16), and the twice continuous differentiability of f .

Now we present our first main result on LC1 spectral functions.
Proposition 4.3. Let f : R

n → R be differentiable in an open set Ω ⊆ R
n. Let

X ∈ S with λ(X) ∈ Ω. The following results hold.
(a) ∇(f ◦ λ) is strictly continuous at X if and only if ∇f is strictly continuous

at λ(X).
(b) (f ◦ λ) is an LC1 function in S if and only if f is an LC1 function in R

n.
Proof. For any ε > 0 such that N (λ(X), ε) ⊂ Ω, it is noted that f is differentiable

at every point in N (λ(X), ε) and (f ◦λ) is also differentiable at every point in B(X, ε)
by Lemmas 2.4 and 3.3.

(a) Suppose that ∇f is strictly continuous at λ(X). Then there exist scalars
κ > 0 and δ > 0 such that

‖∇f(y) −∇f(z)‖ ≤ κ‖y − z‖ ∀ y, z ∈ N (λ(X), δ) ⊂ Ω.

We note that λ(Y ) ∈ N (λ(X), δ) for any Y ∈ B(X, δ). By letting C := N (λ(X), δ) in
Lemma 4.1, there exists a sequence of twice continuously differentiable and symmetric
functions fν : R

n → R, ν = 1, 2, . . ., satisfying that ∇fν converges uniformly to ∇f
on C and

‖∇2fν(ξ)‖ ≤ κ ∀ ξ ∈ C, ∀ν.(18)

By Lemma 4.2, we know that each (fν ◦λ) is twice continuously differentiable. Letting
Y ∈ B(X, δ), it follows from Lemma 3.3 that for any P ∈ OY we have

‖∇(fν ◦ λ)(Y ) −∇(f ◦ λ)(Y )‖ = ‖PDiag[∇fν(λ(Y ))]PT − PDiag[∇f(λ(Y ))]PT ‖
= ‖Diag[∇fν(λ(Y )) −∇f(λ(Y ))]‖,
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where we use PPT = I and the properties of the Frobenius norm. Since {∇fν}∞1
converge uniformly to ∇f on C, this shows that {∇(fν ◦ λ)}∞1 converge uniformly to
∇(f ◦ λ) on B(X, δ). Moreover, by repeating arguments for (17) to the function fν

(noting that {fν}∞1 are twice continuously differentiable with the bound of (18)), we
have for any Y ∈ B(X, δ),

‖|∇2(fν ◦ λ)(Y )|‖ ≤ κ̄ ∀ν,(19)

for some κ̄ > 0, depending only on κ. Fix any Y,Z ∈ B(X, δ) with Y �= Z. Since
{∇(fν ◦ λ)}∞1 converges uniformly to ∇(f ◦ λ) on B(X, δ), for any ε > 0 there exists
an integer ν1 > 0 such that for all ν > ν1 we have

‖∇(fν ◦ λ)(W ) −∇(f ◦ λ)(W )‖ ≤ ε‖Y − Z‖ ∀W ∈ B(X, δ).

Then by (19) and the mean value theorem for continuously differentiable functions,
we have

‖∇(f ◦ λ)(Y ) −∇(f ◦ λ)(Z)‖
= ‖∇(f ◦ λ)(Y ) −∇(fν ◦ λ)(Y ) + ∇(fν ◦ λ)(Y ) −∇(fν ◦ λ)(Z)

+∇(fν ◦ λ)(Z) −∇(f ◦ λ)(Z)‖
≤ ‖∇(f ◦ λ)(Y ) −∇(fν ◦ λ)(Y )‖ + ‖∇(fν ◦ λ)(Y ) −∇(fν ◦ λ)(Z)‖

+‖∇(fν ◦ λ)(Z) −∇(f ◦ λ)(Z)‖

≤ 2ε‖Y − Z‖ + ‖
∫ 1

0

∇2(fν ◦ λ)(Y + τ(Y − Z))(Y − Z)dτ‖

≤ (κ̄ + 2ε)‖Y − Z‖ ∀ ν > ν1.

Since Y,Z ∈ B(X, δ) and ε are arbitrary, and by letting ν → ∞, this yields

‖∇(f ◦ λ)(Y ) −∇(f ◦ λ)(Z)‖ ≤ κ̄‖Y − Z‖ ∀ Y,Z ∈ B(X, δ).

Thus ∇(f ◦ λ) is strictly continuous at X.
Suppose instead that ∇(f ◦ λ) is strictly continuous at X. Then the strict con-

tinuity of f follows from restricting (f ◦ λ) to the subspace of diagonal matrices and
using formula (7).

(b) is an immediate consequence of (a) by choosing Ω = R
n.

In addition to the LC1 property, another prerequisite for being an SC1 function
is the directional differentiability of the gradient map. The following result concerns
this prerequisite.

Proposition 4.4. Suppose f is differentiable on an open set Ω ⊆ R
n. Let X ∈ S

and λ(X) ∈ Ω. Then the following results hold.
(a) ∇(f ◦λ) is directionally differentiable at X provided that ∇f is semidifferen-

tiable at λ(X).
(b) ∇f is directionally differentiable at λ(X) if ∇(f ◦λ) is directionally differen-

tiable at X.
Proof. We emphasize again that for any ε > 0 such that N (λ(X), ε) ⊂ Ω, (f ◦ λ)

is differentiable at every point in B(X, ε). Fix such an ε. In the following, we will
consider point X + τH for τ ∈ R and H ∈ S. Then X + τH ∈ B(X, ε) for all small
|τ |. Hence, f and (f ◦ λ) are differentiable at λ(X + τH) and X + τH, respectively,
for all small |τ |.
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(a) Let H ∈ S, and define X(τ) = X + τH, τ ∈ R. Then by Lemma 2.5
there exists P (τ) ∈ O, τ ∈ R, whose entries are power series in τ convergent in a
neighborhood I of τ = 0, and PT (τ)X(τ)P (τ) is diagonal. Then the corresponding
eigenvalues

µi(τ) := [PT (τ)X(τ)P (τ)]ii, i = 1, . . . , n,

are also power series in τ , convergent for τ ∈ I. Denote µ(τ) := (µ1(τ), . . . , µn(τ))T .
Then we have the expansions

µ(τ) = µ(0) + τµ′(0) + o(τ) and P (τ) = P (0) + τP ′(0) + o(τ).

We note that µ(0) = Qλ(X) for some Q ∈ P. Hence ∇f is semidifferentiable at µ(0)
by Lemma 3.1(b). In particular, we have

∇f(µ(τ)) = ∇f(µ(0) + τµ′(0) + o(τ)) = ∇f(µ(0)) + τ(∇f)′(µ(0);µ′(0)) + o(τ).

Then from those expansions above and the formula (7) we have

∇(f ◦ λ)(X + τH) −∇(f ◦ λ)(X)

= P (τ)Diag[∇f(µ(τ))]PT (τ) − P (0)Diag[∇f(µ(0))]PT (0)

= τ
(
P (0)Diag[(∇f)′(µ(0);µ′(0))]PT (0) + P (0)Diag[∇f(µ(0))](P ′(0))T

+ P ′(0)Diag[∇f(µ(0))]P (0)T
)

+ o(τ).

Hence

lim
τ↘0

(∇(f ◦ λ)(X + τH) −∇(f ◦ λ)(X)) /τ

= P (0)Diag[(∇f)′(µ(0);µ′(0))]PT (0) + P (0)Diag[∇f(µ(0))](P ′(0))T

+P ′(0)Diag[∇f(µ(0))]PT (0).

This implies that the directional derivative (∇(f ◦ λ))′(X;H) is well defined.
(b) Suppose now that ∇(f ◦ λ) is directionally differentiable at X. Then the

directional differentiability of f follows again from restricting (f ◦ λ) to the subspace
of diagonal matrices and using formula (7).

Our last main result is on SC1 property of spectral functions.
Proposition 4.5. Let f : R

n → R be differentiable on an open set Ω in R
n. Let

X ∈ S with λ(X) ∈ Ω. Then the following results hold.
(a) ∇f is semismooth at λ(X) if and only if ∇(f ◦λ) is semismooth at X. If ∇f

is ρ-order semismooth at λ(X) (0 < ρ < ∞), then ∇(f ◦λ) is min{1, ρ}-order
semismooth at X.

(b) (f ◦ λ) is an SC1 function in S if and only if f is an SC1 function in R
n.

Proof. First we note that there exist η > 0 and ε > 0 such that both f and (f ◦λ)
are differentiable in N (λ(X), ε) and B(X, ε), respectively, and Lemma 2.3 holds for
all Y ∈ B(X, ε). For simplicity, we let F (·) = ∇f(·).

(a) Suppose F is semismooth at λ(X). Then F is semidifferentiable, strictly con-
tinuous, and directionally differentiable at λ(X). By Propositions 4.4 and 4.3, ∇(f ◦λ)
is directionally differentiable at X and locally Lipschitz continuous in a neighborhood
B(X, δ) for some δ ≤ ε. Let D := {Y ∈ B(X, δ)| ∇(f ◦ λ) is differentiable at Y } and
λ := λ(X). By taking ε smaller if necessary, we can assume that ε < (λi − λi+1)/2
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whenever λi �= λi+1. We will show that, for any H ∈ S with X+H ∈ D and ‖H‖ ≤ ε,
we have

∇(f ◦ λ)(X + H) −∇(f ◦ λ)(X) −∇2(f ◦ λ)(X + H)H = o(‖H‖).(20)

Then, it follows from Lemma 2.2 that ∇(f◦λ) is semismooth at X. Let µ := λ(X+H),
and choose any Q ∈ OX+H ; then there exists P ∈ OX satisfying

‖P −Q‖ ≤ η‖H‖.

Since X + H ∈ D, Lemma 4.2 implies ∇f is differentiable at µ. For simplicity, let R
denote the left-hand side of (20); then we have from (7) and (15) that

R := ∇(f ◦ λ)(X + H) −∇(f ◦ λ)(X) −∇2(f ◦ λ)(X + H)H

= QDiag[∇f(µ)]QT − PDiag[∇f(λ)]PT

− Q(Diag[∇2f(µ) diag[QTHQ]] + A(µ) ◦ (QTHQ))QT .

Once again for simplicity, we let

R̃ := QTRQ, H̃ := QTHQ, A := Diag[F (µ)], B := Diag[F (λ)], D := PTQ, C := A(µ).

Consequently we have

R̃ = A−DTBD − Diag[∇F (µ) diag[H̃]] − C ◦ H̃.(21)

Since Diag[µ1, . . . , µn] = QT (X + H)Q = DTDiag[λ1, . . . , λn]D + H̃, we have

n∑
k=1

DkiDkjλk + H̃ij =

{
µi if i = j,
0 else,

i, j = 1, . . . , n.(22)

Since D = PTQ = (P −Q)TQ + I and ‖P −Q‖ ≤ η‖H‖, it follows that

Dij = O(‖H‖) ∀i �= j.(23)

Since P,Q ∈ O, we have D ∈ O so that DTD = I. This implies

1 = D2
ii +

∑
k �=i

D2
ki = D2

ii + O(‖H‖2), i = 1, . . . , n,(24)

0 = DiiDij + DjiDjj +
∑
k �=i,j

DkiDkj = DiiDij + DjiDjj + O(‖H‖2) ∀i �= j.(25)

We now show that R̃ = o(‖H‖), which, by ‖R‖ = ‖R̃‖, would prove (20). For any
i ∈ {1, . . . , n}, we have

R̃ii
(21)
= Fi(µ) −

n∑
k=1

D2
kiFk(λ) −

n∑
j=1

((∇F (µ))ijH̃jj)

(22)
= Fi(µ) −

n∑
k=1

D2
kiFk(λ) −

n∑
j=1

(
(∇F (µ))ij

(
µj −

n∑
k=1

D2
kjλk

))

(23)
= Fi(µ) −D2

iiFi(λ) −
n∑

j=1

(∇F (µ))ij(µj −D2
jjλj) + O(‖H‖2)
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(24)
= Fi(µ) − (1 + O(‖H‖2))Fi(λ)

−
n∑

j=1

((∇F (µ))ij(µj − (1 + O(‖H‖2))λj)) + O(‖H‖2)

= Fi(µ) − Fi(λ) −
n∑

j=1

(∇F (µ))ij(µj − λj) + O(‖H‖2)

= Fi(µ) − Fi(λ) − (∇Fi(µ))T (µ− λ) + O(‖H‖2),

where we use local boundedness of F and ∇F . Since F is semismooth at λ, each of its
components is also semismooth at λ. Lemma 2.4 implies that ‖λ− µ‖ ≤ ‖H‖. Then
clearly the right-hand side of the preceding relation is o(‖H‖). For any i, j ∈ {1, . . . , n}
with i �= j, we have

R̃ij
(21)
= −

n∑
k=1

DkiDkjFk(λ) − CijH̃ij

(22)
= −

n∑
k=1

DkiDkjFk(λ) + Cij

n∑
k=1

DkiDkjλk

(23)
= −(DiiDijFi(λ) + DjiDjjFj(λ)) + Cij(DiiDijλi + DjiDjjλj) + O(‖H‖2)

= − ((DiiDij + DjiDjj)Fi(λ) + DjiDjj(Fj(λ) − Fi(λ)))

+Cij ((DiiDij + DjiDjj)λi + DjiDjj(λj − λi)) + O(‖H‖2)

(25)
= −DjiDjj (Fj(λ) − Fi(λ) − Cij(λj − λi)) + O(‖H‖2).

Thus, if λi = λj , Lemma 3.1(c) implies that Fi(λ) = Fj(λ), which with the preceding
relation, yields

R̃ij = O(‖H‖2).

If λi �= λj , then Lemma 2.4 implies ‖µ− λ‖ ≤ ‖H‖, |µi − λi| ≤ ‖H‖, and |µj − λj | ≤
‖H‖ so that |µi − µj | = |λi − λj − (λi − µi) + (λj − µj)| ≥ |λi − λj | − 2‖H‖ >
2ε− 2‖H‖ ≥ 0. Hence µi �= µj , so Cij = (Fj(µ)−Fi(µ))/(µj − µi) and the preceding
relation yield

R̃ij = −DjiDjj

(
Fj(λ) − Fi(λ) − Fj(µ) − Fi(µ)

µj − µi
(λj − λi)

)
+O(‖H‖2) = O(‖H‖2),

where the second equality uses (23) and the strict continuity of Fi and Fj at λ, so that
Fi(µ) − Fi(λ) = O(‖µ− λ‖) = O(‖H‖) and Fj(µ) − Fj(λ) = O(‖µ− λ‖) = O(‖H‖).

Suppose F is ρ-order semismooth at λ(X) (0 < ρ < ∞). Then the preceding
argument shows that R̃ii = O(max{‖H‖1+ρ, ‖H‖2}) = O(‖H‖1+min{1,ρ}) for all i
while we still have R̃ij = O(‖H‖2) for all i �= j. This shows that ∇(f ◦λ) is min{1, ρ}-
order semismooth at X.

Suppose ∇(f ◦ λ) is semismooth at X. Then ∇(f ◦ λ) is strictly continuous and
directionally differentiable at X. By Propositions 4.3 and 4.4, F := ∇f is strictly
continuous and directionally differentiable at λ(X). For any h ∈ R

n such that F
is differentiable at λ(X) + h, i.e., f is twice differentiable at λ(X) + h, let H :=
QDiag[h]QT for some Q ∈ OX . Then there exists P ∈ P such that P (λ(X) + h) =
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λ(X +H). Lemma 3.1(d) implies that f is twice differentiable at λ(X +H). In turn,
Lemma 4.2 yields that ∇(f ◦ λ) is twice differentiable at X + H. We note that

QT (X + H)Q = Diag[λ(X) + h] = Diag[PTλ(X + H)] = PTDiag[λ(X + H)]P,

which is equivalent to

X + H = QPTDiag[λ(X + H)]PQT = UDiag[λ(X + H)]UT ,

where U := QPT , and hence U ∈ O since Q,P ∈ O. For simplicity, let µ := λ(X+H);
then we have

UTHU = PQTQDiag[h]QTQPT

= PDiag[h]PT = Diag[Ph] (using P ∈ P)

and

Diag[∇2f(µ) diag[UTHU ]] = Diag[∇2f(µ)Ph]

= Diag[∇2f(P (λ(X) + h))Ph] (using µ = P (λ(X) + h))

= Diag[P∇2f(λ(X) + h)PTPh] (using Lemma 3.1(d))

= Diag[P∇2f(λ(X) + h)h]

= PDiag[∇2f(λ(X) + h)h]PT (using P ∈ P).(26)

Since ∇(f ◦ λ) is semismooth at X, it follows from Lemma 2.2 that

R := ∇(f ◦ λ)(X + H) −∇(f ◦ λ)(X) −∇2(f ◦ λ)(X + H)H = o(‖H‖),

which, by (7), (15), and (26), is equivalent to

R = QDiag[∇f(λ(X) + h)]QT −QDiag[∇f(λ(X))]QT

− U(Diag[∇2f(µ) diag[UTHU ]] + A(µ) ◦ (UTHU))UT

= QDiag[∇f(λ(X) + h) −∇f(λ(X)) −∇2f(λ(X) + h)h]QT .

The second equality uses A(µ) ◦ (UTHU) = A(µ) ◦ Diag[Ph] = 0. We then have

R̃ := QTRQ = Diag[∇f(λ(X) + h) −∇f(λ(X)) −∇2f(λ(X) + h)h].

Since ‖R̃‖ = ‖R‖ and ‖H‖ = ‖h‖, the preceding relation means by noting F = ∇f

F (λ(X) + h) − F (λ(X)) −∇F (λ(X) + h)h = o(‖h‖).

This proves that ∇f is semismooth at λ(X).
(b) is an immediate consequence of (a) since the choice of X is arbitrary, Ω can

be chosen as R
n.

Remarks. In the special case where f : R
n �→ R takes the form (6) and g(·) : R �→

R is differentiable, according to Lemma 3.3 we have

∇(f ◦ λ)(X) = UDiag[g′(λ1), . . . , g
′(λn)]UT ,(27)

where U ∈ OX and λ := λ(X). Associated with this f , we define a symmetric–matrix-
valued function f� : S �→ S by

f�(X) = UDiag[g′(µ1), . . . , g
′(µn)]UT
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for any U ∈ O satisfying X = UDiag[µ1, . . . , µn]UT . It is pointed out in [3] that for
this special case

f�(X) = ∇(f ◦ λ)(X).

Among many results on continuity, differentiability, and nonsmoothness obtained in
[3] is the semismoothness of f�. It is proved [3, Prop. 4.10] that f�(·) is semismooth
if and only if g′(·) is semismooth. In other words, for this special case, the SC1 result
(Proposition 4.5) follows from [3, Prop. 4.10]. But for general cases other than (6),
we do not have such direct consequences. Nevertheless, the proof here is inspired by
[3, Prop. 4.10]. We would also like to point out that the treatment in [3] goes beyond
this special case. In fact, given a real function of one dimension f : R �→ R, the
symmetric–matrix-valued function defined in [3] is

f�(X) := UDiag[f(µ1), . . . , f(µn)]UT ,

where U ∈ O satisfying X = UDiag[µ1, . . . , µn]UT . There are examples where f
cannot be derivative of another real function.

5. An example. As an example, we consider the positive trace function F :
S �→ R by

F (X) := (max{0, trace(X)})2 ∀X ∈ S.

Obviously, F (X) = (f ◦ λ)(X) with f : R
n �→ R defined by

f(x) :=
(
max

{
0,
∑

xi

})2

∀x ∈ R
n.

It is known that f(·) is continuously differentiable, and its derivative map is strongly
semismooth. Hence, we can conclude that F (·) is continuously differentiable [13], and
moreover, it is an SC1 function (Proposition 4.5).
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